dl.acm.org
Open in
urlscan Pro
172.64.145.167
Public Scan
Submitted URL: http://dx.doi.org/10.1145/1143844.1143859
Effective URL: https://dl.acm.org/doi/10.1145/1143844.1143859
Submission: On February 06 via manual from US — Scanned from DE
Effective URL: https://dl.acm.org/doi/10.1145/1143844.1143859
Submission: On February 06 via manual from US — Scanned from DE
Form analysis
3 forms found in the DOMName: defaultQuickSearch — GET /action/doSearch
<form action="/action/doSearch" name="defaultQuickSearch" method="get" title="Quick Search" class="quick-search--form">
<div class="quick-search--input">
<div class="input-group option-0"><label for="AllFieldf73847c0-d936-48ec-9bf9-139b3828507f" class="sr-only">Search ACM Digital Library</label><input type="search" autocomplete="off" id="AllFieldf73847c0-d936-48ec-9bf9-139b3828507f-cloned"
name="AllField" placeholder="Search ACM Digital Library" data-auto-complete-max-words="7" data-auto-complete-max-chars="32" data-contributors-conf="3" data-topics-conf="3" data-publication-titles-conf="3" data-history-items-conf="3"
data-group-titles-conf="3" value="" class="auto-complete quick-search__input"></div>
</div>
<div class="quick-search--button"><button type="submit" title="Search" aria-label="Search" class="btn quick-search__button icon-Icon_Search"><span class="sr-only">Search</span><span>Search</span></button></div>
</form>
Name: defaultQuickSearch — GET /action/doSearch
<form action="/action/doSearch" name="defaultQuickSearch" method="get" title="Quick Search" class="quick-search--form cloned hidden-xs hidden-sm">
<div class="quick-search--input">
<div class="input-group option-0"><label for="AllFieldf73847c0-d936-48ec-9bf9-139b3828507f" class="sr-only">Search ACM Digital Library</label>
<div class="autoComplete_wrapper" role="combobox" aria-owns="autoComplete_list_1" aria-haspopup="true" aria-expanded="false" aria-label="Enter a text or select an option"><input type="search" autocomplete="off"
id="AllFieldf73847c0-d936-48ec-9bf9-139b3828507f" name="AllField" placeholder="Search ACM Digital Library" data-auto-complete-max-words="7" data-auto-complete-max-chars="32" data-contributors-conf="3" data-topics-conf="3"
data-publication-titles-conf="3" data-history-items-conf="3" data-group-titles-conf="3" value="" class="auto-complete quick-search__input" aria-controls="autoComplete_list_1" aria-autocomplete="both"></div>
</div>
<ul id="autoComplete_list_1" role="listbox" hidden="" class="autoComplete rlist"></ul>
</div>
<div class="quick-search--button"><button type="submit" title="Search" aria-label="Search" class="btn quick-search__button icon-Icon_Search"><span class="sr-only">Search</span><span>Search</span></button></div>
</form>
POST /action/exportCiteProcCitation
<form action="/action/exportCiteProcCitation" method="post" target="_blank"><input type="hidden" name="content" value=""><input type="hidden" name="dois" value=""><input type="hidden" name="format" value="">
<fieldset class="input-group"><label for="citation-format" class="visibility-hidden">Select Citation format</label><select id="citation-format" data-csl-doi="10.1145/1143844.1143859" aria-label="Select Citation format">
<option value="bibtex" data-format="bibTex">BibTeX</option>
<option value="endNote" data-format="endNote">EndNote</option>
<option value="acm" data-format="text">ACM Ref</option>
</select><span class="select-arrow"><i class="icon-bottom-arrow"></i></span></fieldset>
<ul class="rlist tab__content">
<li id="allResultstab" aria-labelledby="allResults" role="tabpanel" class="tab__pane">
<div class="all-results-tab-container">
<div class="hidden warning-message mb-2">Please download or close your previous search result export first before starting a new bulk export.</div>
<div class="desc-text">
<div class="bold">Preview is not available.</div>By clicking download,<b class="ml-1">a status dialog</b> will open to start the export process. The process may take<b class="ml-1">a few minutes</b> but once it finishes a file will be
downloadable from your browser. You may continue to browse the DL while the export process is in progress.
</div>
<a href="#" title="Download" data-href="/action/searchCitationExport?query=DOI%3D10.1145%252F1143844.1143859%26target%3Dindex-terms" class="btn transparent downloadBtn"><i aria-hidden="true" class="icon-Icon_Download"></i>Download<i aria-hidden="true" class="icon-export"></i></a>
</div>
</li>
<li id="selectedTab" aria-labelledby="selected" role="tabpanel" class="tab__pane active">
<div class="csl-wrapper copy__text-wrapper">
<pre class="copy__text csl-response"></pre>
<div id="export-warning"></div>
<div class="pull-right">
<ul role="menu" class="rlist--inline separator">
<li><a href="javascript:void(0)" role="menuitem" title="Download citation" class="download__btn disabled"><label class="visibility-hidden">Download citation</label><i aria-hidden="true" class="icon-Icon_Download"></i></a></li>
<li><input type="hidden" id="doisLimitNumber"
value="1000"><a href="javascript:void(0)" role="menuitem" title="Copy citation" class="copy__btn disabled"><label class="visibility-hidden">Copy citation</label><i aria-hidden="true" class="icon-pages"></i></a></li>
</ul>
</div>
</div>
</li>
</ul>
</form>
Text Content
THIS WEBSITE USES COOKIES We occasionally run membership recruitment campaigns on social media channels and use cookies to track post-clicks. We also share information about your use of our site with our social media, advertising and analytics partners who may combine it with other information that you’ve provided to them or that they’ve collected from your use of their services. Use the check boxes below to choose the types of cookies you consent to have stored on your device. Do not sell or share my personal information Use necessary cookies only Allow all cookies Show details OK Use necessary cookies only Allow selected cookies Allow all cookies Necessary Preferences Statistics Marketing Show details Cookie declaration [#IABV2SETTINGS#] About Necessary (12) Preferences (5) Statistics (19) Marketing (21) Unclassified (1) Necessary cookies help make a website usable by enabling basic functions like page navigation and access to secure areas of the website. The website cannot function properly without these cookies. These cookies do not gather information about you that could be used for marketing purposes and do not remember where you have been on the internet. NameProviderPurposeExpiryTypecf_chl_probe_#ACMPendingPersistentHTMLAWSALBMopinionRegisters which server-cluster is serving the visitor. This is used in context with load balancing, in order to optimize user experience. 7 daysHTTPAWSALBCORSMopinionRegisters which server-cluster is serving the visitor. This is used in context with load balancing, in order to optimize user experience. 7 daysHTTP__jidc.disquscdn.comUsed to add comments to the website and remember the user's Disqus login credentials across websites that use said service.SessionHTTPdisqusauthc.disquscdn.comRegisters whether the user is logged in. This allows the website owner to make parts of the website inaccessible, based on the user's log-in status. SessionHTTP__cf_bmACMThis cookie is used to distinguish between humans and bots. This is beneficial for the website, in order to make valid reports on the use of their website.1 dayHTTP_cfuvidACMThis cookie is a part of the services provided by Cloudflare - Including load-balancing, deliverance of website content and serving DNS connection for website operators. SessionHTTPcf_chl_1ACMThis cookie is a part of the services provided by Cloudflare - Including load-balancing, deliverance of website content and serving DNS connection for website operators. 1 dayHTTPcf_chl_rc_niACMThis cookie is a part of the services provided by Cloudflare - Including load-balancing, deliverance of website content and serving DNS connection for website operators. 1 dayHTTPCookieConsentCookiebotStores the user's cookie consent state for the current domain1 yearHTTPCONSENTYouTubeUsed to detect if the visitor has accepted the marketing category in the cookie banner. This cookie is necessary for GDPR-compliance of the website. 2 yearsHTTPVISITOR_PRIVACY_METADATAYouTubeStores the user's cookie consent state for the current domain180 daysHTTP Preference cookies enable a website to remember information that changes the way the website behaves or looks, like your preferred language or the region that you are in. NameProviderPurposeExpiryTypeaet-dismissc.disquscdn.comNecessary for the functionality of the website's comment-system.PersistentHTMLdrafts.queuec.disquscdn.comNecessary for the functionality of the website's comment-system.PersistentHTMLsubmitted_posts_cachec.disquscdn.comNecessary for the functionality of the website's comment-system.PersistentHTMLmopDeploy [x2]MopinionPendingPersistentHTML Statistic cookies help website owners understand how visitors interact with websites by collecting and reporting information anonymously. NameProviderPurposeExpiryType_gaGoogleRegisters a unique ID that is used to generate statistical data on how the visitor uses the website.2 yearsHTTP_ga_#GoogleUsed by Google Analytics to collect data on the number of times a user has visited the website as well as dates for the first and most recent visit. 2 yearsHTTP_gatGoogleUsed by Google Analytics to throttle request rate1 dayHTTP_gidGoogleRegisters a unique ID that is used to generate statistical data on how the visitor uses the website.1 dayHTTP_hjAbsoluteSessionInProgressHotjarThis cookie is used to count how many times a website has been visited by different visitors - this is done by assigning the visitor an ID, so the visitor does not get registered twice.1 dayHTTP_hjFirstSeenHotjarThis cookie is used to determine if the visitor has visited the website before, or if it is a new visitor on the website.1 dayHTTP_hjIncludedInSessionSample_#HotjarCollects statistics on the visitor's visits to the website, such as the number of visits, average time spent on the website and what pages have been read.1 dayHTTP_hjSession_#HotjarCollects statistics on the visitor's visits to the website, such as the number of visits, average time spent on the website and what pages have been read.1 dayHTTP_hjSessionUser_#HotjarCollects statistics on the visitor's visits to the website, such as the number of visits, average time spent on the website and what pages have been read.1 yearHTTP_hjTLDTestHotjarRegisters statistical data on users' behaviour on the website. Used for internal analytics by the website operator. SessionHTTP_hp2_#Heap AnalyticsCollects data on the user’s navigation and behavior on the website. This is used to compile statistical reports and heatmaps for the website owner.1 dayHTTP_hp2_hld#.#Heap AnalyticsCollects data on the user’s navigation and behavior on the website. This is used to compile statistical reports and heatmaps for the website owner.1 dayHTTP_hp2_id.#Heap AnalyticsCollects data on the user’s navigation and behavior on the website. This is used to compile statistical reports and heatmaps for the website owner.1 yearHTTP_hp2_ses_props.#Heap AnalyticsCollects data on the user’s navigation and behavior on the website. This is used to compile statistical reports and heatmaps for the website owner.1 dayHTTPdisqus_uniquec.disquscdn.comCollects statistics related to the user's visits to the website, such as number of visits, average time spent on the website and loaded pages.SessionHTTPcollectGoogleUsed to send data to Google Analytics about the visitor's device and behavior. Tracks the visitor across devices and marketing channels.SessionPixelhjActiveViewportIdsHotjarThis cookie contains an ID string on the current session. This contains non-personal information on what subpages the visitor enters – this information is used to optimize the visitor's experience.PersistentHTMLhjViewportIdHotjarSaves the user's screen size in order to adjust the size of images on the website.SessionHTMLtdGoogleRegisters statistical data on users' behaviour on the website. Used for internal analytics by the website operator. SessionPixel Marketing cookies are used to track visitors across websites. The intention is to display ads that are relevant and engaging for the individual user and thereby more valuable for publishers and third party advertisers. NameProviderPurposeExpiryTypebadges-messagec.disquscdn.comCollects data on the visitor’s use of the comment system on the website, and what blogs/articles the visitor has read. This can be used for marketing purposes. PersistentHTMLhHeap AnalyticsCollects data on user behaviour and interaction in order to optimize the website and make advertisement on the website more relevant. SessionPixelLAST_RESULT_ENTRY_KEYYouTubeUsed to track user’s interaction with embedded content.SessionHTTPLogsDatabaseV2:V#||LogsRequestsStoreYouTubePendingPersistentIDBnextIdYouTubeUsed to track user’s interaction with embedded content.SessionHTTPremote_sidYouTubeNecessary for the implementation and functionality of YouTube video-content on the website. SessionHTTPrequestsYouTubeUsed to track user’s interaction with embedded content.SessionHTTPServiceWorkerLogsDatabase#SWHealthLogYouTubeNecessary for the implementation and functionality of YouTube video-content on the website. PersistentIDBTESTCOOKIESENABLEDYouTubeUsed to track user’s interaction with embedded content.1 dayHTTPVISITOR_INFO1_LIVEYouTubePending180 daysHTTPYSCYouTubePendingSessionHTTPyt.innertube::nextIdYouTubeRegisters a unique ID to keep statistics of what videos from YouTube the user has seen.PersistentHTMLytidb::LAST_RESULT_ENTRY_KEYYouTubeUsed to track user’s interaction with embedded content.PersistentHTMLYtIdbMeta#databasesYouTubeUsed to track user’s interaction with embedded content.PersistentIDByt-remote-cast-availableYouTubeStores the user's video player preferences using embedded YouTube videoSessionHTMLyt-remote-cast-installedYouTubeStores the user's video player preferences using embedded YouTube videoSessionHTMLyt-remote-connected-devicesYouTubeStores the user's video player preferences using embedded YouTube videoPersistentHTMLyt-remote-device-idYouTubeStores the user's video player preferences using embedded YouTube videoPersistentHTMLyt-remote-fast-check-periodYouTubeStores the user's video player preferences using embedded YouTube videoSessionHTMLyt-remote-session-appYouTubeStores the user's video player preferences using embedded YouTube videoSessionHTMLyt-remote-session-nameYouTubeStores the user's video player preferences using embedded YouTube videoSessionHTML Unclassified cookies are cookies that we are in the process of classifying, together with the providers of individual cookies. NameProviderPurposeExpiryTypeGSPGooglePending400 daysHTTP [#IABV2_LABEL_PURPOSES#] [#IABV2_LABEL_FEATURES#] [#IABV2_LABEL_PARTNERS#] [#IABV2_BODY_PURPOSES#] [#IABV2_BODY_FEATURES#] [#IABV2_BODY_PARTNERS#] Cookies are small text files that can be used by websites to make a user's experience more efficient. Other than those strictly necessary for the operation of the site, we need your permission to store any type of cookies on your device. Learn more about ACM, how you can contact us, and how we process personal data in our Privacy Policy. Also please consult our Cookie Notice. You can change or withdraw your consent from the Cookie Declaration on our website at any time by visiting the Cookie Declaration page. If contacting us regarding your consent, please state your consent ID and date from that page. Your consent applies to the following domains: dl.acm.org Cookie declaration last updated on 11.01.24 by Cookiebot skip to main content * Advanced Search * Browse * About * * Sign in * Register * Search ACM Digital Library SearchSearch * Advanced Search * Journals * Magazines * Proceedings * Books * SIGs * Conferences * People * * Browse * About * More * Search ACM Digital Library SearchSearch Advanced Search 10.1145/1143844.1143859acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicmlConference Proceedingsconference-collections icml * Conference * Proceedings * Upcoming Events * Authors * Affiliations * Award Winners * More * Home * Conferences * ICML * Proceedings * ICML '06 * Dynamic topic models Article Share on * * * * * DYNAMIC TOPIC MODELS * Authors: * David M. Blei Princeton University, Princeton, NJ Princeton University, Princeton, NJ View Profile , * John D. Lafferty Carnegie Mellon University, Pittsburgh PA Carnegie Mellon University, Pittsburgh PA View Profile Authors Info & Claims ICML '06: Proceedings of the 23rd international conference on Machine learningJune 2006Pages 113–120https://doi.org/10.1145/1143844.1143859 Published:25 June 2006Publication History * 1,362citation * 9,605 * Downloads Metrics Total Citations1,362 Total Downloads9,605 Last 12 Months803 Last 6 weeks64 * Get Citation Alerts * Save to Binder Close modal SAVE TO BINDER Create a New Binder Name 256 * Cancel * Create * Export Citation * Publisher Site * * Get Access ICML '06: PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON MACHINE LEARNING Dynamic topic models Pages 113–120 PreviousChapterNextChapter * * * * ABSTRACT * References * Cited By * Index Terms * Recommendations * Comments ICML '06: PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON MACHINE LEARNING Dynamic topic models Pages 113–120 PreviousChapterNextChapter * * * * ABSTRACT * References * Cited By * Index Terms * Recommendations * Comments * * * * 15References * * * ABSTRACT A family of probabilistic time series models is developed to analyze the time evolution of topics in large document collections. The approach is to use state space models on the natural parameters of the multinomial distributions that represent the topics. Variational approximations based on Kalman filters and nonparametric wavelet regression are developed to carry out approximate posterior inference over the latent topics. In addition to giving quantitative, predictive models of a sequential corpus, dynamic topic models provide a qualitative window into the contents of a large document collection. The models are demonstrated by analyzing the OCR'ed archives of the journal Science from 1880 through 2000. REFERENCES 1. Aitchison, J. (1982). The statistical analysis of compositional data. Journal of the Royal Statistical Society, Series B, 44(2):139--177.]]Google Scholar 2. Blei, D., Ng, A., and Jordan, M. (2003). Latent Dirichlet allocation. Journal of Machine Learning Research, 3:993--1022.]] Google ScholarDigital Library 3. Blei, D. M. and Lafferty, J. D. (2006). Correlated topic models. In Weiss, Y., Schölkopf, B., and Platt, J., editors, Advances in Neural Information Processing Systems 18. MIT Press, Cambridge, MA.]]Google Scholar 4. Buntine, W. and Jakulin, A. (2004). Applying discrete PCA in data analysis. In Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence, pages 59--66. AUAI Press.]] Google ScholarDigital Library 5. Erosheva, E. (2002). Grade of membership and latent structure models with application to disability survey data. PhD thesis, Carnegie Mellon University, Department of Statistics.]]Google Scholar 6. Fei-Fei, L. and Perona, P. (2005). A Bayesian hierarchical model for learning natural scene categories. IEEE Computer Vision and Pattern Recognition.]]Google ScholarDigital Library 7. Griffiths, T. and Steyvers, M. (2004). Finding scientific topics. Proceedings of the National Academy of Science, 101:5228--5235.]]Google ScholarCross Ref 8. Kalman, R. (1960). A new approach to linear filtering and prediction problems. Transaction of the AMSE: Journal of Basic Engineering, 82:35--45.]]Google ScholarCross Ref 9. McCallum, A., Corrada-Emmanuel, A., and Wang, X. (2004). The author-recipient-topic model for topic and role discovery in social networks: Experiments with Enron and academic email. Technical report, University of Massachusetts, Amherst.]]Google Scholar 10. Pritchard, J., Stephens, M., and Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155:945--959.]]Google ScholarCross Ref 11. Rosen-Zvi, M., Griffiths, T., Steyvers, M., and Smith, P. (2004). The author-topic model for authors and documents. In Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence, pages 487--494. AUAI Press.]] Google ScholarDigital Library 12. Sivic, J., Rusell, B., Efros, A., Zisserman, A., and Freeman, W. (2005). Discovering objects and their location in images. In International Conference on Computer Vision (ICCV 2005).]] Google ScholarDigital Library 13. Snelson, E. and Ghahramani, Z. (2006). Sparse Gaussian processes using pseudo-inputs. In Weiss, Y., Schölkopf, B., and Platt, J., editors, Advances in Neural Information Processing Systems 18, Cambridge, MA. MIT Press.]]Google Scholar 14. Wasserman, L. (2006). All of Nonparametric Statistics. Springer.]] Google ScholarDigital Library 15. West, M. and Harrison, J. (1997). Bayesian Forecasting and Dynamic Models. Springer.]] Google ScholarDigital Library Show All References CITED BY View all 1. Moral P. (2023). A tale of heroes and villains: Russia’s strategic narratives on Twitter during the COVID-19 pandemic. Journal of Information Technology & Politics. 10.1080/19331681.2023.2182862. 21:2. (146-165). Online publication date: 2-Apr-2024. https://www.tandfonline.com/doi/full/10.1080/19331681.2023.2182862 2. Watanabe K and Baturo A. (2023). Seeded Sequential LDA: A Semi-Supervised Algorithm for Topic-Specific Analysis of Sentences. Social Science Computer Review. 10.1177/08944393231178605. 42:1. (224-248). Online publication date: 1-Feb-2024. http://journals.sagepub.com/doi/10.1177/08944393231178605 3. Schwiderowski J, Pedersen A and Beck R. (2023). Crypto Tokens and Token Systems. Information Systems Frontiers. 10.1007/s10796-023-10382-w. 26:1. (319-332). Online publication date: 1-Feb-2024. https://link.springer.com/10.1007/s10796-023-10382-w 4. Du C, Yao K, Zhu H, Wang D, Zhuang F and Xiong H. (2024). Mining technology trends in scientific publications: a graph propagated neural topic modeling approach. Knowledge and Information Systems. 10.1007/s10115-023-02005-2. https://link.springer.com/10.1007/s10115-023-02005-2 5. Wu D, Zhong S, Wu J and Song H. (2024). Tourism and Hospitality Forecasting With Big Data: A Systematic Review of the Literature. Journal of Hospitality & Tourism Research. 10.1177/10963480231223151. http://journals.sagepub.com/doi/10.1177/10963480231223151 6. Wu X, Nguyen T and Luu A. (2024). A survey on neural topic models: methods, applications, and challenges. Artificial Intelligence Review. 10.1007/s10462-023-10661-7. 57:2. https://link.springer.com/10.1007/s10462-023-10661-7 7. Chen H, Wu Y, Tang H, Lei J, Wang G, Zhao W, Liao J, Wang F and Wang Z. (2024). Visual Analysis Method for Traffic Trajectory with Dynamic Topic Movement Patterns Based on the Improved Markov Decision Process. Electronics. 10.3390/electronics13030467. 13:3. (467). https://www.mdpi.com/2079-9292/13/3/467 8. Figuera P and García Bringas P. (2024). Revisiting Probabilistic Latent Semantic Analysis: Extensions, Challenges and Insights. Technologies. 10.3390/technologies12010005. 12:1. (5). https://www.mdpi.com/2227-7080/12/1/5 9. Gao X, Jolly E, Yu H, Liu H, Zhou X and Chang L. (2024). The psychological, computational, and neural foundations of indebtedness. Nature Communications. 10.1038/s41467-023-44286-9. 15:1. https://www.nature.com/articles/s41467-023-44286-9 10. Kumar A, Bala P, Chakraborty S and Behera R. (2024). Exploring antecedents impacting user satisfaction with voice assistant app: A text mining-based analysis on Alexa services. Journal of Retailing and Consumer Services. 10.1016/j.jretconser.2023.103586. 76. (103586). Online publication date: 1-Jan-2024. https://linkinghub.elsevier.com/retrieve/pii/S0969698923003375 11. Keith Norambuena B, Mitra T and North C. (2023). A Survey on Event-Based News Narrative Extraction. ACM Computing Surveys. 55:14s. (1-39). Online publication date: 31-Dec-2024. https://doi.org/10.1145/3584741 12. Alfaqeeh M and Skillicorn D. (2023). Community detection in social networks by spectral embedding of typed graphs. Social Network Analysis and Mining. 10.1007/s13278-023-01172-y. 14:1. https://link.springer.com/10.1007/s13278-023-01172-y 13. Wang H, Prakash N, Hoang N, Hee M, Naseem U and Lee R. (2023). Prompting Large Language Models for Topic Modeling 2023 IEEE International Conference on Big Data (BigData). 10.1109/BigData59044.2023.10386113. 979-8-3503-2445-7. (1236-1241). https://ieeexplore.ieee.org/document/10386113/ 14. Chen Y and Ding C. (2023). Multidimensional evolutionary analysis of China’s BIM technology policy based on quantitative mapping. Architectural Engineering and Design Management. 10.1080/17452007.2023.2291585. (1-18). https://www.tandfonline.com/doi/full/10.1080/17452007.2023.2291585 15. Ramón-Ferrer V, Badenes-Olmedo C and Corcho O. Automatic Topic Label Generation using Conversational Models. Proceedings of the 12th Knowledge Capture Conference 2023. (17-24). https://doi.org/10.1145/3587259.3627574 16. Lee J, Zo H and Steinberger T. (2023). Exploring trends in blockchain publications with topic modeling: Implications for forecasting the emergence of industry applications. ETRI Journal. 10.4218/etrij.2022-0257. 45:6. (982-995). Online publication date: 1-Dec-2023. https://onlinelibrary.wiley.com/doi/10.4218/etrij.2022-0257 17. Zhou W, Zhang C, Wu L and Shashidhar M. (2023). ChatGPT and marketing: Analyzing public discourse in early Twitter posts. Journal of Marketing Analytics. 10.1057/s41270-023-00250-6. 11:4. (693-706). Online publication date: 1-Dec-2023. https://link.springer.com/10.1057/s41270-023-00250-6 18. Ghazinoori S, Roshani S, Hafezi R and Wood D. (2023). Bursting into the Public Eye: Analyzing the Development of Renewable Energy Research Interests. Renewable Energy Focus. 10.1016/j.ref.2023.100496. 47. (100496). Online publication date: 1-Dec-2023. https://linkinghub.elsevier.com/retrieve/pii/S1755008423000923 19. Zhang Y, Guo W, Ma J, Fu Z, Chang Z and Wang L. (2023). Evolution analysis of cross-domain collaborative research topic: a case study of cognitive-based product conceptual design. Scientometrics. 10.1007/s11192-023-04865-5. 128:12. (6695-6718). Online publication date: 1-Dec-2023. https://link.springer.com/10.1007/s11192-023-04865-5 20. Laureate C, Buntine W and Linger H. (2023). A systematic review of the use of topic models for short text social media analysis. Artificial Intelligence Review. 10.1007/s10462-023-10471-x. 56:12. (14223-14255). Online publication date: 1-Dec-2023. https://link.springer.com/10.1007/s10462-023-10471-x 21. Choi E, Kim R, Chae J, Yang A, Jang E and Lee K. (2023). Analysis of Nature-Based Solutions Research Trends and Integrated Means of Implementation in Climate Change. Atmosphere. 10.3390/atmos14121775. 14:12. (1775). https://www.mdpi.com/2073-4433/14/12/1775 22. Wagner K, Gainous J and Vélez-Serrano M. (2023). The politics of evasion: The missing statehood debate in puerto rico. Party Politics. 10.1177/13540688231215653. http://journals.sagepub.com/doi/10.1177/13540688231215653 23. Park J, Lee H and Cho S. (2023). Hot topic detection in central bankers’ speeches. Expert Systems with Applications: An International Journal. 230:C. Online publication date: 15-Nov-2023. https://doi.org/10.1016/j.eswa.2023.120563 24. Niroomand K, Saady N, Bazan C, Zendehboudi S, Soares A and Albayati T. (2023). Smart investigation of artificial intelligence in renewable energy system technologies by natural language processing. Engineering Applications of Artificial Intelligence. 126:PA. Online publication date: 1-Nov-2023. https://doi.org/10.1016/j.engappai.2023.106848 25. Song B, Luan C and Liang D. (2023). Identification of emerging technology topics (ETTs) using BERT-based model and sematic analysis: a perspective of multiple-field characteristics of patented inventions (MFCOPIs). Scientometrics. 10.1007/s11192-023-04819-x. 128:11. (5883-5904). Online publication date: 1-Nov-2023. https://link.springer.com/10.1007/s11192-023-04819-x 26. Jun I, Feng Z, Avanasi R, Brain R, Prosperi M and Bian J. (2023). Evaluating the perceptions of pesticide use, safety, and regulation and identifying common pesticide‐related topics on Twitter. Integrated Environmental Assessment and Management. 10.1002/ieam.4777. 19:6. (1581-1599). Online publication date: 1-Nov-2023. https://setac.onlinelibrary.wiley.com/doi/10.1002/ieam.4777 27. Vargas C and Ponce H. (2023). Recurrent Embedded Topic Model. Applied Sciences. 10.3390/app132011561. 13:20. (11561). https://www.mdpi.com/2076-3417/13/20/11561 28. Mohamed A and van der Laag Yamu C. (2023). Space Syntax has Come of Age: A Bibliometric Review from 1976 to 2023. Journal of Planning Literature. 10.1177/08854122231208018. http://journals.sagepub.com/doi/10.1177/08854122231208018 29. Kumar J, Shao J, Kumar R, Din S, Mawuli C and Yang Q. (2023). A context-enhanced Dirichlet model for online clustering in short text streams. Expert Systems with Applications: An International Journal. 228:C. Online publication date: 15-Oct-2023. https://doi.org/10.1016/j.eswa.2023.120262 30. Moreno-Vera F. (2023). Inferring Discussion Topics about Exploitation of Vulnerabilities from Underground Hacking Forums 2023 14th International Conference on Information and Communication Technology Convergence (ICTC). 10.1109/ICTC58733.2023.10393244. 979-8-3503-1327-7. (816-821). https://ieeexplore.ieee.org/document/10393244/ 31. Preis A and Schwaar S. (2023). Change point detection in text data. Behaviormetrika. 10.1007/s41237-023-00207-0. https://link.springer.com/10.1007/s41237-023-00207-0 32. Dang T and Nguyen M. (2023). Mining User-Generated Content for Enhanced Customer Experience in Hospitality Industry 2023 3rd International Conference on Emerging Smart Technologies and Applications (eSmarTA). 10.1109/eSmarTA59349.2023.10293621. 979-8-3503-0533-3. (1-8). https://ieeexplore.ieee.org/document/10293621/ 33. Klopp O, Panov M, Sigalla S and Tsybakov A. Assigning topics to documents by successive projections. The Annals of Statistics. 10.1214/23-AOS2316. 51:5. https://projecteuclid.org/journals/annals-of-statistics/volume-51/issue-5/Assigning-topics-to-documents-by-successive-projections/10.1214/23-AOS2316.full 34. Yang Z, Islam N, Shi Y, Venkatachalam K and Huang L. The Evolution of Interindustry Technology Linkage Topics and Its Analysis Framework in Three-Dimensional Printing Technology. IEEE Transactions on Engineering Management. 10.1109/TEM.2021.3086760. 70:10. (3601-3621). https://ieeexplore.ieee.org/document/9519609/ 35. Di Zio S, Tontodimamma A, del Gobbo E and Fontanella L. (2023). Exploring the research dynamics of futures studies: An analysis of six top journals. Futures. 10.1016/j.futures.2023.103232. 153. (103232). Online publication date: 1-Oct-2023. https://linkinghub.elsevier.com/retrieve/pii/S0016328723001362 36. Shen D, Zhu H, Xiao K, Zhang X and Xiong H. (2023). Exploiting Connections among Personality, Job Position, and Work Behavior: Evidence from Joint Bayesian Learning. ACM Transactions on Management Information Systems. 14:3. (1-20). Online publication date: 30-Sep-2023. https://doi.org/10.1145/3607875 37. KURNAZ A. (2023). Konu Modelleme Analizi ile İş İlanlarında İstenilen Pazarlama Becerilerinin AraştırılmasıExploring Desired Marketing Skills in Job Postings with Topic Modeling Analysis. İktisadi İdari ve Siyasal Araştırmalar Dergisi. 10.25204/iktisad.1345181. (937-951). http://dergipark.org.tr/tr/doi/10.25204/iktisad.1345181 38. Yang H, Chae J, Yang A, Suwignyo R and Choi E. (2023). Trends of Peatland Research Based on Topic Modeling: Toward Sustainable Management under Climate Change. Forests. 10.3390/f14091818. 14:9. (1818). https://www.mdpi.com/1999-4907/14/9/1818 39. Cao J, Gu Z and Hasan I. (2023). Exploring Accounting Research Topic Evolution: An Unsupervised Machine Learning Approach. Journal of International Accounting Research. 10.2308/JIAR-2021-073. (1-30). Online publication date: 1-Sep-2023. https://publications.aaahq.org/jiar/article/doi/10.2308/JIAR-2021-073/11596/Exploring-Accounting-Research-Topic-Evolution-An 40. Chadefaux T. (2023). An automated pattern recognition system for conflict. Journal of Computational Science. 