go.plotly.com Open in urlscan Pro
3.215.172.219  Public Scan

Submitted URL: http://groove.plot.ly/url/Ea4Rbggm0eMAoeAlylCwsT1AbUU/aHR0cHM6Ly9nby5wbG90bHkuY29tL2RhdGFicmlja3MtZGFzaC1zdHJlYW1pbmc_...
Effective URL: https://go.plotly.com/databricks-dash-streaming?_gl=1*yb7xu8*_ga*MjExODMwNTc5Ni4xNjQ2NDMwMDU1*_ga_6G7EE0JNSC*MTY2OTg1M...
Submission: On December 06 via manual from IN — Scanned from DE

Form analysis 1 forms found in the DOM

POST https://go.plotly.com/databricks-dash-streaming

<form accept-charset="UTF-8" method="post" action="https://go.plotly.com/databricks-dash-streaming" class="form" id="pardot-form">
  <p class="form-field  first_name pd-text required    ">
    <label class="field-label" for="First_Namepi_First_Name">First Name</label>
    <input type="text" name="First_Namepi_First_Name" id="First_Namepi_First_Name" value="" class="text" size="30" maxlength="40" onchange="" onfocus="">
  </p>
  <div id="error_for_First_Namepi_First_Name" style="display:none"></div>
  <p class="form-field  last_name pd-text required    ">
    <label class="field-label" for="Last_Namepi_Last_Name">Last Name</label>
    <input type="text" name="Last_Namepi_Last_Name" id="Last_Namepi_Last_Name" value="" class="text" size="30" maxlength="80" onchange="" onfocus="">
  </p>
  <div id="error_for_Last_Namepi_Last_Name" style="display:none"></div>
  <p class="form-field  User_Type pd-select required    form-field-primary">
    <label class="field-label" for="719653_153240pi_719653_153240">I am a...</label>
    <select name="719653_153240pi_719653_153240" id="719653_153240pi_719653_153240" class="select" onchange="">
      <option value="" selected="selected"></option>
      <option value="1747674">Professional</option>
      <option value="1747677">Student</option>
    </select>
  </p>
  <div id="error_for_719653_153240pi_719653_153240" style="display:none"></div>
  <p class="form-field  email pd-text required    ">
    <label class="field-label" for="Emailpi_Email">Company Email</label>
    <input type="text" name="Emailpi_Email" id="Emailpi_Email" value="" class="text" size="30" maxlength="255" onchange="" onfocus="piAjax.loadEmailIndicator(this, 153243, 'https://go.plotly.com/images/indicator2.gif');">
  </p>
  <div id="error_for_Emailpi_Email" style="display:none"></div>
  <p class="form-field  company pd-text required    form-field-secondary dependentFieldSlave dependentField">
    <label class="field-label" for="Companypi_Company">Company Name</label>
    <input type="text" name="Companypi_Company" id="Companypi_Company" value="" class="text" size="30" maxlength="255" onchange="" onfocus="">
  </p>
  <div id="error_for_Companypi_Company" style="display:none"></div>
  <p class="form-field  job_title pd-select required    form-field-secondary dependentFieldSlave dependentField">
    <label class="field-label" for="719653_153249pi_719653_153249">Title</label>
    <select name="719653_153249pi_719653_153249" id="719653_153249pi_719653_153249" class="select" onchange="">
      <option value="" selected="selected"></option>
      <option value="1747680">Student</option>
      <option value="1747683">CXO</option>
      <option value="1747686">Director/VP</option>
      <option value="1747689">Product Manager</option>
      <option value="1747692">Data Engineer</option>
      <option value="1747695">Data Scientist</option>
      <option value="1747698">Engineer</option>
      <option value="1747701">DevOps</option>
      <option value="1747704">Full Stack Developer</option>
      <option value="1747707">System Architect</option>
      <option value="1747710">Other</option>
    </select>
  </p>
  <div id="error_for_719653_153249pi_719653_153249" style="display:none"></div>
  <p class="form-field  utm_source pd-hidden  hidden   ">
    <input type="hidden" name="719653_153252pi_719653_153252" id="719653_153252pi_719653_153252" value="">
  </p>
  <div id="error_for_719653_153252pi_719653_153252" style="display:none"></div>
  <p class="form-field  utm_medium pd-hidden  hidden   ">
    <input type="hidden" name="719653_153255pi_719653_153255" id="719653_153255pi_719653_153255" value="">
  </p>
  <div id="error_for_719653_153255pi_719653_153255" style="display:none"></div>
