www.limitcalculator.online
Open in
urlscan Pro
2606:4700:3031::ac43:afb8
Public Scan
Submitted URL: http://www.limitcalculator.online/
Effective URL: https://www.limitcalculator.online/
Submission: On November 15 via api from US — Scanned from DE
Effective URL: https://www.limitcalculator.online/
Submission: On November 15 via api from US — Scanned from DE
Form analysis
1 forms found in the DOMName: limit_calculate — POST
<form id="form1" name="limit_calculate" method="POST">
<input type="hidden" name="_token" value="dpvsUByj4e0jw3GjA47GiCV7vTBiSoyrnSmDbZql"> <textarea id="demo-input" hidden=""></textarea>
<textarea id="demo-input2" hidden=""></textarea>
<textarea id="demo-input3" hidden=""></textarea>
<textarea name="" id="fin_ans" style="display:none"></textarea>
<div class="container">
<div class="row justify-content-center">
<div class="col-md-12 tool_title">
<h1>Limit Calculator </h1>
<!-- Top Banner: RUNNING NOW -->
</div>
<div class="col-lg-8 px-2">
<div class="card form-card mt-3">
<div class="card-header px-sm-4 px-2">
<div class="row wrt-row justify-content-center">
<div class=" my-sm-2 my-0 px-2 col-4 text-center ">
<label class=" col-form-label-sm mb-0 text-nowrap align-text-top font-weight-bold text-darkblue2" for="wrt"> <span class="d-sm-inline d-block">Wrt:</span>
<select id="wrt" name="wrt" onchange="UpdateMath(MathInput.value, this.value)" role="button" class="freq onChangeEl input input-sm">
<option value="x">x </option>
<option value="y">y </option>
<option value="z">z </option>
<option value="u">u </option>
<option value="v">v </option>
<option value="t">t </option>
<option value="w">w </option>
</select>
</label>
</div>
<div class=" align-self-center my-sm-2 my-0 px-2 col-4 text-center ">
<label role="button" class=" col-form-label-sm mb-0 text-nowrap align-text-top font-weight-bold text-darkblue2" for="limit"><span class="d-sm-inline d-block">Limit:</span>
<input type="text" name="limit" oninput="UpdateMath(MathInput.value, wrt.value),UpdateInput2(MathInput.value)" onkeyup="javascript:return isLimit(this.value)" data-limit="1" class="freq input input-sm onChangeEl " id="limit"
value="1" min="-100" max="100">
</label>
<span class="d-block text-dark limit-statement">
<p>Write <strong>∞</strong> as inf ,<strong>π</strong> as pi</p>
</span>
</div>
<div class="col-4 my-sm-2 my-0 px-2 text-center">
<label class=" col-form-label-sm mb-0 text-nowrap align-text-top font-weight-bold text-darkblue2" for="side"> <span class="d-sm-inline d-block">Side:</span>
<select id="side" name="side" onchange="UpdateMath(MathInput.value, wrt.value)" role="button" class="freq onChangeEl input input-sm side" style="width:70%;-webkit-appearance: auto;">
<option value="+">Right-hand (+)</option>
<option value="-">Left-hand (-)</option>
<option selected="" value="">Two-sided </option>
</select>
</label>
</div>
</div>
</div>
<div id="error-div" class="col-sm-10 mx-auto justify-content-center" style="visibility: hidden; display: flex; align-items: center; gap: 10px;"></div>
<div class="card-body px-sm-4 px-2 pb-4 py-2">
<script>
var inputVal = '(x^2+4)/(x-3)';
</script>
<div class="form-group row justify-content-around pre-scrollable-xs m-0 MathInputWrap" id="inputSec">
<div class="col-12 px-0 col-md-11 clearfix align-self-center">
<label class="d-block text-left text-darkblue2 MathInput-label " for="MathInput">Enter function:</label>
