www.wired.com Open in urlscan Pro
151.101.66.194  Public Scan

Submitted URL: https://link.wired.com/click/27611462.1473624/aHR0cHM6Ly93d3cud2lyZWQuY29tL3N0b3J5L2NvdWxkLWFueW9uZS1kby1sdWtlcy1wbGFua...
Effective URL: https://www.wired.com/story/could-anyone-do-lukes-plank-flip-from-return-of-the-jedi/?bxid=6044883d8f3da371ee6eb3d6&cn...
Submission: On May 05 via api from GB — Scanned from GB

Form analysis 0 forms found in the DOM

Text Content

Skip to main content

Open Navigation Menu
Menu
Story Saved

To revist this article, visit My Profile, then View saved stories.

Close Alert
Close

Could Anyone Do Luke’s Plank Flip From Return of the Jedi?
 * Backchannel
 * Business
 * Culture
 * Gear
 * Ideas
 * Science
 * Security

Story Saved

To revist this article, visit My Profile, then View saved stories.

Close Alert
Close
Sign In

SUBSCRIBE


GET WIRED + A FREE TOTE

SUBSCRIBE
Search
Search
 * Backchannel
 * Business
 * Culture
 * Gear
 * Ideas
 * Science
 * Security

 * Podcasts
 * Video
 * Artificial Intelligence
 * Climate
 * Games
 * Newsletters
 * Magazine
 * Events
 * Wired Insider
 * Coupons




Rhett Allain

Science
May 4, 2022 7:00 AM


COULD ANYONE DO LUKE’S PLANK FLIP FROM RETURN OF THE JEDI?

Let’s calculate whether the lightsaber-catching, Sarlacc-pit-avoiding maneuver
can be done by mere mortals or requires help from the Force.
 * Facebook
 * Twitter
 * Email
 * Save Story

   To revist this article, visit My Profile, then View saved stories.

Photograph: 20th Century Fox/Everett Collection

 * Facebook
 * Twitter
 * Email
 * Save Story

   To revist this article, visit My Profile, then View saved stories.



It’s May 4, so happy Star Wars Day—may the fourth be with you!

One of the iconic scenes from Star Wars: Return of the Jedi is the battle on
Tatooine at the Sarlacc Pit, the home of a massive creature that just waits to
eat the things that fall into its sand hole. (No spoiler alert: It's been almost
30 years since Return of the Jedi hit the theaters. If you haven't seen it by
now, you probably aren't going to.)

Luke Skywalker is being held captive by Jabba the Hutt’s guards. They’re on a
skiff above the Sarlacc Pit, and Luke is standing on a plank, about to be pushed
into the creature’s maw. R2-D2 is some distance away on Jabba’s sail barge—and
he has been keeping Luke's lightsaber. Now for the best part: At just the right
moment, R2 launches Luke's lightsaber so that it flies across the pit for Luke
to catch. As that happens, Luke jumps off the plank and spins around. He catches
the edge of the plank and uses it to springboard himself into a flip back onto
the skiff. Now the battle begins.



I'm going to look at these two motions—the lightsaber toss and the plank
flip—and see if it's possible for an ordinary human to do this, or if you have
to be a Jedi like Luke. But I am going to make one big assumption about this
scene, and you might not like it. I'm going to assume that the planet Tatooine
has the same surface gravity as Earth, so that g = 9.8 newtons per kilogram.
This would mean that a jumping human and a thrown lightsaber would follow
similar trajectories on both planets.



Oh, I get it: Tatooine is not the same as Earth. However, in the movie it looks
a lot like Earth (you know why), and this allows me to make some actual
calculations. Let's do it.

Motion of a Lightsaber

I'm going to start with the lightsaber that R2-D2 launches towards Luke. What
can we figure from this part of the action sequence? Well, let's start with some
data.



First I'm going to get the total flight time as the lightsaber moves from R2 to
Luke. The simplest way to do this is to use a video analysis program; my
favorite is Tracker. With this, I can mark the video frame that shows the weapon
leaving R2-D2's head (which is kind of weird when you think about it) and then
mark the frame where it gets to Luke. This gives a flight time of 3.84 seconds.



