batchnormal.mlperf.pw
Open in
urlscan Pro
23.27.124.238
Public Scan
URL:
https://batchnormal.mlperf.pw/
Submission: On April 22 via api from US — Scanned from DE
Submission: On April 22 via api from US — Scanned from DE
Form analysis
2 forms found in the DOMPOST https://mlcommons.org/#gf_1
<form method="post" enctype="multipart/form-data" target="gform_ajax_frame_1" id="gform_1" action="https://mlcommons.org/#gf_1" data-formid="1" novalidate="">
<div class="gform-body gform_body">
<div id="gform_fields_1" class="gform_fields top_label form_sublabel_below description_below">
<div id="field_1_1" class="gfield gfield--type-email gfield--width-full gfield_contains_required field_sublabel_below gfield--no-description field_description_below gfield_visibility_visible" data-js-reload="field_1_1">
<label class="gfield_label gform-field-label" for="input_1_1">Email<span class="gfield_required"><span class="gfield_required gfield_required_text">(Required)</span></span></label>
<div class="ginput_container ginput_container_email">
<input name="input_1" id="input_1_1" type="email" value="" class="large" placeholder="Email" aria-required="true" aria-invalid="false">
</div>
</div>
<fieldset id="field_1_3"
class="gfield gfield--type-consent gfield--type-choice gfield--input-type-consent gfield--width-full gfield_contains_required field_sublabel_below gfield--has-description field_description_below gfield_visibility_visible"
data-js-reload="field_1_3">
<legend class="gfield_label gform-field-label gfield_label_before_complex">Consent<span class="gfield_required"><span class="gfield_required gfield_required_text">(Required)</span></span>
</legend>
<div class="ginput_container ginput_container_consent">
<input name="input_3.1" id="input_1_3_1" type="checkbox" value="1" aria-describedby="gfield_consent_description_1_3" aria-required="true" aria-invalid="false"> <label
class="gform-field-label gform-field-label--type-inline gfield_consent_label" for="input_1_3_1">I agree to the privacy policy.</label><input type="hidden" name="input_3.2" value="I agree to the privacy policy." class="gform_hidden"><input
type="hidden" name="input_3.3" value="3" class="gform_hidden">
</div>
<div class="gfield_description gfield_consent_description" id="gfield_consent_description_1_3">By submiting this form I agree with the <a href="privacy-policy/index.html" target="_blank" rel="noreferrer noopener">Privacy Policy</a>
</div>
</fieldset>
<div id="field_1_7" class="gfield gfield--type-hidden gfield--width-full gform_hidden field_sublabel_below gfield--no-description field_description_below gfield_visibility_visible" data-js-reload="field_1_7">
<div class="ginput_container ginput_container_text"><input name="input_7" id="input_1_7" type="hidden" class="gform_hidden" aria-invalid="false" value="Subscriber"></div>
</div>
<div id="field_1_5" class="gfield gfield--type-captcha gfield--width-full field_sublabel_below gfield--no-description field_description_below hidden_label gfield_visibility_visible" data-js-reload="field_1_5">
<label class="gfield_label gform-field-label" for="input_1_5">CAPTCHA</label>
<div id="input_1_5" class="ginput_container ginput_recaptcha gform-initialized" data-sitekey="6LeD_q0oAAAAAK7n9xn-WHUlroKVJc4TDnuvOCN9" data-theme="light" data-tabindex="-1" data-size="invisible" data-badge="bottomright">
<div class="grecaptcha-badge" data-style="bottomright"
style="width: 256px; height: 60px; position: fixed; visibility: hidden; display: block; transition: right 0.3s ease 0s; bottom: 14px; right: -186px; box-shadow: gray 0px 0px 5px; border-radius: 2px; overflow: hidden;">
<div class="grecaptcha-logo"><iframe title="reCAPTCHA" width="256" height="60" role="presentation" name="a-ggv300p19gd6" frameborder="0" scrolling="no"