10.1016/j.jocs.2023.102074. 72. (102074). Online publication date: 1-Sep-2023. https://linkinghub.elsevier.com/retrieve/pii/S1877750323001345 41. Yu D and Xiang B. (2023). Discovering topics and trends in the field of Artificial Intelligence. Expert Systems with Applications: An International Journal. 225:C. Online publication date: 1-Sep-2023. https://doi.org/10.1016/j.eswa.2023.120114 42. Niekler A, Kahmann C, Burghardt M and Heyer G. (2023). The interactive Leipzig Corpus Miner: An extensible and adaptable text analysis tool for content analysisDer interaktive Leipzig Corpus Miner: Ein erweiterbares und anpassungsfähiges Textanalysewerkzeug für die Inhaltsanalyse. Publizistik. 10.1007/s11616-023-00809-4. 68:2-3. (325-354). Online publication date: 1-Sep-2023. https://link.springer.com/10.1007/s11616-023-00809-4 43. de Campos L, Fernández-Luna J and Huete J. (2023). Use of topical and temporal profiles and their hybridisation for content-based recommendation. User Modeling and User-Adapted Interaction. 10.1007/s11257-022-09354-7. 33:4. (911-937). Online publication date: 1-Sep-2023. https://link.springer.com/10.1007/s11257-022-09354-7 44. Dore G. (2023). A Natural Language Processing Analysis of Newspapers Coverage of Hong Kong Protests Between 1998 and 2020. Social Indicators Research. 10.1007/s11205-023-03147-0. 169:1-2. (143-166). Online publication date: 1-Sep-2023. https://link.springer.com/10.1007/s11205-023-03147-0 45. Rizzoli V, Trevisani M and Tuzzi A. (2023). Portraying the life cycle of ideas in social psychology through functional (textual) data analysis: a toolkit for digital history. Scientometrics. 10.1007/s11192-023-04722-5. 128:9. (5197-5226). Online publication date: 1-Sep-2023. https://link.springer.com/10.1007/s11192-023-04722-5 46. Schäfermeier B, Hirth J and Hanika T. (2022). Research topic flows in co-authorship networks. Scientometrics. 10.1007/s11192-022-04529-w. 128:9. (5051-5078). Online publication date: 1-Sep-2023. https://link.springer.com/10.1007/s11192-022-04529-w 47. Chen Y, Fernandes E, Adams B and Hassan A. (2023). On practitioners’ concerns when adopting service mesh frameworks. Empirical Software Engineering. 28:5. Online publication date: 1-Sep-2023. https://doi.org/10.1007/s10664-023-10348-1 48. Martínez-Comeche J. (2023). Veinticinco años de investigación en redes sociales: evolución de temas entre 1997 y 2021 empleando el algoritmo Asignación Latente de Dirichlet. Investigación Bibliotecológica: archivonomía, bibliotecología e información. 10.22201/iibi.24488321xe.2023.96.58777. 37:96. (145-177). http://rev-ib.unam.mx/ib/index.php/ib/article/view/58777 49. Wang H, Li K and Shang S. (2023). DLRD: dual-level network for rumor detection on geo-textual data. GeoInformatica. 10.1007/s10707-023-00505-5. https://link.springer.com/10.1007/s10707-023-00505-5 50. Singh J, Pandey D and Singh A. (2023). Event detection from real-time twitter streaming data using community detection algorithm. Multimedia Tools and Applications. 10.1007/s11042-023-16263-3. https://link.springer.com/10.1007/s11042-023-16263-3 51. Verma S, Bhatia R and Harit S. (2023). Developing a Content-based Recommender System for Author Specialization using Topic Modelling and Ranking Framework. Artificial Intelligence and Data Science in Recommendation System: Current Trends, Technologies and Applications. 10.2174/9789815136746123010008. (110-125). Online publication date: 14-Aug-2023. https://www.eurekaselect.com/node/219808 52. van der Vegt I and Kleinberg B. (2023). A multi-modal panel dataset to understand the psychological impact of the pandemic. Scientific Data. 10.1038/s41597-023-02438-y. 10:1. https://www.nature.com/articles/s41597-023-02438-y 53. Cross J, Greene D, Umansky N and Calò S. (2023). Speaking in unison? Explaining the role of agenda-setter constellations in the ECB policy agenda using a network-based approach. Journal of European Public Policy. 10.1080/13501763.2023.2242891. (1-27). https://www.tandfonline.com/doi/full/10.1080/13501763.2023.2242891 54. Miao W, Lin K, Wu C, Sun J, Sun W, Wei W and Gu C. (2023). How Could Consumers’ Online Review Help Improve Product Design Strategy?. Information. 10.3390/info14080434. 14:8. (434). https://www.mdpi.com/2078-2489/14/8/434 55. Campbell T, Syed S, Yang C, Jordan M and Broderick T. Local exchangeability. Bernoulli. 10.3150/22-BEJ1533. 29:3. https://projecteuclid.org/journals/bernoulli/volume-29/issue-3/Local-exchangeability/10.3150/22-BEJ1533.full 56. Zhu H, Balsells-Rodas C and Li Y. Markovian Gaussian process variational autoencoders. Proceedings of the 40th International Conference on Machine Learning. (42938-42961). /doi/10.5555/3618408.3620218 57. Wu X, Dong X, Nguyen T and Luu A. Effective neural topic modeling with embedding clustering regularization. Proceedings of the 40th International Conference on Machine Learning. (37335-37357). /doi/10.5555/3618408.3619962 58. Zhang Y, Li G, Li X and Li D. (2023). Research on Juristic Sentiment Topic Model on Legal Texts 2023 IEEE 6th International Conference on Electronic Information and Communication Technology (ICEICT). 10.1109/ICEICT57916.2023.10245033. 979-8-3503-9905-9. (622-627). https://ieeexplore.ieee.org/document/10245033/ 59. Yoshida T, Hisano R, Ohnishi T and Srinivasan K. (2023). Gaussian hierarchical latent Dirichlet allocation: Bringing polysemy back. PLOS ONE. 10.1371/journal.pone.0288274. 18:7. (e0288274). https://dx.plos.org/10.1371/journal.pone.0288274 60. Nisch S. (2023). Public opinion about Finland joining NATO: analysing Twitter posts by performing natural language processing. Journal of Contemporary European Studies. 10.1080/14782804.2023.2235565. (1-19). https://www.tandfonline.com/doi/full/10.1080/14782804.2023.2235565 61. Hu C, Liang Q, Luo N and Lu S. (2023). Topic-Clustering Model with Temporal Distribution for Public Opinion Topic Analysis of Geospatial Social Media Data. ISPRS International Journal of Geo-Information. 10.3390/ijgi12070274. 12:7. (274). https://www.mdpi.com/2220-9964/12/7/274 62. Yadav H and Sagar M. (2023). Exploring COVID-19 vaccine hesitancy and behavioral themes using social media big-data: a text mining approach. Kybernetes. 10.1108/K-06-2022-0810. 52:7. (2616-2648). Online publication date: 7-Jul-2023. https://www.emerald.com/insight/content/doi/10.1108/K-06-2022-0810/full/html 63. Wu R, Zhang L and Tony Cai T. (2022). Sparse Topic Modeling: Computational Efficiency, Near-Optimal Algorithms, and Statistical Inference. Journal of the American Statistical Association. 10.1080/01621459.2021.2018329. 118:543. (1849-1861). Online publication date: 3-Jul-2023. https://www.tandfonline.com/doi/full/10.1080/01621459.2021.2018329 64. Pentucci M, Sarra A and Laici C. Feedback to align teacher and student in a Digital Learning Ecosystem. EDUCATION SCIENCES AND SOCIETY. 10.3280/ess1-2023oa15761:1. (242-260). https://www.medra.org/servlet/MREngine?hdl=10.3280/ess1-2023oa15761 65. Xie Q, Ma W and Li X. (2023). Identifying Transformative Technologies on Emerging Stage: Monitoring Dynamic Evolution of Weak Signals 2023 Portland International Conference on Management of Engineering and Technology (PICMET). 10.23919/PICMET59654.2023.10216901. 978-1-890843-43-4. (1-9). https://ieeexplore.ieee.org/document/10216901/ 66. Ennajari H, Bouguila N and Bentahar J. Combining Knowledge Graph and Word Embeddings for Spherical Topic Modeling. IEEE Transactions on Neural Networks and Learning Systems. 10.1109/TNNLS.2021.3112045. 34:7. (3609-3623). https://ieeexplore.ieee.org/document/9547420/ 67. Tutubalina E and Nikolenko S. (2023). Topic Models with Sentiment Priors Based on Distributed Representations. Journal of Mathematical Sciences. 10.1007/s10958-023-06525-8. 273:4. (639-652). Online publication date: 1-Jul-2023. https://link.springer.com/10.1007/s10958-023-06525-8 68. Levis M, Levy J, Dufort V, Russ C and Shiner B. (2023). Dynamic suicide topic modelling: Deriving population‐specific, psychosocial and time‐sensitive suicide risk variables from Electronic Health Record psychotherapy notes. Clinical Psychology & Psychotherapy. 10.1002/cpp.2842. 30:4. (795-810). Online publication date: 1-Jul-2023. https://onlinelibrary.wiley.com/doi/10.1002/cpp.2842 69. Griciūtė B, Han L and Nenadic G. (2023). Topic Modelling of Swedish Newspaper Articles about Coronavirus: a Case Study using Latent Dirichlet Allocation Method 2023 IEEE 11th International Conference on Healthcare Informatics (ICHI). 10.1109/ICHI57859.2023.00110. 979-8-3503-0263-9. (627-636). https://ieeexplore.ieee.org/document/10337151/ 70. Reetesh Kumar Srivastava , Shalini Sharma and Dr. Piyush Pratap Singh . (2023). Exploring Latent Themes-Analysis of various Topic Modelling Algorithms. International Journal of Advanced Research in Science, Communication and Technology. 10.48175/IJARSCT-11635. (225-229). https://ijarsct.co.in/Paper11635.pdf 71. D’Uggento A, Biafora A, Manca F, Marin C and Bilancia M. (2022). A text data mining approach to the study of emotions triggered by new advertising formats during the COVID-19 pandemic. Quality & Quantity. 10.1007/s11135-022-01460-3. 57:3. (2303-2325). Online publication date: 1-Jun-2023. https://link.springer.com/10.1007/s11135-022-01460-3 72. Murshed B, Mallappa S, Abawajy J, Saif M, Al-ariki H and Abdulwahab H. (2022). Short text topic modelling approaches in the context of big data: taxonomy, survey, and analysis. Artificial Intelligence Review. 10.1007/s10462-022-10254-w. 56:6. (5133-5260). Online publication date: 1-Jun-2023. https://link.springer.com/10.1007/s10462-022-10254-w 73. Ranta M, Ylinen M and Järvenpää M. (2022). Machine Learning in Management Accounting Research: Literature Review and Pathways for the Future. European Accounting Review. 10.1080/09638180.2022.2137221. 32:3. (607-636). Online publication date: 27-May-2023. https://www.tandfonline.com/doi/full/10.1080/09638180.2022.2137221 74. Zhao R, Gui L, Yan H and He Y. (2023). Tracking Brand-Associated Polarity-Bearing Topics in User Reviews. Transactions of the Association for Computational Linguistics. 10.1162/tacl_a_00555. 11. (404-418). Online publication date: 9-May-2023. https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00555/115894/Tracking-Brand-Associated-Polarity-Bearing-Topics 75. Boussalis C, Dukalskis A and Gerschewski J. (2022). Why It Matters What Autocrats Say: Assessing Competing Theories of Propaganda. Problems of Post-Communism. 10.1080/10758216.2021.2012199. 70:3. (241-252). Online publication date: 4-May-2023. https://www.tandfonline.com/doi/full/10.1080/10758216.2021.2012199 76. Ferguson-Cradler G. (2021). Narrative and computational text analysis in business and economic history. Scandinavian Economic History Review. 10.1080/03585522.2021.1984299. 71:2. (103-127). Online publication date: 4-May-2023. https://www.tandfonline.com/doi/full/10.1080/03585522.2021.1984299 77. Malaterre C and Lareau F. (2023). The Emergence of Astrobiology: A Topic-Modeling Perspective. Astrobiology. 10.1089/ast.2022.0122. 23:5. (496-512). Online publication date: 1-May-2023. https://www.liebertpub.com/doi/10.1089/ast.2022.0122 78. Lou W and Meng J. (2023). The diversity of canonical and ubiquitous progress in computer vision. Information Processing and Management: an International Journal. 60:3. Online publication date: 1-May-2023. https://doi.org/10.1016/j.ipm.2022.103238 79. Churchill R and Singh L. (2023). Using topic-noise models to generate domain-specific topics across data sources. Knowledge and Information Systems. 10.1007/s10115-022-01805-2. 65:5. (2159-2186). Online publication date: 1-May-2023. https://link.springer.com/10.1007/s10115-022-01805-2 80. Mashina E. (2023). Creating intellectual support tools for recruiting procedures of innovative enterprise by using Natural language processing methods. Vestnik of Astrakhan State Technical University. Series: Management, computer science and informatics. 10.24143/2072-9502-2023-2-125-134. 2023:2. (125-134). Online publication date: 28-Apr-2023. http://vestnik.astu.org/en/nauka/article/64126/view 81. An W, Wang L and Zhang D. (2023). Comprehensive commodity price forecasting framework using text mining methods. Journal of Forecasting. 10.1002/for.2985. https://onlinelibrary.wiley.com/doi/10.1002/for.2985 82. Zelenkov Y and Solntsev I. (2023). Analysis of research dynamics in sport management using topic modelling. Managing Sport and Leisure. 10.1080/23750472.2023.2200449. (1-22). https://www.tandfonline.com/doi/full/10.1080/23750472.2023.2200449 83. Srivamsi D, Deepak O, Praveena M and Christy A. (2023). Cosine Similarity Based Word2Vec Model for Biomedical Data Analysis 2023 7th International Conference on Trends in Electronics and Informatics (ICOEI). 10.1109/ICOEI56765.2023.10125794. 979-8-3503-9728-4. (1400-1404). https://ieeexplore.ieee.org/document/10125794/ 84. Машина Е and Балакшин П. (2023). METHODOLOGY FOR ASSESSING DIGITAL MATURITY OF INDUSTRIAL ECOSYSTEMS. Organizer of Production. 10.36622/VSTU.2023.24.14.007:1(31). (85-101). Online publication date: 3-Apr-2023. http://org-proizvodstva.ru/wp-content/uploads/2023/03/7-Машина-Балакшин-85-101.pdf 85. Chen Y, Peng Z, Kim S and Choi C. (2023). What We Can Do and Cannot Do with Topic Modeling: A Systematic Review. Communication Methods and Measures. 10.1080/19312458.2023.2167965. 17:2. (111-130). Online publication date: 3-Apr-2023. https://www.tandfonline.com/doi/full/10.1080/19312458.2023.2167965 86. Weston S, Shryock I, Light R and Fisher P. (2023). Selecting the Number and Labels of Topics in Topic Modeling: A Tutorial. Advances in Methods and Practices in Psychological Science. 10.1177/25152459231160105. 6:2. (251524592311601). Online publication date: 1-Apr-2023. http://journals.sagepub.com/doi/10.1177/25152459231160105 87. Bach T, Anh N, Van Linh N and Than K. Dynamic Transformation of Prior Knowledge Into Bayesian Models for Data Streams. IEEE Transactions on Knowledge and Data Engineering. 10.1109/TKDE.2021.3139469. 35:4. (3742-3750). https://ieeexplore.ieee.org/document/9667285/ 88. Cogo F, Xia X and Hassan A. (2023). Assessing the Alignment between the Information Needs of Developers and the Documentation of Programming Languages: A Case Study on Rust. ACM Transactions on Software Engineering and Methodology. 32:2. (1-48). Online publication date: 31-Mar-2023. https://doi.org/10.1145/3546945 89. Mankala S, Durai A, Padiyar A, Gkountouna O and Mahabir R. (2023). Understanding public discourse surrounding the impact of bitcoin on the environment in social media. GeoJournal. 10.1007/s10708-023-10856-z. 88:4. (4243-4267). https://link.springer.com/10.1007/s10708-023-10856-z 90. Amat-Lefort N, Barravecchia F and Mastrogiacomo L. (2022). Quality 4.0: big data analytics to explore service quality attributes and their relation to user sentiment in Airbnb reviews. International Journal of Quality & Reliability Management. 10.1108/IJQRM-01-2022-0024. 40:4. (990-1008). Online publication date: 23-Mar-2023. https://www.emerald.com/insight/content/doi/10.1108/IJQRM-01-2022-0024/full/html 91. Asatani K, Oki S, Momma T and Sakata I. (2023). Quantifying progress in research topics across nations. Scientific Reports. 10.1038/s41598-023-31452-8. 13:1. https://www.nature.com/articles/s41598-023-31452-8 92. Uchiyama T and Hokimoto T. (2023). Analysis of Solution Diversity in Topic Models for Smart City Applications. Sustainable Smart Cities - A Vision for Tomorrow. 10.5772/intechopen.106009. https://www.intechopen.com/chapters/82818 93. Yang Y and Deng K. Generalized theme dictionary models for association pattern discovery. The Annals of Applied Statistics. 10.1214/22-AOAS1626. 17:1. https://projecteuclid.org/journals/annals-of-applied-statistics/volume-17/issue-1/Generalized-theme-dictionary-models-for-association-pattern-discovery/10.1214/22-AOAS1626.full 94. Taher Harikandeh S, Aliakbary S and Taheri S. (2023). An embedding approach for analyzing the evolution of research topics with a case study on computer science subdomains. Scientometrics. 10.1007/s11192-023-04642-4. 128:3. (1567-1582). Online publication date: 1-Mar-2023. https://link.springer.com/10.1007/s11192-023-04642-4 95. Nguyen V and Ho T. (2023). Analysing online customer experience in hotel sector using dynamic topic modelling and net promoter score. Journal of Hospitality and Tourism Technology. 10.1108/JHTT-04-2021-0116. 14:2. (258-277). Online publication date: 17-Feb-2023. https://www.emerald.com/insight/content/doi/10.1108/JHTT-04-2021-0116/full/html 96. Wu X, Dong X, Nguyen T, Liu C, Pan L and Luu A. InfoCTM. Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence and Thirty-Fifth Conference on Innovative Applications of Artificial Intelligence and Thirteenth Symposium on Educational Advances in Artificial Intelligence. (13763-13771). https://doi.org/10.1609/aaai.v37i11.26612 97. Cvejoski K, Sánchez R and Ojeda C. Neural dynamic focused topic model. Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence and Thirty-Fifth Conference on Innovative Applications of Artificial Intelligence and Thirteenth Symposium on Educational Advances in Artificial Intelligence. (12719-12727). https://doi.org/10.1609/aaai.v37i11.26496 98. Roh M, Choi Y and Park H. (2023). Analysis of Issues in Fitness Centers through News Articles before and after the COVID-19 Pandemic in South Korea: Applying Big Data Analysis. Sustainability. 10.3390/su15032660. 15:3. (2660). https://www.mdpi.com/2071-1050/15/3/2660 99. Abdelrazek A, Eid Y, Gawish E, Medhat W and Hassan A. (2023). Topic modeling algorithms and applications. Information Systems. 112:C. Online publication date: 1-Feb-2023. https://doi.org/10.1016/j.is.2022.102131 100. Ma J, Wang L, Zhang Y, Yuan W and Guo W. (2023). An integrated latent Dirichlet allocation and Word2vec method for generating the topic evolution of mental models from global to local. Expert Systems with Applications: An International Journal. 212:C. Online publication date: 1-Feb-2023. https://doi.org/10.1016/j.eswa.2022.118695 101. Yin W and Fan H. (2023). Perception changes and the attribution of the impact of Lancang-Mekong hydropower dams in the media of riparian countries from 1971 to 2020. Journal of Hydrology: Regional Studies. 10.1016/j.ejrh.2022.101302. 45. (101302). Online publication date: 1-Feb-2023. https://linkinghub.elsevier.com/retrieve/pii/S2214581822003159 102. Shimizu G, Izbicki R and Valle D. (2023). A new LDA formulation with covariates. Communications in Statistics - Simulation and Computation. 10.1080/03610918.2023.2171059. (1-18). https://www.tandfonline.com/doi/full/10.1080/03610918.2023.2171059 103. Wang P, Zhang M, Wang Y and Yuan X. (2023). Sustainable Career Development of Chinese Generation Z (Post-00s) Attending and Graduating from University: Dynamic Topic Model Analysis Based on Microblogging. Sustainability. 10.3390/su15031754. 15:3. (1754). https://www.mdpi.com/2071-1050/15/3/1754 104. Saha A and Ganesan B. Short Text Clustering in Continuous Time Using Stacked Dirichlet-Hawkes Process with Inverse Cluster Frequency Prior. Proceedings of the 6th Joint International Conference on Data Science & Management of Data (10th ACM IKDD CODS and 28th COMAD). (118-122). https://doi.org/10.1145/3570991.3571059 105. Villamor Martin M, Kirsch D and Prieto-Nañez F. (2023). The promise of machine-learning- driven text analysis techniques for historical research: topic modeling and word embedding. Management & Organizational History. 10.1080/17449359.2023.2181184. 18:1. (81-96). Online publication date: 2-Jan-2023. https://www.tandfonline.com/doi/full/10.1080/17449359.2023.2181184 106. Ru Z, Liu J, Miosz K, Liao X and Li X. (2023). An Interpretable Preference Learning Model Admitting Dynamic and Context-Dependent Preferences. SSRN Electronic Journal. 10.2139/ssrn.4606645. https://www.ssrn.com/abstract=4606645 107. Próchniak J, Płoska R, Komorowska O and Raca K. (2023). Sustainability communication on Twitter: disability disclosures of listed companies in Poland. Journal of Modern Science. 10.13166/jms/175990. 53:4. (419-436). https://www.jomswsge.com/Sustainability-communication-on-Twitter-disability-disclosures-of-listed-companies,175990,0,2.html 108. Stich C, Tranos E and Nathan M. (2022). Modeling clusters from the ground up: A web data approach. Environment and Planning B: Urban Analytics and City Science. 10.1177/23998083221108185. 50:1. (244-267). Online publication date: 1-Jan-2023. http://journals.sagepub.com/doi/10.1177/23998083221108185 109. Miner A, Stewart S, Halley M, Nelson L and Linos E. (2023). Formally comparing topic models and human-generated qualitative coding of physician mothers’ experiences of workplace discrimination. Big Data & Society. 10.1177/20539517221149106. 10:1. (205395172211491). Online publication date: 1-Jan-2023. http://journals.sagepub.com/doi/10.1177/20539517221149106 110. An Y, Kim D, Lee J, Oh H, Lee J and Jeong D. Topic Modeling-Based Framework for Extracting Marketing Information From E-Commerce Reviews. IEEE Access. 10.1109/ACCESS.2023.3337808. 11. (135049-135060). https://ieeexplore.ieee.org/document/10335184/ 111. Jung H, Lee H and Kim J. Unveiling Cryptocurrency Conversations: Insights From Data Mining and Unsupervised Learning Across Multiple Platforms. IEEE Access. 10.1109/ACCESS.2023.3334617. 11. (130573-130583). https://ieeexplore.ieee.org/document/10323327/ 112. Khan Z, Xia Y, Ali S, Khan J, Askar S, Abouhawwash M and El-Rashidy N. Identifying Hot Topic Trends in Streaming Text Data Using News Sequential Evolution Model Based on Distributed Representations. IEEE Access. 10.1109/ACCESS.2023.3312764. 11. (98787-98804). https://ieeexplore.ieee.org/document/10243000/ 113. Encinas Quille R, Barros J, Júnior M, De Almeida F and Corrêa P. Detecting Favorite Topics in Computing Scientific Literature via Dynamic Topic Modeling. IEEE Access. 10.1109/ACCESS.2023.3269660. 11. (41535-41545). https://ieeexplore.ieee.org/document/10107367/ 114. A. A, Robledo S and Zuluaga M. Topic Modeling: Perspectives From a Literature Review. IEEE Access. 10.1109/ACCESS.2022.3232939. 11. (4066-4078). https://ieeexplore.ieee.org/document/10002352/ 115. Chi Y and Liu Y. (2023). Research on Fintech Public Opinion Situation and Risk Identification Based on DTM. Procedia Computer Science. 221:C. (1178-1186). Online publication date: 1-Jan-2023. https://doi.org/10.1016/j.procs.2023.08.104 116. Avasthi S, Chauhan R and Acharjya D. (2022). Extracting information and inferences from a large text corpus. International Journal of Information Technology. 10.1007/s41870-022-01123-4. 15:1. (435-445). Online publication date: 1-Jan-2023. https://link.springer.com/10.1007/s41870-022-01123-4 117. Jee S and Sohn S. (2022). Firms’ influence on the evolution of published knowledge when a science-related technology emerges: the case of artificial intelligence. Journal of Evolutionary Economics. 10.1007/s00191-022-00804-4. 33:1. (209-247). Online publication date: 1-Jan-2023. https://link.springer.com/10.1007/s00191-022-00804-4 118. Jiang D, Zhang C and Song Y. (2023). Topic Models. Probabilistic Topic Models. 10.1007/978-981-99-2431-8_2. (27-46). https://link.springer.com/10.1007/978-981-99-2431-8_2 119. Lei H, Liu K and Chen Y. (2023). Exclusive Topic Model. Research Papers in Statistical Inference for Time Series and Related Models. 10.1007/978-981-99-0803-5_3. (83-109). https://link.springer.com/10.1007/978-981-99-0803-5_3 120. Soni A, Rasool A, Dubey A and Khare N. (2023). Visualizing Commenters Opinions Through Topic Analysis. ICT Analysis and Applications. 10.1007/978-981-19-5224-1_27. (249-257). https://link.springer.com/10.1007/978-981-19-5224-1_27 121. Papilloud C and Schultze E. (2023). Die Nanomedizin in den Leitmedien der Presse. Translation in der Nanomedizin. 10.1007/978-3-658-39836-1_1. (1-52). https://link.springer.com/10.1007/978-3-658-39836-1_1 122. Hung L, Tang M and Lin S. (2023). Using Co-word Network Community Detection and LDA Topic Modeling to Extract Topics in TED Talks. HCI in Business, Government and Organizations. 10.1007/978-3-031-36049-7_11. (140-154). https://link.springer.com/10.1007/978-3-031-36049-7_11 123. Geller M, Vasconcelos V and Pinheiro F. (2023). Toxicity in Evolving Twitter Topics. Computational Science – ICCS 2023. 10.1007/978-3-031-36027-5_4. (40-54). https://link.springer.com/10.1007/978-3-031-36027-5_4 124. Poux-Médard G, Velcin J and Loudcher S. (2023). Dirichlet-Survival Process: Scalable Inference of Topic-Dependent Diffusion Networks. Advances in Information Retrieval. 10.1007/978-3-031-28238-6_47. (562-570). https://link.springer.com/10.1007/978-3-031-28238-6_47 125. Poux-Médard G, Velcin J and Loudcher S. (2023). Multivariate Powered Dirichlet-Hawkes Process. Advances in Information Retrieval. 10.1007/978-3-031-28238-6_4. (47-61). https://link.springer.com/10.1007/978-3-031-28238-6_4 126. Ohsawa Y, Kondo S and Hayashi T. (2023). Living Beyond Data with Feature Concepts. Living Beyond Data. 10.1007/978-3-031-11593-6_1. (3-27). https://link.springer.com/10.1007/978-3-031-11593-6_1 127. Kant G, Weisser C, Kneib T and Säfken B. (2023). Topic Model—Machine Learning Classifier Integrations on Geocoded Twitter Data. Biomedical and Other Applications of Soft Computing. 10.1007/978-3-031-08580-2_11. (105-120). https://link.springer.com/10.1007/978-3-031-08580-2_11 128. Jung S and Segev A. (2022). Identifying a common pattern within ancestors of emerging topics for pan-domain topic emergence prediction. Knowledge-Based Systems. 258:C. Online publication date: 22-Dec-2022. https://doi.org/10.1016/j.knosys.2022.110020 129. Mueller H and Rauh C. (2022). The Hard Problem of Prediction for Conflict Prevention. Journal of the European Economic Association. 10.1093/jeea/jvac025. 20:6. (2440-2467). Online publication date: 21-Dec-2022. https://academic.oup.com/jeea/article/20/6/2440/6574413 130. Reyad I, Rashad M and Abdelfatah M. (2022). A Comparative Study of Topic Modeling Methods for Document Retrieval 2022 32nd International Conference on Computer Theory and Applications (ICCTA). 10.1109/ICCTA58027.2022.10206075. 979-8-3503-2019-0. (74-79). https://ieeexplore.ieee.org/document/10206075/ 131. Jung S and Segev A. (2022). Optimizing the Descendant-Aware Clustering Parameters 2022 IEEE International Conference on Big Data (Big Data). 10.1109/BigData55660.2022.10020332. 978-1-6654-8045-1. (3675-3683). https://ieeexplore.ieee.org/document/10020332/ 132. Jung S and Segev A. (2022). Semantic Similarity Analysis between Future Topics and Their Neighbors in Topic Networks for Network-based Topic Evolution 2022 IEEE International Conference on Big Data (Big Data). 10.1109/BigData55660.2022.10020287. 978-1-6654-8045-1. (5952-5961). https://ieeexplore.ieee.org/document/10020287/ 133. Lidan Z. (2022). Topic Modeling Based on Attributed Graph 2022 19th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP). 10.1109/ICCWAMTIP56608.2022.10016527. 978-1-6654-9387-1. (1-4). https://ieeexplore.ieee.org/document/10016527/ 134. Ramachandran K, Perez-Mendoza A, Joshi K, Parikh S, Saini D and Gonzáles J. (2022). Deep Learning-based Topic-level Examination of Social Media 2022 5th International Conference on Contemporary Computing and Informatics (IC3I). 10.1109/IC3I56241.2022.10073324. 979-8-3503-9826-7. (1684-1687). https://ieeexplore.ieee.org/document/10073324/ 135. Xu W, Tshimula J, Dubé È, Graham J, Greyson D, MacDonald N and Meyer S. (2022). Unmasking the Twitter Discourses on Masks During the COVID-19 Pandemic: User Cluster–Based BERT Topic Modeling Approach. JMIR Infodemiology. 10.2196/41198. 2:2. (e41198). https://infodemiology.jmir.org/2022/2/e41198 136. Chen K, Babaeianjelodar M, Shi Y, Aanegola R, Cheung L, Nakov P, Yadav S, Bancroft A, KhudaBukhsh A, De Choudhury M, Altice F and Kumar N. US News and Social Media Framing Around Vaping. Computational Data and Social Networks . (188-199). https://doi.org/10.1007/978-3-031-26303-3_17 137. Kumar J, Din S, Yang Q, Kumar R and Shao J. An Online Semantic-Enhanced Graphical Model for Evolving Short Text Stream Clustering. IEEE Transactions on Cybernetics. 10.1109/TCYB.2021.3108897. 52:12. (13809-13820). https://ieeexplore.ieee.org/document/9555489/ 138. Zhu X, Wang Y, Kochupillai M, Werner M, Haberle M, Hoffmann E, Taubenbock H, Tuia D, Levering A, Jacobs N, Kruspe A and Abdulahhad K. Geoinformation Harvesting From Social Media Data: A community remote sensing approach. IEEE Geoscience and Remote Sensing Magazine. 10.1109/MGRS.2022.3219584. 10:4. (150-180). https://ieeexplore.ieee.org/document/10049246/ 139. Stracqualursi L and Agati P. (2022). Tweet topics and sentiments relating to distance learning among Italian Twitter users. Scientific Reports. 10.1038/s41598-022-12915-w. 12:1. Online publication date: 1-Dec-2022. https://www.nature.com/articles/s41598-022-12915-w 140. Bashar M, Nayak R and Balasubramaniam T. (2022). Deep learning based topic and sentiment analysis: COVID19 information seeking on social media. Social Network Analysis and Mining. 10.1007/s13278-022-00917-5. 12:1. Online publication date: 1-Dec-2022. https://link.springer.com/10.1007/s13278-022-00917-5 141. Sun M, Zhao X, Lin J, Jing J, Wang D and Jia G. (2022). PSLDA: a novel supervised pseudo document-based topic model for short texts. Frontiers of Computer Science. 10.1007/s11704-021-0606-3. 16:6. Online publication date: 1-Dec-2022. https://link.springer.com/10.1007/s11704-021-0606-3 142. Chauhan R, Acharjya D and Avasthi S. (2022). Topic Modeling Techniques for Text Mining Over a Large-Scale Scientific and Biomedical Text Corpus. International Journal of Ambient Computing and Intelligence. 13:1. (1-18). Online publication date: 23-Nov-2022. https://doi.org/10.4018/IJACI.293137 143. Stracqualursi L, Agati P and Sasahara K. (2022). Covid-19 vaccines in Italian public opinion: Identifying key issues using Twitter and Natural Language Processing. PLOS ONE. 10.1371/journal.pone.0277394. 17:11. (e0277394). https://dx.plos.org/10.1371/journal.pone.0277394 144. Diaf S and Fritsche U. (2022). Topic Scaling: A Joint Document Scaling–Topic Model Approach to Learn Time-Specific Topics. Algorithms. 10.3390/a15110430. 15:11. (430). https://www.mdpi.com/1999-4893/15/11/430 145. Nobles M, Lall R, Mathes R and Neill D. (2022). Presyndromic surveillance for improved detection of emerging public health threats. Science Advances. 10.1126/sciadv.abm4920. 8:44. Online publication date: 4-Nov-2022. https://www.science.org/doi/10.1126/sciadv.abm4920 146. Zafar S and Nicholls G. (2022). Measuring diachronic sense change: New models and Monte Carlo methods for Bayesian inference. Journal of the Royal Statistical Society: Series C (Applied Statistics). 10.1111/rssc.12591. 71:5. (1569-1604). Online publication date: 1-Nov-2022. https://onlinelibrary.wiley.com/doi/10.1111/rssc.12591 147. Singh R and Nakamura E. (2022). Dynamic cluster structure and predictive modelling of music creation style distributions. Royal Society Open Science. 10.1098/rsos.220516. 9:11. Online publication date: 1-Nov-2022. https://royalsocietypublishing.org/doi/10.1098/rsos.220516 148. Rahman M, Frame J, Lin J and Nearing G. (2022). Hydrology research articles are becoming more topically diverse. Journal of Hydrology. 10.1016/j.jhydrol.2022.128551. 614. (128551). Online publication date: 1-Nov-2022. https://linkinghub.elsevier.com/retrieve/pii/S0022169422011210 149. Poux-Médard G, Velcin J and Loudcher S. (2022). Powered Dirichlet–Hawkes process: challenging textual clustering using a flexible temporal prior. Knowledge and Information Systems. 10.1007/s10115-022-01731-3. 64:11. (2921-2944). Online publication date: 1-Nov-2022. https://link.springer.com/10.1007/s10115-022-01731-3 150. Li K, Guo B, Liu J, Wang J, Ren H, Yi F and Yu Z. (2022). Dynamic Probabilistic Graphical Model for Progressive Fake News Detection on Social Media Platform. ACM Transactions on Intelligent Systems and Technology. 13:5. (1-24). Online publication date: 31-Oct-2022. https://doi.org/10.1145/3523060 151. Shen A and Chow K. (2022). Entity-Based Integration Framework on Social Unrest Event Detection in Social Media. Electronics. 