da36137a-41f4-4b06-ab3f-53a31cebd00a.publicfrequency.com Open in urlscan Pro
38.154.242.234  Public Scan

URL: https://da36137a-41f4-4b06-ab3f-53a31cebd00a.publicfrequency.com/
Submission: On December 27 via api from US — Scanned from CH

Form analysis 0 forms found in the DOM

Text Content

Elementary cellular automaton
This article is about the cellular automaton. For the United States federal
court rule, see Federal Rules of Civil Procedure and deposition (law).
A Conus textile shell similar in appearance to Rule 30.[1]

Rule 30 is an elementary cellular automaton introduced by Stephen Wolfram in
1983.[2] Using Wolfram's classification scheme, Rule 30 is a Class III rule,
displaying aperiodic, chaotic behaviour.

This rule is of particular interest because it produces complex, seemingly
random patterns from simple, well-defined rules. Because of this, Wolfram
believes that Rule 30, and cellular automata in general, are the key to
understanding how simple rules produce complex structures and behaviour in
nature. For instance, a pattern resembling Rule 30 appears on the shell of the
widespread cone snail species Conus textile. Rule 30 has also been used as a
random number generator in Mathematica,[3] and has also been proposed as a
possible stream cipher for use in cryptography.[4][5]

Rule 30 is so named because 30 is the smallest Wolfram code which describes its
rule set (as described below). The mirror image, complement, and mirror
complement of Rule 30 have Wolfram codes 86, 135, and 149, respectively.


CONTENTS

 * 1 Rule set
 * 2 Structure and properties
 * 3 Chaos
 * 4 Applications
   * 4.1 Random number generation
   * 4.2 Decoration
   * 4.3 Programming
 * 5 See also
 * 6 References
 * 7 External links


RULE SET

[edit]

In all of Wolfram's elementary cellular automata, an infinite one-dimensional
array of cellular automaton cells with only two states is considered, with each
cell in some initial state. At discrete time intervals, every cell spontaneously
changes state based on its current state and the state of its two neighbors. For
Rule 30, the rule set which governs the next state of the automaton is:

current pattern 111 110 101 100 011 010 001 000 new state for center cell 0 0 0
1 1 1 1 0

If the left, center, and right cells are denoted (p,q,r) then the corresponding
formula for the next state of the center cell can be expressed as p xor (q or
r). It is called Rule 30 because in binary, 000111102 = 30.

The following diagram shows the pattern created, with cells colored based on the
previous state of their neighborhood. Darker colors represent "1" and lighter
colors represent "0". Time increases down the vertical axis.


STRUCTURE AND PROPERTIES

[edit]

The following pattern emerges from an initial state in which a single cell with
state 1 (shown as black) is surrounded by cells with state 0 (white).


Rule 30 cellular automaton

Here, the vertical axis represents time and any horizontal cross-section of the
image represents the state of all the cells in the array at a specific point in
the pattern's evolution. Several motifs are present in this structure, such as
the frequent appearance of white triangles and a well-defined striped pattern on
the left side; however the structure as a whole has no discernible pattern. The
number of black cells at generation n {\displaystyle n} is given by the sequence

1, 3, 3, 6, 4, 9, 5, 12, 7, 12, 11, 14, 12, 19, 13, 22, 15, 19, ... (sequence
A070952 in the OEIS)

and is approximately n {\displaystyle n} .[citation needed]


CHAOS

[edit]

Rule 30 meets rigorous definitions of chaos proposed by Devaney and Knudson. In
particular, according to Devaney's criteria, Rule 30 displays sensitive
dependence on initial conditions (two initial configurations that differ only in
a small number of cells rapidly diverge), its periodic configurations are dense
in the space of all configurations, according to the Cantor topology on the
space of configurations (there is a periodic configuration with any finite
pattern of cells), and it is mixing (for any two finite patterns of cells, there
is a configuration containing one pattern that eventually leads to a
configuration containing the other pattern). According to Knudson's criteria, it
displays sensitive dependence and there is a dense orbit (an initial
configuration that eventually displays any finite pattern of cells). Both of
these characterizations of the rule's chaotic behavior follow from a simpler and
easy to verify property of Rule 30: it is left permutative, meaning that if two
configurations C and D differ in the state of a single cell at position i, then
after a single step the new configurations will differ at cell i + 1.[6]


