www.eurekaselect.com Open in urlscan Pro
13.59.146.31  Public Scan

URL: https://www.eurekaselect.com/article/112310
Submission: On May 13 via manual from FI — Scanned from FI

Form analysis 7 forms found in the DOM

https://www.eurekaselect.com/search

<form class="search mt-md-2 mb-md-4" action="https://www.eurekaselect.com/search">
  <div class="input-group">
    <input type="text" name="searchvalue" class="form-control" placeholder="Search here..." aria-label="Recipient's username" aria-describedby="basic-addon2" autocomplete="off">
    <div class="input-group-append">
      <button name="search" type="submit" title="Search Button"><svg class="svg-inline--fa fa-magnifying-glass" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="magnifying-glass" role="img" xmlns="http://www.w3.org/2000/svg"
          viewBox="0 0 512 512" data-fa-i2svg="">
          <path fill="currentColor"
            d="M500.3 443.7l-119.7-119.7c27.22-40.41 40.65-90.9 33.46-144.7C401.8 87.79 326.8 13.32 235.2 1.723C99.01-15.51-15.51 99.01 1.724 235.2c11.6 91.64 86.08 166.7 177.6 178.9c53.8 7.189 104.3-6.236 144.7-33.46l119.7 119.7c15.62 15.62 40.95 15.62 56.57 0C515.9 484.7 515.9 459.3 500.3 443.7zM79.1 208c0-70.58 57.42-128 128-128s128 57.42 128 128c0 70.58-57.42 128-128 128S79.1 278.6 79.1 208z">
          </path>
        </svg><!-- <i class="fas fa-search"><span class="sr-only sr-only-focusable">newsletter banner</span></i> Font Awesome fontawesome.com --></button>
    </div>
  </div>
</form>

POST https://www.eurekaselect.com/login

<form method="POST" action="https://www.eurekaselect.com/login" aria-label="Login">
  <input type="hidden" name="_token" value="dmTfgO11gHjPwlK3RyF5ktzmPFCbjxLUgHyc5117">
  <div class="form-group">
    <input id="identity" type="identity" class="font-14 form-control form-control-sm " name="identity" value="" placeholder="E-Mail/User" required="" autofocus="">
  </div>
  <div class="form-group">
    <input id="password" type="password" class="font-14 form-control form-control-sm " name="password" placeholder="Password" required="">
  </div>
  <div class="form-group mb-0">
    <div class="captcha row">
      <div class="col-md-6 text-center">
        <span><img src="https://www.eurekaselect.com/captcha/default?F9TL4g5j"></span>
      </div>
    </div>
    <div class="form-group mb-4">
      <input id="captcha" type="text" class="form-control" placeholder="Enter Captcha" name="captcha">
    </div>
  </div>
  <div class="form-group">
    <div class="custom-control custom-checkbox">
      <input type="checkbox" class="custom-control-input form-check-input" name="remember" id="remember">
      <label class="custom-control-label" for="remember">Remember Me</label>
    </div>
  </div>
  <!--div class="form-group">

                                    <div class="form-check">

                                        <input class="form-check-input" type="checkbox" name="remember" id="remember" >



                                        <label class="form-check-label" for="remember">

                                            Remember Me

                                        </label>

                                    </div>

                                </div-->
  <div class="form-group row mb-0">
    <div class="col-md-12 mb-3">
      <button type="submit" class="btn bg-primary-light text-white btn-sm btn-block"> Login </button>
    </div>
    <div class="col-md-12">
      <a href="https://www.eurekaselect.net/public/openathens/index.php" class="btn bg-primary-light text-white btn-sm btn-block">

                                            OpenAthens Login

                                        </a>
    </div>
  </div>
  <div class="dropdown-divider"></div>
  <a class="dropdown-item px-0" href="https://www.eurekaselect.com/password/reset">

                                    Forgot Your Password?</a>
  <a class="dropdown-item px-0" href="https://www.eurekaselect.com/register">

                                New around here? Sign up</a>
</form>

POST https://www.eurekaselect.com/cart

<form method="POST" action="https://www.eurekaselect.com/cart" accept-charset="UTF-8" id="addtocartForm"><input name="_token" type="hidden" value="dmTfgO11gHjPwlK3RyF5ktzmPFCbjxLUgHyc5117">
  <input type="hidden" name="param" value="eyJpdiI6InNObFpRakUyZzh4VnZ4NkN3VW80b0E9PSIsInZhbHVlIjoiNDdOaHMwL3l2WTBXYmY2c0NkaHduUT09IiwibWFjIjoiNDMxYmMzODUxMjAwZjg3NTU2MzU0NTFlNzUzMGIzOGU2MDJkZGE5ZTgwMTRhZTRjMDdjMmMwNGJjYmYwYmUzMCIsInRhZyI6IiJ9">
  <div class="col-md-4 text-right">
    <button type="submit" id="addcartbtn" class="btn btn-download hvr-icon-hang">Purchase<br>PDF<br><svg class="svg-inline--fa fa-cart-plus hvr-icon" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="cart-plus" role="img"
        xmlns="http://www.w3.org/2000/svg" viewBox="0 0 576 512" data-fa-i2svg="">
        <path fill="currentColor"
          d="M96 0C107.5 0 117.4 8.19 119.6 19.51L121.1 32H541.8C562.1 32 578.3 52.25 572.6 72.66L518.6 264.7C514.7 278.5 502.1 288 487.8 288H170.7L179.9 336H488C501.3 336 512 346.7 512 360C512 373.3 501.3 384 488 384H159.1C148.5 384 138.6 375.8 136.4 364.5L76.14 48H24C10.75 48 0 37.25 0 24C0 10.75 10.75 0 24 0H96zM272 180H316V224C316 235 324.1 244 336 244C347 244 356 235 356 224V180H400C411 180 420 171 420 160C420 148.1 411 140 400 140H356V96C356 84.95 347 76 336 76C324.1 76 316 84.95 316 96V140H272C260.1 140 252 148.1 252 160C252 171 260.1 180 272 180zM128 464C128 437.5 149.5 416 176 416C202.5 416 224 437.5 224 464C224 490.5 202.5 512 176 512C149.5 512 128 490.5 128 464zM512 464C512 490.5 490.5 512 464 512C437.5 512 416 490.5 416 464C416 437.5 437.5 416 464 416C490.5 416 512 437.5 512 464z">
        </path>
      </svg><!-- <i class="fas fa-cart-plus hvr-icon"></i> Font Awesome fontawesome.com --></button>
  </div>
</form>

POST https://www.eurekaselect.com/marklist

<form method="POST" action="https://www.eurekaselect.com/marklist" accept-charset="UTF-8" id="markItemForm"><input name="_token" type="hidden" value="dmTfgO11gHjPwlK3RyF5ktzmPFCbjxLUgHyc5117">
  <input type="hidden" name="param" value="eyJpdiI6InhjcXE3WmhhM2p2UVdlN2p3enFtcHc9PSIsInZhbHVlIjoiOEgyRFlPQkhudFE3aWJKM3JWeDZQdz09IiwibWFjIjoiYmYyNzU5ZGY4MmUwNzQwODRlNWE1YTA0Y2Y5NmNkY2VkYTJjNzc0OWQ0Mzc2MTEzNDhjZWEzN2Y1MDdjNzJkNCIsInRhZyI6IiJ9">
  <input type="hidden" name="itemtype" value="1">
  <button type="submit" id="markitembtn" class="btn btn-light bg-white btn-sm">Mark Item</button>
</form>

POST https://www.eurekaselect.com/cart

<form method="POST" action="https://www.eurekaselect.com/cart" accept-charset="UTF-8" id="addtocartForm"><input name="_token" type="hidden" value="dmTfgO11gHjPwlK3RyF5ktzmPFCbjxLUgHyc5117">
  <input type="hidden" name="param" value="eyJpdiI6IllQWU03RTlNYWk4U2E1dkJQK0V5WEE9PSIsInZhbHVlIjoibWh0Wll3TUNGMVZ2OTNHSnc4NTZ0Zz09IiwibWFjIjoiYzJiNDRjYjhiYjE3ZmRmNDdjNzVkZjg0MTQ5YmIxYjA3N2JlN2JiYzIxMDRiZTk4OWQ4NWRiMTIzODg3MWVhMCIsInRhZyI6IiJ9">
  <button type="submit" id="addcartbtn" class="btn btn-light bg-white btn-sm">Purchase PDF</button>
</form>