I'm going to assume that's not the actual flight time. Why? First, it's a pretty
long time for the lightsaber to be in the air. Also, there's quite a bit
happening during that shot. In the sequence seen in the movie, R2-D2 shoots the
saber and we see it rising. Cut to Luke doing a front flip onto the skiff. Cut
to Luke landing, then a shot of the lightsaber falling towards him. The final
shot shows Luke's hand catching the weapon. That's a lot of cuts, and so it
might not be a real-time sequence. Don't worry, that's fine. That's what movie
directors do.

Featured Video



Every Starfighter in Star Wars Explained



Most Popular
 * Backchannel
   
   Fast, Cheap, and Out of Control: Inside Shein’s Sudden Rise
   
   Vauhini Vara

 * Business
   
   Everything’s a WeWork Now
   
   Jennifer Conrad

 * Gear
   
   Give Your Back a Break With Our Favorite Office Chairs
   
   Julian Chokkattu and Gear Team

 * Gear
   
   This Chinese EV Sells At Just Over $5,000. So We Tried It
   
   Mark Andrews

 * 





But there's another way to look at the motion of the lightsaber. If I know the
size of R2-D2 (which I do—he is 61.7 centimeters wide), then I can use that to
find the position of the lightsaber in the video frames while it is in the air.
With that, I get the following data:


Illustration: Rhett Allain

Since this is a plot of the vertical position (y) as a function of time (t), the
slope of this line would be the vertical velocity. That puts it at 8.11 meters
per second. (Rebels don't use Imperial units, but just in case you do, that's
18.14 miles per hour.) That's about the speed of a ball tossed by an ordinary
human.

With this vertical velocity, we are almost ready to figure out how long the
lightsaber should be in the air. But we need one more assumption. Since R2 is on
top of Jabba's sail barge and Luke is on a skiff floating below it, the
lightsaber will need to land some distance below its starting height. I'm going
to approximate a change in height of 3 meters, which seems plausible. Now I can
use the following kinematic equation for objects with a constant acceleration,
like a free-falling lightsaber:


Illustration: Rhett Allain
Most Popular
 * Backchannel
   
   Fast, Cheap, and Out of Control: Inside Shein’s Sudden Rise
   
   Vauhini Vara

 * Business
   
   Everything’s a WeWork Now
   
   Jennifer Conrad

 * Gear
   
   Give Your Back a Break With Our Favorite Office Chairs
   
   Julian Chokkattu and Gear Team

 * Gear
   
   This Chinese EV Sells At Just Over $5,000. So We Tried It
   
   Mark Andrews

 * 





In this equation, y1 is the starting position and y2 is the final position.
Let's set the final position to 0 meters so that the starting position would be
3 meters. The initial velocity (vy1) is going to be the value of 8.11 meters per
second, and g is the gravitational field (9.8 N/kg = 9.8 meters per second2).
The only thing I don't know is the time (t).

It takes a little bit of work to solve this, using the quadratic equation. Doing
so gives a flight time of 1.10 seconds. Notice that this is indeed a shorter
time interval than the value from the clip (3.84 seconds). I think this interval
is more legitimate.

Now we can look at the horizontal motion of the lightsaber. In this case, the
lightsaber is a simple projectile. Since there are no forces acting on it in the
horizontal direction, it travels with a constant horizontal velocity. That means
that if we know the horizontal distance between Luke and R2, we can calculate
the horizontal velocity just by dividing this distance by the flight time (1.10
seconds). Let's say that it's 10 meters from the sail barge to the skiff. This
would give the lightsaber a horizontal velocity of 9.09 m/s.



Knowing both the horizontal and vertical velocity at the launch, we can find the
launch angle of the lightsaber. (This is something that R2 would have to
calculate.)


Illustration: Rhett Allain

Plugging in the numbers, this gives a launch angle of 41.7 degrees above the
horizontal. That seems like a pretty reasonable shot—but it still feels like R2
launches it at a higher angle (like 70 degrees) to give Luke more time to get
into position.

(Let's be honest: When they made this scene, they likely broke the lightsaber
motion into two parts. The first shot shows the launch of the lightsaber as it
went up into the air and then just landed somewhere. The second part was
probably filmed as someone dropped the lightsaber into Luke's hand.)