</div>
<input type="hidden" id="function_value" value="(x**2+4)/(x-3)">
<div class="col-12 px-0 col-md-11 align-self-center">
<input type="hidden" name="latexCode" id="latexCode" value="(x)/(\s*i*n *(x))">
<input type="hidden" name="latexCode2" id="latexCode2" value="\frac{x}{\sin\left(x\right)}">
<span class="minput">
<span id="MathInput" contenteditable="true" value="(x^2+4)/(x-3)" class="MathInput d-block input rounded-lg m-auto text-left py-0 px-2 d-inline-flex align-items-center mq-editable-field mq-math-mode mq-focused"><span
class="mq-textarea"><textarea autocapitalize="off" autocomplete="off" autocorrect="off" spellcheck="false" x-palm-disable-ste-all="true"></textarea></span><span class="mq-root-block mq-hasCursor" mathquill-block-id="1"><span
class="mq-selection"><span class="mq-fraction mq-non-leaf" mathquill-command-id="4"><span class="mq-numerator" mathquill-block-id="5"><var mathquill-command-id="3">x</var></span><span class="mq-denominator"
mathquill-block-id="6"><var mathquill-command-id="7" class="mq-operator-name">s</var><var mathquill-command-id="8" class="mq-operator-name">i</var><var mathquill-command-id="9" class="mq-operator-name">n</var><span
class="mq-non-leaf" mathquill-command-id="10"><span class="mq-scaled mq-paren" style="transform: scale(1, 1.2);">(</span><span class="mq-non-leaf" mathquill-block-id="11"><var
mathquill-command-id="12">x</var></span><span class="mq-scaled mq-paren" style="transform: scale(1, 1.2);">)</span></span></span><span style="display:inline-block;width:0"></span></span></span></span></span>
<textarea id="keyboard" class="ui-keyboard-input ui-widget-content ui-corner-all ui-keyboard-lockedinput" aria-haspopup="true" role="textbox" readonly="readonly"></textarea>
</span>
<input type="hidden" name="function_input" id="function_input" value="lim%20%28%28x%5E2%2B4%29%29%2F%28%28x%2d3%29%29%20as%20x%2d%3E1">
<input type="hidden" name="function_value" id="function_value" value="(x^2+4)/(x-3)">
<div role="button" class="keyboard-sm text-right d-block d-md-none" data-toggle="tooltip" title="" data-original-title="Math Keys">
<span class="sr-only">keys</span>
<i class="fa-lg far fa-keyboard"></i>
</div>
<div role="button" class="keyboard float-right btn btn-lg shadow-sm py-3 px-3 text-left d-none d-md-flex align-items-center" data-toggle="tooltip" title="" data-original-title="Math Keys" aria-label="Math Keys">
<i class="fa-md far fa-keyboard"></i>
</div>
</div>
<div class="col-11 px-0 clearfix mt-3 align-self-center">
<div id="keyboard_div" class="p-1 border shadow-sm rounded">
<div class="row_desktop">
<span id="k_plus" class="keys shadow-sm border keypad-btn rounded p-1 text-gray" data-input="+" data-latex="+">+</span>
<span id="k_minus" class="keys shadow-sm border keypad-btn rounded p-1 text-gray" data-input="-" data-latex="-">-</span>
<span id="k_frac" class="keys shadow-sm border keypad-btn rounded p-1 text-gray" data-input="÷" data-latex="\frac{}{}">÷</span>
<span id="k_multiply" class="keys shadow-sm border keypad-btn rounded p-1 text-gray" data-input="x" data-latex="*">x</span>
<span class="keys shadow-sm border keypad-btn rounded p-1 text-gray" data-input="^" data-latex="^{}">^</span>
<span class="keys shadow-sm border keypad-btn rounded p-1 text-gray" data-input="(" data-latex="(">(</span>