POST https://www.eurekaselect.com/citation

<form method="post" action="https://www.eurekaselect.com/citation" enctype="multipart/form-data" accept-charset="UTF-8" id="export-citation-form">
  <input type="hidden" name="_token" value="dmTfgO11gHjPwlK3RyF5ktzmPFCbjxLUgHyc5117">
  <input type="hidden" name="article_id" value="112310">
  <div class="form-group">
    <label><strong>Export File:</strong> </label>
    <div class="custom-control custom-radio" id="edit-export-file-ris-wrapper">
      <input type="radio" id="edit-export-file-ris" name="export_file" value="ris" checked="checked" class="custom-control-input">
      <label class="custom-control-label" for="edit-export-file-ris"> RIS (for EndNote, Reference Manager, ProCite)</label>
    </div>
    <div class="custom-control custom-radio" id="edit-export-file-bibtex-wrapper">
      <input type="radio" id="edit-export-file-bibtex" name="export_file" value="bibtex" class="custom-control-input">
      <label class="custom-control-label" for="edit-export-file-bibtex"> BibTeX</label>
    </div>
    <div class="custom-control custom-radio" id="edit-export-file-text-wrapper">
      <input type="radio" id="edit-export-file-text" name="export_file" value="text" class="custom-control-input"> <label class="custom-control-label" for="edit-export-file-text"> Text</label>
    </div>
  </div>
  <div class="form-group">
    <label><strong>Content:</strong> </label>
    <div class="custom-control custom-radio" id="edit-content-citation-wrapper">
      <input type="radio" id="edit-content-citation" name="content" value="citation" class="custom-control-input">
      <label class="custom-control-label" for="edit-content-citation"> Citation Only</label>
    </div>
    <div class="custom-control custom-radio" id="edit-content-citation-abstract-wrapper">
      <input type="radio" id="edit-content-citation-abstract" name="content" value="citation_abstract" checked="checked" class="custom-control-input">
      <label class="custom-control-label" for="edit-content-citation-abstract"> Citation and Abstract</label>
    </div>
    <input type="submit" name="op" id="edit-export" value="Export" onclick="javascript:return checkradio()" class="btn btn-outline-primary float-right">
    <input type="hidden" name="export_file_hidden" id="edit-export-file-hidden" value="">
    <input type="hidden" name="content_hidden" id="edit-content-hidden" value="">
    <input type="hidden" name="form_build_id" id="form-278487bec247e2f69b37fa03b10b8556" value="form-278487bec247e2f69b37fa03b10b8556">
    <input type="hidden" name="form_id" id="edit-export-citation-form" value="export_citation_form">
  </div>
</form>

POST https://www.eurekaselect.com/download_file

<form method="POST" action="https://www.eurekaselect.com/download_file" accept-charset="UTF-8" id="download-form-pdf"><input name="_token" type="hidden" value="dmTfgO11gHjPwlK3RyF5ktzmPFCbjxLUgHyc5117">
  <input type="hidden" name="agree-flag" id="agree-flag" value="1">
  <input type="hidden" name="param"
    value="eyJpdiI6IlB2SWRHR3IrbjVKQnJEMTExUDhKaHc9PSIsInZhbHVlIjoiVFozT3lad0NZOWk2WVRFOWFybGpDZEhvQVpqN0JKcUptRlhtTXpNNk12Yz0iLCJtYWMiOiJjNDYzNGM5ZGQ2YzI1MGUwY2UzMTEzODAxMTI0NjU1NGU0NTA5NjczMDUxOGFmODlkYmI2MmZkM2Y1ZjcwNzE3IiwidGFnIjoiIn0=">
  <div class="modal fade" id="download_hide_112310" tabindex="-1" role="dialog" aria-labelledby="myModalLabel" aria-hidden="true">
    <div class="modal-dialog">
      <div class="modal-content">
        <div class="modal-header bg-primary">
          <h4 class="modal-title text-white" id="modalLabelprimary">Restricted Access Panel</h4>
          <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button>
        </div>
        <div class="modal-body">
          <label class="control-label">Content Access Key</label>
          <input type="text" name="user_name" class="form-control">
          <label class="control-label">Password</label>
          <input type="password" name="password" class="form-control">
        </div> <!-- /.modal-body -->
        <div class="modal-footer">
          <button type="submit" class="btn btn-primary" onclick="javascript: $('#download_hide_112310').modal('hide');"><span class="glyphicon glyphicon-remove-circle"></span> Login to Download</button>
          <button type="button" class="btn btn-default" data-dismiss="modal"><span class="glyphicon glyphicon-remove-circle"></span> Close</button>
        </div>
      </div> <!-- /.modal-content -->
    </div> <!-- /.modal-dialog -->
  </div>
</form>

Text Content

newsletter banner

Login

LOGIN

--------------------------------------------------------------------------------

Remember Me
Login
OpenAthens Login

Forgot Your Password? New around here? Sign up
Register Cart 0
 * 
 * Home
 * Publications
   
   JOURNALS
   
    * By Title
    * By Subject
      
    * Patent Journals
    * Free Online Samples
    * Journal Impacting Science
    * Journals Catalog
    * New Title 2022
    * New Title 2023
    * Price and Ordering Information
    * Subscription Rates 2022
   
   BOOKS
   
    * By Title
    * By Subject
      
    * By Series Books
    * By Text Books
    * By Open Access Books
    * By Video Books
    * Books Catalog
    * Forthcoming
       * Forthcoming Titles
       * Forthcoming Series
   
    * Future Attraction
       * Future Titles
       * Future Series

 * Articles By Disease
   
   ARTICLES BY DISEASE
   
   Bentham is offering subject-based scholarly content collections which are
   tailored to meet specific research needs. Researchers can access related
   articles from current and back volumes by purchasing access to these
   collections. Subscribers will also have access to new articles as soon as
   they are published and added to these collections. With new articles being
   added to these collections on a daily basis, the collections serve as an
   ideal tool to keep researchers updated with new developments in the
   respective fields.
   
    * Anti Inflammatory
    * Cardiovascular Disorders
    * Central Nervous System
    * Diabetes
    * Oncology
    * Coronavirus
   
   View All
   
   
 * Marketing Opportunities
   
   MARKETING OPPORTUNITIES
   
    * Advertising
       * Advertise with us
       * Advertising Policy
         
       * Books Catalog
       * Journals Catalog
       * Media Pack 2020
   
    * Author's Benefits Guide
    * Media Partners
    * Partnering Events
   
    * Events By Year
       * 2022
       * 2021
       * 2020
   
    * Events By Subject Areas
       * Business, Economics and Finance
       * Energy Science, Engineering and Technology
       * Food Science and Nutrition
       * Genetics & Genomics
       * Microbiology
       * Protein and Peptide Sciences
       * Ceramics, Glass, Composites and Hybrid Materials
       * Surfaces, Interfaces, Thin Films, Corrosion, Coatings
       * Anesthesiology
       * Anti-Infectives and Infectious Diseases
       * Biomarkers
       * Cardiology
       * Dermatology
       * Immunology, Inflammation and Allergy
       * Oncology
       * Ophthalmology
       * Pediatrics
       * Psychiatry
       * Regenerative Medicine
       * Surgery
       * General
       * Neuroscience
       * Pharmacology
   
    * Exhibit Schedule
    * International Scientific Course
   
    * Promotional Services
    * Health Care Industry Resources
    * Kudos

 * For Librarians
   
   FOR LIBRARIANS
   
    * FAQs for e-prints/reprints
    * Journal Catalog 2021
    * Journal Catalog 2022
    * Table of Content Alerts
   
    * Library Recommendation
    * Trial Requests
   
    * Order Bulk Reprints
    * Order Bulk ePrints

 * For Authors & Editors
   
   FOR AUTHORS & EDITORS
   
    * Manuscript Processing System
    * Author Benefits
    * Editor Policies
    * Short Guide
    * Webinars for Authors, Editors and Reviewers
   
    * General FAQs
    * Publication Cycle - Process Flowchart
    * Publishing Ethics
    * Increase Visibility Of Your Article
   
    * Authorship
    * Reviewer Guidelines
    * Self-Archiving Policies
    * Table of Contents Alert

 * More
    * About Us
    * Contact
    * Feedback
   
    * Help
    * Ordering & Subscription
    * Independent Advisors
   
    * Author Reprints
    * Press Release
    * Books News


CURRENT ORGANIC CHEMISTRY

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Back
Journal
Journal Home About Journal Editorial Board Journal Insight Current Issue
Volumes/Issues
Subscribe
General Review Article


RECENT ADVANCES IN HYDROPHOBIC MODIFICATION OF NANOCELLULOSE

Author(s): Lin Sun, Xiaoyi Zhang, Huayu Liu, Kun Liu, Haishun Du*, Amit Kumar,
Gaurav Sharma* and Chuanling Si*

Volume 25 , Issue 3 , 2021

Published on: 10 December, 2020

Page: [417 - 436] Pages: 20

DOI: 10.2174/1385272824999201210191041

Price: $65

Purchase
PDF


ABSTRACT

As a kind of renewable nanomaterial, nanocellulose displays excellent
performances and exhibits wide application potentials. In general, nanocellulose
has strong hydrophilicity due to the presence of abundant hydroxyl groups or the
hydrophilic functional groups introduced during the preparation process.
Although these hydrophilic groups benefit the nanocellulose with great
application potential that is used in aqueous media (e.g., rheology modifier,
hydrogels), they do hinder the performance of nanocellulose used as reinforcing
agents for hydrophobic polymers and reduce the stability of the self-assembled
nanostructure (e.g., nanopaper, aerogel) in a high-humidity environment. Thus,
this review aims to summarize recent advances in the hydrophobic modification of
nanocellulose, mainly in three aspects: physical adsorption, surface chemical
modification (e.g., silylation, alkanoylation, esterification), and polymer
graft copolymerization. In addition, the current limitations and future
prospects of hydrophobic modification of nanocellulose are proposed.

Keywords: Nanocellulose, hydrophobic modification, reinforcing agent, cellulose
nanopaper, aerogel, rheology.