10.3390/electronics11203416. 11:20. (3416). https://www.mdpi.com/2079-9292/11/20/3416 152. Beldi A, Sassi S and Jemai A. Learn2Sum. Proceedings of the 14th International Conference on Management of Digital EcoSystems. (136-143). https://doi.org/10.1145/3508397.3564853 153. Cheng L, Foster J and Lee H. (2022). A Simple, interpretable method to identify surprising topic shifts in scientific fields. Frontiers in Research Metrics and Analytics. 10.3389/frma.2022.1001754. 7. https://www.frontiersin.org/articles/10.3389/frma.2022.1001754/full 154. Ji R and Han Q. (2022). Understanding heterogeneity of investor sentiment on social media: A structural topic modeling approach. Frontiers in Artificial Intelligence. 10.3389/frai.2022.884699. 5. https://www.frontiersin.org/articles/10.3389/frai.2022.884699/full 155. Browne I, Bernau J, Tatum K and Jieyu J. (2021). Immigration Coverage in the Black Press and the General Audience Press: What Can Mixed Methods Reveal about Race and Immigration?. The Sociological Quarterly. 10.1080/00380253.2021.1947757. 63:4. (688-710). Online publication date: 2-Oct-2022. https://www.tandfonline.com/doi/full/10.1080/00380253.2021.1947757 156. Chen X, Huang K and Jiang H. Detecting Changes in the Spatiotemporal Pattern of Bike Sharing: A Change-Point Topic Model. IEEE Transactions on Intelligent Transportation Systems. 10.1109/TITS.2022.3161623. 23:10. (18361-18377). https://ieeexplore.ieee.org/document/9782132/ 157. Li X, Bai Y and Kang Y. (2022). Exploring the social influence of the Kaggle virtual community on the M5 competition. International Journal of Forecasting. 10.1016/j.ijforecast.2021.10.001. 38:4. (1507-1518). Online publication date: 1-Oct-2022. https://linkinghub.elsevier.com/retrieve/pii/S0169207021001643 158. Kim Y. (2022). A topic modeling analysis of domestic research on information and communication in North Korea. Journal of Digital Contents Society. 10.9728/dcs.2022.23.9.1833. 23:9. (1833-1846). Online publication date: 30-Sep-2022. http://journal.dcs.or.kr/_common/do.php?a=current&b=11&bidx=3071&aidx=34277 159. Chauhan U and Shah A. (2021). Topic Modeling Using Latent Dirichlet allocation. ACM Computing Surveys. 54:7. (1-35). Online publication date: 30-Sep-2022. https://doi.org/10.1145/3462478 160. Armaselu F, Apostol E, Khan A, Liebeskind C, McGillivray B, Truică C, Utka A, Valūnaitė Oleškevičienė G, van Erp M, Cimiano P, Bosque-Gil J, Cimiano P and Dojchinovski M. LL(O)D and NLP perspectives on semantic change for humanities research. Semantic Web. 10.3233/SW-222848. 13:6. (1051-1080). https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/SW-222848 161. Singh R, Nagpal S, Pinna N and Mande S. (2022). Tracking mutational semantics of SARS-CoV-2 genomes. Scientific Reports. 10.1038/s41598-022-20000-5. 12:1. https://www.nature.com/articles/s41598-022-20000-5 162. Marshall P. (2021). Contribution of open-ended questions in student evaluation of teaching. Higher Education Research & Development. 10.1080/07294360.2021.1967887. 41:6. (1992-2005). Online publication date: 19-Sep-2022. https://www.tandfonline.com/doi/full/10.1080/07294360.2021.1967887 163. Desikan B and Evans J. Misalignment Between Skills Discovered, Disseminated, and Deployed in the Knowledge Economy. Journal of Social Computing. 10.23919/JSC.2022.0013. 3:3. (191-205). https://ieeexplore.ieee.org/document/9964053/ 164. Cintron D and Montrosse-Moorhead B. (2021). Integrating Big Data Into Evaluation: R Code for Topic Identification and Modeling. American Journal of Evaluation. 10.1177/10982140211031640. 43:3. (412-436). Online publication date: 1-Sep-2022. http://journals.sagepub.com/doi/10.1177/10982140211031640 165. Oliveira P, Guerreiro J and Rita P. (2022). Neuroscience research in consumer behavior: A review and future research agenda. International Journal of Consumer Studies. 10.1111/ijcs.12800. 46:5. (2041-2067). Online publication date: 1-Sep-2022. https://onlinelibrary.wiley.com/doi/10.1111/ijcs.12800 166. Wang J and Weiss R. (2022). Local and global topics in text modeling of web pages nested in web sites. Computational Statistics & Data Analysis. 173:C. Online publication date: 1-Sep-2022. https://doi.org/10.1016/j.csda.2022.107518 167. Huang L, Chen X, Zhang Y, Wang C, Cao X and Liu J. (2022). Identification of topic evolution: network analytics with piecewise linear representation and word embedding. Scientometrics. 127:9. (5353-5383). Online publication date: 1-Sep-2022. https://doi.org/10.1007/s11192-022-04273-1 168. Kashmola R and Al-Talib G. (2022). A Survey Study on Extracting Trending Topics from Textual Data 2022 8th International Conference on Contemporary Information Technology and Mathematics (ICCITM). 10.1109/ICCITM56309.2022.10031932. 979-8-3503-3486-9. (192-196). https://ieeexplore.ieee.org/document/10031932/ 169. Feng J, Miao J, Tang Y, Li Y and Feng J. (2022). The Performance of Topic Evolution Based on a Feature Maximization Measurement for the Linguistics Domain. Axioms. 10.3390/axioms11080412. 11:8. (412). https://www.mdpi.com/2075-1680/11/8/412 170. Song Z, Hu Y, Verma A, Buckeridge D and Li Y. Automatic Phenotyping by a Seed-guided Topic Model. Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. (4713-4723). https://doi.org/10.1145/3534678.3542675 171. Chen Y, Zhang Z and Wang T. (2022). Dire Straits: How tourists on the Diamond Princess cruise endured the COVID-19 crisis. Tourism Management. 10.1016/j.tourman.2022.104503. 91. (104503). Online publication date: 1-Aug-2022. https://linkinghub.elsevier.com/retrieve/pii/S0261517722000164 172. Costa G and Ortale R. (2022). Hierarchical Bayesian text modeling for the unsupervised joint analysis of latent topics and semantic clusters. International Journal of Approximate Reasoning. 10.1016/j.ijar.2022.05.002. 147. (23-39). Online publication date: 1-Aug-2022. https://linkinghub.elsevier.com/retrieve/pii/S0888613X22000652 173. Liu X, Jiang L, Zhang T and Huang T. (2022). Research on Hot Topic Recognition and Its Evolution Analysis Method Based on LDA. Journal of The Institution of Engineers (India): Series B. 10.1007/s40031-022-00764-0. 103:4. (1383-1394). Online publication date: 1-Aug-2022. https://link.springer.com/10.1007/s40031-022-00764-0 174. Kalamara E, Turrell A, Redl C, Kapetanios G and Kapadia S. (2022). Making text count: Economic forecasting using newspaper text. Journal of Applied Econometrics. 10.1002/jae.2907. 37:5. (896-919). Online publication date: 1-Aug-2022. https://onlinelibrary.wiley.com/doi/10.1002/jae.2907 175. Choudhary R, Alsayed O, Doboli S and Minai A. (2022). Building Semantic Cognitive Maps with Text Embedding and Clustering 2022 International Joint Conference on Neural Networks (IJCNN). 10.1109/IJCNN55064.2022.9892429. 978-1-7281-8671-9. (01-08). https://ieeexplore.ieee.org/document/9892429/ 176. Mueller H and Rauh C. (2022). Using past violence and current news to predict changes in violence. International Interactions. 10.1080/03050629.2022.2063853. 48:4. (579-596). Online publication date: 4-Jul-2022. https://www.tandfonline.com/doi/full/10.1080/03050629.2022.2063853 177. Chen X, Zanocco C, Flora J and Rajagopal R. (2022). Constructing dynamic residential energy lifestyles using Latent Dirichlet Allocation. Applied Energy. 10.1016/j.apenergy.2022.119109. 318. (119109). Online publication date: 1-Jul-2022. https://linkinghub.elsevier.com/retrieve/pii/S0306261922004925 178. Zhu H, Qian L, Qin W, Wei J and Shen C. (2022). Evolution analysis of online topics based on ‘word-topic’ coupling network. Scientometrics. 10.1007/s11192-022-04439-x. 127:7. (3767-3792). Online publication date: 1-Jul-2022. https://link.springer.com/10.1007/s11192-022-04439-x 179. Sridhar D, Daumé H and Blei D. (2022). Heterogeneous Supervised Topic Models. Transactions of the Association for Computational Linguistics. 10.1162/tacl_a_00487. 10. (732-745). Online publication date: 17-Jun-2022. https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00487/111727/Heterogeneous-Supervised-Topic-Models 180. McInnes B, Downie J, Hao Y, Jett J, Keating K, Nakum G, Ranjan S, Rodriguez N, Tang J, Xiang D, Young E and Nguyen M. (2022). Discovering Content through Text Mining for a Synthetic Biology Knowledge System. ACS Synthetic Biology. 10.1021/acssynbio.1c00611. 11:6. (2043-2054). Online publication date: 17-Jun-2022. https://pubs.acs.org/doi/10.1021/acssynbio.1c00611 181. Wu J, Ward O, Curley J and Zheng T. Markov-modulated Hawkes processes for modeling sporadic and bursty event occurrences in social interactions. The Annals of Applied Statistics. 10.1214/21-AOAS1539. 16:2. https://projecteuclid.org/journals/annals-of-applied-statistics/volume-16/issue-2/Markov-modulated-Hawkes-processes-for-modeling-sporadic-and-bursty-event/10.1214/21-AOAS1539.full 182. Erni J and Zhang Y. (2022). Wild hopes: Sourcing the political vocabulary of digital citizenship from the LIHKG forum. International Communication Gazette. 10.1177/17480485221094123. 84:4. (349-375). Online publication date: 1-Jun-2022. http://journals.sagepub.com/doi/10.1177/17480485221094123 183. Chan N, Kim J and Leung V. (2021). COVID-19 and Asian Americans: How Elite Messaging and Social Exclusion Shape Partisan Attitudes. Perspectives on Politics. 10.1017/S1537592721003091. 20:2. (618-634). Online publication date: 1-Jun-2022. https://www.cambridge.org/core/product/identifier/S1537592721003091/type/journal_article 184. Levy D, Mayer T and Raviv A. (2022). Economists in the 2008 financial crisis: Slow to see, fast to act. Journal of Financial Stability. 10.1016/j.jfs.2022.100986. 60. (100986). Online publication date: 1-Jun-2022. https://linkinghub.elsevier.com/retrieve/pii/S1572308922000158 185. Goyal A and Kashyap I. (2022). Latent Dirichlet Allocation - An approach for topic discovery 2022 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COM-IT-CON). 10.1109/COM-IT-CON54601.2022.9850912. 978-1-6654-9602-5. (97-102). https://ieeexplore.ieee.org/document/9850912/ 186. Jiang L, Zhang T and Huang T. (2022). Empirical Research of Hot Topic Recognition and its Evolution Path Method for Scientific and Technological Literature. Journal of Advanced Computational Intelligence and Intelligent Informatics. 10.20965/jaciii.2022.p0299. 26:3. (299-308). Online publication date: 20-May-2022. https://www.fujipress.jp/jaciii/jc/jacii002600030299 187. Churchill R and Singh L. Dynamic Topic-Noise Models for Social Media. Advances in Knowledge Discovery and Data Mining. (429-443). https://doi.org/10.1007/978-3-031-05936-0_34 188. Bernau J. (2022). The Institutionalization of Kübler-Ross’s Five-Stage Model of Death and Dying. OMEGA - Journal of Death and Dying. 10.1177/00302228221098893. (003022282210988). http://journals.sagepub.com/doi/10.1177/00302228221098893 189. Zhang J, Fan Y, Zhang J and Bai B. Learning to Build Accurate Service Representations and Visualization. IEEE Transactions on Services Computing. 10.1109/TSC.2020.3001307. 15:3. (1551-1563). https://ieeexplore.ieee.org/document/9113339/ 190. Rahimi M, Zahedi M and Mashayekhi H. (2022). A probabilistic topic model based on short distance Co-occurrences. Expert Systems with Applications: An International Journal. 193:C. Online publication date: 1-May-2022. https://doi.org/10.1016/j.eswa.2022.116518 191. Foltas A. (2022). Testing Investment Forecast Efficiency with Forecasting Narratives. Jahrbücher für Nationalökonomie und Statistik. 10.1515/jbnst-2020-0027. 242:2. (191-222). Online publication date: 26-Apr-2022.. Online publication date: 1-Apr-2022. https://www.degruyter.com/document/doi/10.1515/jbnst-2020-0027/html 192. Gourru A, Velcin J, Gravier C and Jacques J. Dynamic Gaussian Embedding of Authors. Proceedings of the ACM Web Conference 2022. (2109-2119). https://doi.org/10.1145/3485447.3512084 193. Vasudeva Raju S, Kumar Bolla B, Nayak D and Kh J. (2022). Topic Modelling on Consumer Financial Protection Bureau Data: An Approach Using BERT Based Embeddings 2022 IEEE 7th International conference for Convergence in Technology (I2CT). 10.1109/I2CT54291.2022.9824873. 978-1-6654-2168-3. (1-6). https://ieeexplore.ieee.org/document/9824873/ 194. Huang X, Hou H and Sun M. (2022). A novel temporal recommendation method based on user query topic evolution. Knowledge-Based Systems. 241:C. Online publication date: 6-Apr-2022. https://doi.org/10.1016/j.knosys.2022.108239 195. Lind F, Eberl J, Eisele O, Heidenreich T, Galyga S and Boomgaarden H. (2021). Building the Bridge: Topic Modeling for Comparative Research. Communication Methods and Measures. 10.1080/19312458.2021.1965973. 16:2. (96-114). Online publication date: 3-Apr-2022. https://www.tandfonline.com/doi/full/10.1080/19312458.2021.1965973 196. Meaney C, Escobar M, Moineddin R, Stukel T, Kalia S, Aliarzadeh B, Chen T, O'Neill B and Greiver M. (2022). Non-negative matrix factorization temporal topic models and clinical text data identify COVID-19 pandemic effects on primary healthcare and community health in Toronto, Canada. Journal of Biomedical Informatics. 128:C. Online publication date: 1-Apr-2022. https://doi.org/10.1016/j.jbi.2022.104034 197. Roh M. (2022). Analysis of Research Trends in The Journal of Korean Association of Physical Education and Sport for Girls and Women Using Topic Modeling. Journal of Korean Association of Physical Education and Sport for Girls and Women. 10.16915/jkapesgw.2022.3.36.1.73. 36:1. (73-91). Online publication date: 31-Mar-2022. http://www.dbpia.co.kr/Journal/ArticleDetail/NODE11048999 198. Zheng J and Qiang M. (2022). UNDERSTANDING THE CHANGES IN CONSTRUCTION PROJECT MANAGERS’ COMPETENCES THROUGH RESUME DATA MINING. JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT. 10.3846/jcem.2022.16579. 28:4. (305-319). Online publication date: 24-Mar-2022. https://journals.vilniustech.lt/index.php/JCEM/article/view/16579 199. Hodges D and Paxton-Fear K. (2021). An analysis of the writing of ‘suicide cult’ members. Digital Scholarship in the Humanities. 10.1093/llc/fqab051. 37:1. (137-151). Online publication date: 23-Mar-2022. https://academic.oup.com/dsh/article/37/1/137/6291823 200. Zhang Z. (2022). Dynamic Topic Model for Short Texts about Hot Issues on Microblog Based on TFIDF 2022 4th International Conference on Natural Language Processing (ICNLP). 10.1109/ICNLP55136.2022.00092. 978-1-6654-9544-8. (505-508). https://ieeexplore.ieee.org/document/9885860/ 201. Ortu M, Vacca S, Destefanis G and Conversano C. (2022). Cryptocurrency ecosystems and social media environments: An empirical analysis through Hawkes’ models and natural language processing. Machine Learning with Applications. 10.1016/j.mlwa.2021.100229. 7. (100229). Online publication date: 1-Mar-2022. https://linkinghub.elsevier.com/retrieve/pii/S2666827021001158 202. Gao Q, Huang X, Dong K, Liang Z and Wu J. (2022). Semantic-enhanced topic evolution analysis: a combination of the dynamic topic model and word2vec. Scientometrics. 10.1007/s11192-022-04275-z. 127:3. (1543-1563). Online publication date: 1-Mar-2022. https://link.springer.com/10.1007/s11192-022-04275-z 203. He J, Kang J, Sun S, Cooper M, Zickgraf H and Zhai Y. (2022). The landscape of eating disorders research: A 40‐year bibliometric analysis. European Eating Disorders Review. 10.1002/erv.2884. 30:2. (96-109). Online publication date: 1-Mar-2022. https://onlinelibrary.wiley.com/doi/10.1002/erv.2884 204. Guo J, Cao L and Gong Z. (2021). Recurrent Coupled Topic Modeling over Sequential Documents. ACM Transactions on Knowledge Discovery from Data. 16:1. (1-32). Online publication date: 28-Feb-2022. https://doi.org/10.1145/3451530 205. Guo Y and Li J. (2021). Distributed Latent Dirichlet Allocation on Streams. ACM Transactions on Knowledge Discovery from Data. 16:1. (1-20). Online publication date: 28-Feb-2022. https://doi.org/10.1145/3451528 206. Steuber F, Schneider S and Schoenfeld M. (2022). Embedding Semantic Anchors to Guide Topic Models on Short Text Corpora. Big Data Research. 27:C. Online publication date: 28-Feb-2022. https://doi.org/10.1016/j.bdr.2021.100293 207. Noga-Hartmann E and Kotzinos D. (2022). Assessing Together the Trends in Newspaper Topics and User Opinions. Handbook of Research on Opinion Mining and Text Analytics on Literary Works and Social Media. 10.4018/978-1-7998-9594-7.ch014. (348-370). https://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-7998-9594-7.ch014 208. Lyu Y, Yin M, Xi F and Hu X. (2022). Progress and Knowledge Transfer from Science to Technology in the Research Frontier of CRISPR Based on the LDA Model. Journal of Data and Information Science. 10.2478/jdis-2022-0004. 7:1. (1-19). Online publication date: 1-Feb-2022.. Online publication date: 1-Feb-2022. https://www.sciendo.com/article/10.2478/jdis-2022-0004 209. Churchill R and Singh L. (2022). The Evolution of Topic Modeling. ACM Computing Surveys. 54:10s. (1-35). Online publication date: 31-Jan-2022. https://doi.org/10.1145/3507900 210. Han J and Cho K. (2020). Emerging industrial root technologies: a structural topic model- and topic matrix analysis-based approach. Asian Journal of Technology Innovation. 10.1080/19761597.2020.1836662. 30:1. (178-197). Online publication date: 2-Jan-2022. https://www.tandfonline.com/doi/full/10.1080/19761597.2020.1836662 211. Baden C, Pipal C, Schoonvelde M and van der Velden M. (2021). Three Gaps in Computational Text Analysis Methods for Social Sciences: A Research Agenda. Communication Methods and Measures. 10.1080/19312458.2021.2015574. 16:1. (1-18). Online publication date: 2-Jan-2022. https://www.tandfonline.com/doi/full/10.1080/19312458.2021.2015574 212. KATO K and KOBAYASHI H. (2022). Extraction of news topics in quality papers using topic models based on word embeddingsクオリティペーパーを対象とした分散表現に基づくトピック分析. Journal of Food System Research. 10.5874/jfsr.21_00007. 28:4. (328-333). https://www.jstage.jst.go.jp/article/jfsr/28/4/28_7/_article/-char/ja/ 213. Baklāne A and Saulespurēns V. (2022). The application of latent Dirichlet allocation for the analysis of latvian historical newspapers: Oskars Kalpaks’ case study. Science, technologies, innovation. 10.35668/2520-6524-2022-1-05:1(21). (29-37). http://nti.ukrintei.ua/?page_id=4196&lang=en 214. Alam M, Buscaldi D, Cochez M, Osborne F, Recupero D, Sack H, Jung S, Segev A, Alam M, Buscaldi D, Cochez M, Osborne F, Refogiato Recupero D and Sack H. (2022). Analyzing the generalizability of the network-based topic emergence identification method. Semantic Web. 13:3. (423-439). Online publication date: 1-Jan-2022. https://doi.org/10.3233/SW-212951 215. Ferrario B and Stantcheva S. (2022). Eliciting People's First-Order Concerns: Text Analysis of Open-Ended Survey Questions. SSRN Electronic Journal. 10.2139/ssrn.4016105. https://www.ssrn.com/abstract=4016105 216. de Wildt T and Jine Schweizer V. Exploring value change. Prometheus. 10.13169/prometheus.38.1.0025. 38:1. https://scienceopen.com/hosted-document?doi=10.13169/prometheus.38.1.0025 217. Vo D, Tran T, Shirai K and Huynh V. Deep Generative Networks Coupled With Evidential Reasoning for Dynamic User Preferences Using Short Texts. IEEE Transactions on Knowledge and Data Engineering. 10.1109/TKDE.2022.3188497. (1-16). https://ieeexplore.ieee.org/document/9833343/ 218. Murshed B, Abawajy J, Mallappa S, Saif M, Al-Ghuribi S and Ghanem F. Enhancing Big Social Media Data Quality for Use in Short-Text Topic Modeling. IEEE Access. 10.1109/ACCESS.2022.3211396. 10. (105328-105351). https://ieeexplore.ieee.org/document/9906976/ 219. Cendrero J, Gonzalo J, Galletero M and Zapata I. Time Series Impact Through Topic Modeling. IEEE Access. 10.1109/ACCESS.2022.3202960. 10. (97327-97347). https://ieeexplore.ieee.org/document/9869829/ 220. Ma R, Zhang Y, Chen J, Wen H and Zhao S. (2022). Patent research front mining of GaN semiconductor based on the LDA model. SHS Web of Conferences. 10.1051/shsconf/202214001019. 140. (01019). https://www.shs-conferences.org/10.1051/shsconf/202214001019 221. Rouhani S and Mozaffari F. (2022). Sentiment analysis researches story narrated by topic modeling approach. Social Sciences & Humanities Open. 10.1016/j.ssaho.2022.100309. 6:1. (100309). https://linkinghub.elsevier.com/retrieve/pii/S2590291122000638 222. Wang Y, Li X, Ouyang J, Guo Z and Wang Y. (2021). Extracting nonlinear neural topics with neural variational bayes. World Wide Web. 10.1007/s11280-021-00970-8. 25:1. (131-149). Online publication date: 1-Jan-2022. https://link.springer.com/10.1007/s11280-021-00970-8 223. Lu X, Guo Y, Chen J and Wang F. (2021). Topic change point detection using a mixed Bayesian model. Data Mining and Knowledge Discovery. 10.1007/s10618-021-00804-1. 36:1. (146-173). Online publication date: 1-Jan-2022. https://link.springer.com/10.1007/s10618-021-00804-1 224. Austin E, Trabelsi A, Largeron C and Zaïane O. (2022). Hierarchical Topic Model Inference by Community Discovery on Word Co-occurrence Networks. Data Mining. 10.1007/978-981-19-8746-5_11. (148-162). https://link.springer.com/10.1007/978-981-19-8746-5_11 225. Avasthi S, Chauhan R and Acharjya D. (2022). Information Extraction and Sentiment Analysis to Gain Insight into the COVID-19 Crisis. International Conference on Innovative Computing and Communications. 10.1007/978-981-16-2594-7_28. (343-353). https://link.springer.com/10.1007/978-981-16-2594-7_28 226. Biemann C, Heyer G and Quasthoff U. (2022). Maschinelles Lernen für Sprachverarbeitung. Wissensrohstoff Text. 10.1007/978-3-658-35969-0_6. (257-309). https://link.springer.com/10.1007/978-3-658-35969-0_6 227. Afolabi I and Uzor C. (2022). Topic Modelling for Research Perception: Techniques, Processes and a Case Study. Recent Innovations in Artificial Intelligence and Smart Applications. 10.1007/978-3-031-14748-7_13. (221-237). https://link.springer.com/10.1007/978-3-031-14748-7_13 228. Sear R, Restrepo N, Lupu Y and Johnson N. (2022). Dynamic Topic Modeling Reveals Variations in Online Hate Narratives. Intelligent Computing. 10.1007/978-3-031-10464-0_38. (564-578). https://link.springer.com/10.1007/978-3-031-10464-0_38 229. van de Poel I, de Wildt T and van Kooten Pássaro D. (2022). COVID-19 and Changing Values. Values for a Post-Pandemic Future. 10.1007/978-3-031-08424-9_2. (23-58). https://link.springer.com/10.1007/978-3-031-08424-9_2 230. Yamasaki S and Teraoka T. (2022). Focus Estimation Using Associative Information to Support Understanding of Art. Design, User Experience, and Usability: Design Thinking and Practice in Contemporary and Emerging Technologies. 10.1007/978-3-031-05906-3_21. (279-288). https://link.springer.com/10.1007/978-3-031-05906-3_21 231. Aggarwal C. (2022). Matrix Factorization and Topic Modeling. Machine Learning for Text. 10.1007/978-3-030-96623-2_3. (33-74). https://link.springer.com/10.1007/978-3-030-96623-2_3 232. Sear R, Leahy R, Restrepo N, Lupu Y and Johnson N. (2022). Machine Learning Reveals Adaptive COVID-19 Narratives in Online Anti-Vaccination Network. Proceedings of the 2021 Conference of The Computational Social Science Society of the Americas. 10.1007/978-3-030-96188-6_12. (164-175). https://link.springer.com/10.1007/978-3-030-96188-6_12 233. Zhang Y, Li Z and Xi D. (2022). An Interactive Visual System for Data Analytics of Social Media. Algorithms and Architectures for Parallel Processing. 10.1007/978-3-030-95391-1_6. (81-100). https://link.springer.com/10.1007/978-3-030-95391-1_6 234. Ling J and Sorokina N. (2022). Visualizing and Comparing Online Travel Reviews of the Great Walls: A Data Mining Approach. Information and Communication Technologies in Tourism 2022. 10.1007/978-3-030-94751-4_39. (423-427). https://link.springer.com/10.1007/978-3-030-94751-4_39 235. Ho J and Shahid A. (2022). Natural Language Processing for Exploring Culture in Finance: Theory and Applications. Financial Data Analytics. 10.1007/978-3-030-83799-0_9. (269-291). https://link.springer.com/10.1007/978-3-030-83799-0_9 236. Ellingsen J, Larsen V and Thorsrud L. (2021). News media versus FRED‐MD for macroeconomic forecasting. Journal of Applied Econometrics. 10.1002/jae.2859. 37:1. (63-81). Online publication date: 1-Jan-2022. https://onlinelibrary.wiley.com/doi/10.1002/jae.2859 237. Lee G and Lee J. (2021). Analysis of "social distancing" news during the second COVID-19 wave : Focusing on featured news selected by the newsrooms using deep learning. Korean Journal of Journalism & Communication Studies. 10.20879/kjjcs.2021.65.6.006. 65:6. (249-294). Online publication date: 31-Dec-2022. http://www.dbpia.co.kr/Journal/ArticleDetail/NODE10820546 238. SAKAMOTO T. (2021). Looking Back on 60 Years of African Studies in Japan:『アフリカ研究』1号~99号の動向. Journal of African Studies. 10.11619/africa.2021.100_3. 2021:100. (3-16). Online publication date: 31-Dec-2022. https://www.jstage.jst.go.jp/article/africa/2021/100/2021_3/_article/-char/ja/ 239. Hashimoto T, Uno T, Takedomi Y, Shepard D, Toyoda M, Yoshinaga N, Kitsuregawa M and Kobayashi R. (2021). Two-stage Clustering Method for Discovering People's Perceptions: A Case Study of the COVID-19 Vaccine from Twitter 2021 IEEE International Conference on Big Data (Big Data). 10.1109/BigData52589.2021.9671982. 978-1-6654-3902-2. (614-621). https://ieeexplore.ieee.org/document/9671982/ 240. Wang X, Zhang L and Klabjan D. (2021). Keyword-based Topic Modeling and Keyword Selection 2021 IEEE International Conference on Big Data (Big Data). 10.1109/BigData52589.2021.9671416. 978-1-6654-3902-2. (1148-1154). https://ieeexplore.ieee.org/document/9671416/ 241. Zhang Z. (2021). Analyzing cultural expatriates' attitudes toward “Englishnization” using dynamic topic modeling. Journal of Computer-Assisted Linguistic Research. 10.4995/jclr.2021.15909. 5:1. (1-26). https://polipapers.upv.es/index.php/jclr/article/view/15909 242. Kato S, Nakanishi T, Ahsan B and Shimauchi H. (2021). Time-series topic analysis using singular spectrum transformation for detecting political business cycles. Journal of Cloud Computing: Advances, Systems and Applications. 10:1. Online publication date: 11-Dec-2021. https://doi.org/10.1186/s13677-020-00197-4 243. Jiang S, Zhao H and Guo J. (2021). A Review : Personalized News Recommendation fusion with Topic Model 2021 3rd International Academic Exchange Conference on Science and Technology Innovation (IAECST). 10.1109/IAECST54258.2021.9695777. 978-1-6654-0267-5. (612-617). https://ieeexplore.ieee.org/document/9695777/ 244. Tang K, Li K, So M and Safro I. (2021). Predicting standardized absolute returns using rolling-sample textual modelling. PLOS ONE. 10.1371/journal.pone.0260132. 16:12. (e0260132). https://dx.plos.org/10.1371/journal.pone.0260132 245. Yaqub U, Chun S, Atluri V, Vaidya J, Sandoval-Almazan R, Kavanaugh A and Ignacio Criado J. Analyzing social media messages of public sector organizations utilizing sentiment analysis and topic modeling. Information Polity. 10.3233/IP-210321. 26:4. (375-390). https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/IP-210321 246. Rijcken E, Scheepers F, Mosteiro P, Zervanou K, Spruit M and Kaymak U. (2021). A Comparative Study of Fuzzy Topic Models and LDA in terms of Interpretability 2021 IEEE Symposium Series on Computational Intelligence (SSCI). 10.1109/SSCI50451.2021.9660139. 978-1-7281-9048-8. (1-8). https://ieeexplore.ieee.org/document/9660139/ 247. Harrison C and Sidey-Gibbons C. (2021). Machine learning in medicine: a practical introduction to natural language processing. BMC Medical Research Methodology. 10.1186/s12874-021-01347-1. 21:1. Online publication date: 1-Dec-2021. https://bmcmedresmethodol.biomedcentral.com/articles/10.1186/s12874-021-01347-1 248. Poux-Medard G, Velcin J and Loudcher S. (2021). Powered Hawkes-Dirichlet Process: Challenging Textual Clustering using a Flexible Temporal Prior 2021 IEEE International Conference on Data Mining (ICDM). 10.1109/ICDM51629.2021.00062. 978-1-6654-2398-4. (509-518). https://ieeexplore.ieee.org/document/9679096/ 249. Churchill R and Singh L. (2021). Topic-Noise Models: Modeling Topic and Noise Distributions in Social Media Post Collections 2021 IEEE International Conference on Data Mining (ICDM). 10.1109/ICDM51629.2021.00017. 978-1-6654-2398-4. (71-80). https://ieeexplore.ieee.org/document/9679037/ 250. Virtanen S. (2021). Uncovering dynamic textual topics that explain crime. Royal Society Open Science. 10.1098/rsos.210750. 8:12. Online publication date: 1-Dec-2021. https://royalsocietypublishing.org/doi/10.1098/rsos.210750 251. Ito F, Kumoi G and Goto M. (2021). Time Window Topic Model for Analyzing Customer Browsing Behavior 2021 IEEE 12th International Workshop on Computational Intelligence and Applications (IWCIA). 10.1109/IWCIA52852.2021.9626043. 978-1-6654-4425-5. (1-8). https://ieeexplore.ieee.org/document/9626043/ 252. Gyory J, Kotovsky K and Cagan J. (2021). The Influence of Process Management: Uncovering the Impact of Real-Time Managerial Interventions via a Topic Modeling Approach. Journal of Mechanical Design. 10.1115/1.4050748. 143:11. Online publication date: 1-Nov-2021. https://asmedigitalcollection.asme.org/mechanicaldesign/article/143/11/111401/1106113/The-Influence-of-Process-Management-Uncovering-the 253. Harikandeh S, Aliakbary S and Taheri S. (2021). Towards Study of Research Topics Evolution in Artificial Intelligence based on Topic Embedding 2021 11th International Conference on Computer Engineering and Knowledge (ICCKE). 10.1109/ICCKE54056.2021.9721503. 978-1-6654-0208-8. (406-411). https://ieeexplore.ieee.org/document/9721503/ 254. Vo T. (2021). GOWSeqStream: an integrated sequential embedding and graph-of-words for short text stream clustering. Neural Computing and Applications. 10.1007/s00521-021-06563-w. https://link.springer.com/10.1007/s00521-021-06563-w 255. Murakami R, Chakraborty B and Shirota Y. (2021). Dynamic Topic Tracking and Visualization using COVID-19 related Tweets in Multiple Languages 2021 International Conference on Artificial Intelligence and Big Data Analytics (ICAIBDA). 10.1109/ICAIBDA53487.2021.9689742. 978-1-6654-0890-5. (1-6). https://ieeexplore.ieee.org/document/9689742/ 256. Murakami R, Chakraborty B and Shirota Y. (2021). Dynamic Topic Tracking and Visualization using COVID-19 related Tweets in Multiple Languages 2021 International Conference on Artificial Intelligence and Big Data Analytics (ICAIBDA). 10.1109/ICAIBDA53487.2021.9689725. 978-1-6654-0890-5. (16-21). https://ieeexplore.ieee.org/document/9689725/ 257. De Pooter M. (2021). Questions and Answers: The Information Content of the Post-FOMC Meeting Press Conference. FEDS Notes. 10.17016/2380-7172.2997. 2021:2997. https://www.federalreserve.gov/econres/notes/feds-notes/questions-and-answers-the-information-content-of-the-post-fomc-meeting-press-conference-20211012.htm 258. Chen Z and Park J. (2021). Analyzing Cultural Assimilation through the Lens of Yelp Restaurant Reviews 2021 IEEE 8th International Conference on Data Science and Advanced Analytics (DSAA). 10.1109/DSAA53316.2021.9564170. 978-1-6654-2099-0. (1-10). https://ieeexplore.ieee.org/document/9564170/ 259. Virtanen S and Girolami M. (2021). Spatio-Temporal Mixed Membership Models for Criminal Activity. Journal of the Royal Statistical Society Series A: Statistics in Society. 10.1111/rssa.12642. 184:4. (1220-1244). Online publication date: 1-Oct-2021. https://academic.oup.com/jrsssa/article/184/4/1220/7068834 260. Bogovic P, Mestrovic A, Beliga S and Martincic-Ipsic S. (2021). Topic Modelling of Croatian News During COVID-19 Pandemic 2021 44th International Convention on Information, Communication and Electronic Technology (MIPRO). 10.23919/MIPRO52101.2021.9597125. 978-953-233-101-1. (1044-1051). https://ieeexplore.ieee.org/document/9597125/ 261. Wandabwa H, Naeem M, Mirza F and Pears R. (2021). Multi-interest semantic changes over time in short-text microblogs▪. Knowledge-Based Systems. 228:C. Online publication date: 27-Sep-2021. https://doi.org/10.1016/j.knosys.2021.107249 262. Sun Y, Hayashi T and Ohsawa Y. (2021). A Latent Topic Analysis and Visualization Framework for Category-Level Target Promotion in the Supermarket. The Review of Socionetwork Strategies. 