<span class="keys shadow-sm border keypad-btn rounded p-1 text-gray" data-input=")" data-latex=")">)</span>
<span class="keys shadow-sm border keypad-btn rounded p-1 text-gray" data-input="π" data-latex="\pi">π</span>
<span class="keys shadow-sm border keypad-btn rounded p-1 text-gray" data-input="e" data-latex="e">e</span>
<span id="k_sqrt" class="keys shadow-sm border keypad-btn rounded p-1 text-gray" data-input="sqrt()" style="font-size: 22px" data-latex="\sqrt{}">√</span>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="col-12 mt-2">
<div class="row">
<div class="col-md-4">
<!-- Top Banner: -->
<p style="text-align:center;font-size: 12px;margin: 0px;text-transform:uppercase"> advertisement</p>
<div class="btn__top__ad" style="text-align: center;height: 300px;">
<script async="" src="https://pagead2.googlesyndication.com/pagead/js/adsbygoogle.js?client=ca-pub-7155931151667823" crossorigin="anonymous" data-checked-head="true"></script>
<!-- limit.online left right -->
<ins class="adsbygoogle" style="display:inline-block;width:300px;height:250px" data-ad-client="ca-pub-7155931151667823" data-ad-slot="9264020424" data-adsbygoogle-status="done" data-ad-status="filled">
<div id="aswift_1_host" tabindex="0" title="Advertisement" aria-label="Advertisement"
style="border: none; height: 250px; width: 300px; margin: 0px; padding: 0px; position: relative; visibility: visible; background-color: transparent; display: inline-block;"><iframe id="aswift_1" name="aswift_1"
style="left:0;position:absolute;top:0;border:0;width:300px;height:250px;" sandbox="allow-forms allow-popups allow-popups-to-escape-sandbox allow-same-origin allow-scripts allow-top-navigation-by-user-activation" width="300"
height="250" frameborder="0" marginwidth="0" marginheight="0" vspace="0" hspace="0" allowtransparency="true" scrolling="no"
src="https://googleads.g.doubleclick.net/pagead/ads?client=ca-pub-7155931151667823&output=html&h=250&slotname=9264020424&adk=413437320&adf=2276347401&pi=t.ma~as.9264020424&w=300&lmt=1700073176&format=300x250&url=https%3A%2F%2Fwww.limitcalculator.online%2F&ea=0&wgl=1&uach=WyIiLCIiLCIiLCIiLCIiLG51bGwsMCxudWxsLCIiLG51bGwsMF0.&dt=1700073175730&bpp=23&bdt=540&idt=421&shv=r20231109&mjsv=m202311090101&ptt=9&saldr=aa&abxe=1&prev_fmts=0x0&nras=1&correlator=4034287258001&frm=20&pv=1&ga_vid=1572835944.1700073176&ga_sid=1700073176&ga_hid=359483875&ga_fc=0&u_tz=60&u_his=2&u_h=1200&u_w=1600&u_ah=1200&u_aw=1600&u_cd=24&u_sd=1&dmc=8&adx=270&ady=515&biw=1600&bih=1200&scr_x=0&scr_y=0&eid=44759875%2C44759926%2C31079492%2C31078301%2C44807763%2C44808149%2C44808285%2C44809056&oid=2&pvsid=3821066025509367&tmod=1355877080&uas=0&nvt=1&fc=1920&brdim=0%2C0%2C0%2C0%2C1600%2C0%2C1600%2C1200%2C1600%2C1200&vis=1&rsz=%7C%7CpeE%7C&abl=CS&pfx=0&fu=0&bc=31&psd=W251bGwsbnVsbCxudWxsLDNd&ifi=2&uci=a!2&fsb=1&dtd=427"
data-google-container-id="a!2" data-google-query-id="COC1kY7SxoIDFWKJ6QUdy5sF9Q" data-load-complete="true"></iframe></div>
</ins>
<script>
(adsbygoogle = window.adsbygoogle || []).push({});
</script>
</div>
</div>
<div class="col-md-4">
<div class="text-center py-md-4 py-2 d-block" style="display: flex !important;gap: 0;align-items: center;justify-content: center;">
<div id="jsShadowRoot">
</div>
<button role="button" id="resetBtn" class="reset_form btn hover shadow-sm btn-solid-lg" data-toggle="tooltip" title="" style="margin-top: 1.25rem;" data-original-title="Clear form fields">Reset</button>
