ut3-toulouseinp.hal.science
Open in
urlscan Pro
193.48.96.10
Public Scan
URL:
https://ut3-toulouseinp.hal.science/UNIV-UT3/hal-03853319v1
Submission: On December 14 via manual from AT — Scanned from FR
Submission: On December 14 via manual from AT — Scanned from FR
Form analysis
2 forms found in the DOMPOST /UNIV-UT3/user/login?url=https://ut3-toulouseinp.hal.science/UNIV-UT3/hal-03853319v1
<form class="form-inline pull-right" style="margin-top: 8px; margin-right: 8px;" action="/UNIV-UT3/user/login?url=https://ut3-toulouseinp.hal.science/UNIV-UT3/hal-03853319v1" id="form-login" method="post">
<input type="hidden" name="forward-controller" value="view">
<input type="hidden" name="forward-action" value="index">
<input type="hidden" name="tampid" value="UNIV-UT3"><input type="hidden" name="identifiant" value="hal-03853319"><input type="hidden" name="3" value="v1"><input type="hidden" name="version" value="1"><input type="hidden" name="_module"
value="collection">
<div class="btn-group">
<button class="btn btn-small btn-primary" type="button" onclick="$('#form-login').submit();" accesskey="l">
<span class="glyphicon glyphicon-user glyphicon-white" aria-hidden="true"></span> Connexion</button>
<button class="btn btn-small btn-primary dropdown-toggle" data-toggle="dropdown" type="button">
<span class="caret" style="border-top-color: #fff; border-bottom-color: #fff;"></span>
</button>
<ul class="dropdown-menu pull-right">
<li> <a id="cas2" href="/UNIV-UT3/user/login?authType=CAS&url=https://ut3-toulouseinp.hal.science/UNIV-UT3/hal-03853319v1">Connexion</a>
</li>
<li>
<a id="getorcid2" href="/UNIV-UT3/user/login?authType=ORCID&url=https://ut3-toulouseinp.hal.science/UNIV-UT3/hal-03853319v1">Connexion avec ORCID</a>
</li>
<li><a id="coidp" href="https://hal.archives-ouvertes.fr/user/login?authType=IDP&url=https://ut3-toulouseinp.hal.science/UNIV-UT3/hal-03853319v1">se connecter avec Fédération</a></li>
<li class="divider"></li>
<li><a href="/UNIV-UT3/user/create">Créer un compte</a></li>
<li class="divider"></li>
<li><a href="/UNIV-UT3/user/lostpassword">Mot de passe oublié ?</a></li>
<li><a href="/UNIV-UT3/user/lostlogin">Login oublié ?</a></li>
</ul>
</div>
</form>
POST #
<form action="#" method="post" id="formLang" class="nav navbar-nav navbar-right navbar-lang">
<input type="hidden" name="lang" id="lang" value="">
</form>
Text Content
Accéder directement au contenu Accéder directement à la navigation Nouvelle interface Toggle navigation Connexion * Connexion * Connexion avec ORCID * se connecter avec Fédération * * Créer un compte * * Mot de passe oublié ? * Login oublié ? * Page d'accueil * Consultation * Par type de publication * Par année de publication * Par domaine * Par auteur * Thèses HAL-UT3 hal-03853319, version 1 Communication dans un congrès MATCHING LARGE BIOMEDICAL ONTOLOGIES USING SYMBOLIC REGRESSION Jorge Martinez-Gil 1 Shaoyi Yin 2 Josef Küng 3 Franck Morvan 2 Détails 1 SCCH - Software Competence Center Hagenberg 2 IRIT-PYRAMIDE - Optimisation Dynamique de Requêtes Réparties à grande échelle IRIT - Institut de recherche en informatique de Toulouse 3 JKU - Johannes Kepler Universität Linz > Jorge Martinez-Gil 1 > Auteur > PersonId : 17728 > IdHAL : martinez-gil-jorgeORCID : 0000-0002-5730-7965IdRef : 253122732 > Shaoyi Yin 2 > Auteur > PersonId : 184832 > IdHAL : shaoyi-yinORCID : 0000-0002-5335-2443IdRef : 15327400X > Josef Küng 3 > Auteur > PersonId : 1188761 > Franck Morvan 2 > Auteur > PersonId : 743127 > IdHAL : franck-morvanIdRef : 034867406 1 SCCH - Software Competence Center Hagenberg (Softwarepark 21 A-4232 Hagenberg Austria - Autriche) StructId : 46694 * JKU - Johannes Kepler Universität Linz (Altenberger Straße 69, 4040 Linz - Autriche) StructId : 300879 2 IRIT-PYRAMIDE - Optimisation Dynamique de Requêtes Réparties à grande échelle (Institut de recherche en informatique de Toulouse - IRIT 118 Route de Narbonne 31062 Toulouse Cedex 9 - France) StructId : 1001829 * IRIT - Institut de recherche en informatique de Toulouse (118 Route de Narbonne, F-31062 Toulouse Cedex 9 - France) StructId : 34499 * UT1 - Université Toulouse 1 Capitole (2 rue du Doyen-Gabriel-Marty - 31042 Toulouse Cedex 9 - France) StructId : 81148 * Université Fédérale Toulouse Midi-Pyrénées (41 Allée Jules Guesde, 31000 Toulouse - France) StructId : 443875 * UT2J - Université Toulouse - Jean Jaurès (5 allées Antonio Machado - 31058 Toulouse Cedex 