10.1007/s12626-021-00092-7. https://link.springer.com/10.1007/s12626-021-00092-7 263. Wei J and Zhang X. (2021). Sino-Japanese Relations from the Perspective of Chinese Mainstream Media During the Pandemic: Based on Word2vec and DTM Model. Journal of Advanced Computational Intelligence and Intelligent Informatics. 10.20965/jaciii.2021.p0574. 25:5. (574-580). Online publication date: 20-Sep-2021. https://www.fujipress.jp/jaciii/jc/jacii002500050574 264. Vo T and Do P. GOW-Stream: A novel approach of graph-of-words based mixture model for semantic-enhanced text stream clustering. Intelligent Data Analysis. 10.3233/IDA-205443. 25:5. (1211-1231). https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/IDA-205443 265. Nakamura R, Sano H, Inagaki A, Osawa R, Takagi T and Munemasa I. (2021). Dynamic Topic-Enhanced Memory Networks: Time-series Behavior Prediction based on Changing Intrinsic Consciousnesses 2021 IEEE 4th International Conference on Multimedia Information Processing and Retrieval (MIPR). 10.1109/MIPR51284.2021.00035. 978-1-6654-1865-2. (185-191). https://ieeexplore.ieee.org/document/9565493/ 266. Timakum T, Lee S and Song M. (2022). Exploring the research landscape of data warehousing and mining based on DaWaK Conference full-text articles. Data & Knowledge Engineering. 135:C. Online publication date: 1-Sep-2021. https://doi.org/10.1016/j.datak.2021.101926 267. Pathak A, Pandey M and Rautaray S. (2021). Topic-level sentiment analysis of social media data using deep learning. Applied Soft Computing. 10.1016/j.asoc.2021.107440. 108. (107440). Online publication date: 1-Sep-2021. https://linkinghub.elsevier.com/retrieve/pii/S156849462100363X 268. Song H, Finn E and Rosenberg M. (2021). Neural signatures of attentional engagement during narratives and its consequences for event memory. Proceedings of the National Academy of Sciences. 10.1073/pnas.2021905118. 118:33. Online publication date: 17-Aug-2021. https://pnas.org/doi/full/10.1073/pnas.2021905118 269. Rakib M, Zeh N and Milios E. Efficient clustering of short text streams using online-offline clustering. Proceedings of the 21st ACM Symposium on Document Engineering. (1-10). https://doi.org/10.1145/3469096.3469866 270. Yang Y, Pan B, Cai D and Sun H. TopNet: Learning from Neural Topic Model to Generate Long Stories. Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. (1997-2005). https://doi.org/10.1145/3447548.3467410 271. del Gobbo E, Fontanella S, Sarra A and Fontanella L. (2020). Emerging Topics in Brexit Debate on Twitter Around the Deadlines. Social Indicators Research. 10.1007/s11205-020-02442-4. 156:2-3. (669-688). Online publication date: 1-Aug-2021. https://link.springer.com/10.1007/s11205-020-02442-4 272. Tiwaskar M, Garg Y, Li X, Candan K and Sapino M. (2021). Selego: robust variate selection for accurate time series forecasting. Data Mining and Knowledge Discovery. 10.1007/s10618-021-00777-1. https://link.springer.com/10.1007/s10618-021-00777-1 273. Xu W, Li Y and Qiang J. (2021). Dynamic clustering for short text stream based on Dirichlet process. Applied Intelligence. 10.1007/s10489-021-02263-z. https://link.springer.com/10.1007/s10489-021-02263-z 274. Mosallaie S, Rad M, Schiffauerova A and Ebadi A. (2021). Discovering the evolution of artificial intelligence in cancer research using dynamic topic modeling. COLLNET Journal of Scientometrics and Information Management. 10.1080/09737766.2021.1958659. 15:2. (225-240). Online publication date: 3-Jul-2021. https://www.tandfonline.com/doi/full/10.1080/09737766.2021.1958659 275. Pal R, Sekh A, Dogra D, Kar S, Roy P and Prasad D. (2021). Topic-based Video Analysis. ACM Computing Surveys. 10.1145/3459089. 54:6. (1-34). Online publication date: 1-Jul-2021. https://dl.acm.org/doi/10.1145/3459089 276. Baggio J. (2021). Knowledge generation via social-knowledge network co-evolution: 30 years (1990–2019) of adaptation, mitigation and transformation related to climate change. Climatic Change. 10.1007/s10584-021-03146-5. 167:1-2. Online publication date: 1-Jul-2021. https://link.springer.com/10.1007/s10584-021-03146-5 277. Vydra S and Kantorowicz J. (2021). Tracing Policy-relevant Information in Social Media: The Case of Twitter before and during the COVID-19 Crisis. Statistics, Politics and Policy. 10.1515/spp-2020-0013. 12:1. (87-127). Online publication date: 25-Jun-2021.. Online publication date: 1-Jun-2021. https://www.degruyter.com/document/doi/10.1515/spp-2020-0013/html 278. Wu H, Yi H and Li C. (2021). An integrated approach for detecting and quantifying the topic evolutions of patent technology: a case study on graphene field. Scientometrics. 10.1007/s11192-021-04000-2. https://link.springer.com/10.1007/s11192-021-04000-2 279. Zhang Z. (2021). It is all about TOEIC: discovering topics and trends in employee perceptions of corporate language policy. Journal of Multilingual and Multicultural Development. 10.1080/01434632.2021.1938087. (1-19). https://www.tandfonline.com/doi/full/10.1080/01434632.2021.1938087 280. Bernau J. (2021). From Christ to Compassion: The Changing Language of Pastoral Care. Journal for the Scientific Study of Religion. 10.1111/jssr.12711. 60:2. (362-381). Online publication date: 1-Jun-2021. https://onlinelibrary.wiley.com/doi/10.1111/jssr.12711 281. Chae B and Olson D. (2018). A Topical Exploration of the Intellectual Development of Decision Sciences 1975–2016 . Decision Sciences. 10.1111/deci.12326. 52:3. (543-566). Online publication date: 1-Jun-2021. https://onlinelibrary.wiley.com/doi/10.1111/deci.12326 282. Shao Y, Li X, Chen Y, Yu L and Cui B. Sys-TM: A Fast and General Topic Modeling System. IEEE Transactions on Knowledge and Data Engineering. 10.1109/TKDE.2019.2956518. 33:6. (2790-2802). https://ieeexplore.ieee.org/document/8917682/ 283. Li W, Saigo H, Tong B and Suzuki E. (2021). Topic modeling for sequential documents based on hybrid inter-document topic dependency. Journal of Intelligent Information Systems. 10.1007/s10844-020-00635-4. 56:3. (435-458). Online publication date: 1-Jun-2021. https://link.springer.com/10.1007/s10844-020-00635-4 284. Seifollahi S, Piccardi M and Jolfaei A. (2021). An Embedding-Based Topic Model for Document Classification. ACM Transactions on Asian and Low-Resource Language Information Processing. 20:3. (1-13). Online publication date: 31-May-2021. https://doi.org/10.1145/3431728 285. Wang Q, Li C and Ali G. (2021). An evolutionary analysis of new energy and industry policy tools in China based on large-scale policy topic modeling. PLOS ONE. 10.1371/journal.pone.0252502. 16:5. (e0252502). https://dx.plos.org/10.1371/journal.pone.0252502 286. Schaefermeier B, Stumme G and Hanika T. (2021). Topic space trajectories. Scientometrics. 10.1007/s11192-021-03931-0. https://link.springer.com/10.1007/s11192-021-03931-0 287. Ovádek M, Dyevre A and Wigard K. (2021). Analysing EU Treaty-Making and Litigation With Network Analysis and Natural Language Processing. Frontiers in Physics. 10.3389/fphy.2021.657607. 9. https://www.frontiersin.org/articles/10.3389/fphy.2021.657607/full 288. Maltseva A, Shilkina N, Evseev E, Matveev M and Makhnytkina O. (2021). Topic Modeling of Russian-Language Texts Using the Parts-of-Speech Composition of Topics (on the Example of Volunteer Movement Semantics in Social Media) 2021 29th Conference of Open Innovations Association (FRUCT). 10.23919/FRUCT52173.2021.9435475. 978-952-69244-5-8. (247-253). https://ieeexplore.ieee.org/document/9435475/ 289. Ding K, Choo W, Ng K, Ng S and Song P. (2021). Exploring Sources of Satisfaction and Dissatisfaction in Airbnb Accommodation Using Unsupervised and Supervised Topic Modeling. Frontiers in Psychology. 10.3389/fpsyg.2021.659481. 12. https://www.frontiersin.org/articles/10.3389/fpsyg.2021.659481/full 290. Liu S, Zhang R and Kishimoto T. (2020). Analysis and prospect of clinical psychology based on topic models: hot research topics and scientific trends in the latest decades. Psychology, Health & Medicine. 10.1080/13548506.2020.1738019. 26:4. (395-407). Online publication date: 21-Apr-2021. https://www.tandfonline.com/doi/full/10.1080/13548506.2020.1738019 291. Si J, Guo L and Zhou D. Unsupervised latent event representation learning and storyline extraction from news articles based on neural networks. Intelligent Data Analysis. 10.3233/IDA-195061. 25:3. (589-603). https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/IDA-195061 292. Deligiannis P, Vergoulis T, Chatzopoulos S and Tryfonopoulos C. Visualising Scientific Topic Evolution. Companion Proceedings of the Web Conference 2021. (468-472). https://doi.org/10.1145/3442442.3451371 293. Gerts D, Shelley C, Parikh N, Pitts T, Watson Ross C, Fairchild G, Vaquera Chavez N and Daughton A. (2021). “Thought I’d Share First” and Other Conspiracy Theory Tweets from the COVID-19 Infodemic: Exploratory Study. JMIR Public Health and Surveillance. 10.2196/26527. 7:4. (e26527). https://publichealth.jmir.org/2021/4/e26527 294. Das K, Ghosh P and Daniels M. (2021). Modeling Multiple Time-Varying Related Groups: A Dynamic Hierarchical Bayesian Approach With an Application to the Health and Retirement Study. Journal of the American Statistical Association. 10.1080/01621459.2021.1886105. 116:534. (558-568). Online publication date: 3-Apr-2021. https://www.tandfonline.com/doi/full/10.1080/01621459.2021.1886105 295. Béchara H, Herzog A, Jankin S and John P. (2021). Transfer learning for topic labeling: Analysis of the UK House of Commons speeches 1935–2014. Research & Politics. 10.1177/20531680211022206. 8:2. (205316802110222). Online publication date: 1-Apr-2021. http://journals.sagepub.com/doi/10.1177/20531680211022206 296. Windsor C. (2021). THE INTELLECTUAL IDEAS INSIDE CENTRAL BANKS: WHAT'S CHANGED (OR NOT) SINCE THE CRISIS?. Journal of Economic Surveys. 10.1111/joes.12413. 35:2. (539-565). Online publication date: 1-Apr-2021. https://onlinelibrary.wiley.com/doi/10.1111/joes.12413 297. Bertsch C, Hull I and Zhang X. (2021). Narrative fragmentation and the business cycle. Economics Letters. 10.1016/j.econlet.2021.109783. 201. (109783). Online publication date: 1-Apr-2021. https://linkinghub.elsevier.com/retrieve/pii/S0165176521000604 298. Jebari C, Herrera-Viedma E and Cobo M. (2021). The use of citation context to detect the evolution of research topics: a large-scale analysis. Scientometrics. 126:4. (2971-2989). Online publication date: 1-Apr-2021. https://doi.org/10.1007/s11192-020-03858-y 299. Taranto-Vera G, Galindo-Villardón P, Merchán-Sánchez-Jara J, Salazar-Pozo J, Moreno-Salazar A and Salazar-Villalva V. (2021). Algorithms and software for data mining and machine learning: a critical comparative view from a systematic review of the literature. The Journal of Supercomputing. 10.1007/s11227-021-03708-5. http://link.springer.com/10.1007/s11227-021-03708-5 300. Soni S, Lerman K and Eisenstein J. (2021). Follow the leader. Journal of the Association for Information Science and Technology. 72:4. (478-492). Online publication date: 8-Mar-2021. https://doi.org/10.1002/asi.24421 301. Chauhan U and Shah A. (2021). Improving Semantic Coherence of Gujarati Text Topic Model Using Inflectional Forms Reduction and Single-letter Words Removal. ACM Transactions on Asian and Low-Resource Language Information Processing. 10.1145/3447760. 20:1. (1-18). Online publication date: 1-Mar-2021. https://dl.acm.org/doi/10.1145/3447760 302. Lafia S, Kuhn W, Caylor K and Hemphill L. (2021). Mapping research topics at multiple levels of detail. Patterns. 10.1016/j.patter.2021.100210. 2:3. (100210). Online publication date: 1-Mar-2021. https://linkinghub.elsevier.com/retrieve/pii/S2666389921000209 303. Elakiya E and Rajkumar N. (2019). RETRACTED ARTICLE: In text mining: detection of topic and sub-topic using multiple spider hunting model. Journal of Ambient Intelligence and Humanized Computing. 10.1007/s12652-019-01588-5. 12:3. (3571-3580). Online publication date: 1-Mar-2021. https://link.springer.com/10.1007/s12652-019-01588-5 304. Ma S, Zhang H, Zhang C and Liu X. (2021). Chronological citation recommendation with time preference. Scientometrics. 10.1007/s11192-021-03878-2. http://link.springer.com/10.1007/s11192-021-03878-2 305. Heusser A, Fitzpatrick P and Manning J. (2021). Geometric models reveal behavioural and neural signatures of transforming experiences into memories. Nature Human Behaviour. 10.1038/s41562-021-01051-6. 5:7. (905-919). https://www.nature.com/articles/s41562-021-01051-6 306. Müller-Hansen F, Callaghan M, Lee Y, Leipprand A, Flachsland C and Minx J. (2021). Who cares about coal? Analyzing 70 years of German parliamentary debates on coal with dynamic topic modeling. Energy Research & Social Science. 10.1016/j.erss.2020.101869. 72. (101869). Online publication date: 1-Feb-2021. https://linkinghub.elsevier.com/retrieve/pii/S2214629620304448 307. Kwayu K, Kwigizile V, Lee K and Oh J. (2021). Discovering latent themes in traffic fatal crash narratives using text mining analytics and network topology. Accident Analysis & Prevention. 10.1016/j.aap.2020.105899. 150. (105899). Online publication date: 1-Feb-2021. https://linkinghub.elsevier.com/retrieve/pii/S000145752031719X 308. Bonaccorsi A, Chiarello F and Fantoni G. (2020). Impact for whom? Mapping the users of public research with lexicon-based text mining. Scientometrics. 10.1007/s11192-020-03803-z. 126:2. (1745-1774). Online publication date: 1-Feb-2021. http://link.springer.com/10.1007/s11192-020-03803-z 309. Pathak A, Pandey M and Rautaray S. Adaptive Framework for Deep Learning Based Dynamic and Temporal Topic Modeling from Big Data. Recent Patents on Engineering. 10.2174/1872212113666190329234812. 14:3. (394-402). https://www.eurekaselect.com/171165/article 310. Vijayarani J and Geetha T. (2021). Joint learning of author and citation contexts for computing drift in scholarly documents. International Journal of Machine Learning and Cybernetics. 10.1007/s13042-020-01265-6. http://link.springer.com/10.1007/s13042-020-01265-6 311. Delasalles E, Lamprier S and Denoyer L. (2021). Deep dynamic neural networks for temporal language modeling in author communities. Knowledge and Information Systems. 10.1007/s10115-020-01539-z. http://link.springer.com/10.1007/s10115-020-01539-z 312. Garg Y and Candan K. (2021). SDMA: Saliency-Driven Mutual Cross Attention for Multi-Variate Time Series 2020 25th International Conference on Pattern Recognition (ICPR). 10.1109/ICPR48806.2021.9412552. 978-1-7281-8808-9. (7242-7249). https://ieeexplore.ieee.org/document/9412552/ 313. Muchene L, Safari W and Amancio D. (2021). Two-stage topic modelling of scientific publications: A case study of University of Nairobi, Kenya. PLOS ONE. 10.1371/journal.pone.0243208. 16:1. (e0243208). https://dx.plos.org/10.1371/journal.pone.0243208 314. Dash A, Zhang D and Zhou L. (2021). Personalized Ranking of Online Reviews Based on Consumer Preferences in Product Features. International Journal of Electronic Commerce. 10.1080/10864415.2021.1846852. 25:1. (29-50). Online publication date: 2-Jan-2021. https://www.tandfonline.com/doi/full/10.1080/10864415.2021.1846852 315. Moss F and Rohrmeier M. (2021). Discovering Tonal Profiles with Latent Dirichlet Allocation. Music & Science. 10.1177/20592043211048827. 4. (205920432110488). Online publication date: 1-Jan-2021. http://journals.sagepub.com/doi/10.1177/20592043211048827 316. Yang S, Huang G, Zhou X, Mak V and Yearwood J. (2021). EWNStream+: Effective and Real-time Clustering of Short Text Streams Using Evolutionary Word Relation Network. International Journal of Information Technology & Decision Making. 10.1142/S0219622021500024. 20:01. (341-370). Online publication date: 1-Jan-2021. https://www.worldscientific.com/doi/abs/10.1142/S0219622021500024 317. Filstroff L, Gouvert O, Fevotte C and Cappe O. A Comparative Study of Gamma Markov Chains for Temporal Non-Negative Matrix Factorization. IEEE Transactions on Signal Processing. 10.1109/TSP.2021.3060000. 69. (1614-1626). https://ieeexplore.ieee.org/document/9359515/ 318. Zhang Y, Calyam P, Joshi T, Nair S and Xu D. Domain-specific Topic Model for Knowledge Discovery in Computational and Data-Intensive Scientific Communities. IEEE Transactions on Knowledge and Data Engineering. 10.1109/TKDE.2021.3093350. (1-1). https://ieeexplore.ieee.org/document/9470954/ 319. MAHALAKSHMI G, SIVA R and SENDHILKUMAR S. On the Expressive Power of Scientific Manuscripts. IEEE Transactions on Emerging Topics in Computing. 10.1109/TETC.2018.2870179. 9:1. (269-279). https://ieeexplore.ieee.org/document/8466913/ 320. Kuhr F, Lichtenberger M, Braun T and Moller R. (2021). Enhancing Relational Topic Models with Named Entity Induced Links 2021 IEEE 15th International Conference on Semantic Computing (ICSC). 10.1109/ICSC50631.2021.00059. 978-1-7281-8899-7. (314-317). https://ieeexplore.ieee.org/document/9364577/ 321. Di-Fei M, Na L, Ming-Xia L and Hao-Long S. An Improved Dynamic Collaborative Filtering Algorithm Based on LDA. IEEE Access. 10.1109/ACCESS.2021.3094519. 9. (122568-122577). https://ieeexplore.ieee.org/document/9474435/ 322. Alattar F and Shaalan K. Using Artificial Intelligence to Understand What Causes Sentiment Changes on Social Media. IEEE Access. 10.1109/ACCESS.2021.3073657. 9. (61756-61767). https://ieeexplore.ieee.org/document/9405608/ 323. Alattar F and Shaalan K. A Survey on Opinion Reason Mining and Interpreting Sentiment Variations. IEEE Access. 10.1109/ACCESS.2021.3063921. 9. (39636-39655). https://ieeexplore.ieee.org/document/9369288/ 324. Boehm F and Hanlon B. (2021). What Is Happening on Twitter? A Framework for Student Research Projects With Tweets. Journal of Statistics and Data Science Education. 10.1080/10691898.2020.1848486. 29:sup1. (S95-S102). Online publication date: 1-Jan-2021. https://www.tandfonline.com/doi/full/10.1080/10691898.2020.1848486 325. Sun Y, Hayashi T and Ohsawa Y. (2021). A Latent Topic Analysis Framework for Category-Level Target Promotion in the Supermarket. Procedia Computer Science. 192:C. (2170-2179). Online publication date: 1-Jan-2021. https://doi.org/10.1016/j.procs.2021.08.230 326. Kim B, Yoo M, Park K, Lee K and Kim J. (2021). A value of civic voices for smart city: A big data analysis of civic queries posed by Seoul citizens. Cities. 10.1016/j.cities.2020.102941. 108. (102941). Online publication date: 1-Jan-2021. https://linkinghub.elsevier.com/retrieve/pii/S0264275120312890 327. Zong C, Xia R and Zhang J. (2021). Topic Model. Text Data Mining. 10.1007/978-981-16-0100-2_7. (145-162). https://link.springer.com/10.1007/978-981-16-0100-2_7 328. Bickel M and Liedtke C. (2021). Angewandtes Text Mining im Kontext der Nachhaltigkeitsforschung am Beispiel der deutschen Forschungslandkarte der Hochschulrektorenkonferenz. Digitalisierung und Nachhaltigkeit. 10.1007/978-3-662-61534-8_8. (147-164). http://link.springer.com/10.1007/978-3-662-61534-8_8 329. Fedorov A, Datyev I and Shchur A. (2021). Social Media Communities Topic Modeling. Data Science and Intelligent Systems. 10.1007/978-3-030-90321-3_50. (605-614). https://link.springer.com/10.1007/978-3-030-90321-3_50 330. He Y, Rao A, Burghardt K and Lerman K. (2021). Identifying Shifts in Collective Attention to Topics on Social Media. Social, Cultural, and Behavioral Modeling. 10.1007/978-3-030-80387-2_22. (224-234). https://link.springer.com/10.1007/978-3-030-80387-2_22 331. Mützel S and Kressin L. (2021). From Simmel to Relational Sociology. Handbook of Classical Sociological Theory. 10.1007/978-3-030-78205-4_10. (217-238). https://link.springer.com/10.1007/978-3-030-78205-4_10 332. Korkeamäki L. (2021). Further Semiotic Perspectives on the Outcome-Based vs Performance-Based Semantic Dispute. The Palgrave Handbook of Servitization. 10.1007/978-3-030-75771-7_9. (133-147). https://link.springer.com/10.1007/978-3-030-75771-7_9 333. Puhakka V and Ojala A. (2021). A Review of International Entrepreneurship as Part of Broader Opportunity Research: Topic Modelling Approach. Empirical International Entrepreneurship. 10.1007/978-3-030-68972-8_6. (89-113). https://link.springer.com/10.1007/978-3-030-68972-8_6 334. Nguyen B, Kiyoaki S and Huynh V. (2021). Topics in Financial Filings and Bankruptcy Prediction with Distributed Representations of Textual Data. Machine Learning and Knowledge Discovery in Databases. Applied Data Science and Demo Track. 10.1007/978-3-030-67670-4_19. (306-322). http://link.springer.com/10.1007/978-3-030-67670-4_19 335. Rawte V, Gupta A and Zaki M. (2021). A Comparative Analysis of Temporal Long Text Similarity: Application to Financial Documents. Mining Data for Financial Applications. 10.1007/978-3-030-66981-2_7. (77-91). http://link.springer.com/10.1007/978-3-030-66981-2_7 336. Oiva M. (2021). Topic Modeling Russian History. The Palgrave Handbook of Digital Russia Studies. 10.1007/978-3-030-42855-6_24. (427-442). https://link.springer.com/10.1007/978-3-030-42855-6_24 337. Melluso N, Bonaccorsi A, Chiarello F, Fantoni G and Gherghina S. (2020). Rapid detection of fast innovation under the pressure of COVID-19. PLOS ONE. 10.1371/journal.pone.0244175. 15:12. (e0244175). https://dx.plos.org/10.1371/journal.pone.0244175 338. Sakhovskiy A, Tutubalina E, Solovyev V and Solnyshkina M. (2020). Topic Modeling as a Method of Educational Text Structuring 2020 13th International Conference on Developments in eSystems Engineering (DeSE). 10.1109/DeSE51703.2020.9450232. 978-1-6654-2238-3. (399-405). https://ieeexplore.ieee.org/document/9450232/ 339. Jung S, Datta R and Segev A. (2020). Identification and Prediction of Emerging Topics through Their Relationships to Existing Topics 2020 IEEE International Conference on Big Data (Big Data). 10.1109/BigData50022.2020.9378277. 978-1-7281-6251-5. (5078-5087). https://ieeexplore.ieee.org/document/9378277/ 340. Rezaee M and Ferraro F. A discrete variational recurrent topic model without the reparametrization trick. Proceedings of the 34th International Conference on Neural Information Processing Systems. (13831-13843). /doi/10.5555/3495724.3496884 341. ZHANG L and LI C. (2020). Research on Hotspot Mining Method of Twitter News Report Based on LDA and Sentiment Analysis 2020 International Conference on Machine Learning and Cybernetics (ICMLC). 10.1109/ICMLC51923.2020.9469557. 978-1-6654-1943-7. (40-44). https://ieeexplore.ieee.org/document/9469557/ 342. Popa A. (2021). Supporting secondary research in early drug discovery process through a Natural Language Processing based system. Proceedings of the International Conference on Applied Statistics. 10.2478/icas-2021-0023. 2:1. (254-267). Online publication date: 1-Dec-2020.. Online publication date: 1-Dec-2020. https://www.sciendo.com/article/10.2478/icas-2021-0023 343. Popa A. (2021). Supporting secondary research in early drug discovery process through a Natural Language Processing based system. Proceedings of the International Conference on Applied Statistics. 10.2478/icas-2021-0019. 2:1. (209-222). Online publication date: 1-Dec-2020.. Online publication date: 1-Dec-2020. https://www.sciendo.com/article/10.2478/icas-2021-0019 344. Peng X, Han C, Ouyang F and Liu Z. (2020). Topic tracking model for analyzing student-generated posts in SPOC discussion forums. International Journal of Educational Technology in Higher Education. 10.1186/s41239-020-00211-4. 17:1. Online publication date: 1-Dec-2020. https://educationaltechnologyjournal.springeropen.com/articles/10.1186/s41239-020-00211-4 345. Rizk A and Elragal A. (2020). Data science: developing theoretical contributions in information systems via text analytics. Journal of Big Data. 10.1186/s40537-019-0280-6. 7:1. Online publication date: 1-Dec-2020. https://journalofbigdata.springeropen.com/articles/10.1186/s40537-019-0280-6 346. Birks D, Coleman A and Jackson D. (2020). Unsupervised identification of crime problems from police free-text data. Crime Science. 10.1186/s40163-020-00127-4. 9:1. Online publication date: 1-Dec-2020. https://crimesciencejournal.biomedcentral.com/articles/10.1186/s40163-020-00127-4 347. Vayansky I and Kumar S. (2020). A review of topic modeling methods. Information Systems. 10.1016/j.is.2020.101582. 94. (101582). Online publication date: 1-Dec-2020. https://linkinghub.elsevier.com/retrieve/pii/S0306437920300703 348. Ashihara K, El Vaigh C, Chu C, Renoust B, Okubo N, Takemura N, Nakashima Y and Nagahara H. (2020). Improving topic modeling through homophily for legal documents. Applied Network Science. 10.1007/s41109-020-00321-y. 5:1. Online publication date: 1-Dec-2020. https://appliednetsci.springeropen.com/articles/10.1007/s41109-020-00321-y 349. Daou H. (2020). Sentiment of the public: the role of social media in revealing important events. Online Information Review. 10.1108/OIR-12-2019-0373. ahead-of-print:ahead-of-print. Online publication date: 27-Nov-2020. https://www.emerald.com/insight/content/doi/10.1108/OIR-12-2019-0373/full/html 350. Suzuki T. (2020). Bayesian Modeling of Random Walker for Community Detection in Networks. Journal of the Physical Society of Japan. 10.7566/JPSJ.89.114006. 89:11. (114006). Online publication date: 15-Nov-2020. https://journals.jps.jp/doi/10.7566/JPSJ.89.114006 351. Ahmed M, Sadri A, Pradhananga P, Elzomor M and Pradhananga N. (2020). Social Media Communication Patterns of Construction Industry in Major Disasters Construction Research Congress 2020. 10.1061/9780784482865.072. 9780784482865. (678-687). Online publication date: 9-Nov-2020. http://ascelibrary.org/doi/10.1061/9780784482865.072 352. Tighe P, Sannapaneni B, Fillingim R, Doyle C, Kent M, Shickel B and Rashidi P. (2020). Forty-two Million Ways to Describe Pain: Topic Modeling of 200,000 PubMed Pain-Related Abstracts Using Natural Language Processing and Deep Learning–Based Text Generation. Pain Medicine. 10.1093/pm/pnaa061. 21:11. (3133-3160). Online publication date: 1-Nov-2020. https://academic.oup.com/painmedicine/article/21/11/3133/5816322 353. Lu C, Peltonen J, Nummenmaa J and Järvelin K. Probabilistic Dynamic Non-negative Group Factor Model for Multi-source Text Mining. Proceedings of the 29th ACM International Conference on Information & Knowledge Management. (1035-1043). https://doi.org/10.1145/3340531.3411956 354. Fazelnia G, Ibrahim M, Modarres C, Wu K and Paisley J. Mixed membership recurrent neural networks for modeling customer purchases. Proceedings of the First ACM International Conference on AI in Finance. (1-8). https://doi.org/10.1145/3383455.3422543 355. Gozzi N, Tizzani M, Starnini M, Ciulla F, Paolotti D, Panisson A and Perra N. (2020). Collective Response to Media Coverage of the COVID-19 Pandemic on Reddit and Wikipedia: Mixed-Methods Analysis. Journal of Medical Internet Research. 10.2196/21597. 22:10. (e21597). http://www.jmir.org/2020/10/e21597/ 356. Han X. (2020). Evolution of research topics in LIS between 1996 and 2019: an analysis based on latent Dirichlet allocation topic model. Scientometrics. 10.1007/s11192-020-03721-0. http://link.springer.com/10.1007/s11192-020-03721-0 357. Huang Y, Shi L, Su Y, Hu Y, Tong H, Wang C, Yang T, Wang D and Liang S. Eiffel: Evolutionary Flow Map for Influence Graph Visualization. IEEE Transactions on Visualization and Computer Graphics. 10.1109/TVCG.2019.2906900. 26:10. (2944-2960). https://ieeexplore.ieee.org/document/8673661/ 358. Zhang Y, Li Z, Tang X and Chen F. (2020). Time-aware Service Recommendation Based on Dynamic Preference and QoS 2020 IEEE International Conference on Web Services (ICWS). 10.1109/ICWS49710.2020.00052. 978-1-7281-8786-0. (347-354). https://ieeexplore.ieee.org/document/9284128/ 359. Guo M, Liao X, Liu J and Zhang Q. (2020). Consumer preference analysis: A data-driven multiple criteria approach integrating online information. Omega. 10.1016/j.omega.2019.05.010. 96. (102074). Online publication date: 1-Oct-2020. https://linkinghub.elsevier.com/retrieve/pii/S0305048318311654 360. Hashimoto T, Shepard D, Kuboyama T, Shin K, Kobayashi R and Uno T. (2020). Analyzing temporal patterns of topic diversity using graph clustering. The Journal of Supercomputing. 10.1007/s11227-020-03433-5. http://link.springer.com/10.1007/s11227-020-03433-5 361. Ihou K, Bouguila N and Bouachir W. (2020). Efficient integration of generative topic models into discriminative classifiers using robust probabilistic kernels. Pattern Analysis and Applications. 10.1007/s10044-020-00917-1. http://link.springer.com/10.1007/s10044-020-00917-1 362. Toubia O. (2020). A Poisson Factorization Topic Model for the Study of Creative Documents (and Their Summaries). Journal of Marketing Research. 10.1177/0022243720943209. (002224372094320). http://journals.sagepub.com/doi/10.1177/0022243720943209 363. Li Y, Nair P, Wen Z, Chafi I, Okhmatovskaia A, Powell G, Shen Y and Buckeridge D. Global Surveillance of COVID-19 by mining news media using a multi-source dynamic embedded topic model. Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics. (1-14). https://doi.org/10.1145/3388440.3412418 364. Bizzoni Y, Degaetano-Ortlieb S, Fankhauser P and Teich E. (2020). Linguistic Variation and Change in 250 Years of English Scientific Writing: A Data-Driven Approach. Frontiers in Artificial Intelligence. 10.3389/frai.2020.00073. 3. https://www.frontiersin.org/article/10.3389/frai.2020.00073/full 365. Liu H, Chen Z, Tang J, Zhou Y and Liu S. (2020). Mapping the technology evolution path: a novel model for dynamic topic detection and tracking. Scientometrics. 10.1007/s11192-020-03700-5. http://link.springer.com/10.1007/s11192-020-03700-5 366. Munro E and Ng S. (2020). Latent Dirichlet Analysis of Categorical Survey Responses. Journal of Business & Economic Statistics. 10.1080/07350015.2020.1802285. (1-16). https://www.tandfonline.com/doi/full/10.1080/07350015.2020.1802285 367. Chen S, Andrienko N, Andrienko G, Adilova L, Barlet J, Kindermann J, Nguyen P, Thonnard O and Turkay C. LDA Ensembles for Interactive Exploration and Categorization of Behaviors. IEEE Transactions on Visualization and Computer Graphics. 10.1109/TVCG.2019.2904069. 26:9. (2775-2792). https://ieeexplore.ieee.org/document/8663312/ 368. Bai Y, Jia S and Chen L. (2020). Topic Evolution Analysis of COVID-19 News Articles. Journal of Physics: Conference Series. 10.1088/1742-6596/1601/5/052009. 1601. (052009). Online publication date: 1-Aug-2020. https://iopscience.iop.org/article/10.1088/1742-6596/1601/5/052009 369. Zheng J, Wen Q and Qiang M. (2020). Understanding Demand for Project Manager Competences in the Construction Industry: Data Mining Approach. Journal of Construction Engineering and Management. 10.1061/(ASCE)CO.1943-7862.0001865. 146:8. Online publication date: 1-Aug-2020. https://ascelibrary.org/doi/10.1061/%28ASCE%29CO.1943-7862.0001865 370. Qian Y, Liu Y and Sheng Q. (2020). Understanding hierarchical structural evolution in a scientific discipline: A case study of artificial intelligence. Journal of Informetrics. 10.1016/j.joi.2020.101047. 14:3. (101047). Online publication date: 1-Aug-2020. https://linkinghub.elsevier.com/retrieve/pii/S1751157719302925 371. Jin J, Niu B, Ji P and Geng Q. (2018). An integer linear programming model of reviewer assignment with research interest considerations. Annals of Operations Research. 10.1007/s10479-018-2919-7. 291:1-2. (409-433). Online publication date: 1-Aug-2020. http://link.springer.com/10.1007/s10479-018-2919-7 372. Guo D, Chen B, Lu R and Zhou M. Recurrent hierarchical topic-guided RNN for language generation. Proceedings of the 37th International Conference on Machine Learning. (3810-3821). /doi/10.5555/3524938.3525295 373. Oghaz T, Mutlu E, Jasser J, Yousefi N and Garibay I. Probabilistic Model of Narratives Over Topical Trends in Social Media. Proceedings of the 31st ACM Conference on Hypertext and Social Media. (281-290). https://doi.org/10.1145/3372923.3404790 374. Zhong N and Schweidel D. (2020). Capturing Changes in Social Media Content. Marketing Science. 39:4. (827-846). Online publication date: 1-Jul-2020. https://doi.org/10.1287/mksc.2019.1212 375. Algaba A, Ardia D, Bluteau K, Borms S and Boudt K. (2020). ECONOMETRICS MEETS SENTIMENT: AN OVERVIEW OF METHODOLOGY AND APPLICATIONS. Journal of Economic Surveys. 10.1111/joes.12370. 