« Previous Next »

GRAPHICAL ABSTRACT



References
[1]
Du, H.; Liu, W.; Zhang, M.; Si, C.; Zhang, X.; Li, B. Cellulose nanocrystals and
cellulose nanofibrils based hydrogels for biomedical applications. Carbohydr.
Polym., 2019, 209, 130-144.
[http://dx.doi.org/10.1016/j.carbpol.2019.01.020] [PMID: 30732792]
[2]
Liu, H.; Liu, K.; Han, X.; Xie, H.; Si, C.; Liu, W.; Bae, Y. Cellulose
nanofibrils-based hydrogels for biomedical applications: progresses and
challenges. Curr. Med. Chem., 2020, 27(28), 4622-4646.
[http://dx.doi.org/10.2174/0929867327666200303102859] [PMID: 32124687]
[3]
Huang, C.; Lin, W.; Lai, C.; Li, X.; Jin, Y.; Yong, Q. Coupling the
post-extraction process to remove residual lignin and alter the recalcitrant
structures for improving the enzymatic digestibility of acid-pretreated bamboo
residues. Bioresour. Technol., 2019, 285121355
[http://dx.doi.org/10.1016/j.biortech.2019.121355] [PMID: 31004950]
[4]
Habibi, Y. Key advances in the chemical modification of nanocelluloses. Chem.
Soc. Rev., 2014, 43(5), 1519-1542.
[http://dx.doi.org/10.1039/C3CS60204D] [PMID: 24316693]
[5]
Huang, C.; Sun, R.; Chang, H.M.; Yong, Q.; Jameel, H.; Phillips, R. Production
of dissolving grade pulp from tobacco stalk through SO2-ethanol-water
fractionation, alkaline extraction, and bleaching processes. BioResources, 2019,
14(3), 5544-5558.
[6]
Lu, J.; Zhu, W.; Dai, L.; Si, C.; Ni, Y. Fabrication of thermo- and pH-sensitive
cellulose nanofibrils-reinforced hydrogel with biomass nanoparticles. Carbohydr.
Polym., 2019, 215, 289-295.
[http://dx.doi.org/10.1016/j.carbpol.2019.03.100] [PMID: 30981356]
[7]
Jin, H.; Zhou, W.; Cao, J.; Stoyanov, S.D.; Blijdenstein, T.B.J.; de Groot,
P.W.N.; Pelan, E.G. Super stable foams stabilized by colloidal ethyl cellulose
particles. Soft Matter, 2012, 8(7), 2194-2205.
[http://dx.doi.org/10.1039/C1SM06518A]
[8]
Pääkkö, M.; Ankerfors, M.; Kosonen, H.; Nykänen, A.; Ahola, S.; Österberg, M.;
Ruokolainen, J.; Laine, J.; Larsson, P.T.; Ikkala, O.; Lindström, T. Enzymatic
hydrolysis combined with mechanical shearing and high-pressure homogenization
for nanoscale cellulose fibrils and strong gels. Biomacromolecules, 2007, 8(6),
1934-1941.
[http://dx.doi.org/10.1021/bm061215p] [PMID: 17474776]
[9]
Liu, R.; Dai, L.; Si, C. Mussel-inspired cellulose-based nanocomposite fibers
for adsorption and photocatalytic degradation. ACS Sustain. Chem.& Eng., 2018,
6, 15756-15763.
[http://dx.doi.org/10.1021/acssuschemeng.8b04320]
[10]
Si, C.; Xu, J. Recent advances in bio-medicinal and pharmaceutical applications
of bio-based materials. Curr. Med. Chem., 2020, 27(28), 4581-4583.
[http://dx.doi.org/10.2174/092986732728200621210700] [PMID: 32571198]
[11]
Xie, H.; Zou, Z.; Du, H.; Zhang, X.; Wang, X.; Yang, X.; Wang, H.; Li, G.; Li,
L.; Si, C. Preparation of thermally stable and surface-functionalized cellulose
nanocrystals via mixed H2SO4/Oxalic acid hydrolysis. Carbohydr. Polym., 2019,
223, 115-116.
[http://dx.doi.org/10.1016/j.carbpol.2019.115116] [PMID: 31427005]
[12]
Dai, L.; Si, C. Recent advances on cellulose-based nano-drug delivery systems:
design of prodrugs and nanoparticles. Curr. Med. Chem., 2019, 26(14), 2410-2429.
[http://dx.doi.org/10.2174/0929867324666170711131353] [PMID: 28699504]
[13]
Si, C. The development of lignocellulosic biomass in medicinal applications.
Curr. Med. Chem., 2019, 26(14), 2408-2409.
[http://dx.doi.org/10.2174/092986732614190724160641] [PMID: 31453775]
[14]
Mukhopadhyay, A.; Cheng, Z.; Natan, A.; Ma, Y.; Yang, Y.; Cao, D.; Wang, W.;
Zhu, H. Stable and highly ion selective membrane made from cellulose nanocrystal
for aqueous redox flow batteries. Nano Lett., 2019, 19(12), 8979-8989.
[http://dx.doi.org/10.1021/acs.nanolett.9b03964] [PMID: 31702931]
[15]
Li, K.; Jin, S.; Chen, H.; Li, J. Bioinspired interface engineering of
gelatin/cellulose nanofibrils nanocomposites with high mechanical performance
and antibacterial properties for active packaging. Compos., Part B Eng., 2019,
171, 222-234.
[http://dx.doi.org/10.1016/j.compositesb.2019.04.043]
[16]
Liu, W.; Du, H.; Zhang, M.; Liu, K.; Liu, H.; Xie, H.; Si, C. Bacterial
cellulose-based composite scaffolds for biomedical applications: a review. ACS
Sustain. Chem.& Eng., 2020, 8, 7536-7562.
[http://dx.doi.org/10.1021/acssuschemeng.0c00125]
[17]
Wang, P.; Yin, B.; Dong, H.; Zhang, Y.; Zhang, Y.; Chen, R.; Yang, Z.; Huang,
C.; Jiang, Q. Coupling biocompatible Au nanoclusters and cellulose nanofibrils
to prepare the antibacterial nanocomposite films. Front. Bioeng. Biotechnol.,
2020, 8, 986.
[http://dx.doi.org/10.3389/fbioe.2020.00986] [PMID: 32974314]
[18]
He, H.; Chen, R.; Zhang, L.; Williams, T.; Fang, X.; Shen, W. Fabrication of
single-crystalline gold nanowires on cellulose nanofibers. J. Colloid Interface
Sci., 2020, 562, 333-341.
[http://dx.doi.org/10.1016/j.jcis.2019.11.093] [PMID: 31855796]
[19]
Huang, C.; Dong, H.; Zhang, Z.; Bian, H.; Yong, Q. Procuring the nano-scale
lignin in prehydrolyzate as ingredient to prepare cellulose nanofibril composite
film with multiple functions. Cellulose, 2020, 2020, 1-16.
[http://dx.doi.org/10.1007/s10570-020-03427-9] [PMID: 33132545]
[20]
Du, H.; Liu, C.; Zhang, M.; Kong, Q.; Li, B.; Xian, M. Preparation and
industrialization status of nanocellulose. Prog. Chem., 2018, 30(4), 448-462..
[http://dx.doi.org/10.7536/PC170830]
[21]
Moniri, M.; Boroumand Moghaddam, A.; Azizi, S.; Abdul Rahim, R.; Bin Ariff, A.;
Zuhainis Saad, W.; Navaderi, M.; Mohamad, R. Production and status of bacterial
cellulose in biomedical engineering. Nanomaterials (Basel), 2017, 7(9), 257.
[http://dx.doi.org/10.3390/nano7090257] [PMID: 32962322]
[22]
Bras, J.; Viet, D.; Bruzzese, C.; Dufresne, A. Correlation between stiffness of
sheets prepared from cellulose whiskers and nanoparticles dimensions. Carbohydr.
Polym., 2011, 84(1), 211-215.
[http://dx.doi.org/10.1016/j.carbpol.2010.11.022]
[23]
Nechyporchuk, O.; Belgacem, M.N.; Bras, J. Production of cellulose nanofibrils:
a review of recent advances. Ind. Crops Prod., 2016, 93, 2-25.
[http://dx.doi.org/10.1016/j.indcrop.2016.02.016]
[24]
Xie, H.; Du, H.; Yang, X.; Si, C. Recent strategies in preparation of cellulose
nanocrystals and cellulose nanofibrils derived from raw cellulose materials.
Int. J. Polym. Sci., 2018, 20187923068
[http://dx.doi.org/10.1155/2018/7923068]
[25]
Sun, B.; Zhang, M.; Hou, Q.; Liu, R.; Wu, T.; Si, C. Further characterization of
cellulose nanocrystal (CNC) preparation from sulfuric acid hydrolysis of cotton
fibers. Cellulose, 2015, 23(1), 439-450.
[http://dx.doi.org/10.1007/s10570-015-0803-z]
[26]
Liu, W.; Du, H.; Liu, H.; Xie, H.; Zhang, X.; Si, C. Highly efficient and green
preparation of carboxylic and thermostable cellulose nanocrystals via
FeCl3-catalyzed innocuous citric acid hydrolysis. ACS Sustain. Chem.& Eng.,
2020, 8, 16691-16700.
[http://dx.doi.org/10.1021/acssuschemeng.0c06561]
[27]
Xu, J.T.; Chen, X.Q. Preparation and characterization of spherical cellulose
nanocrystals with high purity by the composite enzymolysis of pulp fibers.
Bioresour. Technol., 2019, 291121842
[http://dx.doi.org/10.1016/j.biortech.2019.121842] [PMID: 31377505]
[28]
Lin, W.; Xing, S.; Jin, Y.; Lu, X.; Huang, C.; Yong, Q. Insight into
understanding the performance of deep eutectic solvent pretreatment on improving
enzymatic digestibility of bamboo residues. Bioresour. Technol., 2020, 306123163
[http://dx.doi.org/10.1016/j.biortech.2020.123163] [PMID: 32182471]
[29]
