thesis.uni.zapadlo.name
Open in
urlscan Pro
95.85.217.47
Public Scan
URL:
https://thesis.uni.zapadlo.name/
Submission: On November 14 via api from US — Scanned from CA
Submission: On November 14 via api from US — Scanned from CA
Form analysis
1 forms found in the DOM<form class="aa-Form d-flex" action="" novalidate="" role="search">
<div class="aa-InputWrapperPrefix"><label class="aa-Label" for="autocomplete-0-input" id="autocomplete-0-label"><button class="aa-SubmitButton" type="submit" title="Submit"><svg class="aa-SubmitIcon" viewBox="0 0 24 24" width="20" height="20"
fill="currentColor">
<path
d="M16.041 15.856c-0.034 0.026-0.067 0.055-0.099 0.087s-0.060 0.064-0.087 0.099c-1.258 1.213-2.969 1.958-4.855 1.958-1.933 0-3.682-0.782-4.95-2.050s-2.050-3.017-2.050-4.95 0.782-3.682 2.050-4.95 3.017-2.050 4.95-2.050 3.682 0.782 4.95 2.050 2.050 3.017 2.050 4.95c0 1.886-0.745 3.597-1.959 4.856zM21.707 20.293l-3.675-3.675c1.231-1.54 1.968-3.493 1.968-5.618 0-2.485-1.008-4.736-2.636-6.364s-3.879-2.636-6.364-2.636-4.736 1.008-6.364 2.636-2.636 3.879-2.636 6.364 1.008 4.736 2.636 6.364 3.879 2.636 6.364 2.636c2.125 0 4.078-0.737 5.618-1.968l3.675 3.675c0.391 0.391 1.024 0.391 1.414 0s0.391-1.024 0-1.414z">
</path>
</svg></button></label>
<div class="aa-LoadingIndicator" hidden=""><svg class="aa-LoadingIcon" viewBox="0 0 100 100" width="20" height="20">
<circle cx="50" cy="50" fill="none" r="35" stroke="currentColor" stroke-dasharray="164.93361431346415 56.97787143782138" stroke-width="6">
<animateTransform attributeName="transform" type="rotate" repeatCount="indefinite" dur="1s" values="0 50 50;90 50 50;180 50 50;360 50 50" keyTimes="0;0.40;0.65;1"></animateTransform>
</circle>
</svg></div>
</div>
<div class="aa-InputWrapper"><input class="aa-Input" aria-autocomplete="both" aria-labelledby="autocomplete-0-label" id="autocomplete-0-input" autocomplete="off" autocorrect="off" autocapitalize="off" enterkeyhint="search" spellcheck="false"
placeholder="" maxlength="512" type="search"></div>
<div class="aa-InputWrapperSuffix"><button class="aa-ClearButton" type="reset" title="Clear" hidden=""><svg class="aa-ClearIcon" viewBox="0 0 24 24" width="18" height="18" fill="currentColor">
<path
d="M5.293 6.707l5.293 5.293-5.293 5.293c-0.391 0.391-0.391 1.024 0 1.414s1.024 0.391 1.414 0l5.293-5.293 5.293 5.293c0.391 0.391 1.024 0.391 1.414 0s0.391-1.024 0-1.414l-5.293-5.293 5.293-5.293c0.391-0.391 0.391-1.024 0-1.414s-1.024-0.391-1.414 0l-5.293 5.293-5.293-5.293c-0.391-0.391-1.024-0.391-1.414 0s-0.391 1.024 0 1.414z">
</path>
</svg></button></div>
</form>
Text Content
1. Front matter Computational analysis in neuroscience * Front matter * 1 Introduction * Bibliography SECTIONS * Copyright notice * Abstract * Declaration * Acknowledgements COMPUTATIONAL ANALYSIS IN NEUROSCIENCE Author Štěpán Zapadlo A thesis submitted for the Master’s degree at Masaryk University, Department of Mathematics and Statistics, Brno. COPYRIGHT NOTICE Produced on 14 November 2024. © Štěpán Zapadlo (2024). ABSTRACT * English * Czech Aaaa Abstrakt to jest DECLARATION * English * Czech This thesis is an original work of my research and contains no material which has been accepted for the award of any other degree or diploma at any university or equivalent institution and that, to the best of my knowledge and belief, this thesis contains no material previously published or written by another person, except where due reference is made in the text of the thesis. Dělal jsem na tom sám a celé stack overflow REPRODUCIBILITY STATEMENT This thesis is written using Quarto with renv (renv?) and Julia to create a reproducible environment. All materials (including the data sets and source files) required to reproduce this document can be found at the GitLab repository gitlab.com/sceptri-university/muni-thesis. This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. ACKNOWLEDGEMENTS * English * Czech I’d like to thank… Chci poděkovat Ahmadi, Amir Ali, and Pablo A. Parrilo. 2013. “Stability of Polynomial Differential Equations: Complexity and Converse Lyapunov Questions.” https://arxiv.org/abs/1308.6833. BARZILAI, JONATHAN, and JONATHAN M. BORWEIN. 1988. “Two-Point Step Size Gradient Methods.” IMA Journal of Numerical Analysis 8 (1): 141–48. https://doi.org/10.1093/imanum/8.1.141. Kidger, Patrick. 2022. “On Neural Differential Equations.” https://arxiv.org/abs/2202.02435. Luo, Albert C. J. 2009. “A Theory for Synchronization of Dynamical Systems.” Communications in Nonlinear Science and Numerical Simulation 14 (5): 1901–51. https://doi.org/https://doi.org/10.1016/j.cnsns.2008.07.002. Pikovsky, Arkady, Michael Rosenblum, and Jürgen Kurths. 2001. Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press. https://doi.org/10.1017/cbo9780511755743. Willms, Allan R., Petko M. Kitanov, and William F. Langford. 2017. “Huygens’ Clocks Revisited.” Royal Society Open Science 4 (9): 170777. https://doi.org/10.1098/rsos.170777. Zhou, Danqing, Shiqian Ma, and Junfeng Yang. 2024. “AdaBB: Adaptive Barzilai-Borwein Method for Convex Optimization.” https://arxiv.org/abs/2401.08024. 1 Introduction * License