34:3. (512-547). Online publication date: 1-Jul-2020. https://onlinelibrary.wiley.com/doi/10.1111/joes.12370 376. Chen Y, Wu J, Lin J, Liu R, Zhang H and Ye Z. Affinity Regularized Non-Negative Matrix Factorization for Lifelong Topic Modeling. IEEE Transactions on Knowledge and Data Engineering. 10.1109/TKDE.2019.2904687. 32:7. (1249-1262). https://ieeexplore.ieee.org/document/8666058/ 377. Cheng K, Wang Z, Huang P, Chundi P and Song M. (2020). TopExplorer: Tool Support for Extracting and Visualizing Topic Models in Bioengineering Text Corpora 2020 IEEE International Conference on Electro Information Technology (EIT). 10.1109/EIT48999.2020.9208294. 978-1-7281-5317-9. (334-343). https://ieeexplore.ieee.org/document/9208294/ 378. Lou S, Li T, Kong X, Zhang J, Liu J, Lee D and Gerstein M. (2020). TopicNet: a framework for measuring transcriptional regulatory network change. Bioinformatics. 10.1093/bioinformatics/btaa403. 36:Supplement_1. (i474-i481). Online publication date: 1-Jul-2020. https://academic.oup.com/bioinformatics/article/36/Supplement_1/i474/5870518 379. Zhao Z, Koutsopoulos H and Zhao J. (2020). Discovering latent activity patterns from transit smart card data: A spatiotemporal topic model. Transportation Research Part C: Emerging Technologies. 10.1016/j.trc.2020.102627. 116. (102627). Online publication date: 1-Jul-2020. https://linkinghub.elsevier.com/retrieve/pii/S0968090X19310022 380. Uras N, Vacca S and Destefanis G. Investigation of Mutual-Influence among Blockchain Development Communities and Cryptocurrency Price Changes. Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops. (779-782). https://doi.org/10.1145/3387940.3392245 381. Wang A and Zhang J. (2020). Topic discovery method based on topic model combined with hierarchical clustering 2020 IEEE 5th Information Technology and Mechatronics Engineering Conference (ITOEC). 10.1109/ITOEC49072.2020.9141892. 978-1-7281-4323-1. (814-818). https://ieeexplore.ieee.org/document/9141892/ 382. Lee M and Song M. (2020). Incorporating citation impact into analysis of research trends. Scientometrics. 10.1007/s11192-020-03508-3. http://link.springer.com/10.1007/s11192-020-03508-3 383. Ghoorchian K and Sahlgren M. (2020). GDTM: Graph-based Dynamic Topic Models. Progress in Artificial Intelligence. 10.1007/s13748-020-00206-2. http://link.springer.com/10.1007/s13748-020-00206-2 384. Sleeman J, Finin T and Halem M. (2020). Temporal Understanding of Cybersecurity Threats 2020 IEEE 6th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). 10.1109/BigDataSecurity-HPSC-IDS49724.2020.00030. 978-1-7281-6873-9. (115-121). https://ieeexplore.ieee.org/document/9123059/ 385. Ezzeldin M and El-Dakhakhni W. (2020). Metaresearching Structural Engineering Using Text Mining: Trend Identifications and Knowledge Gap Discoveries. Journal of Structural Engineering. 10.1061/(ASCE)ST.1943-541X.0002523. 146:5. Online publication date: 1-May-2020. https://ascelibrary.org/doi/10.1061/%28ASCE%29ST.1943-541X.0002523 386. Ebadi A, Tremblay S, Goutte C and Schiffauerova A. (2020). Application of machine learning techniques to assess the trends and alignment of the funded research output. Journal of Informetrics. 10.1016/j.joi.2020.101018. 14:2. (101018). Online publication date: 1-May-2020. https://linkinghub.elsevier.com/retrieve/pii/S1751157718301901 387. Costa G and Ortale R. (2019). Topic-aware joint analysis of overlapping communities and roles in social media. International Journal of Data Science and Analytics. 10.1007/s41060-019-00190-4. 9:4. (415-429). Online publication date: 1-May-2020. http://link.springer.com/10.1007/s41060-019-00190-4 388. Yang H. Learning Topic Map from Large Scale Social Media Data. Companion Proceedings of the Web Conference 2020. (279-283). https://doi.org/10.1145/3366424.3382088 389. Cross J and Greene D. (2019). Talk is not cheap: Policy agendas, information processing, and the unusually proportional nature of European Central Bank communications policy responses. Governance. 10.1111/gove.12441. 33:2. (425-444). Online publication date: 1-Apr-2020. https://onlinelibrary.wiley.com/doi/10.1111/gove.12441 390. Musa I, Xu K, Liu F, Zamit I, Abro W and Qi G. A cross-lingual sentiment topic model evolution over time. Intelligent Data Analysis. 10.3233/IDA-184449. 24:2. (253-266). https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/IDA-184449 391. Ammirato S, Felicetti A, Linzalone R, Volpentesta A and Schiuma G. (2020). A systematic literature review of revenue management in passenger transportation. Measuring Business Excellence. 10.1108/MBE-09-2019-0096. 24:2. (223-242). Online publication date: 23-Mar-2020. https://www.emerald.com/insight/content/doi/10.1108/MBE-09-2019-0096/full/html 392. Kreutz C, Sahitaj P and Schenkel R. (2020). Evaluating semantometrics from computer science publications. Scientometrics. 10.1007/s11192-020-03409-5. http://link.springer.com/10.1007/s11192-020-03409-5 393. Xuan J, Luo X, Lu J and Zhang G. (2020). Web event evolution trend prediction based on its computational social context. World Wide Web. 10.1007/s11280-019-00753-2. http://link.springer.com/10.1007/s11280-019-00753-2 394. Savov P, Jatowt A and Nielek R. (2020). Identifying breakthrough scientific papers. Information Processing and Management: an International Journal. 57:2. Online publication date: 1-Mar-2020. https://doi.org/10.1016/j.ipm.2019.102168 395. Guo L, Zhou D, He Y and Xu H. Storyline extraction from news articles with dynamic dependency. Intelligent Data Analysis. 10.3233/IDA-184448. 24:1. (183-197). https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/IDA-184448 396. Keller T, Hase V, Thaker J, Mahl D and Schäfer M. (2019). News Media Coverage of Climate Change in India 1997–2016: Using Automated Content Analysis to Assess Themes and Topics. Environmental Communication. 10.1080/17524032.2019.1643383. 14:2. (219-235). Online publication date: 17-Feb-2020. https://www.tandfonline.com/doi/full/10.1080/17524032.2019.1643383 397. Sbalchiero S and Eder M. (2020). Topic modeling, long texts and the best number of topics. Some Problems and solutions. Quality & Quantity. 10.1007/s11135-020-00976-w. http://link.springer.com/10.1007/s11135-020-00976-w 398. TOYAMA A, NAKAMURA K and TANAKA S. (2020). Research Concerning Topic Extraction Method Using Burst Levels in Microblogsマイクロブログのバースト度合いを用いたトピック抽出手法に関する研究. Journal of Japan Society for Fuzzy Theory and Intelligent Informatics. 10.3156/jsoft.32.1_570. 32:1. (570-579). Online publication date: 15-Feb-2020. https://www.jstage.jst.go.jp/article/jsoft/32/1/32_570/_article/-char/ja/ 399. Huang Z, Epps J, Joachim D and Sethu V. Natural Language Processing Methods for Acoustic and Landmark Event-Based Features in Speech-Based Depression Detection. IEEE Journal of Selected Topics in Signal Processing. 10.1109/JSTSP.2019.2949419. 14:2. (435-448). https://ieeexplore.ieee.org/document/8882493/ 400. Kuhr F, Bender M, Braun T and Moller R. (2020). Maintaining Topic Models for Growing Corpora 2020 IEEE 14th International Conference on Semantic Computing (ICSC). 10.1109/ICSC.2020.00087. 978-1-7281-6332-1. (451-458). https://ieeexplore.ieee.org/document/9031467/ 401. Karell D and Freedman M. (2020). Sociocultural mechanisms of conflict: Combining topic and stochastic actor-oriented models in an analysis of Afghanistan, 1979–2001. Poetics. 10.1016/j.poetic.2019.101403. 78. (101403). Online publication date: 1-Feb-2020. https://linkinghub.elsevier.com/retrieve/pii/S0304422X18302766 402. Choi Y, Oh J and Park J. (2020). A Novel Approach to Managing the Dynamic Nature of Semantic Relatedness. Natural Language Processing. 10.4018/978-1-7998-0951-7.ch052. (1085-1114). http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-7998-0951-7.ch052 403. KIM S, TADA R and KATSUMTA S. (2020). A Quantitative Model for Natural Language Dataset with Evaluation Information:What Topic makes Consumer Reviews “Helpful”?評価付き自然言語データの定量分析. Kodo Keiryogaku (The Japanese Journal of Behaviormetrics). 10.2333/jbhmk.47.99. 47:2. (99-109). https://www.jstage.jst.go.jp/article/jbhmk/47/2/47_99/_article/-char/ja/ 404. OKUI T. (2020). A Topic Model for Repeated-Measures Data:an Application to Prescription Drug Data繰り返し測定データに対するトピックモデル:薬剤処方データへの適用. Kodo Keiryogaku (The Japanese Journal of Behaviormetrics). 10.2333/jbhmk.47.59. 47:1. (59-70). https://www.jstage.jst.go.jp/article/jbhmk/47/1/47_59/_article/-char/ja/ 405. Pan J and Roberts M. (2020). Censorship’s Effect on Incidental Exposure to Information: Evidence From Wikipedia. SAGE Open. 10.1177/2158244019894068. 10:1. (215824401989406). Online publication date: 1-Jan-2020. http://journals.sagepub.com/doi/10.1177/2158244019894068 406. Ge J, Shi L, Wu Y and Liu J. Human-Driven Dynamic Community Influence Maximization in Social Media Data Streams. IEEE Access. 10.1109/ACCESS.2020.3022096. 8. (162238-162251). https://ieeexplore.ieee.org/document/9187341/ 407. Balili C, Lee U, Segev A, Kim J and Ko M. TermBall: Tracking and Predicting Evolution Types of Research Topics by Using Knowledge Structures in Scholarly Big Data. IEEE Access. 10.1109/ACCESS.2020.3000948. 8. (108514-108529). https://ieeexplore.ieee.org/document/9110856/ 408. Meng X, Li P and Zhang X. A Personalized and Approximated Spatial Keyword Query Approach. IEEE Access. 10.1109/ACCESS.2020.2977996. 8. (44889-44902). https://ieeexplore.ieee.org/document/9022863/ 409. Yang P, Yao Y and Zhou H. Leveraging Global and Local Topic Popularities for LDA-Based Document Clustering. IEEE Access. 10.1109/ACCESS.2020.2969525. 8. (24734-24745). https://ieeexplore.ieee.org/document/8970318/ 410. Liu Z, Lin Y and Sun M. (2020). Document Representation. Representation Learning for Natural Language Processing. 10.1007/978-981-15-5573-2_5. (91-123). http://link.springer.com/10.1007/978-981-15-5573-2_5 411. Mittal V and Srivastava R. (2020). A Taxonomy of Methods for Handling Data Streams in Presence of Concepts Drifts. Futuristic Trends in Networks and Computing Technologies. 10.1007/978-981-15-4451-4_41. (521-531). http://link.springer.com/10.1007/978-981-15-4451-4_41 412. Yang S, Huang G, Zhou X and Xiang Y. (2020). Dynamic Clustering of Stream Short Documents Using Evolutionary Word Relation Network. Data Science. 10.1007/978-981-15-2810-1_40. (418-428). http://link.springer.com/10.1007/978-981-15-2810-1_40 413. Yin H, Yang S and Li J. (2020). Detecting Topic and Sentiment Dynamics Due to COVID-19 Pandemic Using Social Media. Advanced Data Mining and Applications. 10.1007/978-3-030-65390-3_46. (610-623). http://link.springer.com/10.1007/978-3-030-65390-3_46 414. Roy S, Malladi V, Sengupta A and Das S. (2020). Online Topic Modeling for Short Texts. Service-Oriented Computing. 10.1007/978-3-030-65310-1_41. (563-579). http://link.springer.com/10.1007/978-3-030-65310-1_41 415. Ayele W and Juell-Skielse G. (2020). A Process Model for Generating and Evaluating Ideas: The Use of Machine Learning and Visual Analytics to Support Idea Mining. Electronic Government and the Information Systems Perspective. 10.1007/978-3-030-58957-8_14. (189-203). http://link.springer.com/10.1007/978-3-030-58957-8_14 416. Suk J, Yang Y, Jeong Y, Xiang M and Kim K. (2020). Consumer Experience of a Disruptive Technology: An O2O Food Delivery App Case. Intelligent Human Systems Integration 2020. 10.1007/978-3-030-39512-4_178. (1171-1177). http://link.springer.com/10.1007/978-3-030-39512-4_178 417. Ayele W and Juell-Skielse G. (2020). Eliciting Evolving Topics, Trends and Foresight about Self-driving Cars Using Dynamic Topic Modeling. Advances in Information and Communication. 10.1007/978-3-030-39445-5_37. (488-509). http://link.springer.com/10.1007/978-3-030-39445-5_37 418. Christophe C, Velcin J, Cugliari J, Suignard P and Boumghar M. (2020). How to Detect Novelty in Textual Data Streams? A Comparative Study of Existing Methods. Advanced Analytics and Learning on Temporal Data. 10.1007/978-3-030-39098-3_9. (110-125). http://link.springer.com/10.1007/978-3-030-39098-3_9 419. Ashihara K, Chu C, Renoust B, Okubo N, Takemura N, Nakashima Y and Nagahara H. (2020). Legal Information as a Complex Network: Improving Topic Modeling Through Homophily. Complex Networks and Their Applications VIII. 10.1007/978-3-030-36683-4_3. (28-39). http://link.springer.com/10.1007/978-3-030-36683-4_3 420. Iannotta I and Vitale P. (2020). Research Topics: A Multidisciplinary Analysis of Online Communities to Detect Policy-Making Indicators. Advances on P2P, Parallel, Grid, Cloud and Internet Computing. 10.1007/978-3-030-33509-0_22. (246-257). http://link.springer.com/10.1007/978-3-030-33509-0_22 421. Kumar D and Singh S. Prioritized Named Entity Driven LDA for Document Clustering. Pattern Recognition and Machine Intelligence. (294-301). https://doi.org/10.1007/978-3-030-34872-4_33 422. Yurochkin M, Fan Z, Guha A, Koutris P and Nguyen X. Scalable inference of topic evolution via models for latent geometric structures. Proceedings of the 33rd International Conference on Neural Information Processing Systems. (5951-5961). /doi/10.5555/3454287.3454822 423. Khan M, Wakabayashi K and Fukuyama S. Events Insights Extraction from Twitter Using LDA and Day-Hashtag Pooling. Proceedings of the 21st International Conference on Information Integration and Web-based Applications & Services. (240-244). https://doi.org/10.1145/3366030.3366090 424. Kato S, Nakanishi T, Shimauchi H and Ahsan B. Topic Variation Detection Method for Detecting Political Business Cycles. Proceedings of the 6th IEEE/ACM International Conference on Big Data Computing, Applications and Technologies. (85-93). https://doi.org/10.1145/3365109.3368787 425. Yu W, Li J, Bhuiyan Z, Zhang R and Huai J. Ring: Real-Time Emerging Anomaly Monitoring System Over Text Streams. IEEE Transactions on Big Data. 10.1109/TBDATA.2017.2672672. 5:4. (506-519). https://ieeexplore.ieee.org/document/7862778/ 426. Nguyen P and Vo C. (2019). Early In-trouble Student Identification Based on Temporal Educational Data Clustering 2019 International Conference on Information Technology (ICIT). 10.1109/ICIT48102.2019.00062. 978-1-7281-6052-8. (313-318). https://ieeexplore.ieee.org/document/9031978/ 427. Gropp C, Herzog A, Safro I, Wilson P and Apon A. (2019). Clustered Latent Dirichlet Allocation for Scientific Discovery 2019 IEEE International Conference on Big Data (Big Data). 10.1109/BigData47090.2019.9005964. 978-1-7281-0858-2. (4503-4511). https://ieeexplore.ieee.org/document/9005964/ 428. Lee C and Wilkinson D. (2019). A review of stochastic block models and extensions for graph clustering. Applied Network Science. 10.1007/s41109-019-0232-2. 4:1. Online publication date: 1-Dec-2019. https://appliednetsci.springeropen.com/articles/10.1007/s41109-019-0232-2 429. Ma C, Zhang Y, Robert N and Li Y. (2019). Visual analysis of the opinion flow among multiple social groups. Journal of Visualization. 10.1007/s12650-019-00615-z. http://link.springer.com/10.1007/s12650-019-00615-z 430. Perrie J, Xie J, Nayebi M, Fokaefs M, Lyons K and Stroulia E. City on the river. Proceedings of the 29th Annual International Conference on Computer Science and Software Engineering. (82-91). /doi/10.5555/3370272.3370281 431. Chu Z, Cai R and Wang H. Accounting for Temporal Dynamics in Document Streams. Proceedings of the 28th ACM International Conference on Information and Knowledge Management. (1813-1822). https://doi.org/10.1145/3357384.3358022 432. Singh J, Kaur I and Singh A. (2019). Event detection from Twitter data 2019 4th International Conference on Information Systems and Computer Networks (ISCON). 10.1109/ISCON47742.2019.9036286. 978-1-7281-3651-6. (793-798). https://ieeexplore.ieee.org/document/9036286/ 433. Wang C, Miao Z, Lin Y and Gao J. (2019). User and Topic Hybrid Context Embedding for Finance-Related Text Data Mining 2019 International Conference on Data Mining Workshops (ICDMW). 10.1109/ICDMW.2019.00112. 978-1-7281-4896-0. (751-760). https://ieeexplore.ieee.org/document/8955635/ 434. Delasalles E, Lamprier S and Denoyer L. (2019). Learning Dynamic Author Representations with Temporal Language Models 2019 IEEE International Conference on Data Mining (ICDM). 10.1109/ICDM.2019.00022. 978-1-7281-4604-1. (120-129). https://ieeexplore.ieee.org/document/8970806/ 435. Fu C. (2019). Tracking user-role evolution via topic modeling in community question answering. Information Processing and Management: an International Journal. 56:6. Online publication date: 1-Nov-2019. https://doi.org/10.1016/j.ipm.2019.102075 436. Marrone M. (2019). Application of entity linking to identify research fronts and trends. Scientometrics. 10.1007/s11192-019-03274-x. http://link.springer.com/10.1007/s11192-019-03274-x 437. Katsurai M and Ono S. (2019). TrendNets: mapping emerging research trends from dynamic co-word networks via sparse representation. Scientometrics. 10.1007/s11192-019-03241-6. http://link.springer.com/10.1007/s11192-019-03241-6 438. Tikhonov A, Bogdanov V, Merzlyakov A and Guseinova K. (2019). Development and Implementation Problems of scientific and Technological Progress strategic Programs in the Russian Federation Regions: social and Organizational Barriers Part 2. MIR (Modernization. Innovation. Research). 10.18184/2079-4665.2019.10.3.340-368. 10:3. (340-368). https://www.mir-nayka.com/jour/article/view/927 439. Radford J and Lazer D. (2019). Big Data for Sociological Research. The Wiley Blackwell Companion to Sociology. 10.1002/9781119429333.ch24. (417-443). Online publication date: 15-Oct-2019. https://onlinelibrary.wiley.com/doi/10.1002/9781119429333.ch24 440. Dew R, Ansari A and Li Y. (2019). Modeling Dynamic Heterogeneity Using Gaussian Processes. Journal of Marketing Research. 10.1177/0022243719874047. (002224371987404). http://journals.sagepub.com/doi/10.1177/0022243719874047 441. Wang H, Hsu T and Sari Y. (2019). Personal research idea recommendation using research trends and a hierarchical topic model. Scientometrics. 10.1007/s11192-019-03258-x. http://link.springer.com/10.1007/s11192-019-03258-x 442. Sankaran K and Holmes S. (2018). Latent variable modeling for the microbiome. Biostatistics. 10.1093/biostatistics/kxy018. 20:4. (599-614). Online publication date: 1-Oct-2019. https://academic.oup.com/biostatistics/article/20/4/599/5032578 443. Introne J and Goggins S. (2019). Advice reification, learning, and emergent collective intelligence in online health support communities. Computers in Human Behavior. 99:C. (205-218). Online publication date: 1-Oct-2019. https://doi.org/10.1016/j.chb.2019.05.028 444. Keogh G. (2019). A Lexical Approach to Estimating Environmental Goods and Services Output in the Construction Sector via Soft Classification of Enterprise Activity Descriptions Using Latent Dirichlet Allocation. Journal of Official Statistics. 10.2478/jos-2019-0026. 35:3. (625-651). Online publication date: 1-Sep-2019.. Online publication date: 1-Sep-2019. https://www.sciendo.com/article/10.2478/jos-2019-0026 445. Park B, Murdie A and Davis D. (2018). The (co)evolution of human rights advocacy: Understanding human rights issue emergence over time. Cooperation and Conflict. 10.1177/0010836718808315. 54:3. (313-334). Online publication date: 1-Sep-2019. http://journals.sagepub.com/doi/10.1177/0010836718808315 446. Maitre J, Menard M, Chiron G, Bouju A and Sidere N. (2019). A Meaningful Information Extraction System for Interactive Analysis of Documents 2019 International Conference on Document Analysis and Recognition (ICDAR). 10.1109/ICDAR.2019.00024. 978-1-7281-3014-9. (92-99). https://ieeexplore.ieee.org/document/8978125/ 447. Choi S and Ko E. (2019). Analysis of <Korean Journal of Journalism & Communication Studies> from 1960 to 2018 using Metadata with Dynamic Topic Modeling. Korean Journal of Journalism & Communication Studies. 10.20879/kjjcs.2019.63.4.001. 63:4. (7-42). Online publication date: 31-Aug-2019. http://www.dbpia.co.kr/Journal/ArticleDetail/NODE08767049 448. Xu S, Zhai D, Wang F, An X, Pang H and Sun Y. (2019). A novel method for topic linkages between scientific publications and patents. Journal of the Association for Information Science and Technology. 70:9. (1026-1042). Online publication date: 2-Aug-2019. https://doi.org/10.1002/asi.24175 449. Denter N, Caferoglu H and Moehrle M. (2019). Applying Dynamic Topic Modeling for Understanding the Evolution of the RFID Technology 2019 Portland International Conference on Management of Engineering and Technology (PICMET). 10.23919/PICMET.2019.8893914. 978-1-890843-39-7. (1-9). https://ieeexplore.ieee.org/document/8893914/ 450. Zhang C, Butepage J, Kjellstrom H and Mandt S. Advances in Variational Inference. IEEE Transactions on Pattern Analysis and Machine Intelligence. 10.1109/TPAMI.2018.2889774. 41:8. (2008-2026). https://ieeexplore.ieee.org/document/8588399/ 451. Malhotra R, Taneja A and Arora A. (2019). Temporal Recommendations for Discovering Author Interests 2019 Twelfth International Conference on Contemporary Computing (IC3). 10.1109/IC3.2019.8844932. 978-1-7281-3591-5. (1-6). https://ieeexplore.ieee.org/document/8844932/ 452. Haimson O. (2019). Mapping gender transition sentiment patterns via social media data: toward decreasing transgender mental health disparities. Journal of the American Medical Informatics Association. 10.1093/jamia/ocz056. 26:8-9. (749-758). Online publication date: 1-Aug-2019. https://academic.oup.com/jamia/article/26/8-9/749/5497782 453. De Lorenzo A, Bartoli A, Castelli M, Medvet E and Xue B. (2019). Genetic programming in the twenty-first century: a bibliometric and content-based analysis from both sides of the fence. Genetic Programming and Evolvable Machines. 10.1007/s10710-019-09363-3. http://link.springer.com/10.1007/s10710-019-09363-3 454. Nosakhare E and Picard R. Probabilistic Latent Variable Modeling for Assessing Behavioral Influences on Well-Being. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. (2718-2726). https://doi.org/10.1145/3292500.3330738 455. J P N and Babu L. (2018). Analyzing the impact of news trends on research publications and scientific collaboration networks. Concurrency and Computation: Practice and Experience. 10.1002/cpe.5058. 31:14. Online publication date: 25-Jul-2019. https://onlinelibrary.wiley.com/doi/10.1002/cpe.5058 456. Burnie A and Yilmaz E. An Analysis of the Change in Discussions on Social Media with Bitcoin Price. Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. (889-892). https://doi.org/10.1145/3331184.3331304 457. Liu S, Wang X, Collins C, Dou W, Ouyang F, El-Assady M, Jiang L and Keim D. Bridging Text Visualization and Mining: A Task-Driven Survey. IEEE Transactions on Visualization and Computer Graphics. 10.1109/TVCG.2018.2834341. 25:7. (2482-2504). https://ieeexplore.ieee.org/document/8356097/ 458. Zhang Y, Qian Y, Gan M, Tang X and Lin Z. (2019). Service Recommendation Based on User Dynamic Preference Extraction and Prediction 2019 IEEE World Congress on Services (SERVICES). 10.1109/SERVICES.2019.00040. 978-1-7281-3851-0. (121-126). https://ieeexplore.ieee.org/document/8817297/ 459. Wu X, Fan Y, Zhang J, Lin H and Zhang J. (2019). QF-RNN: QI-Matrix Factorization Based RNN for Time-Aware Service Recommendation 2019 IEEE International Conference on Services Computing (SCC). 10.1109/SCC.2019.00042. 978-1-7281-2720-0. (202-209). https://ieeexplore.ieee.org/document/8813923/ 460. He S, Yang H, Zheng X, Wang B, Zhou Y, Xiong Y and Zeng D. (2019). Massive Meme Identification and Popularity Analysis in Geopolitics 2019 IEEE International Conference on Intelligence and Security Informatics (ISI). 10.1109/ISI.2019.8823294. 978-1-7281-2504-6. (116-121). https://ieeexplore.ieee.org/document/8823294/ 461. Dang T and Nguyen N. (2019). SpacePhaser: Phase Space Embedding Visual Analytics 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC). 10.1109/COMPSAC.2019.10213. 978-1-7281-2607-4. (239-244). https://ieeexplore.ieee.org/document/8753913/ 462. Yin L and Liu H. (2019). Searching Activity Trajectories with Semantics. Journal of Computer Science and Technology. 10.1007/s11390-019-1942-8. 34:4. (775-794). Online publication date: 1-Jul-2019. http://link.springer.com/10.1007/s11390-019-1942-8 463. Corneli M, Bouveyron C, Latouche P and Rossi F. (2019). The dynamic stochastic topic block model for dynamic networks with textual edges. Statistics and Computing. 29:4. (677-695). Online publication date: 1-Jul-2019. https://doi.org/10.1007/s11222-018-9832-4 464. Henry T, Banks D, Owens-Oas D and Chai C. (2019). Modeling Community Structure and Topics in Dynamic Text Networks. Journal of Classification. 36:2. (322-349). Online publication date: 1-Jul-2019. https://doi.org/10.1007/s00357-018-9289-3 465. Xu J, Ding Y, Bu Y, Deng S, Yu C, Zou Y and Madden A. (2019). Interdisciplinary scholarly communication. Scientometrics. 119:3. (1597-1619). Online publication date: 15-Jun-2019. https://doi.org/10.1007/s11192-019-03106-y 466. Zhou Y, Sharma J, Ke Q, Landman R, Yuan J, Chen H, Hayden D, Fisher J, Jiang M, Menegas W, Aida T, Yan T, Zou Y, Xu D, Parmar S, Hyman J, Fanucci-Kiss A, Meisner O, Wang D, Huang Y, Li Y, Bai Y, Ji W, Lai X, Li W, Huang L, Lu Z, Wang L, Anteraper S, Sur M, Zhou H, Xiang A, Desimone R, Feng G and Yang S. (2019). Atypical behaviour and connectivity in SHANK3-mutant macaques. Nature. 10.1038/s41586-019-1278-0. http://www.nature.com/articles/s41586-019-1278-0 467. Gobbo B, Balsamo D, Mauri M, Bajardi P, Panisson A and Ciuccarelli P. (2019). Topic Tomographies (TopTom): a visual approach to distill information from media streams. Computer Graphics Forum. 10.1111/cgf.13714. 38:3. (609-621). Online publication date: 1-Jun-2019. https://onlinelibrary.wiley.com/doi/10.1111/cgf.13714 468. Peng M, Xie Q, Wang H, Zhang Y and Tian G. Bayesian Sparse Topical Coding. IEEE Transactions on Knowledge and Data Engineering. 10.1109/TKDE.2018.2847707. 31:6. (1080-1093). https://ieeexplore.ieee.org/document/8386675/ 469. Bindu K, Gowrikrishna G and Parameswaran L. (2019). A Performance Evaluation of Correlated and Dynamic Topic Modeling on a QA Dataset 2019 3rd International conference on Electronics, Communication and Aerospace Technology (ICECA). 10.1109/ICECA.2019.8822023. 978-1-7281-0167-5. (1-7). https://ieeexplore.ieee.org/document/8822023/ 470. Jelodar H, Wang Y, Yuan C, Feng X, Jiang X, Li Y and Zhao L. (2019). Latent Dirichlet allocation (LDA) and topic modeling. Multimedia Tools and Applications. 78:11. (15169-15211). Online publication date: 1-Jun-2019. https://doi.org/10.1007/s11042-018-6894-4 471. Liang Q and Wang K. (2019). Monitoring of user‐generated reviews via a sequential reverse joint sentiment‐topic model. Quality and Reliability Engineering International. 10.1002/qre.2452. 35:4. (1180-1199). Online publication date: 1-Jun-2019. https://onlinelibrary.wiley.com/doi/10.1002/qre.2452 472. Peng J, Ma Z, Jiang D and Wu H. Integrating Bayesian and Neural Networks for Discourse Coherence. Companion Proceedings of The 2019 World Wide Web Conference. (294-300). https://doi.org/10.1145/3308560.3316582 473. Tavabi N, Bartley N, Abeliuk A, Soni S, Ferrara E and Lerman K. Characterizing Activity on the Deep and Dark Web. Companion Proceedings of The 2019 World Wide Web Conference. (206-213). https://doi.org/10.1145/3308560.3316502 474. Xu A, Wang F and Ying P. Xiaomi Brand Appraisal Research Based on Zhihu by Text Mining Technology. Proceedings of the 4th International Conference on Big Data and Computing. (221-225). https://doi.org/10.1145/3335484.3335515 475. Chandrasegaran S, Bryan C, Shidara H, Chuang T and Ma K. TalkTraces. Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems. (1-14). https://doi.org/10.1145/3290605.3300807 476. Anderlucci L, Montanari A and Viroli C. The Importance of Being Clustered: Uncluttering the Trends of Statistics from 1970 to 2015. Statistical Science. 10.1214/18-STS686. 34:2. https://projecteuclid.org\journals\statistical-science\volume-34\issue-2\The-Importance-of-Being-Clustered--Uncluttering-the-Trends-of\10.1214/18-STS686.full 477. Bradley J, Wikle C and Holan S. (2019). Spatio‐temporal models for big multinomial data using the conditional multivariate logit‐beta distribution. Journal of Time Series Analysis. 10.1111/jtsa.12468. 40:3. (363-382). Online publication date: 1-May-2019. https://onlinelibrary.wiley.com/doi/10.1111/jtsa.12468 478. Gao Z, Fan Y, Wu C, Tan W, Zhang J, Ni Y, Bai B and Chen S. SeCo-LDA: Mining Service Co-Occurrence Topics for Composition Recommendation. IEEE Transactions on Services Computing. 10.1109/TSC.2018.2821149. 12:3. (446-459). https://ieeexplore.ieee.org/document/8328903/ 479. Huang Z, Epps J and Joachim D. (2019). Speech Landmark Bigrams for Depression Detection from Naturalistic Smartphone Speech ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 10.1109/ICASSP.2019.8682916. 978-1-4799-8131-1. (5856-5860). https://ieeexplore.ieee.org/document/8682916/ 480. Xia L, Luo D, Zhang C and Wu Z. (2019). A Survey of Topic Models in Text Classification 2019 2nd International Conference on Artificial Intelligence and Big Data (ICAIBD). 10.1109/ICAIBD.2019.8836970. 978-1-7281-0829-2. (244-250). https://ieeexplore.ieee.org/document/8836970/ 481. Mele I, Bahrainian S and Crestani F. (2019). Event mining and timeliness analysis from heterogeneous news streams. Information Processing and Management: an International Journal. 56:3. (969-993). Online publication date: 1-May-2019. https://doi.org/10.1016/j.ipm.2019.02.003 482. Lesnikowski A, Belfer E, Rodman E, Smith J, Biesbroek R, Wilkerson J, Ford J and Berrang‐Ford L. (2019). Frontiers in data analytics for adaptation research: Topic modeling. WIREs Climate Change. 10.1002/wcc.576. 10:3. Online publication date: 1-May-2019. https://wires.onlinelibrary.wiley.com/doi/10.1002/wcc.576 483. Huang M, Zolnoori M, Balls-Berry J, Brockman T, Patten C and Yao L. (2019). Technological Innovations in Disease Management: Text Mining US Patent Data From 1995 to 2017. Journal of Medical Internet Research. 10.2196/13316. 21:4. (e13316). http://www.jmir.org/2019/4/e13316/ 484. Jha K, Xun G, Gopalakrishnan V and Zhang A. (2019). DWE-Med. ACM Transactions on Knowledge Discovery from Data. 13:2. (1-21). Online publication date: 30-Apr-2019. https://doi.org/10.1145/3310254 485. Rich A and Gureckis T. (2019). Lessons for artificial intelligence from the study of natural stupidity. Nature Machine Intelligence. 10.1038/s42256-019-0038-z. 1:4. (174-180). https://www.nature.com/articles/s42256-019-0038-z 486. Gavhane S, Bhadave S and Vengatesan K. . Review on Latest Trending Topic Detection in Twitter With Stream Processing (Using Fission Pattern). International Journal of Applied Evolutionary Computation. 10.4018/IJAEC.2019040106. 10:2. (43-47). http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJAEC.2019040106 487. Riehmann P, Kiesel D, Kohlhaas M and Froehlich B. (2019). Visualizing a Thinker's Life. IEEE Transactions on Visualization and Computer Graphics. 25:4. (1803-1816). Online publication date: 1-Apr-2019. https://doi.org/10.1109/TVCG.2018.2824822 488. Umemoto K, Goda K, Mitsutake N and Kitsuregawa M. (2019). A Prescription Trend Analysis using Medical Insurance Claim Big Data 2019 IEEE 35th International Conference on Data Engineering (ICDE). 10.1109/ICDE.2019.00209. 978-1-5386-7474-1. (1928-1939). https://ieeexplore.ieee.org/document/8731577/ 489. Reisenbichler M and Reutterer T. (2018). Topic modeling in marketing: recent advances and research opportunities. Journal of Business Economics. 10.1007/s11573-018-0915-7. 89:3. (327-356). Online publication date: 1-Apr-2019. http://link.springer.com/10.1007/s11573-018-0915-7 490. Akhtar N, Beg M, Thampi S and El-Alfy E. User graph topic model. Journal of Intelligent & Fuzzy Systems. 10.3233/JIFS-169934. 36:3. (2229-2240). https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/JIFS-169934 491. Ohsawa Y, Hayashi T and Yoshino T. (2019). Tangled String for Multi-Timescale Explanation of Changes in Stock Market. Information. 10.3390/info10030118. 10:3. (118). https://www.mdpi.com/2078-2489/10/3/118 492. Carriquiry A, Reid N and Slavković A. (2019). Stephen Elliott Fienberg 1942–2016, Founding Editor of the Annual Review of Statistics and Its Application . Annual Review of Statistics and Its Application. 10.1146/annurev-statistics-030718-105334. 