Lalanne-Tisné, M.; Mees, M.A.; Eyley, S.; Zinck, P.; Thielemans, W.
Organocatalyzed ring opening polymerization of lactide from the surface of
cellulose nanofibrils. Carbohydr. Polym., 2020, 250116974
[http://dx.doi.org/10.1016/j.carbpol.2020.116974] [PMID: 33049866]
[30]
Bian, H.; Dong, M.; Chen, L.; Zhou, X.; Ni, S.; Fang, G.; Dai, H. Comparison of
mixed enzymatic pretreatment and post-treatment for enhancing the cellulose
nanofibrillation efficiency. Bioresour. Technol., 2019, 293122171
[http://dx.doi.org/10.1016/j.biortech.2019.122171] [PMID: 31558340]
[31]
Bian, H.; Gao, Y.; Yang, Y.; Fang, G.; Dai, H. Improving cellulose
nanofibrillation of waste wheat straw using the combined methods of prewashing,
p-toluenesulfonic acid hydrolysis, disk grinding, and endoglucanase
post-treatment. Bioresour. Technol., 2018, 256, 321-327.
[http://dx.doi.org/10.1016/j.biortech.2018.02.038] [PMID: 29459318]
[32]
Bian, H.; Luo, J.; Wang, R.; Zhou, X.; Ni, S.; Shi, R.; Dai, H. Recyclable and
reusable maleic acid for efficient production of cellulose nanofibrils with
stable performance. ACS Sustain. Chem.& Eng., 2019, 7(24), 20022-20031.
[http://dx.doi.org/10.1021/acssuschemeng.9b05766]
[33]
Balquinta, M.L.; Andrés, S.C.; Cerrutti, P.; Califano, A.N.; Lorenzo, G. Effect
of bacterial nanocellulose post-synthetic processing on powders and rehydrated
suspensions characteristics. J. Food Eng., 2020, 2020109994
[http://dx.doi.org/10.1016/j.jfoodeng.2020.109994]
[34]
Moon, R.J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose
nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev.,
2011, 40(7), 3941-3994.
[http://dx.doi.org/10.1039/c0cs00108b] [PMID: 21566801]
[35]
Naseri-Nosar, M.; Ziora, Z.M. Wound dressings from naturally-occurring polymers:
a review on homopolysaccharide-based composites. Carbohydr. Polym., 2018, 189,
379-398.
[http://dx.doi.org/10.1016/j.carbpol.2018.02.003] [PMID: 29580422]
[36]
Zinatloo-Ajabshir, S.; Salavati-Niasari, M. Effect of copper on improving the
electrochemical storage of hydrogen in CeO2 nanostructure fabricated by a simple
and surfactant-free sonochemical pathway. Ceram. Int., 2020, 46(17),
26548-26556.
[http://dx.doi.org/10.1016/j.ceramint.2020.07.121]
[37]
Zinatloo-Ajabshir, S.; Morassaei, M.S.; Salavati-Niasari, M. Simple approach for
the synthesis of Dy2Sn2O7 nanostructures as a hydrogen storage material from
banana juice. J. Clean. Prod., 2019, 222, 103-110.
[http://dx.doi.org/10.1016/j.jclepro.2019.03.023]
[38]
Zinatloo-Ajabshir, S.; Salehi, Z.; Amiri, O.; Salavati-Niasari, M. Simple
fabrication of Pr2Ce2O7 nanostructures via a new and eco-friendly route; a
potential electrochemical hydrogen storage material. J. Alloys Compd., 2019,
791, 792-799.
[http://dx.doi.org/10.1016/j.jallcom.2019.04.005]
[39]
Zinatloo-Ajabshir, S.; Salehi, Z.; Salavati-Niasari, M. Green synthesis and
characterization of Dy2Ce2O7 nanostructures using Ananas comosus with high
visible-light photocatalytic activity of organic contaminants. J. Alloys Compd.,
2018, 763, 314-321.
[http://dx.doi.org/10.1016/j.jallcom.2018.05.311]
[40]
Zinatloo-Ajabshir, S.; Mortazavi-Derazkola, S.; Salavati-Niasari, M.
Sonochemical synthesis, characterization and photodegradation of organic
pollutant over Nd2O3 nanostructures prepared via a new simple route. Separ.
Purif. Tech., 2017, 178, 138-146.
[http://dx.doi.org/10.1016/j.seppur.2017.01.034]
[41]
Chen, S.; Wang, G.; Sui, W.; Parvez, A.M.; Si, C. Synthesis of
lignin-functionalized phenolic nanospheres supported Ag nanoparticles with
excellent dispersion stability and catalytic performance. Green Chem., 2020, 22,
2879-2888.
[http://dx.doi.org/10.1039/C9GC04311J]
[42]
Zinatloo-Ajabshir, S.; Salehi, Z.; Salavati-Niasari, M. Green synthesis of
Dy2Ce2O7 ceramic nanostructures using juice of Punica granatum and their
efficient application as photocatalytic degradation of organic contaminants
under visible light. Ceram. Int., 2018, 44(4), 3873-3883.
[http://dx.doi.org/10.1016/j.ceramint.2017.11.177]
[43]
Zinatloo-Ajabshir, S.; Morassaei, M.S.; Amiri, O.; Salavati-Niasari, M. Green
synthesis of dysprosium stannate nanoparticles using Ficus carica extract as
photocatalyst for the degradation of organic pollutants under visible
irradiation. Ceram. Int., 2020, 46, 6095-6107.
[http://dx.doi.org/10.1016/j.ceramint.2019.11.072]
[44]
Heidari-Asil, S.A.; Zinatloo-Ajabshir, S.; Amiri, O.; Salavati-Niasari, M. Amino
acid assisted-synthesis and characterization of magnetically retrievable
ZnCo2O4–Co3O4 nanostructures as high activity visible-light-driven
photocatalyst. Int. J. Hydrogen Energy, 2020, 45, 22761-22774.
[http://dx.doi.org/10.1016/j.ijhydene.2020.06.122]
[45]
Chen, L.; Wang, Q.; Hirth, K.; Baez, C.; Agarwal, U.P.; Zhu, J.Y. Tailoring the
yield and characteristics of wood cellulose nanocrystals (CNC) using
concentrated acid hydrolysis. Cellulose, 2015, 22(3), 1753-1762.
[http://dx.doi.org/10.1007/s10570-015-0615-1]
[46]
Aroso, I.M.; Silva, J.C.; Mano, F.; Ferreira, A.S.D.; Dionísio, M.; Sá-Nogueira,
I.; Barreiros, S.; Reis, R.L.; Paiva, A.; Duarte, A.R.C. Dissolution enhancement
of active pharmaceutical ingredients by therapeutic deep eutectic systems. Eur.
J. Pharm. Biopharm., 2016, 98, 57-66.
[http://dx.doi.org/10.1016/j.ejpb.2015.11.002] [PMID: 26586342]
[47]
Parit, M.; Du, H.; Zhang, X.; Prather, C.; Adams, M.; Jiang, Z. Polypyrrole and
cellulose nanofiber based composite films with improved physical and electrical
properties for electromagnetic shielding applications. Carbohydr. Polym., 2020,
240116304
[http://dx.doi.org/10.1016/j.carbpol.2020.116304] [PMID: 32475575]
[48]
Pääkkö, M.; Vapaavuori, J.; Silvennoinen, R.; Kosonen, H.; Ankerfors, M.;
Lindström, T.; Berglund, L.A.; Ikkala, O. Long and entangled native cellulose I
nanofibers allow flexible aerogels and hierarchically porous templates for
functionalities. Soft Matter, 2008, 4(12), 2492-2499.
[http://dx.doi.org/10.1039/b810371b]
[49]
Saito, T.; Uematsu, T.; Kimura, S.; Enomae, T.; Isogai, A. Self-aligned
integration of native cellulose nanofibrils towards producing diverse bulk
materials. Soft Matter, 2011, 7(19), 8804-8809.
[http://dx.doi.org/10.1039/c1sm06050c]
[50]
Yang, X.; Cranston, E.D. Chemically cross-linked cellulose nanocrystal aerogels
with shape recovery and superabsorbent properties. Chem. Mater., 2014, 26(20),
6016-6025.
[http://dx.doi.org/10.1021/cm502873c]
[51]
Pei, W.; Chen, Z.S.; Chan, H.Y.E.; Zheng, L.; Liang, C.; Huang, C. Isolation and
identification of a novel anti-protein aggregation activity of
lignin-carbohydrate complex from Chionanthus retusus leaves. Front. Bioeng.
Biotechnol., 2020, 8573991
[http://dx.doi.org/10.3389/fbioe.2020.573991] [PMID: 33102457]
[52]
Razi, F.; Zinatloo-Ajabshir, S.; Salavati-Niasari, M. Preparation,
characterization and photocatalytic properties of Ag2ZnI4/AgI nanocomposites via
a new simple hydrothermal approach. J. Mol. Liq., 2017, 225, 645-651.
[http://dx.doi.org/10.1016/j.molliq.2016.11.028]
[53]
Pei, W.; Shang, W.; Liang, C.; Jiang, X.; Huang, C.; Yong, Q. Using lignin as
the precursor to synthesize Fe3O4@lignin composite for preparing electromagnetic
wave absorbing lignin-phenol-formaldehyde adhesive. Ind. Crops Prod., 2020,
154112638
[http://dx.doi.org/10.1016/j.indcrop.2020.112638]
[54]
Tian, X.X.; Gholamrezaei, S.; Amiri, O.; Ghanbari, M.; Dashtbozorg, A.;
Salavati-Niasari, M. Zn2MnO4/ZnO nanocomposites: One step sonochemical
fabrication and demonstration as a novel catalyst in water splitting reaction.