Luke’s Plank Jump and Flip

Now let's move on to Luke's maneuver. We can also break this into two parts. In
the first one, Luke steps off the plank while turning around. He starts to fall,
then grabs the edge of the plank when he's at arms length below it. He uses the
springiness in the board, along with his own muscles, to launch himself to an
even higher position. In the second part of the move, he does a front flip back
onto the skiff so he can be in position to catch his lightsaber.

Let’s focus on that plank-grab move. I can illustrate this motion at three
different points—start, grab, flip.

Most Popular
 * Backchannel
   
   Fast, Cheap, and Out of Control: Inside Shein’s Sudden Rise
   
   Vauhini Vara

 * Business
   
   Everything’s a WeWork Now
   
   Jennifer Conrad

 * Gear
   
   Give Your Back a Break With Our Favorite Office Chairs
   
   Julian Chokkattu and Gear Team

 * Gear
   
   This Chinese EV Sells At Just Over $5,000. So We Tried It
   
   Mark Andrews

 * 




Illustration: Rhett Allain

To make things as simple as possible, let's represent Luke as a point mass, with
the location of that point somewhere above his belt line. So, in position 1, I
will set this initial position as 0 meters. Once he drops, he gets down to a new
position (y2) below this initial value. And finally he flips up to the highest
point at y3.

There's a lot going on, but let's consider the simplest case by assuming a
perfectly elastic plank that acts like a trampoline. In that case, it doesn't
matter how far you fall. The plank just springs you right back to your starting
position.

So Luke steps off the plank and falls, speeding up as he travels downward. He
grabs the plank with his hands, and the force deforms it, causing it to act like
a spring. This both stops his motion and stores elastic energy in the board.
Then the plank pushes him upwards and converts the stored elastic energy into
kinetic energy. This makes Luke move upward until he returns to his starting
position, back at y = 0 meters.



But that's not going to be high enough for Luke to complete his awesome Jedi
flip. He's going to need to get higher, up to position y3, if he wants to look
cool in front of all these bad guys. That means he's going to have to add some
energy from his own body into the system. The amount of energy (E) he will need
to use is equal to the change in gravitational potential energy (Ug) going from
position 1 to position 3.

(This also is exactly what non-Jedi humans do when they jump.)


Illustration: Rhett Allain
Most Popular
 * Backchannel
   
   Fast, Cheap, and Out of Control: Inside Shein’s Sudden Rise
   
   Vauhini Vara

 * Business
   
   Everything’s a WeWork Now
   
   Jennifer Conrad

 * Gear
   
   Give Your Back a Break With Our Favorite Office Chairs
   
   Julian Chokkattu and Gear Team

 * Gear
   
   This Chinese EV Sells At Just Over $5,000. So We Tried It
   
   Mark Andrews

 * 





We just need some estimates to calculate the change in energy. How about a mass
of m = 70 kilograms, a gravitational field of g = 9.8 newtons/kilogram, and
change in height (y3 – y1) of 0.5 meters?

The change in height is tricky. I think 0.5 meters might be enough to do a flip,
but if you wanted to do a spectacular one, Luke might need to get a change in
height of 1 meter. Let's go with the low end.

Putting these values in gives a change in energy of 343 joules. In real life, if
you pick up a textbook off the floor and put it on the table, that takes about
10 joules of energy. Climbing one flight of stairs can be a change in energy of
over 2,000 joules. So a 343-joule change in energy itself is not very
impressive.

The difficult part is using that much energy in a short amount of time. We
define the rate of energy as the power (in watts) where P = ΔE/Δt. So, we need
to estimate the time that Luke is in contact with the plank and pulling on it to
add enough energy to complete that flip.

Going back to the video analysis, getting this pulling time is pretty
straightforward. It looks like Luke is actively pulling on the plank for 0.166
seconds. Now I can calculate the power he exerts during this pull:


Illustration: Rhett Allain

Over 2,000 watts might seem like a large value. And in a certain sense, it is
indeed high. Your coffee machine probably uses close to 1,000 watts when you are
making your morning drink, and a hair dryer on high power uses about 2,000
watts. Regular humans produce an average of about 100 to 200 watts while
exercising over a long period, like on a bike ride, but we can output 500 to
1,000 watts for very short intervals. So 2,000 watts isn't completely
unbelievable. But what is impressive is that Luke is not using his strongest
muscles—his legs. He's doing this with his arms.

