huggingface.co
Open in
urlscan Pro
2600:9000:275b:1200:17:b174:6d00:93a1
Public Scan
URL:
https://huggingface.co/AnatoliiPotapov/T-lite-instruct-0.1
Submission: On August 13 via manual from RU — Scanned from DE
Submission: On August 13 via manual from RU — Scanned from DE
Form analysis
0 forms found in the DOMText Content
Hugging Face * Models * Datasets * Spaces * Posts * Docs * Solutions * Pricing * * -------------------------------------------------------------------------------- * Log In * Sign Up ANATOLIIPOTAPOV / T-LITE-INSTRUCT-0.1 LIKE 73 Text Generation Transformers Safetensors Russian llama conversational text-generation-inference Inference Endpoints Model card Files Files and versions Community 8 Train Deploy Use this model Edit model card * T-lite-instruct-0.1 * Description * 📚 Dataset * 📊 Benchmarks * 🏆 MT-Bench * 🏟️ Arena * 👨💻 Examples of usage T-LITE-INSTRUCT-0.1 🚨 T-lite is designed for further fine-tuning and is not intended as a ready-to-use conversational assistant. Users are advised to exercise caution and are responsible for any additional training and oversight required to ensure the model's responses meet acceptable ethical and safety standards. The responsibility for incorporating this model into industrial or commercial solutions lies entirely with those who choose to deploy it. DESCRIPTION T-lite-instruct-0.1 is an instruct version of the T-lite-0.1 model. T-lite-instruct-0.1 was trained in bf16. 📚 DATASET CONTEXTS For the instruction dataset, the contexts are obtained from: * Open Source English-language datasets (such as UltraFeedback, HelpSteer, SHP, and so on) * Translations of English-language datasets through machine translation * Synthetic grounded QA contexts, generated from pre-training datasets The translated contexts are filtered using classifiers. SFT The responses to the contexts are generated by a strong model and the training is exclusively carried out on these responses. This avoids training the model on poor-quality translations. REWARD MODELING RM is trained on such pairs: * Strong Model > Our Model * Stronger Model > Weaker Model * Chosen Translated Response > Rejected Translated Response * Pairs from original English datasets The translated preference data are preliminarily filtered by the RM ensemble. PREFERENCE TUNING Two stages were used in preference tuning: * Stage 1: SPiN on the responses of the teacher model (Strong Model > Our Model) * Stage 2: SLiC-HF using our RM 📊 BENCHMARKS Here we present the results of T-lite-instruct-0.1 on automatic benchmarks. 🏆 MT-BENCH This benchmark was carefully translated into Russian and measured with LLM Judge codebase, using gpt-4-1106-preview as a judge. MT-Bench Total Turn_1 Turn_2 coding humanities math reasoning roleplay stem writing T-lite-instruct-0.1 6.458 6.833 6.078 4.136 8.45 4.25 4.5 7.667 7.7 7.706 gpt3.5-turbo-0125 6.373 6.423 6.320 6.519 7.474 4.75 4.15 6.333 6.7 7.588 suzume-llama-3-8B-multilingual-orpo-borda-half 6.051 6.577 5.526 4.318 8.0 4.0 3.6 7.056 6.7 7.889 Qwen2-7b-Instruct 6.026 6.449 5.603 5.0 6.95 5.8 4.15 7.167 5.85 7.278 Llama-3-8b-Instruct 5.948 6.662 5.224 4.727 7.8 3.9 2.8 7.333 6.053 7.0 suzume-llama-3-8B-multilingual 5.808 6.167 5.449 5.409 6.4 5.05 3.8 6.556 5.0 7.056 saiga_llama3_8b 5.471 5.896 5.039 3.0 7.4 3.55 3.5 6.444 5.15 7.812 Mistral-7B-Instruct-v0.3 5.135 5.679 4.584 4.045 6.35 3.15 3.2 5.765 5.2 7.333 🏟️ ARENA We used Russian version of Arena benchmark from Vikhrmodels and Arena Hard Auto codebase for evaluation. As baseline model we chose gpt3.5-turbo-0125 and the judge was gpt-4-1106-preview. Arena General Score 95% CI Average Tokens T-lite-instruct-0.1 57.26 -2.9/2 870 gpt3.5-turbo-0125 50 0/0 254 suzume-llama-3-8B-multilingual-orpo-borda-half 47.17 -2.6/2.4 735 Llama-3-8b-Instruct 42.16 -2.1/2.1 455 saiga_llama3_8b 39.88 -2.3/2.5 616 suzume-llama-3-8B-multilingual 38.25 -1.7/1.7 625 Qwen2-7b-Instruct 33.42 -1.9/2.2 365 Mistral-7B-Instruct-v0.3 28.11 -2/2.2 570 👨💻 EXAMPLES OF USAGE from transformers import AutoTokenizer, AutoModelForCausalLM import torch torch.manual_seed(42) model_name = "t-bank-ai/T-lite-instruct-0.1" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto") messages = [ {"role": "user", "content": "Напиши рецепт классной пиццы!"}, ] input_ids = tokenizer.apply_chat_template( messages, add_generation_prompt=True, return_tensors="pt" ).to(model.device) terminators = [ tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>") ] outputs = model.generate( input_ids, max_new_tokens=256, eos_token_id=terminators, ) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) Output: Конечно, вот рецепт для вкусной домашней пиццы, который можно адаптировать под разные вкусы и предпочтения. Важно, чтобы тесто было мягким и воздушным, а начинка — сочной и ароматной. ### Ингредиенты для теста: - 500 г муки (лучше использовать смесь пшеничной и цельнозерновой) - 1 ч. л. сухих дрожжей (или 7 г свежих) - 1 ч. л. сахара - 1 ч. л. соли - 1 ст. л. оливкового масла - 300 мл тёплой воды - 1 яйцо (для смазки) ### Ингредиенты для начинки (примерный набор): - 200 г томатного соуса (можно сделать самому из свежих помидоров или использовать готовый) - 200 г моцареллы, нарезанной ломтиками - 100 г сыра пармезан (тертый) - 100 г ветчины или колбасы - 100 г грибов (шампин Downloads last month10,168 Safetensors Model size 8.03B params Tensor type BF16 · Inference API Text Generation This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead. MODEL TREE FOR ANATOLIIPOTAPOV/T-LITE-INSTRUCT-0.1 Finetunes 2 models Quantizations 7 models SPACE USING ANATOLIIPOTAPOV/T-LITE-INSTRUCT-0.1 1 💬 ivpich/t-lite Company © Hugging Face TOS Privacy About Jobs Website Models Datasets Spaces Pricing Docs