Ceram. Int., 2020, 46, 26548-26556.
[http://dx.doi.org/10.1016/j.ceramint.2020.07.058]
[55]
Dong, H.; Zheng, L.; Yu, P.; Jiang, Q.; Wu, Y.; Huang, C.; Yin, B.
Characterization and application of lignin-carbohydrate complexes from
lignocellulosic materials as antioxidants for scavenging in vitro and in vivo
reactive oxygen species. ACS Sustain. Chem.& Eng., 2020, 8(1), 256-266.
[http://dx.doi.org/10.1021/acssuschemeng.9b05290]
[56]
Liu, R.; Dai, L.; Si, C.; Zeng, Z. Antibacterial and hemostatic hydrogel via
nanocomposite from cellulose nanofibers. Carbohydr. Polym., 2018, 195, 63-70.
[http://dx.doi.org/10.1016/j.carbpol.2018.04.085] [PMID: 29805020]
[57]
Liang, Y.; Zhu, H.; Wang, L.; He, H.; Wang, S. Biocompatible smart cellulose
nanofibres for sustained drug release via pH and temperature dual-responsive
mechanism. Carbohydr. Polym., 2020, 249116876
[http://dx.doi.org/10.1016/j.carbpol.2020.116876] [PMID: 32933696]
[58]
Farahani, H.; Barati, A.; Arjomandzadegan, M.; Vatankhah, E. Nanofibrous
cellulose acetate/gelatin wound dressing endowed with antibacterial and healing
efficacy using nanoemulsion of Zataria multiflora. Int. J. Biol. Macromol.,
2020, 162, 762-773.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.06.175] [PMID: 32590085]
[59]
Dong, H.; Li, M.; Jin, Y.; Wu, Y.; Huang, C.; Yang, J. Preparation of
graphene-like porous carbons with enhanced thermal conductivities from lignin
nano-particles by combining hydrothermal carbonization and pyrolysis. Front.
Energy Res., 2020, 8, 148.
[http://dx.doi.org/10.3389/fenrg.2020.00148]
[60]
Lu, J.; Han, X.; Dai, L.; Li, C.; Wang, J.; Zhong, Y.; Yu, F.; Si, C. Conductive
cellulose nanofibrils-reinforced hydrogels with synergetic strength, toughness,
self-adhesion, flexibility and adjustable strain responsiveness. Carbohydr.
Polym., 2020, 250117010
[http://dx.doi.org/10.1016/j.carbpol.2020.117010] [PMID: 33049871]
[61]
Huang, W.; Tang, X.; Qiu, Z.; Zhu, W.; Wang, Y.; Zhu, Y.L.; Xiao, Z.; Wang, H.;
Liang, D.; Li, J.; Xie, Y. Cellulose-based superhydrophobic surface decorated
with functional groups showing distinct wetting abilities to manipulate water
harvesting. ACS Appl. Mater. Interfaces, 2020, 12(36), 40968-40978.
[http://dx.doi.org/10.1021/acsami.0c12504] [PMID: 32805840]
[62]
Nascimento, D.M.; Nunes, Y.L.; Figueirêdo, M.C.B.; de Azeredo, H.M.C.; Aouada,
F.A.; Feitosa, J.P.A.; Rosa, M.F.; Dufresne, A. Nanocellulose nanocomposite
hydrogels: technological and environmental issues. Green Chem., 2018, 20(11),
2428-2448.
[http://dx.doi.org/10.1039/C8GC00205C]
[63]
Zheng, T.; Clemons, C.M.; Pilla, S. Comparative study of direct compounding,
coupling agent-aided and initiator-aided reactive extrusion to prepare cellulose
nanocrystal/PHBV (CNC/PHBV) nanocomposite. ACS Sustain. Chem.& Eng., 2019, 8(2),
814-822.
[http://dx.doi.org/10.1021/acssuschemeng.9b04867]
[64]
Soeta, H.; Fujisawa, S.; Saito, T.; Isogai, A. Controlling miscibility of the
interphase in polymer-grafted nanocellulose/cellulose triacetate nanocomposites.
ACS Omega, 2020, 5(37), 23755-23761.
[http://dx.doi.org/10.1021/acsomega.0c02772] [PMID: 32984694]
[65]
Chen, Q.; Shi, Y.; Chen, G.; Cai, M. Enhanced mechanical and hydrophobic
properties of composite cassava starch films with stearic acid modified MCC
(microcrystalline cellulose)/NCC (nanocellulose) as strength agent. Int. J.
Biol. Macromol., 2020, 142, 846-854.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.10.024] [PMID: 31622700]
[66]
Vatansever, E.; Arslan, D.; Nofar, M. Polylactide cellulose-based
nanocomposites. Int. J. Biol. Macromol., 2019, 137, 912-938.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.06.205] [PMID: 31284009]
[67]
Kargarzadeh, H.; Mariano, M.; Gopakumar, D.; Ahmad, I.; Thomas, S.; Dufresne,
A.; Huang, J.; Lin, N. Advances in cellulose nanomaterials. Cellulose, 2018,
25(4), 2151-2189.
[http://dx.doi.org/10.1007/s10570-018-1723-5]
[68]
Lucenius, J.; Parikka, K.; Österberg, M. Nanocomposite films based on cellulose
nanofibrils and water-soluble polysaccharides. React. Funct. Polym., 2014, 85,
167-174.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2014.08.001]
[69]
Li, M.C.; Mei, C.; Xu, X.; Lee, S.; Wu, Q. Cationic surface modification of
cellulose nanocrystals: toward tailoring dispersion and interface in
carboxymethyl cellulose films. Polymer (Guildf.), 2016, 107, 200-210.
[http://dx.doi.org/10.1016/j.polymer.2016.11.022]
[70]
Dai, L.; Zhu, W.Y.; Lu, J.; Kong, F.; Si, C. A novel lignin-containing cellulose
hydrogel for lignin fractionation. Green Chem., 2019, 21, 5222-5230.
[http://dx.doi.org/10.1039/C9GC01975H]
[71]
Qing, W.; Wang, Y.; Wang, Y.; Zhao, D.; Liu, X.; Zhu, J. The modified
nanocrystalline cellulose for hydrophobic drug delivery. Appl. Surf. Sci., 2016,
366, 404-409.
[http://dx.doi.org/10.1016/j.apsusc.2016.01.133]
[72]
Prathapan, R.; Thapa, R.; Garnier, G.; Tabor, R.F. Modulating the zeta potential
of cellulose nanocrystals using salts and surfactants. Colloids Surf. A
Physicochem. Eng. Asp., 2016, 509, 11-18.
[http://dx.doi.org/10.1016/j.colsurfa.2016.08.075]
[73]
Pan, Y.; Xiao, H.; Cai, P.; Colpitts, M. Cellulose fibers modified with
nano-sized antimicrobial polymer latex for pathogen deactivation. Carbohydr.
Polym., 2016, 135(135), 94-100.
[http://dx.doi.org/10.1016/j.carbpol.2015.08.046] [PMID: 26453856]
[74]
Gupta, R.D.; Raghav, N. Differential effect of surfactants tetra-n-butyl
ammonium bromide and N-Cetyl-N, N, N-trimethyl ammonium bromide bound to
nano-cellulose on binding and sustained release of some non-steroidal
anti-inflammatory drugs. Int. J. Biol. Macromol., 2020, 164, 2745-2752.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.08.091] [PMID: 32800952]
[75]
Hu, D.; Zhang, Z.; Liu, M.; Lin, J.; Chen, X.; Ma, W. Multifunctional
UV-shielding nanocellulose films modified with halloysite nanotubes-zinc oxide
nanohybrid. Cellulose, 2019, 27(1), 401-413.
[http://dx.doi.org/10.1007/s10570-019-02796-0]
[76]
Wang, H.; Xie, H.; Du, H.; Wang, X.; Liu, W.; Duan, Y.; Zhang, X.; Sun, L.;
Zhang, X.; Si, C. Highly efficient preparation of functional and thermostable
cellulose nanocrystals via H2SO4 intensified acetic acid hydrolysis. Carbohydr.
Polym., 2020, 239116233
[http://dx.doi.org/10.1016/j.carbpol.2020.116233] [PMID: 32414449]
[77]
Huang, D.; Yang, Q.; Jin, S.; Deng, Q.; Zhou, P. Self-assembly of cellulose
nanoparticles as electrolyte additive for capillary electrophoresis separation.
J. Chromatogr. A, 2014, 1367, 148-153.
[http://dx.doi.org/10.1016/j.chroma.2014.09.032] [PMID: 25262028]
[78]
Yin, Y.; Hong, Z.; Tian, X.; Zhu, Q.; Jiang, X.; Wang, H.; Gao, W. Cellulose
nanocrystals modified with quaternary ammonium salts and its reinforcement of
polystyrene. Polym. Bull., 2017, 75(5), 2151-2166.
[http://dx.doi.org/10.1007/s00289-017-2131-y]
[79]
Salajková, M.; Berglund, L.A.; Zhou, Q. Hydrophobic cellulose nanocrystals
modified with quaternary ammonium salts. J. Mater. Chem., 2012, 22(37),
19798-19805.
[http://dx.doi.org/10.1039/c2jm34355j]
[80]
Shimizu, M.; Saito, T.; Fukuzumi, H.; Isogai, A. Hydrophobic, ductile, and
transparent nanocellulose films with quaternary alkylammonium carboxylates on
nanofibril surfaces. Biomacromolecules, 2014, 15(11), 4320-4325.
[http://dx.doi.org/10.1021/bm501329v] [PMID: 25310181]
[81]
Kaldéus, T.; Träger, A.; Berglund, L.A.; Malmström, E.; Lo Re, G. Molecular
engineering of the cellulose-poly (caprolactone) bio-nanocomposite interface by
