docs.scipy.org Open in urlscan Pro
50.17.248.72  Public Scan

URL: https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html
Submission: On June 17 via manual from GB — Scanned from GB

Form analysis 1 forms found in the DOM

GET ../../search.html

<form class="bd-search d-flex align-items-center" action="../../search.html" method="get">
  <i class="icon fas fa-search"></i>
  <input type="search" class="form-control" name="q" id="search-input" placeholder="Search the docs ..." aria-label="Search the docs ..." autocomplete="off">
</form>

Text Content

 * Getting started
 * User Guide
 * API reference
 * Development
 * Release notes

1.10.1 (stable)
development1.10.1
(stable)1.10.01.9.31.9.21.9.11.9.01.8.11.8.01.7.11.7.01.6.31.6.21.6.11.6.01.5.41.5.31.5.21.5.11.5.01.4.11.4.01.3.31.3.21.3.11.3.01.2.31.2.11.2.01.1.01.0.00.19.00.18.10.18.00.17.10.17.00.16.10.16.00.15.10.15.00.14.10.14.00.13.00.12.00.11.00.10.10.10.00.9.00.80.7
 * GitHub
 * Twitter

 * Clustering package ( scipy.cluster )
 * K-means clustering and vector quantization ( scipy.cluster.vq )
 * Hierarchical clustering ( scipy.cluster.hierarchy )
 * Constants ( scipy.constants )
 * Datasets ( scipy.datasets )
 * Discrete Fourier transforms ( scipy.fft )
 * Legacy discrete Fourier transforms ( scipy.fftpack )
 * Integration and ODEs ( scipy.integrate )
 * Interpolation ( scipy.interpolate )
 * Input and output ( scipy.io )
 * Linear algebra ( scipy.linalg )
 * Low-level BLAS functions ( scipy.linalg.blas )
 * Low-level LAPACK functions ( scipy.linalg.lapack )
 * BLAS Functions for Cython
 * LAPACK functions for Cython
 * Interpolative matrix decomposition ( scipy.linalg.interpolative )
 * Miscellaneous routines ( scipy.misc )
 * Multidimensional image processing ( scipy.ndimage )
 * Orthogonal distance regression ( scipy.odr )
 * Optimization and root finding ( scipy.optimize )
 * Cython optimize zeros API
 * Signal processing ( scipy.signal )
 * Sparse matrices ( scipy.sparse )
 * Sparse linear algebra ( scipy.sparse.linalg )
 * Compressed sparse graph routines ( scipy.sparse.csgraph )
 * Spatial algorithms and data structures ( scipy.spatial )
 * Distance computations ( scipy.spatial.distance )
 * Special functions ( scipy.special )
 * Statistical functions ( scipy.stats )
 * Result classes
 * Contingency table functions ( scipy.stats.contingency )
 * Statistical functions for masked arrays ( scipy.stats.mstats )
 * Quasi-Monte Carlo submodule ( scipy.stats.qmc )
 * Random Number Generators ( scipy.stats.sampling )
 * Low-level callback functions


On this page
 * csr_matrix




SCIPY.SPARSE.CSR_MATRIX#

class scipy.sparse.csr_matrix(arg1, shape=None, dtype=None, copy=False)[source]#

Compressed Sparse Row matrix

This can be instantiated in several ways: csr_matrix(D)

with a dense matrix or rank-2 ndarray D

csr_matrix(S)

with another sparse matrix S (equivalent to S.tocsr())

csr_matrix((M, N), [dtype])

to construct an empty matrix with shape (M, N) dtype is optional, defaulting to
dtype=’d’.

csr_matrix((data, (row_ind, col_ind)), [shape=(M, N)])

where data, row_ind and col_ind satisfy the relationship a[row_ind[k],
col_ind[k]] = data[k].

csr_matrix((data, indices, indptr), [shape=(M, N)])

is the standard CSR representation where the column indices for row i are stored
in indices[indptr[i]:indptr[i+1]] and their corresponding values are stored in
data[indptr[i]:indptr[i+1]]. If the shape parameter is not supplied, the matrix
dimensions are inferred from the index arrays.

Notes

Sparse matrices can be used in arithmetic operations: they support addition,
subtraction, multiplication, division, and matrix power.

Advantages of the CSR format

 * efficient arithmetic operations CSR + CSR, CSR * CSR, etc.

 * efficient row slicing

 * fast matrix vector products

Disadvantages of the CSR format

 * slow column slicing operations (consider CSC)

 * changes to the sparsity structure are expensive (consider LIL or DOK)

Examples

>>> import numpy as np
>>> from scipy.sparse import csr_matrix
>>> csr_matrix((3, 4), dtype=np.int8).toarray()
array([[0, 0, 0, 0],
       [0, 0, 0, 0],
       [0, 0, 0, 0]], dtype=int8)


>>> row = np.array([0, 0, 1, 2, 2, 2])
>>> col = np.array([0, 2, 2, 0, 1, 2])
>>> data = np.array([1, 2, 3, 4, 5, 6])
>>> csr_matrix((data, (row, col)), shape=(3, 3)).toarray()
array([[1, 0, 2],
       [0, 0, 3],
       [4, 5, 6]])


>>> indptr = np.array([0, 2, 3, 6])
>>> indices = np.array([0, 2, 2, 0, 1, 2])
>>> data = np.array([1, 2, 3, 4, 5, 6])
>>> csr_matrix((data, indices, indptr), shape=(3, 3)).toarray()
array([[1, 0, 2],
       [0, 0, 3],
       [4, 5, 6]])