APPLICATIONS

[edit]


RANDOM NUMBER GENERATION

[edit]

As is apparent from the image above, Rule 30 generates seeming randomness
despite the lack of anything that could reasonably be considered random input.
Stephen Wolfram proposed using its center column as a pseudorandom number
generator (PRNG); it passes many standard tests for randomness, and Wolfram
previously used this rule in the Mathematica product for creating random
integers.[7]

Sipper and Tomassini have shown that as a random number generator Rule 30
exhibits poor behavior on a chi squared test when applied to all the rule
columns as compared to other cellular automaton-based generators.[8] The authors
also expressed their concern that "The relatively low results obtained by the
rule 30 CA may be due to the fact that we considered N random sequences
generated in parallel, rather than the single one considered by Wolfram."[9]


DECORATION

[edit]
Detail of Cambridge North railway station cladding

The Cambridge North railway station is decorated with architectural panels
displaying the evolution of Rule 30 (or equivalently under black-white reversal,
Rule 135).[10] The design was described by its architect as inspired by Conway's
Game of Life, a different cellular automaton studied by Cambridge mathematician
John Horton Conway, but is not actually based on Life.[11][12]


PROGRAMMING

[edit]

The state update can be done quickly by bitwise operations, if the cell values
are represented by the bits within one (or more) computer words. Here shown in
C++:

#include <stdint.h>
#include <iostream>

int main() {
  uint64_t state = 1u << 31;
  for (int i = 0; i < 32; ++i) {
    for (int j = 64; j--;) {
      std::cout << char(state >> j & 1 ? 'O' : '.');
    }
    std::cout << '\n';
    state = (state >> 1) ^ (state | state << 1);
  }
}


This program produces the following output:

................................O...............................
...............................OOO..............................
..............................OO..O.............................
.............................OO.OOOO............................
............................OO..O...O...........................
...........................OO.OOOO.OOO..........................
..........................OO..O....O..O.........................
.........................OO.OOOO..OOOOOO........................
........................OO..O...OOO.....O.......................
.......................OO.OOOO.OO..O...OOO......................
......................OO..O....O.OOOO.OO..O.....................
.....................OO.OOOO..OO.O....O.OOOO....................
....................OO..O...OOO..OO..OO.O...O...................
...................OO.OOOO.OO..OOO.OOO..OO.OOO..................
..................OO..O....O.OOO...O..OOO..O..O.................
.................OO.OOOO..OO.O..O.OOOOO..OOOOOOO................
................OO..O...OOO..OOOO.O....OOO......O...............
...............OO.OOOO.OO..OOO....OO..OO..O....OOO..............
..............OO..O....O.OOO..O..OO.OOO.OOOO..OO..O.............
.............OO.OOOO..OO.O..OOOOOO..O...O...OOO.OOOO............
............OO..O...OOO..OOOO.....OOOO.OOO.OO...O...O...........
...........OO.OOOO.OO..OOO...O...OO....O...O.O.OOO.OOO..........
..........OO..O....O.OOO..O.OOO.OO.O..OOO.OO.O.O...O..O.........
.........OO.OOOO..OO.O..OOO.O...O..OOOO...O..O.OO.OOOOOO........
........OO..O...OOO..OOOO...OO.OOOOO...O.OOOOO.O..O.....O.......
.......OO.OOOO.OO..OOO...O.OO..O....O.OO.O.....OOOOO...OOO......
......OO..O....O.OOO..O.OO.O.OOOO..OO.O..OO...OO....O.OO..O.....
.....OO.OOOO..OO.O..OOO.O..O.O...OOO..OOOO.O.OO.O..OO.O.OOOO....
....OO..O...OOO..OOOO...OOOO.OO.OO..OOO....O.O..OOOO..O.O...O...
...OO.OOOO.OO..OOO...O.OO....O..O.OOO..O..OO.OOOO...OOO.OO.OOO..
..OO..O....O.OOO..O.OO.O.O..OOOOO.O..OOOOOO..O...O.OO...O..O..O.
.OO.OOOO..OO.O..OOO.O..O.OOOO.....OOOO.....OOOO.OO.O.O.OOOOOOOOO