  <p class="form-field  utm_campaign pd-hidden  hidden   ">
    <input type="hidden" name="719653_153258pi_719653_153258" id="719653_153258pi_719653_153258" value="">
  </p>
  <div id="error_for_719653_153258pi_719653_153258" style="display:none"></div>
  <p class="form-field  utm_content pd-hidden  hidden   ">
    <input type="hidden" name="719653_153261pi_719653_153261" id="719653_153261pi_719653_153261" value="">
  </p>
  <div id="error_for_719653_153261pi_719653_153261" style="display:none"></div>
  <p class="form-field  utm_term pd-hidden  hidden   ">
    <input type="hidden" name="719653_153264pi_719653_153264" id="719653_153264pi_719653_153264" value="">
  </p>
  <div id="error_for_719653_153264pi_719653_153264" style="display:none"></div>
  <p class="form-field %%form-field-css-classes%% pd-captcha required hidden   %%form-field-dependency-css%%">
  </p>
  <div class="g-recaptcha" data-sitekey="6LfVnCYTAAAAAB4x9xlkeTsV8CO6np5UMhNjRNNZ">
    <div style="width: 304px; height: 78px;">
      <div><iframe title="reCAPTCHA"
          src="https://www.google.com/recaptcha/api2/anchor?ar=1&amp;k=6LfVnCYTAAAAAB4x9xlkeTsV8CO6np5UMhNjRNNZ&amp;co=aHR0cHM6Ly9nby5wbG90bHkuY29tOjQ0Mw..&amp;hl=de&amp;v=Km9gKuG06He-isPsP6saG8cn&amp;size=normal&amp;cb=oi8qi28xykp" width="304"
          height="78" role="presentation" name="a-7e8h3lqkocni" frameborder="0" scrolling="no" sandbox="allow-forms allow-popups allow-same-origin allow-scripts allow-top-navigation allow-modals allow-popups-to-escape-sandbox"
          data-lf-form-tracking-inspected-3p1w24da6lbamy5n="true" data-lf-yt-playback-inspected-3p1w24da6lbamy5n="true" data-lf-vimeo-playback-inspected-3p1w24da6lbamy5n="true"></iframe></div><textarea id="g-recaptcha-response"
        name="g-recaptcha-response" class="g-recaptcha-response" style="width: 250px; height: 40px; border: 1px solid rgb(193, 193, 193); margin: 10px 25px; padding: 0px; resize: none; display: none;"></textarea>
    </div><iframe data-lf-vimeo-playback-inspected-3p1w24da6lbamy5n="true" data-lf-form-tracking-inspected-3p1w24da6lbamy5n="true" data-lf-yt-playback-inspected-3p1w24da6lbamy5n="true" style="display: none;"></iframe>
  </div>
  <script type="text/javascript" src="https://www.google.com/recaptcha/api.js">
  </script>
  <p></p>
  <div id="error_for_Recaptchapi_Recaptcha" style="display:none"></div>
  <p style="position:absolute; width:190px; left:-9999px; top: -9999px;visibility:hidden;">
    <label for="pi_extra_field">Comments</label>
    <input type="text" name="pi_extra_field" id="pi_extra_field">
  </p>
  <!-- forces IE5-8 to correctly submit UTF8 content  -->
  <input name="_utf8" type="hidden" value="☃">
  <p class="submit">
    <input type="submit" accesskey="s" value="REGISTER">
  </p>
  <p><a href="https://plot.ly/privacy/" target="_blank">Privacy Policy</a></p>
  <script>
    if (document.URL.startsWith("https://go.plot.ly/demo-dash")) {
      document.querySelector(".get-page-title input").value = "Nav Bar Demo Request";
    }
    if (document.URL.startsWith('https://go.plot.ly/dash-enterprise-trial')) {
      document.querySelector(".get-page-title input").value = "Dash Demo Request";
    }
    if (document.URL.startsWith('https://go.plot.ly/chart-studio-demo')) {
      document.querySelector(".get-page-title input").value = "Chart Studio Demo Request";
    }
    if (document.URL.startsWith('https://go.plot.ly/oem-learn')) {
      document.querySelector(".get-page-title input").value = "OEM Learn More";
    }
    if (document.URL.startsWith('https://go.plot.ly/contact-sales')) {
      document.querySelector(".get-page-title input").value = "Contact Sales";
    }
    if (document.URL.startsWith('https://go.plot.ly/contact-us')) {
      document.querySelector(".get-page-title input").value = "Contact Us";
    }
  </script>
  <script type="text/javascript">
    //<![CDATA[
    var anchors = document.getElementsByTagName("a");
    for (var i = 0; i < anchors.length; i++) {
      var anchor = anchors[i];
      if (anchor.getAttribute("href") && !anchor.getAttribute("target")) {
        anchor.target = "_top";
      }
    }
    //]]>
  </script>
  <input type="hidden" name="hiddenDependentFields" id="hiddenDependentFields" value="">
</form>

