ut3-toulouseinp.hal.science Open in urlscan Pro
193.48.96.10  Public Scan

URL: https://ut3-toulouseinp.hal.science/UNIV-UT3/hal-03853319v1
Submission: On December 14 via manual from AT — Scanned from FR

Form analysis 2 forms found in the DOM

POST /UNIV-UT3/user/login?url=https://ut3-toulouseinp.hal.science/UNIV-UT3/hal-03853319v1

<form class="form-inline pull-right" style="margin-top: 8px; margin-right: 8px;" action="/UNIV-UT3/user/login?url=https://ut3-toulouseinp.hal.science/UNIV-UT3/hal-03853319v1" id="form-login" method="post">
  <input type="hidden" name="forward-controller" value="view">
  <input type="hidden" name="forward-action" value="index">
  <input type="hidden" name="tampid" value="UNIV-UT3"><input type="hidden" name="identifiant" value="hal-03853319"><input type="hidden" name="3" value="v1"><input type="hidden" name="version" value="1"><input type="hidden" name="_module"
    value="collection">
  <div class="btn-group">
    <button class="btn btn-small btn-primary" type="button" onclick="$('#form-login').submit();" accesskey="l">
      <span class="glyphicon glyphicon-user glyphicon-white" aria-hidden="true"></span> &nbsp;Connexion</button>
    <button class="btn btn-small btn-primary dropdown-toggle" data-toggle="dropdown" type="button">
      <span class="caret" style="border-top-color: #fff; border-bottom-color: #fff;"></span>
    </button>
    <ul class="dropdown-menu pull-right">
      <li> <a id="cas2" href="/UNIV-UT3/user/login?authType=CAS&amp;url=https://ut3-toulouseinp.hal.science/UNIV-UT3/hal-03853319v1">Connexion</a>
      </li>
      <li>
        <a id="getorcid2" href="/UNIV-UT3/user/login?authType=ORCID&amp;url=https://ut3-toulouseinp.hal.science/UNIV-UT3/hal-03853319v1">Connexion avec ORCID</a>
      </li>
      <li><a id="coidp" href="https://hal.archives-ouvertes.fr/user/login?authType=IDP&amp;url=https://ut3-toulouseinp.hal.science/UNIV-UT3/hal-03853319v1">se connecter avec Fédération</a></li>
      <li class="divider"></li>
      <li><a href="/UNIV-UT3/user/create">Créer un compte</a></li>
      <li class="divider"></li>
      <li><a href="/UNIV-UT3/user/lostpassword">Mot de passe oublié ?</a></li>
      <li><a href="/UNIV-UT3/user/lostlogin">Login oublié ?</a></li>
    </ul>
  </div>
</form>

POST #

<form action="#" method="post" id="formLang" class="nav navbar-nav navbar-right navbar-lang">
  <input type="hidden" name="lang" id="lang" value="">
</form>

Text Content

Accéder directement au contenu Accéder directement à la navigation
Nouvelle interface
Toggle navigation

 Connexion
 * Connexion
 * Connexion avec ORCID
 * se connecter avec Fédération
 * 
 * Créer un compte
 * 
 * Mot de passe oublié ?
 * Login oublié ?



 * Page d'accueil
 * Consultation
   * Par type de publication
   * Par année de publication
   * Par domaine
   * Par auteur
   * Thèses HAL-UT3

hal-03853319, version 1
Communication dans un congrès


MATCHING LARGE BIOMEDICAL ONTOLOGIES USING SYMBOLIC REGRESSION

Jorge Martinez-Gil 1 Shaoyi Yin 2 Josef Küng 3 Franck Morvan 2  Détails
1 SCCH - Software Competence Center Hagenberg
2 IRIT-PYRAMIDE - Optimisation Dynamique de Requêtes Réparties à grande échelle
IRIT - Institut de recherche en informatique de Toulouse
3 JKU - Johannes Kepler Universität Linz

>  Jorge Martinez-Gil 1
> Auteur
> PersonId : 17728
> IdHAL : martinez-gil-jorgeORCID : 0000-0002-5730-7965IdRef : 253122732

>  Shaoyi Yin 2
> Auteur
> PersonId : 184832
> IdHAL : shaoyi-yinORCID : 0000-0002-5335-2443IdRef : 15327400X

>  Josef Küng 3
> Auteur
> PersonId : 1188761

>  Franck Morvan 2
> Auteur
> PersonId : 743127
> IdHAL : franck-morvanIdRef : 034867406


1 SCCH - Software Competence Center Hagenberg (Softwarepark 21 A-4232 Hagenberg
Austria - Autriche) StructId : 46694
 * JKU - Johannes Kepler Universität Linz (Altenberger Straße 69, 4040 Linz -
   Autriche) StructId : 300879