reactive amphiphilic copolymer nanoparticles. ACS Nano, 2019, 13(6), 6409-6420.
[http://dx.doi.org/10.1021/acsnano.8b08257] [PMID: 31083978]
[82]
Sakakibara, K.; Yano, H.; Tsujii, Y. Surface engineering of cellulose nanofiber
by adsorption of diblock copolymer dispersant for green nanocomposite materials.
ACS Appl. Mater. Interfaces, 2016, 8(37), 24893-24900.
[http://dx.doi.org/10.1021/acsami.6b07769] [PMID: 27559606]
[83]
Yang, W.; Jiao, L.; Yu, Z.; Dai, H. Research progress of hydrophobic
modification of nanocellulose membrane.Cellulose Science and Technology; John
Wiley And Sons, 2017, pp. 60-68.
[84]
Goussé, C.; Chanzy, H.; Excoffier, G.; Soubeyrand, L.; Fleury, E. Stable
suspensions of partially silylated cellulose whiskers dispersed in organic
solvents. Polymer (Guildf.), 2002, 43(9), 2645-2651.
[http://dx.doi.org/10.1016/S0032-3861(02)00051-4]
[85]
Qi, Y.; Zhang, H.; Xu, D.; He, Z.; Pan, X.; Gui, S.; Dai, X.; Fan, J.; Dong, X.;
Li, Y. Screening of nanocellulose from different biomass resources and its
integration for hydrophobic transparent nanopaper. Molecules, 2020, 25(1), 227.
[http://dx.doi.org/10.3390/molecules25010227] [PMID: 31935878]
[86]
Pacaphol, K.; Aht-Ong, D. The influences of silanes on interfacial adhesion and
surface properties of nanocellulose film coating on glass and aluminum
substrates. Surf. Coat. Tech., 2017, 320, 70-81.
[http://dx.doi.org/10.1016/j.surfcoat.2017.01.111]
[87]
Frank, B.P.; Durkin, D.P.; Caudill, E.; Zhu, L.; White, D.; Curry, M.L.;
Pedersen, J.A.; Fairbrother, D.H. Impact of silanization on the structure,
dispersion properties, and biodegradability of nanocellulose as a nanocomposite
filler. ACS Appl. Nano Mater., 2018, 12(1), 7025-7038.
[http://dx.doi.org/10.1021/acsanm.8b01819]
[88]
Khanjanzadeh, H.; Behrooz, R.; Bahramifar, N.; Gindl-Altmutter, W.; Bacher, M.;
Edler, M.; Griesser, T. Surface chemical functionalization of cellulose
nanocrystals by 3-aminopropyltriethoxysilane. Int. J. Biol. Macromol., 2018,
106, 1288-1296.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.08.136] [PMID: 28855133]
[89]
Lin, W.; Hu, X.; You, X.; Sun, Y.; Wen, Y.; Yang, W.; Zhang, X.; Li, Y.; Chen,
H. Hydrophobic modification of nanocellulose via a two-step silanation method.
Polymers (Basel), 2018, 10(9), 1035.
[http://dx.doi.org/10.3390/polym10091035] [PMID: 30960960]
[90]
Huang, J.; Wang, S.; Lyu, S.; Fu, F. Preparation of a robust cellulose
nanocrystal superhydrophobic coating for self-cleaning and oil-water separation
only by spraying. Ind. Crops Prod., 2018, 122, 438-447.
[http://dx.doi.org/10.1016/j.indcrop.2018.06.015]
[91]
Chen, S.; Song, Y.; Xu, F. Highly Transparent and hazy cellulose nanopaper
simultaneously with a self-cleaning superhydrophobic surface. ACS Sustain.
Chem.& Eng., 2018, 6(4), 5173-5181.
[http://dx.doi.org/10.1021/acssuschemeng.7b04814]
[92]
Han, S.; Yao, Q.; Jin, C.; Fan, B.; Zheng, H.; Sun, Q. Cellulose nanofibers from
bamboo and their nanocomposites with polyvinyl alcohol: Preparation and
characterization. Polym. Compos., 2016, 39(8), 2611-2619.
[http://dx.doi.org/10.1002/pc.24249]
[93]
Xu, Z.; Zhou, H.; Jiang, X.; Li, J.; Huang, F. Facile synthesis of reduced
graphene oxide/trimethyl chlorosilane-coated cellulose nanofibres aerogel for
oil absorption. IET Nanobiotechnol., 2017, 11(8), 929-934.
[http://dx.doi.org/10.1049/iet-nbt.2017.0063] [PMID: 29155391]
[94]
Liu, W.; Si, C.; Du, H.; Zhang, M.; Zhang, X.; Xie, H. Preparation of
nanocellulose- based hydrogel and its application progress in the field of
biomedicine. J. Eng., 2019, 4(5), 11-19..
[http://dx.doi.org/10.13360/j.issn.2096-1359.2019.05.002]
[95]
Mashkour, M.; Afra, E.; Resalati, H.; Mashkour, M. Moderate surface acetylation
of nanofibrillated cellulose for the improvement of paper strength and barrier
properties. RSC Advances, 2015, 5(74), 60179-60187.
[http://dx.doi.org/10.1039/C5RA08161K]
[96]
Zhang, Y.; Zhao, X.; Yang, W.; Jiang, W.; Chen, F.; Fu, Q. Enhancement of
mechanical property and absorption capability of hydrophobically associated
polyacrylamide hydrogels by adding cellulose nanofiber. Mater. Res. Express,
2020, 7(1), 15319.
[http://dx.doi.org/10.1088/2053-1591/ab6373]
[97]
Sun, X.; Tyagi, P.; Agate, S.; Lucia, L.; McCord, M.; Pal, L. Unique
thermo-responsivity and tunable optical performance of
poly(N-isopropylacrylamide)-cellulose nanocrystal hydrogel films. Carbohydr.
Polym., 2019, 208, 495-503.
[http://dx.doi.org/10.1016/j.carbpol.2018.12.067] [PMID: 30658828]
[98]
Wang, L.; Okada, K.; Sodenaga, M.; Hikima, Y.; Ohshima, M.; Sekiguchi, T.; Yano,
H. Effect of surface modification on the dispersion, rheological behavior,
crystallization kinetics, and foaming ability of polypropylene/cellulose
nanofiber nanocomposites. Compos. Sci. Technol., 2018, 168, 412-419.
[http://dx.doi.org/10.1016/j.compscitech.2018.10.023]
[99]
Li, W.; Wang, S.; Qin, C.; Wu, M. Facile preparation of reactive hydrophobic
cellulose nanofibril film for reducing Water Vapor Permeability (WVP) in
packaging applications. Cellulose, 2019, 26(5), 3271-3284.
[http://dx.doi.org/10.1007/s10570-019-02270-x]
[100]
Roman, M.; Winter, W.T. Effect of sulfate groups from sulfuric acid hydrolysis
on the thermal degradation behavior of bacterial cellulose. Biomacromolecules,
2004, 5(5), 1671-1677.
[http://dx.doi.org/10.1021/bm034519+] [PMID: 15360274]
[101]
Gu, J.; Catchmark, J.M.; Kaiser, E.Q.; Archibald, D.D. Quantification of
cellulose nanowhiskers sulfate esterification levels. Carbohydr. Polym., 2013,
92(2), 1809-1816.
[http://dx.doi.org/10.1016/j.carbpol.2012.10.078] [PMID: 23399223]
[102]
Ni, C.; Wang, H.; Zhao, Q.; Liu, B.; Sun, Z.; Zhang, M.; Hu, W.; Liang, L.
Crosslinking effect in nanocrystalline cellulose reinforced sulfonated poly
(aryl ether ketone) proton exchange membranes. Solid State Ion., 2018, 323,
5-15.
[http://dx.doi.org/10.1016/j.ssi.2018.05.004]
[103]
Wang, Y.; Wang, X.; Xie, Y.; Zhang, K. Functional nanomaterials through
esterification of cellulose: a review of chemistry and application. Cellulose,
2018, 25(7), 3703-3731.
[http://dx.doi.org/10.1007/s10570-018-1830-3]
[104]
Sethi, J.; Farooq, M.; Sain, S.; Sain, M.; Sirviö, J.A.; Illikainen, M.; Oksman,
K. Water resistant nanopapers prepared by lactic acid modified cellulose
nanofibers. Cellulose, 2017, 25(1), 259-268.
[http://dx.doi.org/10.1007/s10570-017-1540-2]
[105]
Geng, S.; Wei, J.; Aitomäki, Y.; Noël, M.; Oksman, K. Well-dispersed cellulose
nanocrystals in hydrophobic polymers by in situ polymerization for synthesizing
highly reinforced bio-nanocomposites. Nanoscale, 2018, 10(25), 11797-11807.
[http://dx.doi.org/10.1039/C7NR09080C] [PMID: 29675528]
[106]
Zhang, Z.; Zhang, B.; Grishkewich, N.; Berry, R.; Tam, K.C.
Cinnamate-functionalized cellulose nanocrystals as UV-shielding nanofillers in
sunscreen and transparent polymer films. Adv. Sust. Sys., 2019, 3(4)1800156
[http://dx.doi.org/10.1002/adsu.201800156]]
[107]
Germiniani, L.G.L.; da Silva, L.C.E.; Plivelic, T.S.; Gonçalves, M.C. Poly
(ε-caprolactone)/cellulose nanocrystal nanocomposite mechanical reinforcement
and morphology: the role of nanocrystal pre-dispersion. J. Mater. Sci., 2019,
54(1), 414-426.
[http://dx.doi.org/10.1007/s10853-018-2860-9]
[108]
Huang, P.; Wu, M.; Kuga, S.; Wang, D.; Wu, D.; Huang, Y. One-step dispersion of
cellulose nanofibers by mechanochemical esterification in an organic solvent.
ChemSusChem, 2012, 5(12), 2319-2322.
[http://dx.doi.org/10.1002/cssc.201200492] [PMID: 23180637]