sandbox="allow-forms allow-popups allow-same-origin allow-scripts allow-top-navigation allow-modals allow-popups-to-escape-sandbox allow-storage-access-by-user-activation"
src="https://www.google.com/recaptcha/api2/anchor?ar=1&k=6LeD_q0oAAAAAK7n9xn-WHUlroKVJc4TDnuvOCN9&co=aHR0cHM6Ly9iYXRjaG5vcm1hbC5tbHBlcmYucHc6NDQz&hl=en&v=QoukH5jSO3sKFzVEA7Vc8VgC&theme=light&size=invisible&badge=bottomright&cb=g8hynxb2ysxz"
tabindex="-1"></iframe></div>
<div class="grecaptcha-error"></div><textarea id="g-recaptcha-response" name="g-recaptcha-response" class="g-recaptcha-response"
style="width: 250px; height: 40px; border: 1px solid rgb(193, 193, 193); margin: 10px 25px; padding: 0px; resize: none; display: none;"></textarea>
</div><iframe style="display: none;"></iframe>
</div>
</div>
</div>
</div>
<div class="gform_footer before"> <input type="submit" id="gform_submit_button_1" class="gform_button button" value="Submit"
onclick="if(window["gf_submitting_1"]){return false;} if( !jQuery("#gform_1")[0].checkValidity || jQuery("#gform_1")[0].checkValidity()){window["gf_submitting_1"]=true;} "
onkeypress="if( event.keyCode == 13 ){ if(window["gf_submitting_1"]){return false;} if( !jQuery("#gform_1")[0].checkValidity || jQuery("#gform_1")[0].checkValidity()){window["gf_submitting_1"]=true;} jQuery("#gform_1").trigger("submit",[true]); }">
<input type="hidden" name="gform_ajax" value="form_id=1&title=&description=&tabindex=0&theme=orbital">
<input type="hidden" class="gform_hidden" name="is_submit_1" value="1">
<input type="hidden" class="gform_hidden" name="gform_submit" value="1">
<input type="hidden" class="gform_hidden" name="gform_unique_id" value="">
<input type="hidden" class="gform_hidden" name="state_1"
value="WyJ7XCIzLjFcIjpcIjkwMTUwOGE3ZWM2MGJlOWUzOWY1ZjEzNjkyYzZiZWFmXCIsXCIzLjJcIjpcIjIyNDk4ZTkxODUyMzA5YjY1ZTZiNjZjZTc1YmVhNzQyXCIsXCIzLjNcIjpcIjFkZWIzOTJiM2EzNTJmNmM0ZjZhMjQ1OGQxZTQ4MGE5XCJ9IiwiNDE5ZDk2YzQ3YTc4NjhjZTFjY2RlNzhlNzIwM2MyYzkiXQ==">
<input type="hidden" class="gform_hidden" name="gform_target_page_number_1" id="gform_target_page_number_1" value="0">
<input type="hidden" class="gform_hidden" name="gform_source_page_number_1" id="gform_source_page_number_1" value="1">
<input type="hidden" name="gform_field_values" value="">
</div>
</form>
GET https://mlcommons.org/
<form class="search-form" method="get" action="https://mlcommons.org/" role="search">
<label class="search-form-label screen-reader-text" for="searchform-1">Search this website</label><input class="search-form-input" type="search" name="s" id="searchform-1" placeholder="Search this website"><input class="search-form-submit"
type="submit" value="Search">
<meta content="https://mlcommons.org/?s={s}">
</form>
Text Content
* Skip to primary navigation * Skip to main content MLCommons Better Machine Learning for Everyone Menu * Benchmarks Submenu * Benchmarks * MLPerf Training * MLPerf Training: HPC * MLPerf Inference: Datacenter * MLPerf Inference: Edge * MLPerf Inference: Mobile * MLPerf Inference: Tiny * MLPerf Storage * Datasets Submenu * Datasets * Cognata Dataset * Dollar Street * Multilingual Spoken Words * People’s Speech * Working Groups Submenu * Working Groups * Benchmarks * AI Safety * Data * Research * Research * About Us Submenu * About Us * Leadership * Programs * Policies * Blog * Join Us * Search BETTER AI FOR EVERYONE Building trusted, safe, and efficient AI requires better systems for measurement and accountability. MLCommons’ collective engineering with industry and academia continually measures and improves the accuracy, safety, speed, and efficiency of AI technologies. Get involved 125+ MLCommons Members and Affiliates 6 Benchmark Suites 55,000+ MLPerf Performance