SEE ALSO

[edit]
 * Rule 90
 * Rule 110
 * Rule 184


REFERENCES

[edit]
 1.  ^ Stephen Coombes (February 2009). "The Geometry and Pigmentation of
     Seashells" (PDF). www.maths.nottingham.ac.uk. University of Nottingham.
     Retrieved 2013-04-10.
 2.  ^ Wolfram, S. (1983). "Statistical mechanics of cellular automata". Rev.
     Mod. Phys. 55 (3): 601–644. Bibcode:1983RvMP...55..601W.
     doi:10.1103/RevModPhys.55.601.
 3.  ^ "Random Number Generation". Wolfram Mathematica 8 Documentation.
     Retrieved 31 December 2011.
 4.  ^ Wolfram, S. (1985). "Cryptography with cellular automata". Proceedings of
     Advances in Cryptology – CRYPTO '85. Lecture Notes in Computer Science 218,
     Springer-Verlag. p. 429. doi:10.1007/3-540-39799-X_32.
 5.  ^ Meier, Willi; Staffelbach, Othmar (1991). "Analysis of pseudo random
     sequences generated by cellular automata". Advances in Cryptology – Proc.
     Workshop on the Theory and Application of Cryptographic Techniques,
     EUROCRYPT '91. Lecture Notes in Computer Science 547, Springer-Verlag.
     p. 186. doi:10.1007/3-540-46416-6_17.
 6.  ^ Cattaneo, Gianpiero; Finelli, Michele; Margara, Luciano (2000).
     "Investigating topological chaos by elementary cellular automata dynamics".
     Theoretical Computer Science. 244 (1–2): 219–241.
     doi:10.1016/S0304-3975(98)00345-4. MR 1774395.
 7.  ^ Lex Fridman (2018-03-02), MIT AGI: Computational Universe (Stephen
     Wolfram), archived from the original on 2021-12-19, retrieved 2018-03-07
 8.  ^ Sipper, Moshe; Tomassini, Marco (1996). "Generating parallel random
     number generators by cellular programming". International Journal of Modern
     Physics C. 7 (2): 181–190. Bibcode:1996IJMPC...7..181S.
     doi:10.1142/S012918319600017X.
 9.  ^ Page 6 of Sipper, Moshe; Tomassini, Marco (1996). "Generating parallel
     random number generators by cellular programming". International Journal of
     Modern Physics C. 7 (2): 181–190. Bibcode:1996IJMPC...7..181S.
     doi:10.1142/S012918319600017X.
 10. ^ Wolfram, Stephen (June 1, 2017), "Oh My Gosh, It's Covered in Rule 30s!",
     Stephen Wolfram's blog
 11. ^ Lawson-Perfect, Christian (May 23, 2017), "Right answer for the wrong
     reason: cellular automaton on the new Cambridge North station", The
     Aperiodical
 12. ^ Purtill, Corinne. "A UK train station's tribute to a famous mathematician
     got everything right except his math". Quartz. Retrieved 2017-06-12.

 * Wolfram, Stephen, 1985, Cryptography with Cellular Automata, CRYPTO'85.


EXTERNAL LINKS

[edit]
Wikimedia Commons has media related to Rule 30.
 * Weisstein, Eric W. "Rule 30". MathWorld.
 * "Announcing the Rule 30 Prizes". Stephen Wolfram Writings. 1 October 2019.
 * Rule 30 in Wolfram's atlas of cellular automata
 * Rule 30: Wolfram's Pseudo-random Bit Generator. Recipe 32 at David
   Griffeath's Primordial Soup Kitchen.
 * Repeating Rule 30 patterns. A list of patterns that, when repeated to fill
   the cells of a Rule 30 automaton, repeat themselves after finitely many time
   steps. Frans Faase, 2003. Archived from the Original on 2013-08-08
 * Paving Mosaic Fractal. Basic introduction to the pattern of Rule 30 from the
   perspective of a LOGO software expert Olivier Schmidt-Chevalier.
 * TED Talk from February 2010. Stephen Wolfram speaks about computing a theory
   of everything where he talks about rule 30 among other things.