[109]
Huang, P.; Zhao, Y.; Kuga, S.; Wu, M.; Huang, Y. A versatile method for
producing functionalized cellulose nanofibers and their application. Nanoscale,
2016, 8(6), 3753-3759.
[http://dx.doi.org/10.1039/C5NR08179C] [PMID: 26815658]
[110]
Spinella, S.; Re, G.L.; Liu, B.; Dorgan, J.; Habibi, Y.; Raquez, J.M.; Dubois,
P.; Gross, R.A. Modification of cellulose nanocrystals with lactic acid for
direct melt blending with PLA. Polymer (Guildf.), 2015, 2015, 1664.
[http://dx.doi.org/10.1063/1.4918454]]
[111]
Li, B.; Xu, W.; Kronlund, D.; Määttänen, A.; Liu, J.; Smått, J.H.; Peltonen, J.;
Willför, S.; Mu, X.; Xu, C. Cellulose nanocrystals prepared via formic acid
hydrolysis followed by TEMPO-mediated oxidation. Carbohydr. Polym., 2015, 133,
605-612.
[http://dx.doi.org/10.1016/j.carbpol.2015.07.033] [PMID: 26344319]
[112]
Du, H.; Liu, C.; Mu, X.; Gong, W.; Lv, D.; Hong, Y.; Si, C.; Li, B. Preparation
and characterization of thermally stable cellulose nanocrystals via a
sustainable approach of FeCl3-catalyzed formic acid hydrolysis. Cellulose, 2016,
23(4), 2389-2407.
[http://dx.doi.org/10.1007/s10570-016-0963-5]
[113]
Du, H.; Liu, C.; Zhang, Y.; Yu, G.; Si, C.; Li, B. Preparation and
characterization of functional cellulose nanofibrils via formic acid hydrolysis
pretreatment and the followed high-pressure homogenization. Ind. Crops Prod.,
2016, 94, 736-745.
[http://dx.doi.org/10.1016/j.indcrop.2016.09.059]
[114]
Du, H.; Parit, M.; Wu, M.; Che, X.; Wang, Y.; Zhang, M.; Wang, R.; Zhang, X.;
Jiang, Z.; Li, B. Sustainable valorization of paper mill sludge into cellulose
nanofibrils and cellulose nanopaper. J. Hazard. Mater., 2020, 400123106
[http://dx.doi.org/10.1016/j.jhazmat.2020.123106] [PMID: 32580093]
[115]
Lv, D.; Du, H.; Che, X.; Wu, M.; Zhang, Y.; Liu, C.; Li, B. Tailored and
integrated production of functional cellulose nanocrystals and cellulose
nanofibrils via sustainable formic acid hydrolysis: kinetic study and
characterization. ACS Sustain. Chem.& Eng., 2019, 7(10), 9449-9463.
[http://dx.doi.org/10.1021/acssuschemeng.9b00714]
[116]
Hu, L.; Du, H.; Liu, C.; Zhang, Y.; Yu, G.; Zhang, X.; Si, C.; Li, B.; Peng, H.
Comparative evaluation of the efficient conversion of corn husk filament and
corn husk powder to valuable materials via a sustainable and clean biorefinery
process. ACS Sustain. Chem.& Eng., 2018, 7(1), 1327-1336.
[http://dx.doi.org/10.1021/acssuschemeng.8b05017]
[117]
Liu, C.; Li, B.; Du, H.; Lv, D.; Zhang, Y.; Yu, G.; Mu, X.; Peng, H. Properties
of nanocellulose isolated from corncob residue using sulfuric acid, formic acid,
oxidative and mechanical methods. Carbohydr. Polym., 2016, 151, 716-724.
[http://dx.doi.org/10.1016/j.carbpol.2016.06.025] [PMID: 27474618]
[118]
Du, H.; Liu, C.; Wang, D.; Zhang, Y.; Yu, G.; Si, C.; Li, B.; Mu, X.; Peng, H.
Sustainable preparation and characterization of thermally stable and functional
cellulose nanocrystals and nanofibrils via formic acid hydrolysis. J. Biores.
Bioprod., 2017, 2(1), 10-15.
[119]
Wang, Q.; Du, H.; Zhang, F.; Zhang, Y.; Wu, M.; Yu, G.; Liu, C.; Li, B.; Peng,
H. Flexible cellulose nanopaper with high wet tensile strength, high toughness
and tunable ultraviolet blocking ability fabricated from tobacco stalk via a
sustainable method. J. Mater. Chem. A Mater. Energy Sustain., 2018, 6(27),
13021-13030.
[http://dx.doi.org/10.1039/C8TA01986J]
[120]
Yang, X.; Xie, H.; Du, H.; Zhang, X.; Zou, Z.; Zou, Y.; Liu, W.; Lan, H.; Zhang,
X.; Si, C. Facile extraction of thermally stable and dispersible cellulose
nanocrystals with high yield via a green and recyclable FeCl3-catalyzed deep
eutectic solvent system. ACS Sustain. Chem.& Eng., 2019, 7, 7200-7208.
[http://dx.doi.org/10.1021/acssuschemeng.9b00209]
[121]
Syverud, K.; Xhanari, K.; Chinga-Carrasco, G.; Yu, Y.; Stenius, P. Films made of
cellulose nanofibrils: surface modification by adsorption of a cationic
surfactant and characterization by computer-assisted electron microscopy. J.
Nanopart. Res., 2010, 13(2), 773-782.
[http://dx.doi.org/10.1007/s11051-010-0077-1]
[122]
Roy, D.; Semsarilar, M.; Guthrie, J.T.; Perrier, S. Cellulose modification by
polymer grafting: a review. Chem. Soc. Rev., 2009, 38(7), 2046-2064.
[http://dx.doi.org/10.1039/b808639g] [PMID: 19551181]
[123]
Dufesne, A. Nanocellulose: a new ageless bionanomaterial. Mater. Today, 2013,
16(6), 220-227.
[http://dx.doi.org/10.1016/j.mattod.2013.06.004]
[124]
Kim, M.; Schmitt, S.; Choi, J.; Krutty, J.; Gopalan, P. From self-assembled
monolayers to coatings: advances in the synthesis and nanobio applications of
polymer brushes. Polymers (Basel), 2015, 7(7), 1346-1378.
[http://dx.doi.org/10.3390/polym7071346]
[125]
Rol, F.; Belgacem, M.N.; Gandini, A.; Bras, J. Recent advances in
surface-modified cellulose nanofibrils. Prog. Polym. Sci., 2019, 88, 241-264.
[http://dx.doi.org/10.1016/j.progpolymsci.2018.09.002]
[126]
Li, Y.; Zhu, L.; Grishkewich, N.; Tam, K.C.; Yuan, J.; Mao, Z.; Sui, X.
CO2-responsive cellulose nanofibers aerogels for switchable oil-water
separation. ACS Appl. Mater. Interfaces, 2019, 11(9), 9367-9373.
[http://dx.doi.org/10.1021/acsami.8b22159] [PMID: 30735345]
[127]
Abushammala, H. Nano-brushes of alcohols grafted onto cellulose nanocrystals for
reinforcing poly(butylene succinate): Impact of alcohol chain length on
interfacial adhesion. Polymers (Basel), 2020, 12(1), 95.
[http://dx.doi.org/10.3390/polym12010095] [PMID: 31947910]
[128]
Li, M.; Liu, X.; Liu, N.; Guo, Z.; Singh, P.K.; Fu, S. Effect of surface
wettability on the antibacterial activity of nanocellulose-based material with
quaternary ammonium groups. Colloids Surf. A Physicochem. Eng. Asp., 2018, 554,
122-128.
[http://dx.doi.org/10.1016/j.colsurfa.2018.06.031]
[129]
Samadani, F.; Behzad, T.; Enayati, M.S. Facile strategy for improvement
properties of whey protein isolate/walnut oil bio-packaging films: using
modified cellulose nanofibers. Int. J. Biol. Macromol., 2019, 139, 858-866.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.08.042] [PMID: 31398405]
[130]
Pal, N.; Banerjee, S.; Roy, P.; Pal, K. Reduced graphene oxide and PEG-grafted
TEMPO-oxidized cellulose nanocrystal reinforced poly-lactic acid nanocomposite
film for biomedical application. Mater. Sci. Eng. C, 2019, 104109956
[http://dx.doi.org/10.1016/j.msec.2019.109956] [PMID: 31499971]
[131]
Song, Z.; Xiao, H.; Zhao, Y. Hydrophobic-modified nano-cellulose fiber/PLA
biodegradable composites for lowering Water Vapor Transmission Rate (WVTR) of
paper. Carbohydr. Polym., 2014, 111, 442-448.
[http://dx.doi.org/10.1016/j.carbpol.2014.04.049] [PMID: 25037373]
[132]
Lin, W.; Chen, D.; Yong, Q.; Huang, C.; Huang, S. Improving enzymatic hydrolysis
of acid-pretreated bamboo residues using amphiphilic surfactant derived from
dehydroabietic acid. Bioresour. Technol., 2019, 293122055
[http://dx.doi.org/10.1016/j.biortech.2019.122055] [PMID: 31472409]
[133]
Li, X.Y.; Xu, R.; Yang, J.X.; Nie, S.X.; Liu, D.; Liu, Y.; Si, C.L. Production
of 5-hydroxymethylfurfural and levulinic acid from lignocellulosic biomass and
catalytic upgradation. Ind. Crops Prod., 2019, 130, 184-197.
[http://dx.doi.org/10.1016/j.indcrop.2018.12.082]
[134]
Zhou, L.; He, H.; Li, M.C.; Huang, S.; Mei, C.; Wu, Q. Grafting polycaprolactone
diol onto cellulose nanocrystals via click chemistry: enhancing thermal
stability and hydrophobic property. Carbohydr. Polym., 2018, 189, 331-341.
[http://dx.doi.org/10.1016/j.carbpol.2018.02.039] [PMID: 29580417]