Duplicate entries are summed together:

>>> row = np.array([0, 1, 2, 0])
>>> col = np.array([0, 1, 1, 0])
>>> data = np.array([1, 2, 4, 8])
>>> csr_matrix((data, (row, col)), shape=(3, 3)).toarray()
array([[9, 0, 0],
       [0, 2, 0],
       [0, 4, 0]])


As an example of how to construct a CSR matrix incrementally, the following
snippet builds a term-document matrix from texts:

>>> docs = [["hello", "world", "hello"], ["goodbye", "cruel", "world"]]
>>> indptr = [0]
>>> indices = []
>>> data = []
>>> vocabulary = {}
>>> for d in docs:
...     for term in d:
...         index = vocabulary.setdefault(term, len(vocabulary))
...         indices.append(index)
...         data.append(1)
...     indptr.append(len(indices))
...
>>> csr_matrix((data, indices, indptr), dtype=int).toarray()
array([[2, 1, 0, 0],
       [0, 1, 1, 1]])


Attributes: dtypedtype

Data type of the matrix

shape2-tuple

Get shape of a matrix.

ndimint

Number of dimensions (this is always 2)

nnz

Number of stored values, including explicit zeros.

data

CSR format data array of the matrix

indices

CSR format index array of the matrix

indptr

CSR format index pointer array of the matrix

has_sorted_indices

Determine whether the matrix has sorted indices

Methods

__len__()



arcsin()

Element-wise arcsin.

arcsinh()

Element-wise arcsinh.

arctan()

Element-wise arctan.

arctanh()

Element-wise arctanh.

argmax([axis, out])

Return indices of maximum elements along an axis.

argmin([axis, out])

Return indices of minimum elements along an axis.

asformat(format[, copy])

Return this matrix in the passed format.

asfptype()

Upcast matrix to a floating point format (if necessary)

astype(dtype[, casting, copy])

Cast the matrix elements to a specified type.

ceil()

Element-wise ceil.

check_format([full_check])

check whether the matrix format is valid

conj([copy])

Element-wise complex conjugation.

conjugate([copy])

Element-wise complex conjugation.

copy()

Returns a copy of this matrix.

count_nonzero()

Number of non-zero entries, equivalent to

deg2rad()

Element-wise deg2rad.

diagonal([k])

Returns the kth diagonal of the matrix.

dot(other)

Ordinary dot product

eliminate_zeros()

Remove zero entries from the matrix

expm1()

Element-wise expm1.

floor()

Element-wise floor.

getH()

Return the Hermitian transpose of this matrix.

get_shape()

Get shape of a matrix.

getcol(i)

Returns a copy of column i of the matrix, as a (m x 1) CSR matrix (column
vector).

getformat()

Format of a matrix representation as a string.

getmaxprint()

Maximum number of elements to display when printed.

getnnz([axis])

Number of stored values, including explicit zeros.

getrow(i)

Returns a copy of row i of the matrix, as a (1 x n) CSR matrix (row vector).

log1p()

Element-wise log1p.

max([axis, out])

Return the maximum of the matrix or maximum along an axis.

maximum(other)

Element-wise maximum between this and another matrix.

mean([axis, dtype, out])

Compute the arithmetic mean along the specified axis.

min([axis, out])

Return the minimum of the matrix or maximum along an axis.

minimum(other)

Element-wise minimum between this and another matrix.

multiply(other)

Point-wise multiplication by another matrix, vector, or scalar.

nonzero()

nonzero indices

power(n[, dtype])

This function performs element-wise power.

prune()

Remove empty space after all non-zero elements.

rad2deg()

Element-wise rad2deg.

reshape(self, shape[, order, copy])

Gives a new shape to a sparse matrix without changing its data.

resize(*shape)

Resize the matrix in-place to dimensions given by shape

rint()

Element-wise rint.

set_shape(shape)

See reshape.

setdiag(values[, k])

Set diagonal or off-diagonal elements of the array.

sign()

Element-wise sign.

sin()

Element-wise sin.

sinh()

Element-wise sinh.

sort_indices()

Sort the indices of this matrix in place

sorted_indices()

Return a copy of this matrix with sorted indices

sqrt()

Element-wise sqrt.

sum([axis, dtype, out])

Sum the matrix elements over a given axis.

sum_duplicates()

Eliminate duplicate matrix entries by adding them together

tan()

Element-wise tan.

tanh()

Element-wise tanh.

toarray([order, out])

Return a dense ndarray representation of this matrix.

tobsr([blocksize, copy])

Convert this matrix to Block Sparse Row format.

tocoo([copy])

Convert this matrix to COOrdinate format.

tocsc([copy])

Convert this matrix to Compressed Sparse Column format.

tocsr([copy])

Convert this matrix to Compressed Sparse Row format.

todense([order, out])

Return a dense matrix representation of this matrix.

todia([copy])

Convert this matrix to sparse DIAgonal format.

todok([copy])

Convert this matrix to Dictionary Of Keys format.

tolil([copy])

Convert this matrix to List of Lists format.

trace([offset])

Returns the sum along diagonals of the sparse matrix.

transpose([axes, copy])

Reverses the dimensions of the sparse matrix.

trunc()

Element-wise trunc.

__getitem__

__mul__

previous

scipy.sparse.csc_matrix.trunc

next

scipy.sparse.csr_matrix.__len__

© Copyright 2008-2023, The SciPy community.


Created using Sphinx 5.3.0.