6:1. (1-18). Online publication date: 7-Mar-2019. https://www.annualreviews.org/doi/10.1146/annurev-statistics-030718-105334 493. Glynn C, Tokdar S, Howard B and Banks D. Bayesian Analysis of Dynamic Linear Topic Models. Bayesian Analysis. 10.1214/18-BA1100. 14:1. https://projecteuclid.org/journals/bayesian-analysis/volume-14/issue-1/Bayesian-Analysis-of-Dynamic-Linear-Topic-Models/10.1214/18-BA1100.full 494. Wu Q, Kuang Y, Hong Q and She Y. (2019). Frontier knowledge discovery and visualization in cancer field based on KOS and LDA. Scientometrics. 118:3. (979-1010). Online publication date: 1-Mar-2019. https://doi.org/10.1007/s11192-018-2989-y 495. Kim H, Hong I, Jung W and Portela J. (2019). Measuring national capability over big science’s multidisciplinarity: A case study of nuclear fusion research. PLOS ONE. 10.1371/journal.pone.0211963. 14:2. (e0211963). http://dx.plos.org/10.1371/journal.pone.0211963 496. Liang S, Yilmaz E and Kanoulas E. (2019). Collaboratively Tracking Interests for User Clustering in Streams of Short Texts. IEEE Transactions on Knowledge and Data Engineering. 31:2. (257-272). Online publication date: 1-Feb-2019. https://doi.org/10.1109/TKDE.2018.2832211 497. Lin L, Gong L and Wang H. Learning Personalized Topical Compositions with Item Response Theory. Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining. (609-617). https://doi.org/10.1145/3289600.3291022 498. Spitz A, Almasian S and Gertz M. TopExNet. Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining. (798-801). https://doi.org/10.1145/3289600.3290619 499. Liang S. Collaborative, dynamic and diversified user profiling. Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence and Thirty-First Innovative Applications of Artificial Intelligence Conference and Ninth AAAI Symposium on Educational Advances in Artificial Intelligence. (4269-4276). https://doi.org/10.1609/aaai.v33i01.33014269 500. Zhang L, Liu P and Gulla J. (2019). Dynamic attention-integrated neural network for session-based news recommendation. Machine Learning. 10.1007/s10994-018-05777-9. http://link.springer.com/10.1007/s10994-018-05777-9 501. Wang Y. Convergence rates of latent topic models under relaxed identifiability conditions. Electronic Journal of Statistics. 10.1214/18-EJS1516. 13:1. https://projecteuclid.org/journals/electronic-journal-of-statistics/volume-13/issue-1/Convergence-rates-of-latent-topic-models-under-relaxed-identifiability-conditions/10.1214/18-EJS1516.full 502. Mahalakshmi G, Muthu Selvi G, Sendhilkumar S, Vijayakumar P, Zhu Y and Chang V. Sustainable Computing Based Deep Learning Framework for Writing Research Manuscripts. IEEE Transactions on Sustainable Computing. 10.1109/TSUSC.2018.2829196. 4:1. (4-16). https://ieeexplore.ieee.org/document/8344521/ 503. Zou X, Zhu Y, Feng J, Lu J and Li X. A Novel Hierarchical Topic Model for Horizontal Topic Expansion With Observed Label Information. IEEE Access. 10.1109/ACCESS.2019.2960468. 7. (184242-184253). https://ieeexplore.ieee.org/document/8936331/ 504. Tang C, Zhu Y, Blackley S, Plasek J, Wan M, Zhou L, Ma J and Bates D. Visualizing Literature Review Theme Evolution on Timeline Maps: Comparison Across Disciplines. IEEE Access. 10.1109/ACCESS.2019.2925706. (1-1). https://ieeexplore.ieee.org/document/8750853/ 505. Mendez J, Lobel H, Parra D and Herrera J. Using Twitter to Infer User Satisfaction With Public Transport: The Case of Santiago, Chile. IEEE Access. 10.1109/ACCESS.2019.2915107. 7. (60255-60263). https://ieeexplore.ieee.org/document/8708245/ 506. Li C, Feng S, Zeng Q, Ni W, Zhao H and Duan H. Mining Dynamics of Research Topics Based on the Combined LDA and WordNet. IEEE Access. 10.1109/ACCESS.2018.2887314. 7. (6386-6399). https://ieeexplore.ieee.org/document/8580532/ 507. Huang R, Zhu Y, Chen Y, Yang Y, Xu W, Yang J and Meng Y. (2019). Adjusting the Inheritance of Topic for Dynamic Document Clustering. Theoretical Computer Science. 10.1007/978-981-15-0105-0_4. (46-63). http://link.springer.com/10.1007/978-981-15-0105-0_4 508. Lee B and Sohn S. (2019). Dynamics of Topics in Antimalarial Patents: Comparison Between the USPTO and SIPO. Intellectual Property Issues in Microbiology. 10.1007/978-981-13-7466-1_16. (309-321). http://link.springer.com/10.1007/978-981-13-7466-1_16 509. Liqing Q, Haiyan L, Xin F and Wei J. (2019). Hot Topic Detection Based on VSM and Improved LDA Hybrid Model. Genetic and Evolutionary Computing. 10.1007/978-981-13-5841-8_61. (583-593). http://link.springer.com/10.1007/978-981-13-5841-8_61 510. Yu J, Pan L, Li J and Du X. (2019). Predicting Concept-Based Research Trends with Rhetorical Framing. Knowledge Graph and Semantic Computing. Knowledge Computing and Language Understanding. 10.1007/978-981-13-3146-6_10. (116-128). http://link.springer.com/10.1007/978-981-13-3146-6_10 511. Kherwa P and Bansal P. (2019). Empirical Evaluation of Inference Technique for Topic Models. Progress in Advanced Computing and Intelligent Engineering. 10.1007/978-981-13-1708-8_22. (237-246). http://link.springer.com/10.1007/978-981-13-1708-8_22 512. Anikin A, Sychev O and Gurtovoy V. (2019). Multi-level Modeling of Structural Elements of Natural Language Texts and Its Applications. Biologically Inspired Cognitive Architectures 2018. 10.1007/978-3-319-99316-4_1. (1-8). http://link.springer.com/10.1007/978-3-319-99316-4_1 513. Anandarajan M, Hill C and Nolan T. (2019). Probabilistic Topic Models. Practical Text Analytics. 10.1007/978-3-319-95663-3_8. (117-130). https://link.springer.com/10.1007/978-3-319-95663-3_8 514. Zhang S and Qiao H. (2019). Matching User Accounts Across Social Networks Based on LDA Model. Human Centered Computing. 10.1007/978-3-030-37429-7_33. (333-340). http://link.springer.com/10.1007/978-3-030-37429-7_33 515. Glazkova A, Kruzhinov V and Sokova Z. (2019). Dynamic Topic Models for Retrospective Event Detection: A Study on Soviet Opposition-Leaning Media. Analysis of Images, Social Networks and Texts. 10.1007/978-3-030-37334-4_13. (145-154). http://link.springer.com/10.1007/978-3-030-37334-4_13 516. Delasalles E, Lamprier S and Denoyer L. (2019). Dynamic Neural Language Models. Neural Information Processing. 10.1007/978-3-030-36718-3_24. (282-294). http://link.springer.com/10.1007/978-3-030-36718-3_24 517. Lin Z, Wan X and Guo Z. (2019). Learning Diachronic Word Embeddings with Iterative Stable Information Alignment. Natural Language Processing and Chinese Computing. 10.1007/978-3-030-32233-5_58. (749-760). http://link.springer.com/10.1007/978-3-030-32233-5_58 518. Shin S and Suh C. (2019). Discovering Platform Government Research Trends Using Topic Modeling. Model and Data Engineering. 10.1007/978-3-030-32065-2_5. (67-82). http://link.springer.com/10.1007/978-3-030-32065-2_5 519. Tanaka K and Hori K. (2019). Finding Diachronic Objects of Drifting Descriptions by Similar Mentions. Knowledge Management and Acquisition for Intelligent Systems. 10.1007/978-3-030-30639-7_4. (32-43). http://link.springer.com/10.1007/978-3-030-30639-7_4 520. Chen P, Chen Z and Zhang N. (2019). A Novel Document Generation Process for Topic Detection Based on Hierarchical Latent Tree Models. Symbolic and Quantitative Approaches to Reasoning with Uncertainty. 10.1007/978-3-030-29765-7_22. (265-276). http://link.springer.com/10.1007/978-3-030-29765-7_22 521. Wang B, Buccio E and Melucci M. (2019). Representing Words in Vector Space and Beyond. Quantum-Like Models for Information Retrieval and Decision-Making. 10.1007/978-3-030-25913-6_5. (83-113). http://link.springer.com/10.1007/978-3-030-25913-6_5 522. Deviatkin D, Shelmanov A and Larionov D. (2019). Discovering, Classification, and Localization of Emergency Events via Analyzing of Social Network Text Streams. Data Analytics and Management in Data Intensive Domains. 10.1007/978-3-030-23584-0_11. (180-196). http://link.springer.com/10.1007/978-3-030-23584-0_11 523. Semedo D and Magalhães J. (2019). Dynamic-Keyword Extraction from Social Media. Advances in Information Retrieval. 10.1007/978-3-030-15712-8_62. (852-860). http://link.springer.com/10.1007/978-3-030-15712-8_62 524. Chaoua I, Consoli S, Härmä A, Helaoui R and Reforgiato Recupero D. (2019). Analysis of Topic Propagation in Therapy Sessions Using Partially Labeled Latent Dirichlet Allocation. Artificial Intelligence in Health. 10.1007/978-3-030-12738-1_5. (59-75). http://link.springer.com/10.1007/978-3-030-12738-1_5 525. Skryzalin J, Field R, Fisher A and Bauer T. (2019). Temporal Methods to Detect Content-Based Anomalies in Social Media. From Security to Community Detection in Social Networking Platforms. 10.1007/978-3-030-11286-8_10. (213-230). http://link.springer.com/10.1007/978-3-030-11286-8_10 526. Zitt M, Lelu A, Cadot M and Cabanac G. (2019). Bibliometric Delineation of Scientific Fields. Springer Handbook of Science and Technology Indicators. 10.1007/978-3-030-02511-3_2. (25-68). http://link.springer.com/10.1007/978-3-030-02511-3_2 527. Lu Y and Zheng Y. (2019). Subject Analysis of the Microblog About US Presidential Election Based on LDA. Intelligent Systems and Applications. 10.1007/978-3-030-01054-6_69. (998-1008). http://link.springer.com/10.1007/978-3-030-01054-6_69 528. Philipps A. (2018). Text Mining-Verfahren als Herausforderung für die rekonstruktive Sozialforschung. Sozialer Sinn. 10.1515/sosi-2018-0017. 19:2. (367-387). Online publication date: 19-Dec-2018.. Online publication date: 1-Dec-2018. https://www.degruyter.com/document/doi/10.1515/sosi-2018-0017/html 529. Figurnov M, Mohamed S and Mnih A. Implicit reparameterization gradients. Proceedings of the 32nd International Conference on Neural Information Processing Systems. (439-450). /doi/10.5555/3326943.3326984 530. Mankad S, Hu S and Gopal A. Single stage prediction with embedded topic modeling of online reviews for mobile app management. The Annals of Applied Statistics. 10.1214/18-AOAS1152. 12:4. https://projecteuclid.org/journals/annals-of-applied-statistics/volume-12/issue-4/Single-stage-prediction-with-embedded-topic-modeling-of-online-reviews/10.1214/18-AOAS1152.full 531. Costa G and Ortale R. (2018). Topical Cluster Discovery in Semistructured Healthcare Data 2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI). 10.1109/WI.2018.00014. 978-1-5386-7325-6. (772-775). https://ieeexplore.ieee.org/document/8609689/ 532. Duan R and Li C. (2018). An Adaptive Dirichlet Multinomial Mixture Model for Short Text Streaming Clustering 2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI). 10.1109/WI.2018.0-108. 978-1-5386-7325-6. (49-55). https://ieeexplore.ieee.org/document/8609575/ 533. Lee H, Chung P, Wu Y, Lin T and Wen T. (2018). Interactive Spoken Content Retrieval by Deep Reinforcement Learning. IEEE/ACM Transactions on Audio, Speech and Language Processing. 26:12. (2447-2459). Online publication date: 1-Dec-2018. https://doi.org/10.1109/TASLP.2018.2852739 534. Fu Y, Han Z, Ye O and Li G. (2018). A Semi-Supervised Novel Recommendation Algorithm 2018 International Symposium on Computer, Consumer and Control (IS3C). 10.1109/IS3C.2018.00074. 978-1-5386-7036-1. (266-269). https://ieeexplore.ieee.org/document/8644752/ 535. Zhang Y, Calyam P, Joshi T, Nair S and Xu D. (2018). Domain-specific Topic Model for Knowledge Discovery through Conversational Agents in Data Intensive Scientific Communities 2018 IEEE International Conference on Big Data (Big Data). 10.1109/BigData.2018.8622309. 978-1-5386-5035-6. (4886-4895). https://ieeexplore.ieee.org/document/8622309/ 536. Barranco R, Dos Santos R, Hossain M and Akbar M. (2018). Tracking the Evolution of Words with Time-reflective Text Representations 2018 IEEE International Conference on Big Data (Big Data). 10.1109/BigData.2018.8621902. 978-1-5386-5035-6. (2088-2097). https://ieeexplore.ieee.org/document/8621902/ 537. Tang C, Plasek J, Zhang H, Xiong Y, Bates D and Zhou L. (2018). A Deep Learning Approach to Handling Temporal Variation in Chronic Obstructive Pulmonary Disease Progression 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). 10.1109/BIBM.2018.8621489. 978-1-5386-5488-0. (502-509). https://ieeexplore.ieee.org/document/8621489/ 538. Li N, Luo W, Yang K, Zhuang F, He Q and Shi Z. (2017). Self-organizing weighted incremental probabilistic latent semantic analysis. International Journal of Machine Learning and Cybernetics. 10.1007/s13042-017-0681-9. 9:12. (1987-1998). Online publication date: 1-Dec-2018. http://link.springer.com/10.1007/s13042-017-0681-9 539. Ohsawa Y. (2018). Graph-Based Entropy for Detecting Explanatory Signs of Changes in Market. The Review of Socionetwork Strategies. 10.1007/s12626-018-0023-8. 12:2. (183-203). Online publication date: 1-Dec-2018. http://link.springer.com/10.1007/s12626-018-0023-8 540. Fukuyama S and Wakabayashi K. Extracting time series variation of topic popularity in microblogs. Proceedings of the 20th International Conference on Information Integration and Web-based Applications & Services. (365-369). https://doi.org/10.1145/3282373.3282409 541. Das A, Mueller F, Hargrove P, Roman E and Baden S. Doomsday. Proceedings of the International Conference for High Performance Computing, Networking, Storage, and Analysis. (1-14). /doi/10.5555/3291656.3291668 542. Das A, Mueller F, Hargrove P, Roman E and Baden S. Doomsday. Proceedings of the International Conference for High Performance Computing, Networking, Storage, and Analysis. (1-14). https://doi.org/10.1109/SC.2018.00012 543. Valdez D, Pickett A and Goodson P. (2018). Topic Modeling: Latent Semantic Analysis for the Social Sciences. Social Science Quarterly. 10.1111/ssqu.12528. 99:5. (1665-1679). Online publication date: 1-Nov-2018. https://onlinelibrary.wiley.com/doi/10.1111/ssqu.12528 544. Mendoza M, Ormeno P and Valle C. (2018). Ad-hoc Information Retrieval based on Boosted Latent Dirichlet Allocated Topics 2018 37th International Conference of the Chilean Computer Science Society (SCCC). 10.1109/SCCC.2018.8705252. 978-1-5386-9233-2. (1-7). https://ieeexplore.ieee.org/document/8705252/ 545. Chau L, Chau V and Phung N. (2018). On Temporal Cluster Analysis for Early Identifying In-trouble Students in an Academic Credit System 2018 5th NAFOSTED Conference on Information and Computer Science (NICS). 10.1109/NICS.2018.8606827. 978-1-5386-7983-8. (171-176). https://ieeexplore.ieee.org/document/8606827/ 546. Nguyen T and Do P. (2018). Discovering Topic Evolution in Heterogeneous Bibliographic Network 2018 10th International Conference on Knowledge and Systems Engineering (KSE). 10.1109/KSE.2018.8573400. 978-1-5386-6113-0. (91-96). https://ieeexplore.ieee.org/document/8573400/ 547. Mulunda C, Wagacha P and Muchemi L. (2018). Review of Trends in Topic Modeling Techniques, Tools, Inference Algorithms and Applications 2018 5th International Conference on Soft Computing & Machine Intelligence (ISCMI). 10.1109/ISCMI.2018.8703231. 978-1-7281-1301-2. (28-37). https://ieeexplore.ieee.org/document/8703231/ 548. Yajun M and Sheng L. (2018). Application of LDA-LR in Personalized News Recommendation System 2018 IEEE 9th International Conference on Software Engineering and Service Science (ICSESS). 10.1109/ICSESS.2018.8663807. 978-1-5386-6565-7. (279-282). https://ieeexplore.ieee.org/document/8663807/ 549. Giaquinto R and Banerjee A. (2018). DAPPER: Scaling Dynamic Author Persona Topic Model to Billion Word Corpora 2018 IEEE International Conference on Data Mining (ICDM). 10.1109/ICDM.2018.00120. 978-1-5386-9159-5. (971-976). https://ieeexplore.ieee.org/document/8594929/ 550. Siebes A. (2018). Data science as a language: challenges for computer science—a position paper. International Journal of Data Science and Analytics. 10.1007/s41060-018-0103-4. 6:3. (177-187). Online publication date: 1-Nov-2018. http://link.springer.com/10.1007/s41060-018-0103-4 551. González Pinto J and Balke W. (2018). Assessing plausibility of scientific claims to support high-quality content in digital collections. International Journal on Digital Libraries. 10.1007/s00799-018-0256-8. http://link.springer.com/10.1007/s00799-018-0256-8 552. Jiang Z, Gao L, Yuan K, Gao Z, Tang Z and Liu X. Mathematics Content Understanding for Cyberlearning via Formula Evolution Map. Proceedings of the 27th ACM International Conference on Information and Knowledge Management. (37-46). https://doi.org/10.1145/3269206.3271694 553. Semedo D and Magalhaes J. Temporal Cross-Media Retrieval with Soft-Smoothing. Proceedings of the 26th ACM international conference on Multimedia. (1038-1046). https://doi.org/10.1145/3240508.3240665 554. Kengphanich J, Buatip J and Phithakkitnukoon S. Eventity. Proceedings of the 2018 ACM International Joint Conference and 2018 International Symposium on Pervasive and Ubiquitous Computing and Wearable Computers. (1051-1059). https://doi.org/10.1145/3267305.3274160 555. Silva M, Ferreira E, Souza A, Alves A and Batista S. (2018). Using Eco-Sensors to Support Children's Participation in Environmental Health. International Journal of Digital Literacy and Digital Competence. 9:4. (33-45). Online publication date: 1-Oct-2018. https://doi.org/10.4018/IJDLDC.2018100103 556. Vishkaie R, Shively K and Wessel Powell C. (2018). Perceptions of Digital Tools and Creativity in the Classroom. International Journal of Digital Literacy and Digital Competence. 9:4. (1-18). Online publication date: 1-Oct-2018. https://doi.org/10.4018/IJDLDC.2018100101 557. Yamada T, Maekawa Y, Kato Y and Tomiyama T. (2018). Interactive System Using LDA for Exploratory Visualization to Extract Data Association in a Data Lake 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC). 10.1109/SMC.2018.00040. 978-1-5386-6650-0. (172-177). https://ieeexplore.ieee.org/document/8616035/ 558. El-Assady M, Sperrle F, Sevastjanova R, Sedlmair M and Keim D. (2018). LTMA: Layered Topic Matching for the Comparative Exploration, Evaluation, and Refinement of Topic Modeling Results 2018 International Symposium on Big Data Visual and Immersive Analytics (BDVA). 10.1109/BDVA.2018.8534018. 978-1-5386-9194-6. (1-10). https://ieeexplore.ieee.org/document/8534018/ 559. Rusanov A, Miotto R and Weng C. (2018). Trends in anesthesiology research: a machine learning approach to theme discovery and summarization. JAMIA Open. 10.1093/jamiaopen/ooy009. 1:2. (283-293). Online publication date: 1-Oct-2018. https://academic.oup.com/jamiaopen/article/1/2/283/5090694 560. Tikhonov A, Bogdanov V, Merzlyakov A and Guseinova K. (2018). DEVELOPMENT AND IMPLEMENTATION PROBLEMS OF SCIENTIFIC AND TECHNOLOGICAL PROGRESS STRATEGIC PROGRAMS IN THE RUSSIAN FEDERATION REGIONS: SOCIAL AND ORGANIZATIONAL BARRIERS (based on the remote study in 14 regions of the country with different levels of socio-cultural modernization). MIR (Modernization. Innovation. Research). 10.18184/2079-4665.2018.9.3.380-415. 9:3. (380-415). https://www.mir-nayka.com/jour/article/view/841 561. Al-Ghossein M, Murena P, Abdessalem T, Barré A and Cornuéjols A. Adaptive collaborative topic modeling for online recommendation. Proceedings of the 12th ACM Conference on Recommender Systems. (338-346). https://doi.org/10.1145/3240323.3240363 562. Hwang S, Lee Y and Nam Y. (2018). System for extracting domain topic using link analysis and searching for relevant features. Journal of Ambient Intelligence and Humanized Computing. 10.1007/s12652-018-1046-2. http://link.springer.com/10.1007/s12652-018-1046-2 563. TANG X. (2018). A state-of-the-art of semantic change computation. Natural Language Engineering. 10.1017/S1351324918000220. 24:5. (649-676). Online publication date: 1-Sep-2018. https://www.cambridge.org/core/product/identifier/S1351324918000220/type/journal_article 564. Li L, Mao L, Zhang Y, Chi J, Huang T, Cong X and Peng H. (2018). Computational linguistics literature and citations oriented citation linkage, classification and summarization. International Journal on Digital Libraries. 19:2-3. (173-190). Online publication date: 1-Sep-2018. https://doi.org/10.1007/s00799-017-0219-5 565. Okui T and Nakaji S. (2018). A New Association Analysis Method for Longitudinally Measured Microbial Compositional Data Using Latent Dirichlet Allocation Model経時的に測定された腸内細菌組成データに対する潜在ディリクレ配分モデルを用いた関連解析法. Japanese Journal of Biometrics. 10.5691/jjb.39.37. 39:1. (37-54). Online publication date: 1-Aug-2018. https://www.jstage.jst.go.jp/article/jjb/39/1/39_37/_article/-char/ja/ 566. Bruens B and Moehrle M. (2018). Understanding the Diffusion of the Blockchain Technology: A Patent-based Analysis using the tf-lag-idf for Term Novelty Evaluation 2018 Portland International Conference on Management of Engineering and Technology (PICMET). 10.23919/PICMET.2018.8481994. 978-1-890843-37-3. (1-7). https://ieeexplore.ieee.org/document/8481994/ 567. Caferoglu H and Moehrle M. (2018). Measuring Technology Diffusion for the Case of RFID Technology: A Comparison between tf-lag-idf and Topic Modeling 2018 Portland International Conference on Management of Engineering and Technology (PICMET). 10.23919/PICMET.2018.8481825. 978-1-890843-37-3. (1-7). https://ieeexplore.ieee.org/document/8481825/ 568. Sidana S, Amer-Yahia S, Clausel M, Rebai M, Mai S and Amini M. Health Monitoring on Social Media over Time. IEEE Transactions on Knowledge and Data Engineering. 10.1109/TKDE.2018.2795606. 30:8. (1467-1480). https://ieeexplore.ieee.org/document/8263414/ 569. Chen L, Zhang H, Jose J, Yu H, Moshfeghi Y and Triantafillou P. (2018). Topic detection and tracking on heterogeneous information. Journal of Intelligent Information Systems. 51:1. (115-137). Online publication date: 1-Aug-2018. https://doi.org/10.1007/s10844-017-0487-y 570. Yin J, Chao D, Liu Z, Zhang W, Yu X and Wang J. Model-based Clustering of Short Text Streams. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. (2634-2642). https://doi.org/10.1145/3219819.3220094 571. Sun Y, Zhu H, Zhuang F, Gu J and He Q. Exploring the Urban Region-of-Interest through the Analysis of Online Map Search Queries. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. (2269-2278). https://doi.org/10.1145/3219819.3220009 572. Acharya A, Ghosh J and Zhou M. A Dual Markov Chain Topic Model for Dynamic Environments. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. (1099-1108). https://doi.org/10.1145/3219819.3219995 573. Kim M and Zhu Y. (2018). Scientometrics of Scientometrics: Mapping Historical Footprint and Emerging Technologies in Scientometrics. Scientometrics. 10.5772/intechopen.77951. http://www.intechopen.com/books/scientometrics/scientometrics-of-scientometrics-mapping-historical-footprint-and-emerging-technologies-in-scientome 574. Zhang W, Xu M and Jiang Q. Opinion Mining and Sentiment Analysis in Social Media: Challenges and Applications. HCI in Business, Government, and Organizations. (536-548). https://doi.org/10.1007/978-3-319-91716-0_43 575. Zhao Y, Wang C, Chi C, Lam K and Wang S. A comparative study of transactional and semantic approaches for predicting cascades on Twitter. Proceedings of the 27th International Joint Conference on Artificial Intelligence. (1212-1218). /doi/10.5555/3304415.3304587 576. Syed S and Weber C. (2018). Using Machine Learning to Uncover Latent Research Topics in Fishery Models. Reviews in Fisheries Science & Aquaculture. 10.1080/23308249.2017.1416331. 26:3. (319-336). Online publication date: 3-Jul-2018. https://www.tandfonline.com/doi/full/10.1080/23308249.2017.1416331 577. Watts J. (2018). Trend spotting: Using text analysis to model market dynamics. International Journal of Market Research. 10.1177/1470785318758558. 60:4. (408-418). Online publication date: 1-Jul-2018. http://journals.sagepub.com/doi/10.1177/1470785318758558 578. Syed S, Borit M and Spruit M. (2018). Narrow lenses for capturing the complexity of fisheries: A topic analysis of fisheries science from 1990 to 2016. Fish and Fisheries. 10.1111/faf.12280. 19:4. (643-661). Online publication date: 1-Jul-2018. https://onlinelibrary.wiley.com/doi/10.1111/faf.12280 579. Kang Y, Lin K and Cheng I. (2018). Topic Diffusion Discovery Based on Sparseness-Constrained Non-Negative Matrix Factorization 2018 IEEE International Conference on Information Reuse and Integration for Data Science (IRI). 10.1109/IRI.2018.00021. 978-1-5386-2659-7. (94-101). https://ieeexplore.ieee.org/document/8424692/ 580. Murena P, Al-Ghossein M, Abdessalem T and Cornuejols A. (2018). Adaptive Window Strategy for Topic Modeling in Document Streams 2018 International Joint Conference on Neural Networks (IJCNN). 10.1109/IJCNN.2018.8489771. 978-1-5090-6014-6. (1-7). https://ieeexplore.ieee.org/document/8489771/ 581. Mei M, Guo X, Williams B, Doboli S, Kenworthy J, Paulus P and Minai A. (2018). Using Semantic Clustering And Autoencoders For Detecting Novelty In Corpora Of Short Texts 2018 International Joint Conference on Neural Networks (IJCNN). 10.1109/IJCNN.2018.8489431. 978-1-5090-6014-6. (1-8). https://ieeexplore.ieee.org/document/8489431/ 582. Zhang Y, Qian Y and Wang Y. (2018). A Recommendation Algorithm Based on Dynamic User Preference and Service Quality 2018 IEEE International Conference on Web Services (ICWS). 10.1109/ICWS.2018.00019. 978-1-5386-7247-1. (91-98). https://ieeexplore.ieee.org/document/8456336/ 583. Surjandari I, Rosyidah A, Zulkarnain Z and Laoh E. (2018). Mining Web Log Data for News Topic Modeling Using Latent Dirichlet Allocation 2018 5th International Conference on Information Science and Control Engineering (ICISCE). 10.1109/ICISCE.2018.00076. 978-1-5386-5500-9. (331-335). https://ieeexplore.ieee.org/document/8612574/ 584. Fernandez-Beltran R and Pla F. (2018). Prior-based probabilistic latent semantic analysis for multimedia retrieval. Multimedia Tools and Applications. 77:13. (16771-16793). Online publication date: 1-Jul-2018. https://doi.org/10.1007/s11042-017-5247-z 585. Khodadadi A, Hosseini S, Tavakoli E and Rabiee H. (2018). Continuous-Time User Modeling in Presence of Badges. ACM Transactions on Knowledge Discovery from Data. 12:3. (1-30). Online publication date: 30-Jun-2018. https://doi.org/10.1145/3162050 586. Wu Z, Li C, Zhao Z, Wu F and Mei Q. Identify Shifts of Word Semantics through Bayesian Surprise. The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval. (825-834). https://doi.org/10.1145/3209978.3210040 587. Phillips R and Gorse D. Mutual-Excitation of Cryptocurrency Market Returns and Social Media Topics. Proceedings of the 4th International Conference on Frontiers of Educational Technologies. (80-86). https://doi.org/10.1145/3233347.3233370 588. George L and Birla L. (2018). A Study of Topic Modeling Methods 2018 Second International Conference on Intelligent Computing and Control Systems (ICICCS). 10.1109/ICCONS.2018.8663152. 978-1-5386-2842-3. (109-113). https://ieeexplore.ieee.org/document/8663152/ 589. Chi R, Wu B and Wang L. (2018). Expert Identification Based on Dynamic LDA Topic Model 2018 IEEE Third International Conference on Data Science in Cyberspace (DSC). 10.1109/DSC.2018.00141. 978-1-5386-4210-8. (881-888). https://ieeexplore.ieee.org/document/8411962/ 590. Jia Y, Deng L, Zhou B, Fang B, Han W, Li A, Liu Q and Quan Y. (2018). Topic Analysis Model for Online Social Network 2018 IEEE Third International Conference on Data Science in Cyberspace (DSC). 10.1109/DSC.2018.00015. 978-1-5386-4210-8. (39-44). https://ieeexplore.ieee.org/document/8411836/ 591. Leibon G, Livermore M, Harder R, Riddell A and Rockmore D. (2018). Bending the law. Artificial Intelligence and Law. 26:2. (145-167). Online publication date: 1-Jun-2018. https://doi.org/10.1007/s10506-018-9224-2 592. Beykikhoshk A, Arandjelović O, Phung D and Venkatesh S. (2018). Discovering topic structures of a temporally evolving document corpus. Knowledge and Information Systems. 55:3. (599-632). Online publication date: 1-Jun-2018. https://doi.org/10.1007/s10115-017-1095-4 593. Chen X, Faviez C, Schuck S, Lillo-Le-Louët A, Texier N, Dahamna B, Huot C, Foulquié P, Pereira S, Leroux V, Karapetiantz P, Guenegou-Arnoux A, Katsahian S, Bousquet C and Burgun A. (2018). Mining Patients' Narratives in Social Media for Pharmacovigilance: Adverse Effects and Misuse of Methylphenidate. Frontiers in Pharmacology. 10.3389/fphar.2018.00541. 9. https://www.frontiersin.org/article/10.3389/fphar.2018.00541/full 594. Zuo Z and Zhao K. A Graphical Model for Topical Impact over Time. Proceedings of the 18th ACM/IEEE on Joint Conference on Digital Libraries. (405-406). https://doi.org/10.1145/3197026.3203891 595. Hong W, Zheng X, Qi J, Wang W, Zheng N and Weng Y. (2018). FinancialFlow: Visual analytics of financial news based on hierarchical dirichlet process 2018 33rd Youth Academic Annual Conference of Chinese Association of Automation (YAC). 10.1109/YAC.2018.8406403. 978-1-5386-7255-6. (375-380). https://ieeexplore.ieee.org/document/8406403/ 596. Shen L, Sun Y and Li X. (2018). Collaboratively Learning Latent Factors and Correlations for New Paper Influence Predication 2018 IEEE 22nd International Conference on Computer Supported Cooperative Work in Design (CSCWD). 10.1109/CSCWD.2018.8465394. 978-1-5386-1482-2. (4-9). https://ieeexplore.ieee.org/document/8465394/ 597. Hansen S, McMahon M and Prat A. (2017). Transparency and Deliberation Within the FOMC: A Computational Linguistics Approach*. The Quarterly Journal of Economics. 10.1093/qje/qjx045. 133:2. (801-870). Online publication date: 1-May-2018. https://academic.oup.com/qje/article/133/2/801/4582916 598. MUELLER H and RAUH C. (2017). Reading Between the Lines: Prediction of Political Violence Using Newspaper Text. American Political Science Review. 10.1017/S0003055417000570. 112:2. (358-375). Online publication date: 1-May-2018. https://www.cambridge.org/core/product/identifier/S0003055417000570/type/journal_article 599. Abuhay T, Kovalchuk S, Bochenina K, Mbogo G, Visheratin A, Kampis G, Krzhizhanovskaya V and Lees M. (2018). Analysis of publication activity of computational science society in 2001–2017 using topic modelling and graph theory. Journal of Computational Science. 10.1016/j.jocs.2018.04.004. 26. (193-204). Online publication date: 1-May-2018. https://linkinghub.elsevier.com/retrieve/pii/S1877750318302461 600. Deligianni F, Wong C, Lo B and Yang G. (2018). A fusion framework to estimate plantar ground force distributions and ankle dynamics. Information Fusion. 41:C. (255-263). Online publication date: 1-May-2018. https://doi.org/10.1016/j.inffus.2017.09.008 601. Qian Z, Xu J, Zheng K, Zhao P and Zhou X. (2018). Semantic-aware top-k spatial keyword queries. World Wide Web. 21:3. (573-594). Online publication date: 1-May-2018. https://doi.org/10.1007/s11280-017-0472-y 602. Fan Y, Zhou Q, Yue W and Zhu W. (2018). A dynamic causal topic model for mining activities from complex videos. Multimedia Tools and Applications. 77:9. (10669-10684). Online publication date: 1-May-2018. https://doi.org/10.1007/s11042-017-4760-4 603. Rudolph M and Blei D. Dynamic Embeddings for Language Evolution. Proceedings of the 2018 World Wide Web Conference. (1003-1011). https://doi.org/10.1145/3178876.3185999 604. Rule W, Duan W, Prakash N, Zhuang N, Alvarado R and Brown D. (2018). Social pressure analysis of local events using social media data 2018 Systems and Information Engineering Design Symposium (SIEDS). 10.1109/SIEDS.2018.8374751. 978-1-5386-6343-1. (277-281). https://ieeexplore.ieee.org/document/8374751/ 605. Elmsili B and Outtaj B. (2018). Artificial neural networks applications in economics and management research: An exploratory literature review 2018 4th International Conference on Optimization and Applications (ICOA). 10.1109/ICOA.2018.8370600. 978-1-5386-4225-2. (1-6). https://ieeexplore.ieee.org/document/8370600/ 606. Páez-Avilés C, Van Rijnsoever F, Juanola-Feliu E and Samitier J. (2017). Multi-disciplinarity breeds diversity: the influence of innovation project characteristics on diversity creation in nanotechnology. The Journal of Technology Transfer. 10.1007/s10961-016-9553-9. 43:2. (458-481). Online publication date: 1-Apr-2018. http://link.springer.com/10.1007/s10961-016-9553-9 607. Bouakkaz M, Ouinten Y, Loudcher S and Fournier-Viger P. (2018). Efficiently mining frequent itemsets applied for textual aggregation. Applied Intelligence. 