Results to-date ACCELERATING ARTIFICIAL INTELLIGENCE INNOVATION In collaboration with our 125+ founding members and affiliates, including startups, leading companies, academics, and non-profits from around the globe, we democratize AI through open industry-standard benchmarks that measure quality and performance and by building open, large-scale, and diverse datasets to improve AI models. About us FOCUS AREAS We help to advance new technologies by democratizing AI adoption through the creation and management of open useful measures of quality and performance, large scale open data sets, and ongoing research efforts. BENCHMARKING Benchmarks help balance the benefits and risks of AI through quantitative tools that guide effective and responsible AI development. They provide consistent measurements of accuracy, safety, speed, and efficiency which enable engineers to design reliable products and services and help researchers gain new insights to drive the solutions of tomorrow. Learn more DATASETS Evaluating AI systems depends on rigorous, standardized test datasets. MLCommons builds open, large-scale, and diverse datasets and a rich ecosystem of techniques and tools for AI data, helping the broader community deliver more accurate and safer AI systems. Learn more RESEARCH Open collaboration and support with the research community helps accelerate and democratize scientific discovery. MLCommons shared research infrastructure for benchmarking, rich datasets and diverse community, help enable the scientific research community to derive new insights for new breakthroughs in AI, for the betterment of society. Learn more MEMBERS MLCommons is supported by our 125+ founding members and affiliates, including startups, leading companies, academics, and non-profits from around the globe. MEMBERS FOUNDING MEMBERS MEMBERS FOUNDING MEMBERS MEMBERS JOIN OUR COMMUNITY MLCommons is a community-driven and community-funded effort. We welcome all corporations, academic researchers, nonprofits, government organizations, and individuals on a non-discriminatory basis. Join us! Get involved FEATURED ARTICLES March 27, 2024 News NEW MLPERF INFERENCE BENCHMARK RESULTS HIGHLIGHT THE RAPID GROWTH OF GENERATIVE AI MODELS With 70 billion parameters, Llama 2 70B is the largest model added to the MLPerf Inference benchmark suite. March 27, 2024 News LLAMA 2 70B: AN MLPERF INFERENCE BENCHMARK FOR LARGE LANGUAGE MODELS MLPerf Inference task force shares insights on the selection of Llama 2 for the latest MLPerf Inference benchmark round. March 6, 2024 News NEW CROISSANT METADATA FORMAT HELPS STANDARDIZE ML DATASETS Support from Hugging Face, Google Dataset Search, Kaggle, Open ML, and TFDS, makes datasets easily discoverable and usable. January 24, 2024 News ANNOUNCING THE NEW MLPERF CLIENT WORKING GROUP New MLCommons effort will build ML benchmarks for desktop, laptop and workstations for Microsoft Windows and other operating systems. October 26, 2023 News MLCOMMONS ANNOUNCES THE FORMATION OF AI SAFETY WORKING GROUP The initial focus will be on the development of safety benchmarks for large language models used for generative AI — using Stanford’s groundbreaking HELM framework. March 10, 2023 News PERSPECTIVE: UNLOCKING ML REQUIRES AN ECOSYSTEM APPROACH Factories need good roads to deliver value See all blogs and news SUBSCRIBE FOR THE LATEST NEWS Email(Required) Consent(Required) I agree to the privacy policy. By submiting this form I agree with the Privacy Policy CAPTCHA * Legal * Policies * Privacy Policy * Quick Links * Calendar * Discord * Github * Contact * support@mlcommons.org * Follow Us © 2020–2024 MLCommons Search this website ˄ Close Click to access the login or register cheese Notifications