Most Popular
 * Backchannel
   
   Fast, Cheap, and Out of Control: Inside Shein’s Sudden Rise
   
   Vauhini Vara

 * Business
   
   Everything’s a WeWork Now
   
   Jennifer Conrad

 * Gear
   
   Give Your Back a Break With Our Favorite Office Chairs
   
   Julian Chokkattu and Gear Team

 * Gear
   
   This Chinese EV Sells At Just Over $5,000. So We Tried It
   
   Mark Andrews

 * 





And there’s one more thing: In the above calculation, I assumed the plank was
perfectly elastic. It's clearly not. When Luke pulls down on the board, some
energy is stored as elastic potential energy—but some of the energy also goes
into other forms like sound, thermal energy, and general deformations of the
material. As a rough approximation, we can assume that half of the energy from
Luke's fall goes into actual elastic energy. That means that Luke will have to
add in even more energy to make up for this loss.



If I assume he falls 2 meters before hitting the plank, this means that it will
only push him back up 1 meter, because half the energy would be lost. Now he has
to supply the rest of the energy to go from 1 meter below his starting point to
0.5 meters above that position for a total change in height of 1.5 meters. This
would require an energy expenditure of 1,029 joules and a power of 6,199 watts.
Now that is a power that no mere mortal could produce. Luke would have to draw
strength from the Force. And that means that this move can’t be done by an
ordinary human; you have to be an actual Jedi.






MORE GREAT WIRED STORIES

 * 📩 The latest on tech, science, and more: Get our newsletters!

 * This startup wants to watch your brain

 * The artful, subdued translations of modern pop

 * Netflix doesn't need a password-sharing crackdown

 * How to revamp your workflow with block scheduling

 * The end of astronauts—and the rise of robots

 * 👁️ Explore AI like never before with our new database

 * ✨ Optimize your home life with our Gear team’s best picks, from robot vacuums
   to affordable mattresses to smart speakers

Rhett Allain is an associate professor of physics at Southeastern Louisiana
University. He enjoys teaching and talking about physics. Sometimes he takes
things apart and can't put them back together.
Contributor
 * Twitter

TopicsDot Physicsestimationvideo analysisEnergyStar WarsForcesphysics




ONE YEAR FOR $29.99 $10

Get WIRED

SUBSCRIBE
WIRED is where tomorrow is realized. It is the essential source of information
and ideas that make sense of a world in constant transformation. The WIRED
conversation illuminates how technology is changing every aspect of our
lives—from culture to business, science to design. The breakthroughs and
innovations that we uncover lead to new ways of thinking, new connections, and
new industries.
 * Facebook
 * Twitter
 * Pinterest
 * YouTube
 * Instagram
 * Tiktok

More From WIRED

 * Subscribe
 * Newsletters
 * FAQ
 * Wired Staff
 * Press Center
 * Coupons
 * Editorial Standards

Contact

 * Advertise
 * Contact Us
 * Customer Care
 * Jobs

 * RSS
 * Site Map
 * Accessibility Help
 * Condé Nast Store
 * Condé Nast Spotlight
 * Manage Preferences

© 2022 Condé Nast. All rights reserved. Use of this site constitutes acceptance
of our User Agreement and Privacy Policy and Cookie Statement and Your
California Privacy Rights. Wired may earn a portion of sales from products that
are purchased through our site as part of our Affiliate Partnerships with
retailers. The material on this site may not be reproduced, distributed,
transmitted, cached or otherwise used, except with the prior written permission
of Condé Nast. Ad Choices










WE CARE ABOUT YOUR PRIVACY

We and our partners store and/or access information on a device, such as unique
IDs in cookies to process personal data. You may accept or manage your choices
by clicking below or at any time in the privacy policy page. These choices will
be signaled to our partners and will not affect browsing data.


WE AND OUR PARTNERS PROCESS DATA TO PROVIDE:

Use precise geolocation data. Actively scan device characteristics for
identification. Store and/or access information on a device. Personalised ads
and content, ad and content measurement, audience insights and product
development. List of Partners (vendors)

I Accept
Show Purposes