48:4. (1013-1019). Online publication date: 1-Apr-2018. https://doi.org/10.1007/s10489-017-1050-9 608. Gerow A, Hu Y, Boyd-Graber J, Blei D and Evans J. (2018). Measuring discursive influence across scholarship. Proceedings of the National Academy of Sciences. 10.1073/pnas.1719792115. 115:13. (3308-3313). Online publication date: 27-Mar-2018. https://pnas.org/doi/full/10.1073/pnas.1719792115 609. Panteli M, Benetos E and Dixon S. (2018). A review of manual and computational approaches for the study of world music corpora. Journal of New Music Research. 10.1080/09298215.2017.1418896. 47:2. (176-189). Online publication date: 15-Mar-2018. https://www.tandfonline.com/doi/full/10.1080/09298215.2017.1418896 610. Huang C, Wang Q, Yang D and Xu F. Topic mining of tourist attractions based on a seasonal context aware LDA model. Intelligent Data Analysis. 10.3233/IDA-173364. 22:2. (383-405). http://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/IDA-173364 611. Wai T and Aung S. (2018). TPMTM: Topic Modeling over Papers’ Abstract. Advances in Science, Technology and Engineering Systems Journal. 10.25046/aj030208. 3:2. (69-73). https://astesj.com/v03/i02/p08/ 612. Bahrainian S and Crestani F. Augmentation of Human Memory. Proceedings of the 2018 Conference on Human Information Interaction & Retrieval. (150-159). https://doi.org/10.1145/3176349.3176399 613. Wang C, Xin X and Shang J. When to Make a Topic Popular Again? A Temporal Model for Topic Rehotting Prediction in Online Social Networks. IEEE Transactions on Signal and Information Processing over Networks. 10.1109/TSIPN.2017.2670498. 4:1. (202-216). http://ieeexplore.ieee.org/document/7857808/ 614. GRÜNDER-FAHRER S, SCHLAF A, WIEDEMANN G and HEYER G. (2018). Topics and topical phases in German social media communication during a disaster. Natural Language Engineering. 10.1017/S1351324918000025. 24:02. (221-264). Online publication date: 1-Mar-2018. https://www.cambridge.org/core/product/identifier/S1351324918000025/type/journal_article 615. Yang Z, Ma H, He Z and Wang X. (2018). Finding maximal ranges with unique topics in a text database. World Wide Web. 21:2. (289-310). Online publication date: 1-Mar-2018. https://doi.org/10.1007/s11280-017-0448-y 616. Su S, Wang Y, Zhang Z, Chang C and Zia M. (2018). Identifying and tracking topic-level influencers in the microblog streams. Machine Language. 107:3. (551-578). Online publication date: 1-Mar-2018. https://doi.org/10.1007/s10994-017-5665-1 617. Taxidou I, Lieber S, Fischer P, Nies T and Verborgh R. (2018). Web-scale provenance reconstruction of implicit information diffusion on social media. Distributed and Parallel Databases. 36:1. (47-79). Online publication date: 1-Mar-2018. https://doi.org/10.1007/s10619-017-7211-3 618. Rockmore D, Fang C, Foti N, Ginsburg T and Krakauer D. (2018). The cultural evolution of national constitutions. Journal of the Association for Information Science and Technology. 69:3. (483-494). Online publication date: 1-Mar-2018. https://doi.org/10.1002/asi.23971 619. Shaikh Z. (2018). Keyword Detection Techniques: A Comprehensive Study. Engineering, Technology & Applied Science Research. 10.48084/etasr.1813. 8:1. (2590-2594). https://etasr.com/index.php/ETASR/article/view/1813 620. Liang S. Dynamic user profiling for streams of short texts. Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelligence Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence. (5860-5867). /doi/10.5555/3504035.3504754 621. Yao Z, Sun Y, Ding W, Rao N and Xiong H. Dynamic Word Embeddings for Evolving Semantic Discovery. Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining. (673-681). https://doi.org/10.1145/3159652.3159703 622. Kawamae N. Topic Chronicle Forest for Topic Discovery and Tracking. Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining. (315-323). https://doi.org/10.1145/3159652.3159653 623. Xu K, Qi G, Huang J, Wu T and Fu X. (2018). Detecting bursts in sentiment-aware topics from social media. Knowledge-Based Systems. 141:C. (44-54). Online publication date: 1-Feb-2018. https://doi.org/10.1016/j.knosys.2017.11.007 624. Citron D and Way S. (2018). Network assembly of scientific communities of varying size and specificity. Journal of Informetrics. 10.1016/j.joi.2017.12.008. 12:1. (181-190). Online publication date: 1-Feb-2018. https://linkinghub.elsevier.com/retrieve/pii/S1751157717301797 625. Liang S, Ren Z, Zhao Y, Ma J, Yilmaz E and Rijke M. (2017). Inferring Dynamic User Interests in Streams of Short Texts for User Clustering. ACM Transactions on Information Systems. 36:1. (1-37). Online publication date: 31-Jan-2018. https://doi.org/10.1145/3072606 626. Liang S, Yilmaz E, Shen H, Rijke M and Croft W. (2017). Search Result Diversification in Short Text Streams. ACM Transactions on Information Systems. 36:1. (1-35). Online publication date: 31-Jan-2018. https://doi.org/10.1145/3057282 627. Han J, Huang Y, Kumar K and Bhattacharya S. (2018). Time-Varying Dynamic Topic Model. Journal of Global Information Management. 26:1. (104-119). Online publication date: 1-Jan-2018. https://doi.org/10.4018/JGIM.2018010106 628. Zhang Y, Lei T and Qin Z. (2018). A Service Recommendation Algorithm Based on Modeling of Dynamic and Diverse Demands. International Journal of Web Services Research. 15:1. (47-70). Online publication date: 1-Jan-2018. https://doi.org/10.4018/IJWSR.2018010103 629. Ho T and Do P. (2018). Social Network Analysis Based on Topic Model with Temporal Factor. International Journal of Knowledge and Systems Science. 9:1. (82-97). Online publication date: 1-Jan-2018. https://doi.org/10.4018/IJKSS.2018010105 630. Patrizia O, Murdaca A and Penna A. (2018). Active Learning and Self-Determination for the Management of Differences in the Classroom. International Journal of Digital Literacy and Digital Competence. 9:1. (42-54). Online publication date: 1-Jan-2018. https://doi.org/10.4018/IJDLDC.2018010104 631. Miah S and Khatun M. (2018). Design Methods for Decision Support Systems. International Journal of Business Intelligence Research. 9:1. (38-52). Online publication date: 1-Jan-2018. https://doi.org/10.4018/IJBIR.2018010103 632. Armano G and Giuliani A. Novel Text Summarization Techniques for Contextual Advertising. Information Retrieval and Management. 10.4018/978-1-5225-5191-1.ch038. (883-903). http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-5225-5191-1.ch038 633. Tools for Educational Researchers Working With Big Data. The Community of Inquiry Framework in Contemporary Education. 10.4018/978-1-5225-5161-4.ch004. (53-75). http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-5225-5161-4.ch004 634. Quinn C, Quinn M, Olinsky A and Quinn J. (2018). Issues and Methods for Access, Storage, and Analysis of Data From Online Social Communities. Handbook of Research on Big Data Storage and Visualization Techniques. 10.4018/978-1-5225-3142-5.ch015. (402-432). http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-5225-3142-5.ch015 635. YAMAGUCHI K, TANIMOTO K and CHOSOKABE M. (2018). TEXT ANALYTIC DECISION SUPPRT METHODS FOR INTERDISCIPLINARY COLLABORATION IN DISASTER PREVENTIONテキスト解析を用いた学際的な防災協働体制づくりの支援手法. Journal of Japan Society of Civil Engineers, Ser. F4 (Construction and Management). 10.2208/jscejcm.74.I_173. 74:2. (I_173-I_181). https://www.jstage.jst.go.jp/article/jscejcm/74/2/74_I_173/_article/-char/ja/ 636. WATANABE K, MATSUBAYASHI Y, INUI K, FUKAYAMA S, NAKANO T and GOTO M. (2018). Modeling Storylines in Lyrics. IEICE Transactions on Information and Systems. 10.1587/transinf.2017EDP7188. E101.D:4. (1167-1179). https://www.jstage.jst.go.jp/article/transinf/E101.D/4/E101.D_2017EDP7188/_article 637. KUSAJIMA S and SUMI Y. (2018). Activating Group Discussion by Topic Providing Bots. IEICE Transactions on Information and Systems. 10.1587/transinf.2016IIP0034. E101.D:4. (856-864). https://www.jstage.jst.go.jp/article/transinf/E101.D/4/E101.D_2016IIP0034/_article 638. Faisal A and Peltoniemi M. (2015). Establishing Video Game Genres Using Data-Driven Modeling and Product Databases. Games and Culture. 10.1177/1555412015601541. 13:1. (20-43). Online publication date: 1-Jan-2018. http://journals.sagepub.com/doi/10.1177/1555412015601541 639. Glueck M, Naeini M, Doshi-Velez F, Chevalier F, Khan A, Wigdor D and Brudno M. PhenoLines: Phenotype Comparison Visualizations for Disease Subtyping via Topic Models. IEEE Transactions on Visualization and Computer Graphics. 10.1109/TVCG.2017.2745118. 24:1. (371-381). http://ieeexplore.ieee.org/document/8019821/ 640. El-Assady M, Sevastjanova R, Sperrle F, Keim D and Collins C. Progressive Learning of Topic Modeling Parameters: A Visual Analytics Framework. IEEE Transactions on Visualization and Computer Graphics. 10.1109/TVCG.2017.2745080. 24:1. (382-391). http://ieeexplore.ieee.org/document/8019825/ 641. Yao J, Wang Y, Zhang Y, Sun J and Zhou J. (2018). Joint Latent Dirichlet Allocation for Social Tags. IEEE Transactions on Multimedia. 20:1. (224-237). Online publication date: 1-Jan-2018. https://doi.org/10.1109/TMM.2017.2716829 642. Abulaish M and Fazil M. Modeling Topic Evolution in Twitter: An Embedding-Based Approach. IEEE Access. 10.1109/ACCESS.2018.2878494. 6. (64847-64857). https://ieeexplore.ieee.org/document/8513750/ 643. Wandabwa H, Naeem M, Pears R and Mirza F. A Metamodel Enabled Approach for Discovery of Coherent Topics in Short Text Microblogs. IEEE Access. 10.1109/ACCESS.2018.2878441. 6. (65582-65593). https://ieeexplore.ieee.org/document/8514104/ 644. Gou Z, Han L, Sun L, Zhu J and Yan H. Constructing Dynamic Topic Models Based on Variational Autoencoder and Factor Graph. IEEE Access. 10.1109/ACCESS.2018.2869838. 6. (53102-53111). https://ieeexplore.ieee.org/document/8464062/ 645. Bittermann A and Fischer A. (2018). How to Identify Hot Topics in Psychology Using Topic Modeling. Zeitschrift für Psychologie. 10.1027/2151-2604/a000318. 226:1. (3-13). Online publication date: 1-Jan-2018. https://econtent.hogrefe.com/doi/10.1027/2151-2604/a000318 646. Sun M and Zheng H. (2018). Topic Detection for Post Bar Based on LDA Model. Data Science. 10.1007/978-981-13-2206-8_13. (136-149). http://link.springer.com/10.1007/978-981-13-2206-8_13 647. Seifollahi S, Piccardi M and Borzeshi E. (2018). A Semi-supervised Hidden Markov Topic Model Based on Prior Knowledge. Data Mining. 10.1007/978-981-13-0292-3_17. (265-276). http://link.springer.com/10.1007/978-981-13-0292-3_17 648. Papilloud C and Hinneburg A. (2018). Topic-Modelle für qualitative Textanalysen. Qualitative Textanalyse mit Topic-Modellen. 10.1007/978-3-658-21980-2_2. (19-42). http://link.springer.com/10.1007/978-3-658-21980-2_2 649. Heiberger R and Koss C. (2018). Computerlinguistische Textanalyse und Debatten im Parlament. Soziologie der Parlamente. 10.1007/978-3-658-19945-6_15. (391-418). http://link.springer.com/10.1007/978-3-658-19945-6_15 650. Gao L, Wang Z and Guo S. (2018). WalkToTopics: Inferring Topic Relations from a Feature Learning Perspective. Knowledge Science, Engineering and Management. 10.1007/978-3-319-99365-2_4. (42-54). http://link.springer.com/10.1007/978-3-319-99365-2_4 651. He R and Ding D. (2018). Graphical Models with Content Relevance for Crucial Date Detection in Social Media Event. Knowledge Science, Engineering and Management. 10.1007/978-3-319-99247-1_37. (413-421). http://link.springer.com/10.1007/978-3-319-99247-1_37 652. Masada T and Takasu A. (2018). Mini-Batch Variational Inference for Time-Aware Topic Modeling. PRICAI 2018: Trends in Artificial Intelligence. 10.1007/978-3-319-97310-4_18. (156-164). http://link.springer.com/10.1007/978-3-319-97310-4_18 653. Sbalchiero S. (2018). Topic Detection: A Statistical Model and a Quali-Quantitative Method. Tracing the Life Cycle of Ideas in the Humanities and Social Sciences. 10.1007/978-3-319-97064-6_10. (189-210). http://link.springer.com/10.1007/978-3-319-97064-6_10 654. Zhang Z, Li R, Li Y and Gu X. (2018). Rank-Integrated Topic Modeling: A General Framework. Web and Big Data. 10.1007/978-3-319-96890-2_2. (16-31). http://link.springer.com/10.1007/978-3-319-96890-2_2 655. Liu Q, Hu Y, Lei Y, Wei X, Liu G and Bi W. (2018). Topic-Based Microblog Polarity Classification Based on Cascaded Model. Computational Science – ICCS 2018. 10.1007/978-3-319-93701-4_16. (206-220). https://link.springer.com/10.1007/978-3-319-93701-4_16 656. Churchill R, Singh L and Kirov C. (2018). A Temporal Topic Model for Noisy Mediums. Advances in Knowledge Discovery and Data Mining. 10.1007/978-3-319-93037-4_4. (42-53). http://link.springer.com/10.1007/978-3-319-93037-4_4 657. Giannakopoulos K and Chen L. (2018). Incremental and Adaptive Topic Detection over Social Media. Database Systems for Advanced Applications. 10.1007/978-3-319-91452-7_30. (460-473). http://link.springer.com/10.1007/978-3-319-91452-7_30 658. Chan J, Dow S and Schunn C. (2018). Do the Best Design Ideas (Really) Come from Conceptually Distant Sources of Inspiration?. Engineering a Better Future. 10.1007/978-3-319-91134-2_12. (111-139). http://link.springer.com/10.1007/978-3-319-91134-2_12 659. Joseph T and Pe’er I. (2018). Inference of Population Structure from Ancient DNA. Research in Computational Molecular Biology. 10.1007/978-3-319-89929-9_6. (90-104). http://link.springer.com/10.1007/978-3-319-89929-9_6 660. Shang D, Dai X, Ge W, Huang S and Chen J. (2018). A Multi-view Clustering Model for Event Detection in Twitter. Computational Linguistics and Intelligent Text Processing. 10.1007/978-3-319-77116-8_27. (366-378). http://link.springer.com/10.1007/978-3-319-77116-8_27 661. Bahrainian S, Mele I and Crestani F. (2018). Predicting Topics in Scholarly Papers. Advances in Information Retrieval. 10.1007/978-3-319-76941-7_2. (16-28). http://link.springer.com/10.1007/978-3-319-76941-7_2 662. Spitz A and Gertz M. (2018). Entity-Centric Topic Extraction and Exploration: A Network-Based Approach. Advances in Information Retrieval. 10.1007/978-3-319-76941-7_1. (3-15). http://link.springer.com/10.1007/978-3-319-76941-7_1 663. Isupova O. (2018). Background. Machine Learning Methods for Behaviour Analysis and Anomaly Detection in Video. 10.1007/978-3-319-75508-3_2. (9-35). http://link.springer.com/10.1007/978-3-319-75508-3_2 664. Aggarwal C. (2018). Matrix Factorization and Topic Modeling. Machine Learning for Text. 10.1007/978-3-319-73531-3_3. (31-72). http://link.springer.com/10.1007/978-3-319-73531-3_3 665. Elarnaoty M and Farghaly A. (2018). Machine Learning Implementations in Arabic Text Classification. Intelligent Natural Language Processing: Trends and Applications. 10.1007/978-3-319-67056-0_15. (295-324). http://link.springer.com/10.1007/978-3-319-67056-0_15 666. Milioris D. (2018). Background and Related Work. Topic Detection and Classification in Social Networks. 10.1007/978-3-319-66414-9_2. (9-19). http://link.springer.com/10.1007/978-3-319-66414-9_2 667. Zhang Y, Ma J, Wang Z and Chen B. (2018). Extraction and Tracking of Scientific Topics by LDA. Advances in Intelligent Networking and Collaborative Systems. 10.1007/978-3-319-65636-6_48. (536-544). http://link.springer.com/10.1007/978-3-319-65636-6_48 668. Ramesh A and Getoor L. (2018). Topic Evolution Models for Long-Running MOOCs. Web Information Systems Engineering – WISE 2018. 10.1007/978-3-030-02925-8_29. (410-421). http://link.springer.com/10.1007/978-3-030-02925-8_29 669. Skitalinskaya G, Alexandrov M and Cardiff J. (2018). Comparison of Two-Pass Algorithms for Dynamic Topic Modeling Based on Matrix Decompositions. Advances in Computational Intelligence. 10.1007/978-3-030-02840-4_3. (27-43). http://link.springer.com/10.1007/978-3-030-02840-4_3 670. Basile P and McGillivray B. (2018). Exploiting the Web for Semantic Change Detection. Discovery Science. 10.1007/978-3-030-01771-2_13. (194-208). http://link.springer.com/10.1007/978-3-030-01771-2_13 671. Adebayo K, Di Caro L and Boella G. (2018). Towards Annotation of Legal Documents with Ontology Concepts. AI Approaches to the Complexity of Legal Systems. 10.1007/978-3-030-00178-0_23. (337-349). http://link.springer.com/10.1007/978-3-030-00178-0_23 672. Kurata K, Miyata Y, Ishita E, Yamamoto M, Yang F and Iwase A. (2019). Analyzing library and information science full‐text articles using a topic modeling approach. Proceedings of the Association for Information Science and Technology. 10.1002/pra2.2018.14505501143. 55:1. (847-848). Online publication date: 1-Jan-2018. https://asistdl.onlinelibrary.wiley.com/doi/10.1002/pra2.2018.14505501143 673. Ye Q and Ma B. (2017). Chapter 14 Semantic Search of Online Reviews on E-Business Platforms. Internet+ and Electronic Business in China: Innovation and Applications. 10.1108/978-1-78743-115-720171016. (461-482). Online publication date: 13-Dec-2017. https://www.emerald.com/insight/content/doi/10.1108/978-1-78743-115-720171016/full/html 674. Henao L. (2017). Análisis sociológico del perdón: discursos dominantes y alternativos. REVISTA CONTROVERSIA. 10.54118/controver.vi209.1097:209. (111-168). https://revistacontroversia.com/index.php/controversia/article/view/1097 675. Chen J, Wang C, Xiao L, He J, Li L and Deng L. Q-LDA. Proceedings of the 31st International Conference on Neural Information Processing Systems. (4984-4993). /doi/10.5555/3295222.3295251 676. Lan L, Liu Y and Feng Lu W. (2017). Automatic Discovery of Design Task Structure Using Deep Belief Nets. Journal of Computing and Information Science in Engineering. 10.1115/1.4036198. 17:4. Online publication date: 1-Dec-2017. https://asmedigitalcollection.asme.org/computingengineering/article/doi/10.1115/1.4036198/474324/Automatic-Discovery-of-Design-Task-Structure-Using 677. Gultekin S and Paisley J. Nonlinear Kalman Filtering With Divergence Minimization. IEEE Transactions on Signal Processing. 10.1109/TSP.2017.2752729. 65:23. (6319-6331). http://ieeexplore.ieee.org/document/8038055/ 678. Liu X, Jia Y, Zhou B and Gao L. (2017). The Fine-Grained Topic Evolution Based on the Probability Model 2017 10th International Symposium on Computational Intelligence and Design (ISCID). 10.1109/ISCID.2017.117. 978-1-5386-3675-6. (186-189). http://ieeexplore.ieee.org/document/8283252/ 679. Zhang X, Zhao L, Chen Z, Boedihardjo A, Dai J and Lu C. (2017). Trendi: Tracking stories in news and microblogs via emerging, evolving and fading topics 2017 IEEE International Conference on Big Data (Big Data). 10.1109/BigData.2017.8258093. 978-1-5386-2715-0. (1590-1599). http://ieeexplore.ieee.org/document/8258093/ 680. Du Y, Herzog A, Luckow A, Nerella R, Gropp C and Apon A. (2017). Representativeness of latent dirichlet allocation topics estimated from data samples with application to common crawl 2017 IEEE International Conference on Big Data (Big Data). 10.1109/BigData.2017.8258075. 978-1-5386-2715-0. (1418-1427). http://ieeexplore.ieee.org/document/8258075/ 681. Sleeman J, Halem M, Finin T and Cane M. (2017). Discovering scientific influence using cross-domain dynamic topic modeling 2017 IEEE International Conference on Big Data (Big Data). 10.1109/BigData.2017.8258063. 978-1-5386-2715-0. (1325-1332). http://ieeexplore.ieee.org/document/8258063/ 682. Naim S, Boedihardjo A and Hossain M. (2017). A scalable model for tracking topical evolution in large document collections 2017 IEEE International Conference on Big Data (Big Data). 10.1109/BigData.2017.8257988. 978-1-5386-2715-0. (726-735). http://ieeexplore.ieee.org/document/8257988/ 683. Parush A, Mastoras G, Bhandari A, Momtahan K, Day K, Weitzman B, Sohmer B, Cwinn A, Hamstra S and Calder L. (2017). Can teamwork and situational awareness (SA) in ED resuscitations be improved with a technological cognitive aid? Design and a pilot study of a team situation display. Journal of Biomedical Informatics. 76:C. (154-161). Online publication date: 1-Dec-2017. https://doi.org/10.1016/j.jbi.2017.10.009 684. Bouakkaz M, Ouinten Y, Loudcher S and Strekalova Y. (2017). Textual aggregation approaches in OLAP context. International Journal of Information Management: The Journal for Information Professionals. 37:6. (684-692). Online publication date: 1-Dec-2017. https://doi.org/10.1016/j.ijinfomgt.2017.06.005 685. Cao Y, Chan A and Lau R. Mining probabilistic color palettes for summarizing color use in artwork collections. SIGGRAPH Asia 2017 Symposium on Visualization. (1-8). https://doi.org/10.1145/3139295.3139296 686. Mele I, Bahrainian S and Crestani F. Linking News across Multiple Streams for Timeliness Analysis. Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. (767-776). https://doi.org/10.1145/3132847.3132988 687. Zhang Y, Jatowt A and Tanaka K. Temporal Analog Retrieval using Transformation over Dual Hierarchical Structures. Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. (717-726). https://doi.org/10.1145/3132847.3132917 688. Sheng L and Xu L. (2017). Topic Classification Based on Improved Word Embedding 2017 14th Web Information Systems and Applications Conference (WISA). 10.1109/WISA.2017.44. 978-1-5386-4806-3. (117-121). http://ieeexplore.ieee.org/document/8332597/ 689. Chen Y, Rabbani R, Gupta A and Zaki M. (2017). Comparative text analytics via topic modeling in banking 2017 IEEE Symposium Series on Computational Intelligence (SSCI). 10.1109/SSCI.2017.8280945. 978-1-5386-2726-6. (1-8). http://ieeexplore.ieee.org/document/8280945/ 690. Xie L, Wang L, Lu H, Li N and Wangchj C. (2017). Topics may Evolve: Using Complaint Data for Analysis 2017 IEEE 29th International Conference on Tools with Artificial Intelligence (ICTAI). 10.1109/ICTAI.2017.00195. 978-1-5386-3876-7. (1296-1303). https://ieeexplore.ieee.org/document/8372098/ 691. Tang C, Zhang H, Lai K, She Y, Xiong Y and Zhou L. (2017). Developing a regional classifier to track patient needs in medical literature using spiral timelines on a geographical map 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). 10.1109/BIBM.2017.8217771. 978-1-5090-3050-7. (874-879). http://ieeexplore.ieee.org/document/8217771/ 692. Shknevsky A, Shahar Y and Moskovitch R. (2017). Consistent discovery of frequent interval-based temporal patterns in chronic patients data. Journal of Biomedical Informatics. 75:C. (83-95). Online publication date: 1-Nov-2017. https://doi.org/10.1016/j.jbi.2017.10.002 693. Kim S, Fiorini N, Wilbur W and Lu Z. (2017). Bridging the gap. Journal of Biomedical Informatics. 75:C. (122-127). Online publication date: 1-Nov-2017. https://doi.org/10.1016/j.jbi.2017.09.014 694. Alam M, Ryu W and Lee S. (2017). Hashtag-based topic evolution in social media. World Wide Web. 20:6. (1527-1549). Online publication date: 1-Nov-2017. https://doi.org/10.1007/s11280-017-0451-3 695. Samé A and Govaert G. (2017). Segmental dynamic factor analysis for time series of curves. Statistics and Computing. 27:6. (1617-1637). Online publication date: 1-Nov-2017. https://doi.org/10.1007/s11222-016-9707-5 696. Mehta H, Bradley A, Hancock M and Collins C. (2017). Metatation. ACM Transactions on Computer-Human Interaction. 24:5. (1-41). Online publication date: 31-Oct-2017. https://doi.org/10.1145/3131609 697. Koplenig A. (2017). A Data-Driven Method to Identify (Correlated) Changes in Chronological Corpora. Journal of Quantitative Linguistics. 10.1080/09296174.2017.1311447. 24:4. (289-318). Online publication date: 2-Oct-2017. https://www.tandfonline.com/doi/full/10.1080/09296174.2017.1311447 698. Chundi P. (2017). Identifying Emerging Topics and Content Change from Evolving Document Sets. International Journal of Knowledge-Based Organizations. 7:4. (1-18). Online publication date: 1-Oct-2017. https://doi.org/10.4018/IJKBO.2017100101 699. Gurciullo S and Mikhaylov S. (2017). Detecting policy preferences and dynamics in the UN general debate with neural word embeddings 2017 International Conference on the Frontiers and Advances in Data Science (FADS). 10.1109/FADS.2017.8253197. 978-1-5386-3148-5. (74-79). http://ieeexplore.ieee.org/document/8253197/ 700. Zhang Y, Chen H, Lu J and Zhang G. (2017). Detecting and predicting the topic change of Knowledge-based Systems. Knowledge-Based Systems. 133:C. (255-268). Online publication date: 1-Oct-2017. https://doi.org/10.1016/j.knosys.2017.07.011 701. Zhou H, Yu H and Hu R. (2017). Topic evolution based on the probabilistic topic model. Frontiers of Computer Science: Selected Publications from Chinese Universities. 11:5. (786-802). Online publication date: 1-Oct-2017. https://doi.org/10.1007/s11704-016-5442-5 702. Puranam D, Narayan V and Kadiyali V. (2017). The Effect of Calorie Posting Regulation on Consumer Opinion. Marketing Science. 36:5. (726-746). Online publication date: 1-Sep-2017. https://doi.org/10.1287/mksc.2017.1048 703. Liu Y, Ester M, Qian Y, Hu B and Cheung D. Microscopic and Macroscopic Spatio-Temporal Topic Models for Check-in Data. IEEE Transactions on Knowledge and Data Engineering. 10.1109/TKDE.2017.2703825. 29:9. (1957-1970). http://ieeexplore.ieee.org/document/7926441/ 704. Ashok Kumar P and Vaidehi V. (2017). A transfer learning framework for traffic video using neuro-fuzzy approach. Sādhanā. 10.1007/s12046-017-0705-x. 42:9. (1431-1442). Online publication date: 1-Sep-2017. http://link.springer.com/10.1007/s12046-017-0705-x 705. Guo J and Gong Z. A density-based nonparametric model for online event discovery from the social media data. Proceedings of the 26th International Joint Conference on Artificial Intelligence. (1732-1738). /doi/10.5555/3172077.3172128 706. Xun G, Li Y, Zhao W, Gao J and Zhang A. A correlated topic model using word embeddings. Proceedings of the 26th International Joint Conference on Artificial Intelligence. (4207-4213). /doi/10.5555/3171837.3171874 707. Sybrandt J, Shtutman M and Safro I. MOLIERE. Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. (1633-1642). https://doi.org/10.1145/3097983.3098057 708. Zhang C, Zhang K, Yuan Q, Tao F, Zhang L, Hanratty T and Han J. ReAct. Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. (245-254). https://doi.org/10.1145/3077136.3080814 709. Takeda N, Seki Y, Morishita M and Inagaki Y. Evolution of Information Needs based on Life Event Experiences with Topic Transition. Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. (1009-1012). https://doi.org/10.1145/3077136.3080703 710. Miao Y, Grefenstette E and Blunsom P. Discovering discrete latent topics with neural variational inference. Proceedings of the 34th International Conference on Machine Learning - Volume 70. (2410-2419). /doi/10.5555/3305890.3305930 711. Bamler R and Mandt S. Dynamic word embeddings. Proceedings of the 34th International Conference on Machine Learning - Volume 70. (380-389). /doi/10.5555/3305381.3305421 712. Xu Z, Chen L, Dai Y and Chen G. A Dynamic Topic Model and Matrix Factorization-Based Travel Recommendation Method Exploiting Ubiquitous Data. IEEE Transactions on Multimedia. 10.1109/TMM.2017.2688928. 19:8. (1933-1945). http://ieeexplore.ieee.org/document/7889010/ 713. Barranco R, Rodriguez L, Urbina R and Hossain M. (2017). Enhancing Yelp Data with Deep Learning and Information Reuse 2017 IEEE International Conference on Information Reuse and Integration (IRI). 10.1109/IRI.2017.17. 978-1-5386-1562-1. (452-461). http://ieeexplore.ieee.org/document/8102970/ 714. Zhang Y, Mao W and Lin J. (2017). Modeling Topic Evolution in Social Media Short Texts 2017 IEEE International Conference on Big Knowledge (ICBK). 10.1109/ICBK.2017.39. 978-1-5386-3120-1. (315-319). http://ieeexplore.ieee.org/document/8023436/ 715. Rani M, Dhar A and Vyas O. (2017). Semi-automatic terminology ontology learning based on topic modeling. Engineering Applications of Artificial Intelligence. 10.1016/j.engappai.2017.05.006. 63. (108-125). Online publication date: 1-Aug-2017. https://linkinghub.elsevier.com/retrieve/pii/S0952197617300891 716. Shaffer R. (2017). Cognitive load and issue engagement in congressional discourse. Cognitive Systems Research. 44:C. (89-99). Online publication date: 1-Aug-2017. https://doi.org/10.1016/j.cogsys.2017.03.006 717. Iyer R, Wong J, Tavanapong W and Peterson D. Identifying Policy Agenda Sub-Topics in Political Tweets based on Community Detection. Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017. (698-705). https://doi.org/10.1145/3110025.3116208 718. Skryzalin J, Field R, Fisher A and Bauer T. Temporal Anomaly Detection in Social Media. Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017. (505-509). https://doi.org/10.1145/3110025.3110056 719. Zhang H, Xu S, Wang Z, Zhu L, Luo H, Deng D and Wu H. (2017). Text and Data Mining of Social Media in Science and Technology Publicity 2017 Portland International Conference on Management of Engineering and Technology (PICMET). 10.23919/PICMET.2017.8125345. 978-1-890843-36-6. (1-7). http://ieeexplore.ieee.org/document/8125345/ 720. Ranaei S and Suominen A. (2017). Using Machine Learning Approaches to Identify Emergence: Case of Vehicle Related Patent Data 2017 Portland International Conference on Management of Engineering and Technology (PICMET). 10.23919/PICMET.2017.8125290. 978-1-890843-36-6. (1-8). http://ieeexplore.ieee.org/document/8125290/ 721. Li W, Cao Y, Zhao J, Zou Y and Xie B. (2017). Toward Summary Extraction Method for Functional Topic 2017 IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C). 10.1109/QRS-C.2017.13. 978-1-5386-2072-4. (16-23). http://ieeexplore.ieee.org/document/8004289/ 722. Zhang Y, Mao W and Zeng D. (2017). Topic evolution modeling in social media short texts based on recurrent semantic dependent CRP 2017 IEEE International Conference on Intelligence and Security Informatics (ISI). 10.1109/ISI.2017.8004885. 978-1-5090-6727-5. (119-124). http://ieeexplore.ieee.org/document/8004885/ 723. Huang C. (2017). Investigating topic coherence and task performance for varied types of words in LDA 2017 International Conference on Machine Learning and Cybernetics (ICMLC). 10.1109/ICMLC.2017.8107775. 978-1-5386-0406-9. (260-265). http://ieeexplore.ieee.org/document/8107775/ 724. Vries H, Strub F, Chandar S, Pietquin O, Larochelle H and Courville A. (2017). GuessWhat?! Visual Object Discovery through Multi-modal Dialogue 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 10.1109/CVPR.2017.475. 978-1-5386-0457-1. (4466-4475). http://ieeexplore.ieee.org/document/8099958/ 725. Shirota Y, Hashimoto T and Chakraborty B. Visualization challenge on time series statistical data. Proceedings of the Computer Graphics International Conference. (1-4). https://doi.org/10.1145/3095140.3095152 726. Celikten E, Le Falher G and Mathioudakis M. Modeling Urban Behavior by Mining Geotagged Social Data. IEEE Transactions on Big Data. 10.1109/TBDATA.2016.2628398. 3:2. (220-233). http://ieeexplore.ieee.org/document/7742983/ 727. Bai B, Fan Y, Tan W and Zhang J. (2017). SR-LDA: Mining Effective Representations for Generating Service Ecosystem Knowledge Maps 2017 IEEE International Conference on Services Computing (SCC). 10.1109/SCC.2017.23. 978-1-5386-2005-2. (124-131). http://ieeexplore.ieee.org/document/8034976/ 728. Gao Z, Fan Y, Wu C, Tan W and Zhang J. (2017). Service Recommendation from the Evolution of Composition Patterns 2017 IEEE International Conference on Services Computing (SCC). 10.1109/SCC.2017.21. 978-1-5386-2005-2. (108-115). http://ieeexplore.ieee.org/document/8034974/ 729. Keshav B and Rajeshwari J. (2017). Topic sketch: Real time bursty topic detection from social media 2017 International Conference on Intelligent Computing and Control Systems (ICICCS). 10.1109/ICCONS.2017.8250596. 978-1-5386-2745-7. (904-908). http://ieeexplore.ieee.org/document/8250596/ 730. Barde B and Bainwad A. (2017). An overview of topic modeling methods and tools 2017 International Conference on Intelligent Computing and Control Systems (ICICCS). 10.1109/ICCONS.2017.8250563. 978-1-5386-2745-7. (745-750). http://ieeexplore.ieee.org/document/8250563/ 731. Wang Y, Zhang Y, Zhou B and Jia Y. (2017). Semi-Supervised Collective Matrix Factorization for Topic Detection and Document Clustering 2017 IEEE Second International Conference on Data Science in Cyberspace (DSC). 10.1109/DSC.2017.17. 978-1-5386-1600-0. (88-97). http://ieeexplore.ieee.org/document/8005460/ 732. Liu Y and Xu S. (2017). A local context-aware LDA model for topic modeling in a document network. Journal of the Association for Information Science and Technology. 