Mark Item
Purchase PDF
Rights & Permissions Print Export Cite as

CURRENT ORGANIC CHEMISTRY

Title:Recent Advances in Hydrophobic Modification of Nanocellulose

Volume: 25 Issue: 3

Author(s): Lin Sun, Xiaoyi Zhang, Huayu Liu, Kun Liu, Haishun Du*, Amit Kumar,
Gaurav Sharma*Chuanling Si*

Affiliation:

 * Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and
   Technology, Tianjin 300457,China



Keywords: Nanocellulose, hydrophobic modification, reinforcing agent, cellulose
nanopaper, aerogel, rheology.

Abstract: As a kind of renewable nanomaterial, nanocellulose displays excellent
performances and exhibits wide application potentials. In general, nanocellulose
has strong hydrophilicity due to the presence of abundant hydroxyl groups or the
hydrophilic functional groups introduced during the preparation process.
Although these hydrophilic groups benefit the nanocellulose with great
application potential that is used in aqueous media (e.g., rheology modifier,
hydrogels), they do hinder the performance of nanocellulose used as reinforcing
agents for hydrophobic polymers and reduce the stability of the self-assembled
nanostructure (e.g., nanopaper, aerogel) in a high-humidity environment. Thus,
this review aims to summarize recent advances in the hydrophobic modification of
nanocellulose, mainly in three aspects: physical adsorption, surface chemical
modification (e.g., silylation, alkanoylation, esterification), and polymer
graft copolymerization. In addition, the current limitations and future
prospects of hydrophobic modification of nanocellulose are proposed.

Close Print this page

EXPORT OPTIONS

×
Export File:
RIS (for EndNote, Reference Manager, ProCite)
BibTeX
Text
Content:
Citation Only
Citation and Abstract

ABOUT THIS ARTICLE

×

Cite this article as:

Sun Lin , Zhang Xiaoyi , Liu Huayu , Liu Kun , Du Haishun *, Kumar Amit , Sharma
Gaurav *, Si Chuanling *, Recent Advances in Hydrophobic Modification of
Nanocellulose, Current Organic Chemistry 2021; 25(3) .
https://dx.doi.org/10.2174/1385272824999201210191041

DOI
https://dx.doi.org/10.2174/1385272824999201210191041 Print ISSN
1385-2728 Publisher Name
Bentham Science Publisher Online ISSN
1875-5348

Close About this journal


RELATED JOURNALS

Current Indian Science

Current Organic Synthesis

Current Organocatalysis

Current Organic Synthesis

Current Organocatalysis

Current Radiopharmaceuticals

Current Organocatalysis

Current Radiopharmaceuticals

Letters in Organic Chemistry

Current Radiopharmaceuticals

Letters in Organic Chemistry

The Natural Products Journal

Letters in Organic Chemistry

The Natural Products Journal

Mini-Reviews in Organic Chemistry

The Natural Products Journal

Mini-Reviews in Organic Chemistry

Current Indian Science

Mini-Reviews in Organic Chemistry

Current Indian Science

Current Organic Synthesis

View More

RELATED BOOKS

Advances in Organic Synthesis

Advances in Organic Synthesis

Advances in Organic Synthesis

Advances in Organic Synthesis

Advances in Organic Synthesis

Advances in Organic Synthesis

Advances in Organic Synthesis

Advances in Organic Synthesis

Advances in Organic Synthesis

Advances in Organic Synthesis

Advances in Organic Synthesis

Advances in Organic Synthesis

Advances in Organic Synthesis

Advances in Organic Synthesis

Advances in Organic Synthesis

Advances in Organic Synthesis

Advances in Organic Synthesis

Advances in Organic Synthesis

Advances in Organic Synthesis

Advances in Organic Synthesis

Advances in Organic Synthesis

Advances in Organic Synthesis

Advances in Organic Synthesis

Advances in Organic Synthesis

Advances in Organic Synthesis

Advances in Organic Synthesis

Advances in Organic Synthesis

Advances in Organic Synthesis

Advances in Organic Synthesis

Advances in Organic Synthesis

View More
Article Metrics
114
4
7
CITATIONS
7 Total citations
7 Recent citations
n/a Field Citation Ratio
n/a Relative Citation Ratio
Journal Information
 * About Journal
 * Editorial Board
 * Journal Insight
   
 * Current Issue
 * Volumes/Issues

For Authors & Reviewers
 * Author Guidelines
 * Editorial Policies
 * Graphical Abstracts
 * Fabricating and Stating False Information
 * Research Misconduct
 * Post Publication Discussions and Corrections
 * Allegations from Whistleblowers
 * Publishing Ethics and Rectitude
 * Increase Visibility Of Your Article
 * Archiving Policies
 * Reviewer Guidelines
 * Guest Editor Guidelines
 * Board Recruitment Workflow
 * Peer Review Workflow
 * Order Your Article Before Print
 * Promote Your Article
 * Manuscript Transfer Facility
 * Announcements
 * Forthcoming Thematic Issues

Explore Articles
 * Abstract Ahead of Print 16
 * Article Ahead of Print 14
 * Free Copies Online
 * Most Cited Articles
 * Most Accessed Articles
 * Highlighted Article
 * Most Popular Articles
 * Editor's Choice
 * Thematic Issues

Open Access
 * Open Access Articles
 * Open Access Funding

For Visitors
 * Library Recommendation
 * Trial Requests
 * Advertise With Us
 * Meet the Executive Guest Editor(s)
 * Brand Ambassador
 * Author Comments
 * New journals 2022
 * New journals 2023
 * Endorsements
 * Alert Subscription
 * TOC Alert





RESTRICTED ACCESS PANEL

×
Content Access Key Password
Login to Download Close
 

QUICK LINKS

Journals | Books | Submit Articles | Bentham Online | Alerting Services | Open
Access Plus (Gold Open Access) | Funding Agencies | Online Store | Endorsements
| Author Comments & Testimonials | Newsletters | Press Release | Terms and
Conditions | Sitemap
Counter logo
© 2022 Bentham Science Publishers | Privacy Policy

ShareThis Copy and Paste