</div>
</div>
<div class="col-md-4">
<!-- Top Banner: -->
<p style="text-align:center;font-size: 12px;margin: 0px;text-transform:uppercase"> advertisement</p>
<div class="btn__top__ad" style="text-align: center;height: 300px;">
<script async="" src="https://pagead2.googlesyndication.com/pagead/js/adsbygoogle.js?client=ca-pub-7155931151667823" crossorigin="anonymous" data-checked-head="true"></script>
<!-- limit.online left right -->
<ins class="adsbygoogle" style="display:inline-block;width:300px;height:250px" data-ad-client="ca-pub-7155931151667823" data-ad-slot="9264020424" data-adsbygoogle-status="done" data-ad-status="filled">
<div id="aswift_2_host" tabindex="0" title="Advertisement" aria-label="Advertisement"
style="border: none; height: 250px; width: 300px; margin: 0px; padding: 0px; position: relative; visibility: visible; background-color: transparent; display: inline-block;"><iframe id="aswift_2" name="aswift_2"
style="left:0;position:absolute;top:0;border:0;width:300px;height:250px;" sandbox="allow-forms allow-popups allow-popups-to-escape-sandbox allow-same-origin allow-scripts allow-top-navigation-by-user-activation" width="300"
height="250" frameborder="0" marginwidth="0" marginheight="0" vspace="0" hspace="0" allowtransparency="true" scrolling="no"
src="https://googleads.g.doubleclick.net/pagead/ads?client=ca-pub-7155931151667823&output=html&h=250&slotname=9264020424&adk=413437320&adf=360947664&pi=t.ma~as.9264020424&w=300&lmt=1700073176&format=300x250&url=https%3A%2F%2Fwww.limitcalculator.online%2F&ea=0&wgl=1&uach=WyIiLCIiLCIiLCIiLCIiLG51bGwsMCxudWxsLCIiLG51bGwsMF0.&dt=1700073175753&bpp=1&bdt=563&idt=569&shv=r20231109&mjsv=m202311090101&ptt=9&saldr=aa&abxe=1&prev_fmts=0x0%2C300x250&nras=1&correlator=4034287258001&frm=20&pv=1&ga_vid=1572835944.1700073176&ga_sid=1700073176&ga_hid=359483875&ga_fc=0&u_tz=60&u_his=2&u_h=1200&u_w=1600&u_ah=1200&u_aw=1600&u_cd=24&u_sd=1&dmc=8&adx=1030&ady=515&biw=1600&bih=1200&scr_x=0&scr_y=0&eid=44759875%2C44759926%2C31079492%2C31078301%2C44807763%2C44808149%2C44808285%2C44809056&oid=2&pvsid=3821066025509367&tmod=1355877080&uas=0&nvt=1&fc=1920&brdim=0%2C0%2C0%2C0%2C1600%2C0%2C1600%2C1200%2C1600%2C1200&vis=1&rsz=%7C%7CpeE%7C&abl=CS&pfx=0&fu=0&bc=31&psd=W251bGwsbnVsbCxudWxsLDNd&ifi=3&uci=a!3&fsb=1&dtd=575"
data-google-container-id="a!3" data-google-query-id="CKiJnI7SxoIDFRSH6QUd358ONQ" data-load-complete="true"></iframe></div>
</ins>
<script>
(adsbygoogle = window.adsbygoogle || []).push({});
</script>
</div>
</div>
</div>
</div>
</div>
</div>
</form>
Text Content
Back to Top Limit Calculator × * Taylor Series Calculator * Integral Calculator * L'hopital's Rule Calculator * Contact Us * English English Español Deutsche italiano Français русский 日本人 Indonasian 한국어 LIMIT CALCULATOR Wrt: x y z u v t w Limit: Write ∞ as inf ,π as pi Side: Right-hand (+) Left-hand (-) Two-sided Enter function: xsin(x) keys + - ÷ x ^ ( ) π e √ advertisement Reset advertisement Result STEP BY STEP SOLUTION: LIMIT EXAMPLES Easy * limx→1(x2−1x−1)limx→1(x2−1x−1) View the solution to (x^2-1)/(x-1) * limx→10x2limx→10x2 View the solution to x divided by 2 * limx→5(x2−3x+45−3x)limx→5(x2−3x+45−3x) View the solution to (x^2-3x+4)/(5-3x) * limx→4(1/4+1/x4+x)limx→4(1/4+1/x4+x) View the solution to ((1/4)+(1/x))/(4+x) * limz→4z√−2z−4limz→4z−2z−4 View the