9 - France) StructId : 116256 * UT3 - Université Toulouse III - Paul Sabatier (118 route de Narbonne - 31062 Toulouse - France) StructId : 217752 * Université Fédérale Toulouse Midi-Pyrénées (41 Allée Jules Guesde, 31000 Toulouse - France) StructId : 443875 * CNRS - Centre National de la Recherche Scientifique : UMR5505 (France) StructId : 441569 * Toulouse INP - Institut National Polytechnique (Toulouse) (France) StructId : 448187 * Université Fédérale Toulouse Midi-Pyrénées (41 Allée Jules Guesde, 31000 Toulouse - France) StructId : 443875 3 JKU - Johannes Kepler Universität Linz (Altenberger Straße 69, 4040 Linz - Autriche) StructId : 300879 Masquer les détails Abstract : The problem of ontology matching consists of finding the semantic correspondences between two ontologies that, although belonging to the same domain, have been developed separately. Matching methods are of great importance since they allow us to find the pivot points from which an automatic data integration process can be established. Unlike the most recent developments based on deep learning, this study presents our research on the development of new methods for ontology matching that are accurate and interpretable at the same time. For this purpose, we rely on a symbolic regression model specifically trained to find the mathematical expression that can solve the ground truth accurately, with the possibility of being understood by a human operator and forcing the processor to consume as little energy as possible. The experimental evaluation results show that our approach seems to be promising. Keywords : Ontology matching Ontology alignment Symbolic Regression Very Large Ontologies Biomedical domain Type de document : Communication dans un congrès Domaine : > Informatique [cs] > Informatique [cs] / Intelligence artificielle [cs.AI] Liste complète des métadonnées Voir -------------------------------------------------------------------------------- https://hal.archives-ouvertes.fr/hal-03853319 Contributeur : Martinez-Gil Jorge Connectez-vous pour contacter le contributeur Soumis le : mardi 15 novembre 2022 - 12:31:49 Dernière modification le : mardi 22 novembre 2022 - 10:08:11 IDENTIFIANTS * HAL Id : hal-03853319, version 1 * DOI : 10.1145/3487664.3487781 COLLECTIONS UNIV-TLSE2 | CNRS | UT1-CAPITOLE | IRIT | IRIT-PYRAMIDE | IRIT-GD | UNIV-UT3 | UT3-TOULOUSEINP CITATION Jorge Martinez-Gil, Shaoyi Yin, Josef Küng, Franck Morvan. Matching Large Biomedical Ontologies Using Symbolic Regression. 23rd International Conference on Information Integration and Web Intelligence (iiWAS 2021), Nov 2021, Linz, Austria. pp.162-167, ⟨10.1145/3487664.3487781⟩. ⟨hal-03853319⟩ EXPORTER BibTeX TEI DC DCterms EndNote Datacite PARTAGER Facebook Twitter Email Share MÉTRIQUES Consultations de la notice 0 -------------------------------------------------------------------------------- * Université Toulouse III - Paul Sabatier 118 route de Narbonne 31062 TOULOUSE CEDEX 9 téléphone +33 (0)5 61 55 66 11 * * * * * * Accès campus * Contacts * Crédits * Bibliothèques * Mentions légales * _ ✓ Thanks for sharing! AddToAny More… Close Cookies management panel By allowing these third party services, you accept their cookies and the use of tracking technologies necessary for their proper functioning. Preference for all services ✓ Allow all cookies ✗ Deny all cookies * ✛ APIs APIs are used to load scripts: geolocation, search engines, translations, ... * ✛ Advertising network Ad networks can generate revenue by selling advertising space on the site. * ✛ Audience measurement The audience measurement services used to generate useful statistics attendance to improve the site. * ✛ Comments Comments managers facilitate the filing of comments and fight against spam. * ✛ Other Services to display web content. * ✛ Social networks Social networks can improve the usability of the site and help to promote it via the shares. * ✛ Support Support services allow you to get in touch with the site team and help to improve it. * ✛ Videos Video sharing services help to add rich media on the site and increase its visibility. 🍋 Cookies manager by tarteaucitron.js If you continue to browse this website, you are allowing all third-party services ✓ OK, accept all Personalize Manage services 3 Close 3 cookies ut3-toulouseinp.hal.science * × _pk_id.92.26d8 8f4410eef051b649.1671031201. * × _pk_ses.92.26d8 1 * × _pk_ses..26d8 1