Text Content

EFFICIENT STREAMING PIPELINES AT SCALE

A SPECIAL JOINT TECHNICAL WEBINAR WITH SOLUTION ARCHITECTS FROM DATABRICKS AND
PLOTLY

TUESDAY, DECEMBER 13, 1PM EST

REGISTER FOR THE WEBINAR

First Name



Last Name



I am a... Professional Student



Company Email



Company Name



Title Student CXO Director/VP Product Manager Data Engineer Data Scientist
Engineer DevOps Full Stack Developer System Architect Other































Comments



Privacy Policy

Streaming data has become ubiquitous across a wide range of applications, from
IoT technologies to transportation route planning and real-time financial
reporting. But tailoring streaming tools to fit organizational criteria can
prove challenging, especially when seeking to operationalize such workflows at
scale. Legacy system architectures often present roadblocks and slow down data
science workflows.

Databricks and Plotly Dash showcase a combined solution to ensure fast
processing and visualization of such data, in real-time, even with large
volumes.

In an upcoming 1-hour technical session, solution architects from Databricks and
Plotly will walk through the following:

 * Building the back end of a Dash app with the Databricks Structured Streaming
   solution
 * Using the Databricks SQL python connector to connect to Dash
 * Leveraging the efficient Databricks Photon query machine with the
   dcc.interval Dash component
 * Deploying interactive, customizable large data apps at scale with Dash
   Enterprise


MEET THE SPEAKERS


CODY AUSTIN DAVIS

As a Solutions Architect at Databricks, Cody helps Databricks partners develop
cutting-edge technical architectures and unlock business value from data. He
specializes in solving big data analytics problems for companies in ad tech,
healthcare, and IoT. He is also a Databricks Certified Spark 3.0 Developer with
a background in data engineering, business intelligence, and product
development.


HANNAH KER

Hannah is a Solutions Architect at Plotly. She is passionate about creating
interactive tools and visualizations to help people make sense of complex
datasets. She holds a Master’s degree in Geospatial Data Science from University
College London and has worked previously in the humanitarian and civic
technology sectors.

 
 
 
 


WITH CUSTOMERS ACROSS THE FORTUNE 500, PLOTLY IS A CATEGORY-DEFINING LEADER IN
ENABLING DATA-DRIVEN DECISIONS FROM ADVANCED ANALYTICS, MACHINE LEARNING, AND
ARTIFICIAL INTELLIGENCE.