solution to (sqrt(z)-2)/(z-4) Medium * limx→0(x2+9−−−−−√−3x2)limx→0(x2+9−3x2) View the solution to the limit of the expression * limx→2(8−3x+12x2)limx→2(8−3x+12x2) View the solution to the limit of the expression * limz→82z2−17z+88−zlimz→82z2−17z+88−z View the solution to the limit of the expression * limx→0x3−x+9−−−−√limx→0x3−x+9 View the solution to the limit of the expression * limx→4(1/4+1/x4+x)limx→4(1/4+1/x4+x) View the solution to the limit of the expression Hard * limy→7y2−4y−213y2−17y−28limy→7y2−4y−213y2−17y−28 View the solution to the limit of the expression * limz→0(6+z)2−36zlimz→0(6+z)2−36z View the solution to the limit of the expression * limx→049−−√2−7x−3limx→0492−7x−3 View the solution to the limit of the expression * limx→−32x+22−−−−−−√−4x+3limx→−32x+22−4x+3 View the solution to the limit of the expression * limy→−36+4yy2+1limy→−36+4yy2+1 View the solution to the limit of the expression TABLE OF CONTENT * Limit Calculator with steps * How does the limit calculator work? * What is a limit in Calculus? * How to find limit? – With steps * FAQ’s LIMIT CALCULATOR WITH STEPS Limit calculator helps you find the limit of a function with respect to a variable. It is an online tool that assists you in calculating the value of a function when an input approaches some specific value. Limit calculator with steps shows the step-by-step solution of limits along with a plot and series expansion. It employs all limit rules such as sum, product, quotient, and L'hopital's rule to calculate the exact value. You can evaluate limits with respect to x , y, z , v, u, tx , y, z , v, u, t and ww using this limits calculator. That’s not it. By using this tool, you can also find, 1. Right-hand limit (+) 2. Left-hand limit (-) 3. Two-sided limit HOW DOES THE LIMIT CALCULATOR WORK? To evaluate the limit using this limit solver, follow the below steps. * Enter the function in the given input box. * Select the concerning variable. * Enter the limit value. * Choose the side of the limit. i.e., left, right, or two-sided. * Hit the Calculate button for the result. * Use the Reset button to enter new values and the Keypad icon to enter additional values. You will find the answer below the tool. Click on Show Steps to see the step-by-step solution. WHAT IS A LIMIT IN CALCULUS? The limit of a function is the value that f(x) gets closer to as x approaches some number. Limits can be used to define the derivatives, integrals, and continuity by finding the limit of a given function. It is written as: limx→af(x)=Llimx→af(x)=L If f is a real-valued function and a is a real number, then the above expression is read as, the limit of f of x as x approaches a equals L. HOW TO FIND THE LIMIT? – WITH STEPS Limits can be applied as numbers, constant values (π, G, k), infinity, etc. Let’s go through a few examples to learn how to calculate limits. Example - Right-hand Limit limx→2+(x2+2)(x−1)limx→2+(x2+2)(x−1) Solution: A right-hand limit means the limit of a function as it approaches from the right-hand side. Step 1: Apply the limit x➜2 to the above function. Put the limit value in place of x. limx→2+(x2+2)(x−1)limx→2+(x2+2)(x−1) =(22+2)(2−1)=(22+2)(2−1) Step 2: Solve the equation to reach a result. =(4+2)(2−1)=61=6=(4+2)(2−1)=61=6 Step 3: Write the expression with its answer. limx→2+(x2+2)(x−1)=6limx→2+(x2+2)(x−1)=6 Graph Example - Left-hand Limit limx→3−(x2−3x+45−3x)limx→3−(x2−3x+45−3x) Solution: A left-hand limit means the limit of a function as it approaches from the left-hand side. Step 1: Place the limit value in the function. limx→3−(x2−3x+45−3x)limx→3−(x2−3x+45−3x) =(32−3(3)+4)(5−3(3))=(32−3(3)+4)(5−3(3)) Step 2: Solve the equation further. =(9−9+4)(5−9)=(9−9+4)(5−9) =(0+4)(−4)=4−4=−1=(0+4)(−4)=4−4=−1 Step 3: Write down the function as written below. limx→3−(x2−3x+45−3x)=−1limx→3−(x2−3x+45−3x)=−1 Graph Example - Two-sided Limit limx→5(cos3(x)⋅sin(x))limx→5(cos3(x)⋅sin(x)) Solution: A two-sided limit exists if the limit coming from both directions (positive and negative) is the same. It is the same as limit. Step 1: Substitute the value of limit in the function. limx→5(cos3(x)⋅sin(x))limx→5(cos3(x)⋅sin(x)) =cos3(5)⋅sin(5)=cos3(5)⋅sin(5) Step 2: Simplify the equation as we did in previous examples. limx→5(cos3(x)⋅sin(x))limx→5(cos3(x)⋅sin(x)) =cos3(5)sin(5)=cos3(5)sin(5) Step 3: The above equation can be considered as the final answer. However, if you want to solve it further, solve the trigonometric values in the equation. =114150000⋅−2397325000=−10941500000=114150000⋅−2397325000=−10941500000 limx→5(cos3(x)⋅sin(x))limx→5(cos3(x)⋅sin(x)) =−0.021882=−0.021882 Graph FAQ’S Does sin x have a limit? Sin x has no limit. It is because, as x approaches infinity, the y-value oscillates between 1 and −1. What is the limit of e to infinity? The limit of e to the infinity (∞) is e. What is the limit as e^x approaches 0? The limit as e^x approaches 0 is 1. What is the limit as x approaches the infinity of ln(x)? The limit as x approaches infinity of ln(x) is +∞. The limit of this natural log can be proved by reductio ad absurdum. * If x >1ln(x) > 0, the limit must be positive. * As ln(x2) − ln(x1) = ln(x2/x1). If x2>x1, the difference is positive, so ln(x) is always increasing. * If lim x→∞ ln(x) = M ∈ R, we have ln(x) < M ⇒ x < eM, but x→∞ so M cannot be in R, and the limit must be +∞. REFERENCES * What is limit calculus? Study.com | Take Online Courses. Earn College Credit. Research Schools, Degrees & Careers. * Limit calculator with steps - Allmath. * Limits: A graphical approach - concept - calculus video by Brightstorm. 1 Taylor Series Calculator 2 Integral Calculator 3 L'hopital's Rule Calculator 4 Partial Derivative Calculator 5 Implicit Differentiation Calculator 6 Simpson's Rule Calculator 7 Laplace Transform Calculator 8 Maclaurin Series Calculator 9 Improper Integral Calculator 10 Directional Derivative Calculator 11 Double Integral Calculator 12 Triple Integral Calculator 13 Third Derivative Calculator 14 Hessian Matrix Calculator 15 Divergence Calculator 16 Trapezoidal Rule Calculator 17 Derivative Calculator 18 Second Derivative Calculator 19 Inverse Laplace Transform Calculator 20 Jacobian Calculator 21 Law of Sines Calculator 22 Continuity Calculator 23 Gradient Calculator 24 Power Series Calculator 25 Curl Calculator 26 Riemann Sum Calculator 27 Runge-Kutta Method Calculator 28 Washer Method Calculator 29 Wronskian Calculator 30 Shell Method Calculator Use android or iOS app of our limit calculator on your mobile Download Download X Need any help? Contact Us loading... Limit Calculator * Privacy * Terms & Conditions * Contact Us * fb * tw * lid * pin Copyright © 2023 all rights reserved Email: help@limitcalculator.online