2 IRIT-PYRAMIDE - Optimisation Dynamique de Requêtes Réparties à grande échelle
(Institut de recherche en informatique de Toulouse - IRIT 118 Route de Narbonne
31062 Toulouse Cedex 9 - France) StructId : 1001829
 * IRIT - Institut de recherche en informatique de Toulouse (118 Route de
   Narbonne, F-31062 Toulouse Cedex 9 - France) StructId : 34499
   * UT1 - Université Toulouse 1 Capitole (2 rue du Doyen-Gabriel-Marty - 31042
     Toulouse Cedex 9 - France) StructId : 81148
     * Université Fédérale Toulouse Midi-Pyrénées (41 Allée Jules Guesde, 31000
       Toulouse - France) StructId : 443875
   * UT2J - Université Toulouse - Jean Jaurès (5 allées Antonio Machado - 31058
     Toulouse Cedex 9 - France) StructId : 116256
   * UT3 - Université Toulouse III - Paul Sabatier (118 route de Narbonne -
     31062 Toulouse - France) StructId : 217752
     * Université Fédérale Toulouse Midi-Pyrénées (41 Allée Jules Guesde, 31000
       Toulouse - France) StructId : 443875
   * CNRS - Centre National de la Recherche Scientifique : UMR5505 (France)
     StructId : 441569
   * Toulouse INP - Institut National Polytechnique (Toulouse) (France) StructId
     : 448187
     * Université Fédérale Toulouse Midi-Pyrénées (41 Allée Jules Guesde, 31000
       Toulouse - France) StructId : 443875

3 JKU - Johannes Kepler Universität Linz (Altenberger Straße 69, 4040 Linz -
Autriche) StructId : 300879
Masquer les détails
Abstract : The problem of ontology matching consists of finding the semantic
correspondences between two ontologies that, although belonging to the same
domain, have been developed separately. Matching methods are of great importance
since they allow us to find the pivot points from which an automatic data
integration process can be established. Unlike the most recent developments
based on deep learning, this study presents our research on the development of
new methods for ontology matching that are accurate and interpretable at the
same time. For this purpose, we rely on a symbolic regression model specifically
trained to find the mathematical expression that can solve the ground truth
accurately, with the possibility of being understood by a human operator and
forcing the processor to consume as little energy as possible. The experimental
evaluation results show that our approach seems to be promising.
Keywords : Ontology matching Ontology alignment Symbolic Regression Very Large
Ontologies Biomedical domain
Type de document :
Communication dans un congrès
Domaine :
> Informatique [cs]
> Informatique [cs] / Intelligence artificielle [cs.AI]

Liste complète des métadonnées  Voir


--------------------------------------------------------------------------------

https://hal.archives-ouvertes.fr/hal-03853319
Contributeur : Martinez-Gil Jorge Connectez-vous pour contacter le contributeur
Soumis le : mardi 15 novembre 2022 - 12:31:49
Dernière modification le : mardi 22 novembre 2022 - 10:08:11




IDENTIFIANTS

 * HAL Id : hal-03853319, version 1
 * DOI : 10.1145/3487664.3487781


COLLECTIONS

UNIV-TLSE2 | CNRS | UT1-CAPITOLE | IRIT | IRIT-PYRAMIDE | IRIT-GD | UNIV-UT3 |
UT3-TOULOUSEINP


CITATION

Jorge Martinez-Gil, Shaoyi Yin, Josef Küng, Franck Morvan. Matching Large
Biomedical Ontologies Using Symbolic Regression. 23rd International Conference
on Information Integration and Web Intelligence (iiWAS 2021), Nov 2021, Linz,
Austria. pp.162-167, ⟨10.1145/3487664.3487781⟩. ⟨hal-03853319⟩


EXPORTER

BibTeX TEI DC DCterms EndNote Datacite


PARTAGER

Facebook Twitter Email Share



MÉTRIQUES

Consultations de la notice


0

--------------------------------------------------------------------------------


 * 

Université Toulouse III - Paul Sabatier
118 route de Narbonne
31062 TOULOUSE CEDEX 9
téléphone +33 (0)5 61 55 66 11
 * 
 * 
 * 
 * 
 * 

 * Accès campus
 * Contacts
 * Crédits

 * Bibliothèques
 * Mentions légales
 * _
   

✓
Thanks for sharing!
AddToAny
More…

Close
Cookies management panel
By allowing these third party services, you accept their cookies and the use of
tracking technologies necessary for their proper functioning.
Preference for all services
✓ Allow all cookies ✗ Deny all cookies
 * ✛ APIs
   APIs are used to load scripts: geolocation, search engines, translations, ...
 * ✛ Advertising network
   Ad networks can generate revenue by selling advertising space on the site.
 * ✛ Audience measurement
   The audience measurement services used to generate useful statistics
   attendance to improve the site.
 * ✛ Comments
   Comments managers facilitate the filing of comments and fight against spam.
 * ✛ Other
   Services to display web content.
 * ✛ Social networks
   Social networks can improve the usability of the site and help to promote it
   via the shares.
 * ✛ Support
   Support services allow you to get in touch with the site team and help to
   improve it.
 * ✛ Videos
   Video sharing services help to add rich media on the site and increase its
   visibility.


🍋 Cookies manager by tarteaucitron.js
If you continue to browse this website, you are allowing all third-party
services ✓ OK, accept all Personalize

Manage services 3
Close
3 cookies
ut3-toulouseinp.hal.science
 * × _pk_id.92.26d8
   8f4410eef051b649.1671031201.
 * × _pk_ses.92.26d8
   1
 * × _pk_ses..26d8
   1