68:6. (1429-1448). Online publication date: 1-Jun-2017. https://doi.org/10.1002/asi.23822 733. Zhou H, Yu H, Hu R and Hu J. (2017). A survey on trends of cross-media topic evolution map. Knowledge-Based Systems. 124:C. (164-175). Online publication date: 15-May-2017. https://doi.org/10.1016/j.knosys.2017.03.009 734. Liu P, Wu K and Meng H. (2017). A model of extended paragraph vector for document categorization and trend analysis 2017 International Joint Conference on Neural Networks (IJCNN). 10.1109/IJCNN.2017.7966147. 978-1-5090-6182-2. (2400-2406). http://ieeexplore.ieee.org/document/7966147/ 735. Lu K, Cai X, Ajiferuke I and Wolfram D. (2017). Vocabulary size and its effect on topic representation. Information Processing and Management: an International Journal. 53:3. (653-665). Online publication date: 1-May-2017. https://doi.org/10.1016/j.ipm.2017.01.003 736. Thomason A, Griffiths N and Sanchez V. (2016). Context Trees. ACM Transactions on Information Systems. 35:2. (1-37). Online publication date: 30-Apr-2017. https://doi.org/10.1145/2978578 737. Jiang D, Tong Y and Song Y. (2016). Cross-Lingual Topic Discovery From Multilingual Search Engine Query Log. ACM Transactions on Information Systems. 35:2. (1-28). Online publication date: 30-Apr-2017. https://doi.org/10.1145/2956235 738. Jin J, Geng Q, Zhao Q and Zhang L. Integrating the Trend of Research Interest for Reviewer Assignment. Proceedings of the 26th International Conference on World Wide Web Companion. (1233-1241). https://doi.org/10.1145/3041021.3053053 739. Bahrainian S, Mele I and Crestani F. Modeling discrete dynamic topics. Proceedings of the Symposium on Applied Computing. (858-865). https://doi.org/10.1145/3019612.3019673 740. Huang J. (2017). Using Topic and Subjectivity Analysis for Overlapped Co-clustering Documents 2017 IEEE Third International Conference on Multimedia Big Data (BigMM). 10.1109/BigMM.2017.26. 978-1-5090-6549-3. (105-108). http://ieeexplore.ieee.org/document/7966727/ 741. Lu Y and Zheng M. (2017). Web Topic Analysis of the Two-child Policy in China. Procedia Computer Science. 107:C. (97-102). Online publication date: 1-Apr-2017. https://doi.org/10.1016/j.procs.2017.03.063 742. Li W and Vasconcelos N. (2017). Complex Activity Recognition Via Attribute Dynamics. International Journal of Computer Vision. 122:2. (334-370). Online publication date: 1-Apr-2017. https://doi.org/10.1007/s11263-016-0918-1 743. Rekatsinas T, Ghosh S, Mekaru S, Nsoesie E, Brownstein J, Getoor L and Ramakrishnan N. (2017). Forecasting rare disease outbreaks from open source indicators. Statistical Analysis and Data Mining: The ASA Data Science Journal. 10.1002/sam.11337. 10:2. (136-150). Online publication date: 1-Apr-2017. https://onlinelibrary.wiley.com/doi/10.1002/sam.11337 744. Singh J, Zerr S and Siersdorfer S. Structure-Aware Visualization of Text Corpora. Proceedings of the 2017 Conference on Conference Human Information Interaction and Retrieval. (107-116). https://doi.org/10.1145/3020165.3020182 745. Sun L, Wang X, Wang Z, Zhao H and Zhu W. (2017). Social-Aware Video Recommendation for Online Social Groups. IEEE Transactions on Multimedia. 19:3. (609-618). Online publication date: 1-Mar-2017. https://doi.org/10.1109/TMM.2016.2635589 746. Xia F, Wang W, Bekele T and Liu H. Big Scholarly Data: A Survey. IEEE Transactions on Big Data. 10.1109/TBDATA.2016.2641460. 3:1. (18-35). https://ieeexplore.ieee.org/document/7809016/ 747. Katsurai M. (2017). Bursty research topic detection from scholarly data using dynamic Co-word networks: A preliminary investigation 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA). 10.1109/ICBDA.2017.8078788. 978-1-5090-3618-9. (115-119). http://ieeexplore.ieee.org/document/8078788/ 748. Huang J, Peng M, Wang H, Cao J, Gao W and Zhang X. (2017). A probabilistic method for emerging topic tracking in Microblog stream. World Wide Web. 20:2. (325-350). Online publication date: 1-Mar-2017. https://doi.org/10.1007/s11280-016-0390-4 749. Adu-Manu K, Tapparello C, Heinzelman W, Katsriku F and Abdulai J. (2017). Water Quality Monitoring Using Wireless Sensor Networks. ACM Transactions on Sensor Networks. 13:1. (1-41). Online publication date: 28-Feb-2017. https://doi.org/10.1145/3005719 750. Cheong S and Si Y. (2016). Accelerating the Kamada-Kawai Algorithm for Boundary Detection in a Mobile Ad Hoc Network. ACM Transactions on Sensor Networks. 13:1. (1-29). Online publication date: 28-Feb-2017. https://doi.org/10.1145/3005718 751. Midi D, Sultana S and Bertino E. (2016). A System for Response and Prevention of Security Incidents in Wireless Sensor Networks. ACM Transactions on Sensor Networks. 13:1. (1-38). Online publication date: 28-Feb-2017. https://doi.org/10.1145/2996195 752. Guo W, Liang L and Deng T. (2016). Topic mining for call centers based on A‐LDA and distributed computing. Concurrency and Computation: Practice and Experience. 10.1002/cpe.3776. 29:3. Online publication date: 10-Feb-2017. https://onlinelibrary.wiley.com/doi/10.1002/cpe.3776 753. Park Y, Ha J, Kim H and Ko J. (2016). Enabling Sensor Network to Smartphone Interaction Using Software Radios. ACM Transactions on Sensor Networks. 13:1. (1-26). Online publication date: 9-Feb-2017. https://doi.org/10.1145/3002177 754. Lin H, Zhu H, Zuo Y, Zhu C, Wu J and Xiong H. Collaborative company profiling. Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence. (1417-1423). /doi/10.5555/3298239.3298446 755. Gao L, Wu J, Zhou C and Hu Y. Collaborative dynamic sparse topic regression with user profile evolution for item recommendation. Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence. (1316-1322). /doi/10.5555/3298239.3298432 756. Duckworth P, Alomari M, Charles J, Hogg D and Cohn A. Latent dirichlet allocation for unsupervised activity analysis on an autonomous mobile robot. Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence. (3819-3826). /doi/10.5555/3298023.3298123 757. Liang S, Ren Z, Yilmaz E and Kanoulas E. Collaborative user clustering for short text streams. Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence. (3504-3510). /doi/10.5555/3298023.3298077 758. Liu H, Xu J, Zheng K, Liu C, Du L and Wu X. Semantic-aware Query Processing for Activity Trajectories. Proceedings of the Tenth ACM International Conference on Web Search and Data Mining. (283-292). https://doi.org/10.1145/3018661.3018678 759. Nikolenko S, Koltcov S and Koltsova O. (2017). Topic modelling for qualitative studies. Journal of Information Science. 43:1. (88-102). Online publication date: 1-Feb-2017. https://doi.org/10.1177/0165551515617393 760. Li W, Joo J, Qi H and Zhu S. (2017). Joint Image-Text News Topic Detection and Tracking by Multimodal Topic And-Or Graph. IEEE Transactions on Multimedia. 19:2. (367-381). Online publication date: 1-Feb-2017. https://doi.org/10.1109/TMM.2016.2616279 761. Zhang Y, Jatowt A and Tanaka K. (2016). Causal Relationship Detection in Archival Collections of Product Reviews for Understanding Technology Evolution. ACM Transactions on Information Systems. 35:1. (1-41). Online publication date: 31-Jan-2017. https://doi.org/10.1145/2937752 762. Morsy S and Karypis G. (2016). Accounting for Language Changes Over Time in Document Similarity Search. ACM Transactions on Information Systems. 35:1. (1-26). Online publication date: 31-Jan-2017. https://doi.org/10.1145/2934671 763. Perrone V, Jenkins P, Spanò D and Teh Y. (2017). Poisson random fields for dynamic feature models. The Journal of Machine Learning Research. 18:1. (4626-4670). Online publication date: 1-Jan-2017. /doi/10.5555/3122009.3208008 764. Ogawa Y, Kobayashi T, Hahn K and Jang S. (2017). Press Coverage of Historical and Territorial Issues between Japan and Korea:. Kodo Keiryogaku (The Japanese Journal of Behaviormetrics). 10.2333/jbhmk.44.1. 44:1. (1-15). https://www.jstage.jst.go.jp/article/jbhmk/44/1/44_1/_article/-char/ja/ 765. XUE J and EGUCHI K. (2017). Video Data Modeling Using Sequential Correspondence Hierarchical Dirichlet Processes. IEICE Transactions on Information and Systems. 10.1587/transinf.2016MUP0007. E100.D:1. (33-41). https://www.jstage.jst.go.jp/article/transinf/E100.D/1/E100.D_2016MUP0007/_article 766. Uetsuji K, Yanagimoto H and Yoshioka M. (2017). Analysis for Short Term User Behavior with Topic Model. IEEJ Transactions on Electronics, Information and Systems. 10.1541/ieejeiss.137.974. 137:7. (974-979). https://www.jstage.jst.go.jp/article/ieejeiss/137/7/137_974/_article/-char/ja/ 767. Xun G, Jia X, Gopalakrishnan V and Zhang A. (2017). A Survey on Context Learning. IEEE Transactions on Knowledge and Data Engineering. 29:1. (38-56). Online publication date: 1-Jan-2017. https://doi.org/10.1109/TKDE.2016.2614508 768. Jiang H, Wu H and Wang M. (2017). Causes of death in the United States, 1999 to 2014 2017 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI). 10.1109/BHI.2017.7897234. 978-1-5090-4179-4. (177-180). http://ieeexplore.ieee.org/document/7897234/ 769. He Y, Wang C and Jiang C. Mining Coherent Topics With Pre-Learned Interest Knowledge in Twitter. IEEE Access. 10.1109/ACCESS.2017.2696558. 5. (10515-10525). http://ieeexplore.ieee.org/document/7941989/ 770. Greene D and Cross J. (2017). Exploring the Political Agenda of the European Parliament Using a Dynamic Topic Modeling Approach. Political Analysis. 10.1017/pan.2016.7. 25:1. (77-94). Online publication date: 1-Jan-2017. https://www.cambridge.org/core/product/identifier/S1047198716000073/type/journal_article 771. Kowalski R. (2017). Patients’ written reviews as a resource for public healthcare management in England. Procedia Computer Science. 10.1016/j.procs.2017.08.275. 113. (545-550). https://linkinghub.elsevier.com/retrieve/pii/S1877050917316848 772. Wang P, Zhang P, Zhou C, Li Z and Yang H. (2017). Hierarchical evolving Dirichlet processes for modeling nonlinear evolutionary traces in temporal data. Data Mining and Knowledge Discovery. 31:1. (32-64). Online publication date: 1-Jan-2017. https://doi.org/10.1007/s10618-016-0454-1 773. He L, Du Y and Ye Y. (2017). Tracking Topic Trends for Short Texts. Knowledge Graph and Semantic Computing. Language, Knowledge, and Intelligence. 10.1007/978-981-10-7359-5_12. (117-128). http://link.springer.com/10.1007/978-981-10-7359-5_12 774. Akhtar N. (2017). Hierarchical Summarization of News Tweets with Twitter-LDA. Applications of Soft Computing for the Web. 10.1007/978-981-10-7098-3_6. (83-98). http://link.springer.com/10.1007/978-981-10-7098-3_6 775. Linton M, Teo E, Bommes E, Chen C and Härdle W. (2017). Dynamic Topic Modelling for Cryptocurrency Community Forums. Applied Quantitative Finance. 10.1007/978-3-662-54486-0_18. (355-372). http://link.springer.com/10.1007/978-3-662-54486-0_18 776. Brüggermann D, Hermey Y, Orth C, Schneider D, Selzer S and Spanakis G. (2017). Towards a Topic Discovery and Tracking System with Application to News Items. Future and Emerging Trends in Language Technology. Machine Learning and Big Data. 10.1007/978-3-319-69365-1_15. (183-197). http://link.springer.com/10.1007/978-3-319-69365-1_15 777. Zhang J, Wang J and Li L. (2017). Context-Aware Topic Modeling for Content Tracking in Social Media. Web and Big Data. 10.1007/978-3-319-63579-8_49. (650-658). http://link.springer.com/10.1007/978-3-319-63579-8_49 778. Recchia G, Jones E, Nulty P, Regan J and de Bolla P. (2017). Tracing Shifting Conceptual Vocabularies Through Time. Knowledge Engineering and Knowledge Management. 10.1007/978-3-319-58694-6_2. (19-28). http://link.springer.com/10.1007/978-3-319-58694-6_2 779. Fang A, Macdonald C, Ounis I, Habel P and Yang X. (2017). Exploring Time-Sensitive Variational Bayesian Inference LDA for Social Media Data. Advances in Information Retrieval. 10.1007/978-3-319-56608-5_20. (252-265). http://link.springer.com/10.1007/978-3-319-56608-5_20 780. Lei M, Ge J, Li Z, Li C, Zhou Y, Zhou X and Luo B. (2017). Automatically Classify Chinese Judgment Documents Utilizing Machine Learning Algorithms. Database Systems for Advanced Applications. 10.1007/978-3-319-55705-2_1. (3-17). http://link.springer.com/10.1007/978-3-319-55705-2_1 781. Wang H and Zhai C. (2017). Generative Models for Sentiment Analysis and Opinion Mining. A Practical Guide to Sentiment Analysis. 10.1007/978-3-319-55394-8_6. (107-134). http://link.springer.com/10.1007/978-3-319-55394-8_6 782. John A, Di Caro L and Boella G. (2017). Text Segmentation with Topic Modeling and Entity Coherence. Proceedings of the 16th International Conference on Hybrid Intelligent Systems (HIS 2016). 10.1007/978-3-319-52941-7_18. (175-185). http://link.springer.com/10.1007/978-3-319-52941-7_18 783. Liebeskind C, Dagan I and Schler J. (2016). Semiautomatic Construction of Cross-Period Thesaurus. Journal on Computing and Cultural Heritage . 9:4. (1-26). Online publication date: 19-Dec-2016. https://doi.org/10.1145/2994151 784. Schein A, Zhou M and Wallach H. Poisson-gamma dynamical systems. Proceedings of the 30th International Conference on Neural Information Processing Systems. (5012-5020). /doi/10.5555/3157382.3157657 785. Yurochkin M and Nguyen X. Geometric Dirichlet means algorithm for topic inference. Proceedings of the 30th International Conference on Neural Information Processing Systems. (2513-2521). /doi/10.5555/3157096.3157377 786. Yeh J, Tan Y and Lee C. (2016). Topic detection and tracking for conversational content by using conceptual dynamic latent Dirichlet allocation. Neurocomputing. 216:C. (310-318). Online publication date: 5-Dec-2016. https://doi.org/10.1016/j.neucom.2016.08.017 787. Liu L, Tang L, Dong W, Yao S and Zhou W. (2016). An overview of topic modeling and its current applications in bioinformatics. SpringerPlus. 10.1186/s40064-016-3252-8. 5:1. Online publication date: 1-Dec-2016. http://springerplus.springeropen.com/articles/10.1186/s40064-016-3252-8 788. Andrei V and Arandjelović O. (2016). Complex temporal topic evolution modelling using the Kullback-Leibler divergence and the Bhattacharyya distance. EURASIP Journal on Bioinformatics and Systems Biology. 10.1186/s13637-016-0050-0. 2016:1. Online publication date: 1-Dec-2016. https://bsb-eurasipjournals.springeropen.com/articles/10.1186/s13637-016-0050-0 789. Wang S, Ding Y, Zhao W, Huang Y, Perkins R, Zou W and Chen J. (2016). Text mining for identifying topics in the literatures about adolescent substance use and depression. BMC Public Health. 10.1186/s12889-016-2932-1. 16:1. Online publication date: 1-Dec-2016. http://www.biomedcentral.com/1471-2458/16/279 790. Wang H and Yeung D. (2016). Towards Bayesian Deep Learning. IEEE Transactions on Knowledge and Data Engineering. 28:12. (3395-3408). Online publication date: 1-Dec-2016. https://doi.org/10.1109/TKDE.2016.2606428 791. Doulamis N, Doulamis A, Kokkinos P and Varvarigos E. Event Detection in Twitter Microblogging. IEEE Transactions on Cybernetics. 10.1109/TCYB.2015.2489841. 46:12. (2810-2824). http://ieeexplore.ieee.org/document/7314900/ 792. Xiaodi Zhu , Yang S and Moazeni S. (2016). Firm risk identification through topic analysis of textual financial disclosures 2016 IEEE Symposium Series on Computational Intelligence (SSCI). 10.1109/SSCI.2016.7850005. 978-1-5090-4240-1. (1-8). http://ieeexplore.ieee.org/document/7850005/ 793. Same A. (2016). Dynamic Factor Mixture of Experts for Functional Time Series Modeling 2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA). 10.1109/ICMLA.2016.0013. 978-1-5090-6167-9. (19-25). http://ieeexplore.ieee.org/document/7838117/ 794. Emoto M. (2016). Method for Extraction of Purchase Behavior and Product Character Using Dynamic Topic Model 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW). 10.1109/ICDMW.2016.0114. 978-1-5090-5910-2. (778-782). http://ieeexplore.ieee.org/document/7836745/ 795. Zonoozi A, Ho Q, Krishnaswamy S and Cong G. (2016). ConTrack: A Scalable Method for Tracking Multiple Concepts in Large Scale Multidimensional Data 2016 IEEE 16th International Conference on Data Mining (ICDM). 10.1109/ICDM.2016.0087. 978-1-5090-5473-2. (759-768). http://ieeexplore.ieee.org/document/7837900/ 796. Ding W, Zhang Y, Chen C and Hu X. (2016). Semi-supervised Dirichlet-Hawkes process with applications of topic detection and tracking in Twitter 2016 IEEE International Conference on Big Data (Big Data). 10.1109/BigData.2016.7840680. 978-1-4673-9005-7. (869-874). http://ieeexplore.ieee.org/document/7840680/ 797. Song X, Rui Y and Hu X. (2016). Pairwise topic model and its application to topic transition and evolution 2016 IEEE International Conference on Big Data (Big Data). 10.1109/BigData.2016.7840592. 978-1-4673-9005-7. (86-95). http://ieeexplore.ieee.org/document/7840592/ 798. Liu Z, Zheng Q, Wang F and Qian B. (2016). Nonparametric models for characterizing the topical communities in social network. Neurocomputing. 10.1016/j.neucom.2016.07.053. 216. (439-450). Online publication date: 1-Dec-2016. https://linkinghub.elsevier.com/retrieve/pii/S0925231216308256 799. Mortenson M and Vidgen R. (2016). A computational literature review of the technology acceptance model. International Journal of Information Management: The Journal for Information Professionals. 36:6. (1248-1259). Online publication date: 1-Dec-2016. https://doi.org/10.1016/j.ijinfomgt.2016.07.007 800. Kawata S and Fujiwara Y. (2016). Constructing of network from topics and their temporal change in the Nikkei newspaper articles. Evolutionary and Institutional Economics Review. 10.1007/s40844-016-0061-2. 13:2. (423-436). Online publication date: 1-Dec-2016. http://link.springer.com/10.1007/s40844-016-0061-2 801. Sánchez‐Franco M, Navarro‐García A and Rondán‐Cataluña F. (2016). Online Customer Service Reviews in Urban Hotels: A Data Mining Approach. Psychology & Marketing. 10.1002/mar.20955. 33:12. (1174-1186). Online publication date: 1-Dec-2016. https://onlinelibrary.wiley.com/doi/10.1002/mar.20955 802. Büschken J and Allenby G. (2016). Sentence-Based Text Analysis for Customer Reviews. Marketing Science. 35:6. (953-975). Online publication date: 1-Nov-2016. https://doi.org/10.1287/mksc.2016.0993 803. Liu S, Yin J, Wang X, Cui W, Cao K and Pei J. Online Visual Analytics of Text Streams. IEEE Transactions on Visualization and Computer Graphics. 10.1109/TVCG.2015.2509990. 22:11. (2451-2466). http://ieeexplore.ieee.org/document/7360233/ 804. Zhang J and Chow C. (2016). CRATS. IEEE Transactions on Knowledge and Data Engineering. 28:11. (2895-2909). Online publication date: 1-Nov-2016. https://doi.org/10.1109/TKDE.2016.2594772 805. Lim K, Buntine W, Chen C and Du L. (2016). Nonparametric Bayesian topic modelling with the hierarchical Pitman-Yor processes. International Journal of Approximate Reasoning. 78:C. (172-191). Online publication date: 1-Nov-2016. https://doi.org/10.1016/j.ijar.2016.07.007 806. Lin F, Xiahou J and Xu Z. (2016). TCM clinic records data mining approaches based on weighted-LDA and multi-relationship LDA model. Multimedia Tools and Applications. 75:22. (14203-14232). Online publication date: 1-Nov-2016. https://doi.org/10.1007/s11042-016-3363-9 807. Yao L, Zhang Y, Wei B, Li L, Wu F, Zhang P and Bian Y. (2016). Concept over time. Expert Systems with Applications: An International Journal. 60:C. (27-38). Online publication date: 30-Oct-2016. https://doi.org/10.1016/j.eswa.2016.04.014 808. Ren Z, Inel O, Aroyo L and de Rijke M. Time-aware Multi-Viewpoint Summarization of Multilingual Social Text Streams. Proceedings of the 25th ACM International on Conference on Information and Knowledge Management. (387-396). https://doi.org/10.1145/2983323.2983710 809. Hua T, Zhang X, Wang W, Lu C and Ramakrishnan N. Automatical Storyline Generation with Help from Twitter. Proceedings of the 25th ACM International on Conference on Information and Knowledge Management. (2383-2388). https://doi.org/10.1145/2983323.2983698 810. Nie Y, Jia Y, Li S, Zhu X, Li A and Zhou B. (2016). Identifying users across social networks based on dynamic core interests. Neurocomputing. 210:C. (107-115). Online publication date: 19-Oct-2016. https://doi.org/10.1016/j.neucom.2015.10.147 811. Bahrainian S and Crestani F. Cued Retrieval of Personal Memories of Social Interactions. Proceedings of the first Workshop on Lifelogging Tools and Applications. (3-12). https://doi.org/10.1145/2983576.2983577 812. Lee M, Liu Z, Huang R and Tong W. (2016). Application of dynamic topic models to toxicogenomics data. BMC Bioinformatics. 10.1186/s12859-016-1225-0. 17:S13. Online publication date: 1-Oct-2016. http://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-016-1225-0 813. Qian S, Zhang T and Xu C. Multi-modal Multi-view Topic-opinion Mining for Social Event Analysis. Proceedings of the 24th ACM international conference on Multimedia. (2-11). https://doi.org/10.1145/2964284.2964294 814. Tanaka S, Jatowt A and Tanaka K. (2016). Supporting News Article Understanding by Detecting Subject-Background Event Relations 2016 IEEE/WIC/ACM International Conference on Web Intelligence (WI). 10.1109/WI.2016.0044. 978-1-5090-4470-2. (256-263). http://ieeexplore.ieee.org/document/7817061/ 815. Inuzuka K, Hayashi T and Takagi T. (2016). Recommendation System Based on Prediction of User Preference Changes 2016 IEEE/WIC/ACM International Conference on Web Intelligence (WI). 10.1109/WI.2016.0036. 978-1-5090-4470-2. (192-199). http://ieeexplore.ieee.org/document/7817053/ 816. Romsaiyud W. (2016). Expectation-maximization algorithm for topic modeling on big data streams 2016 IEEE 7th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON). 10.1109/UEMCON.2016.7777818. 978-1-5090-1496-5. (1-7). http://ieeexplore.ieee.org/document/7777818/ 817. Beykikhoshk A, Phung D, Arandjelovic O and Venkatesh S. (2016). Analysing the History of Autism Spectrum Disorder Using Topic Models 2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA). 10.1109/DSAA.2016.65. 978-1-5090-5206-6. (762-771). http://ieeexplore.ieee.org/document/7796964/ 818. Breen P, Kelly J, Heckman T and Quinn S. (2016). Mining Pre-Exposure Prophylaxis Trends in Social Media 2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA). 10.1109/DSAA.2016.29. 978-1-5090-5206-6. (214-221). http://ieeexplore.ieee.org/document/7796907/ 819. Jing Li , Qin Y and Huang R. (2016). A user-oriented semi-supervised probabilistic topic model 2016 2nd IEEE International Conference on Computer and Communications (ICCC). 10.1109/CompComm.2016.7924706. 978-1-4673-9026-2. (262-268). http://ieeexplore.ieee.org/document/7924706/ 820. Chen T, Thomas S and Hassan A. (2016). A survey on the use of topic models when mining software repositories. Empirical Software Engineering. 21:5. (1843-1919). Online publication date: 1-Oct-2016. https://doi.org/10.1007/s10664-015-9402-8 821. Dang Q, Gao F and Zhou Y. (2016). Early detection method for emerging topics based on dynamic bayesian networks in micro-blogging networks. Expert Systems with Applications: An International Journal. 57:C. (285-295). Online publication date: 15-Sep-2016. https://doi.org/10.1016/j.eswa.2016.03.050 822. Luo X, Xuan J, Lu J and Zhang G. (2016). Measuring the Semantic Uncertainty of News Events for Evolution Potential Estimation. ACM Transactions on Information Systems. 34:4. (1-25). Online publication date: 14-Sep-2016. https://doi.org/10.1145/2903719 823. Dehghani M, Azarbonyad H, Kamps J and Marx M. On Horizontal and Vertical Separation in Hierarchical Text Classification. Proceedings of the 2016 ACM International Conference on the Theory of Information Retrieval. (185-194). https://doi.org/10.1145/2970398.2970408 824. Jameel S, Liao Y, Lam W, Schockaert S and Xie X. Exploring Urban Lifestyles Using a Nonparametric Temporal Graphical Model. Proceedings of the 2016 ACM International Conference on the Theory of Information Retrieval. (251-260). https://doi.org/10.1145/2970398.2970401 825. Bexheti A, Niforatos E, Bahrainian S, Langheinrich M and Crestani F. Measuring the effect of cued recall on work meetings. Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct. (1020-1026). https://doi.org/10.1145/2968219.2968563 826. Nakashio Y, Hara T, Mori J and Sakata I. (2016). Detecting structural changes in the nanocarbon domain based on the time distribution of text information of academic papers 2016 Portland International Conference on Management of Engineering and Technology (PICMET). 10.1109/PICMET.2016.7806689. . (694-700). http://ieeexplore.ieee.org/document/7806689/ 827. Jones B and Chung W. (2016). Topic modeling of small sequential documents: Proposed experiments for detecting terror attacks 2016 IEEE Conference on Intelligence and Security Informatics (ISI). 10.1109/ISI.2016.7745497. 978-1-5090-3865-7. (310-312). http://ieeexplore.ieee.org/document/7745497/ 828. Bai J, Li L and Zeng D. (2016). Activating topic models from a cognitive perspective 2016 IEEE Conference on Intelligence and Security Informatics (ISI). 10.1109/ISI.2016.7745443. 978-1-5090-3865-7. (55-60). http://ieeexplore.ieee.org/document/7745443/ 829. Duckworth P, Alomari M, Gatsoulis Y, Hogg D and Cohn A. Unsupervised activity recognition using latent semantic analysis on a mobile robot. Proceedings of the Twenty-second European Conference on Artificial Intelligence. (1062-1070). https://doi.org/10.3233/978-1-61499-672-9-1062 830. Kalyanam J, Velupillai S, Conway M and Lanckriet G. From event detection to storytelling on microblogs. Proceedings of the 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. (437-442). /doi/10.5555/3192424.3192505 831. Amoualian H, Clausel M, Gaussier E and Amini M. Streaming-LDA. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. (695-704). https://doi.org/10.1145/2939672.2939781 832. Mukherjee S, Günnemann S and Weikum G. Continuous Experience-aware Language Model. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. (1075-1084). https://doi.org/10.1145/2939672.2939780 833. Liang S, Yilmaz E and Kanoulas E. Dynamic Clustering of Streaming Short Documents. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. (995-1004). https://doi.org/10.1145/2939672.2939748 834. Zhu C, Zhu H, Xiong H, Ding P and Xie F. Recruitment Market Trend Analysis with Sequential Latent Variable Models. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. (383-392). https://doi.org/10.1145/2939672.2939689 835. Yu R, Qiu H, Wen Z, Lin C and Liu Y. (2016). A Survey on Social Media Anomaly Detection. ACM SIGKDD Explorations Newsletter. 18:1. (1-14). Online publication date: 1-Aug-2016. https://doi.org/10.1145/2980765.2980767 836. Xie W, Zhu F, Jiang J, Lim E and Wang K. (2016). TopicSketch: Real-Time Bursty Topic Detection from Twitter. IEEE Transactions on Knowledge and Data Engineering. 28:8. (2216-2229). Online publication date: 1-Aug-2016. https://doi.org/10.1109/TKDE.2016.2556661 837. Andrei V and Arandjelovic O. (2016). Identification of promising research directions using machine learning aided medical literature analysis 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 10.1109/EMBC.2016.7591231. 978-1-4577-0220-4. (2471-2474). http://ieeexplore.ieee.org/document/7591231/ 838. Zhang L, Wang X, Bu Z, Cao J and Wu Z. (2016). Online Public Opinion System: Design and Applications 2016 International Conference on Advanced Cloud and Big Data (CBD). 10.1109/CBD.2016.023. 978-1-5090-3677-6. (75-80). http://ieeexplore.ieee.org/document/7815189/ 839. Kalyanam J, Velupillai S, Conway M and Lanckriet G. (2016). From event detection to storytelling on microblogs 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM). 10.1109/ASONAM.2016.7752271. 978-1-5090-2846-7. (437-442). http://ieeexplore.ieee.org/document/7752271/ 840. Jiang X and Zhang J. (2016). A text visualization method for cross-domain research topic mining. Journal of Visualization. 19:3. (561-576). Online publication date: 1-Aug-2016. https://doi.org/10.1007/s12650-015-0323-9 841. Zuo Y, Zhao J and Xu K. (2016). Word network topic model. Knowledge and Information Systems. 48:2. (379-398). Online publication date: 1-Aug-2016. https://doi.org/10.1007/s10115-015-0882-z 842. Evans J and Aceves P. (2016). Machine Translation: Mining Text for Social Theory. Annual Review of Sociology. 10.1146/annurev-soc-081715-074206. 42:1. (21-50). Online publication date: 30-Jul-2016. https://www.annualreviews.org/doi/10.1146/annurev-soc-081715-074206 843. Chang Y, Tang J, Yin D, Yamada M and Liu Y. Timeline summarization from social media with life cycle models. Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence. (3698-3704). /doi/10.5555/3061053.3061136 844. Yang M, Mei J, Xu F, Tu W and Lu Z. Discovering Author Interest Evolution in Topic Modeling. Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval. (801-804). https://doi.org/10.1145/2911451.2914723 845. Sidana S, Mishra S, Amer-Yahia S, Clausel M and Amini M. Health Monitoring on Social Media over Time. Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval. (849-852). https://doi.org/10.1145/2911451.2914697 846. Zhao Y, Liang S, Ren Z, Ma J, Yilmaz E and de Rijke M. Explainable User Clustering in Short Text Streams. Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval. (155-164). https://doi.org/10.1145/2911451.2911522 847. Yang M, Xu F and Chow K. Interest Profiling for Security Monitoring and Forensic Investigation. Proceedings, Part II, of the 21st Australasian Conference on Information Security and Privacy - Volume 9723. (457-464). https://doi.org/10.1007/978-3-319-40367-0_30 848. Roberts M, Stewart B and Airoldi E. (2016). A Model of Text for Experimentation in the Social Sciences. Journal of the American Statistical Association. 10.1080/01621459.2016.1141684. 111:515. (988-1003). Online publication date: 2-Jul-2016. https://www.tandfonline.com/doi/full/10.1080/01621459.2016.1141684 849. Zhu J, Wang K, Wu Y, Hu Z and Wang H. Mining User-Aware Rare Sequential Topic Patterns in Document Streams. IEEE Transactions on Knowledge and Data Engineering. 10.1109/TKDE.2016.2541149. 28:7. (1790-1804). http://ieeexplore.ieee.org/document/7431989/ 850. Fan C, Zhao T, Wu Y and Gong N. (2016). Research on Classifying Web Information with Latent Semantic Based on Modified LDA Model 2016 International Conference on Networking and Network Applications (NaNA). 10.1109/NaNA.2016.25. 978-1-4673-9803-9. (415-418). http://ieeexplore.ieee.org/document/7564180/ 851. Shirota Y, Hashimoto T and Chakraborty B. (2016). Visualization for University Brand Image Clustering by Simple Topic Model 2016 5th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI). 10.1109/IIAI-AAI.2016.33. 978-1-4673-8985-3. (474-477). http://ieeexplore.ieee.org/document/7557656/ 852. Shirota Y, Hashimoto T and Chakraborty B. (2016). Deductive Reasoning for Joint Distribution Probability in Simple Topic Model 2016 5th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI). 10.1109/IIAI-AAI.2016.31. 978-1-4673-8985-3. (622-625). http://ieeexplore.ieee.org/document/7557687/ 853. Luyi Zou and William Wei Song . (2016). LDA-TM: A two-step approach to Twitter topic data clustering 2016 IEEE International Conference on Cloud Computing and Big Data Analysis (ICCCBDA). 10.1109/ICCCBDA.2016.7529581. 978-1-5090-2594-7. (342-347). http://ieeexplore.ieee.org/document/7529581/ 854. Li Y, Liu C, Zhao M, Li R, Xiao H, Wang K and Zhang J. (2016). Multi-Topic Tracking Model for dynamic social network. Physica A: Statistical Mechanics and its Applications. 10.1016/j.physa.2016.02.038. 454. (51-65). Online publication date: 1-Jul-2016. https://linkinghub.elsevier.com/retrieve/pii/S0378437116002041 855. Paltoglou G. (2016). Sentiment-based event detection in Twitter. Journal of the Association for Information Science and Technology. 67:7. (1576-1587). Online publication date: 1-Jul-2016. https://doi.org/10.1002/asi.23465 856. Nishioka C and Scherp A. Profiling vs. Time vs. Content. Proceedings of the 16th ACM/IEEE-CS on Joint Conference on Digital Libraries. (171-180). https://doi.org/10.1145/2910896.2910898 857. Chen J, Li K, Zhu J and Chen W. (2016). WarpLDA. Proceedings of the VLDB Endowment. 9:10. (744-755). Online publication date: 1-Jun-2016. https://doi.org/10.14778/2977797.2977801 858. Gao Z, Fan Y, Wu C, Tan W, Zhang J, Ni Y, Bai B and Chen S. (2016). SeCo-LDA: Mining Service Co-occurrence Topics for Recommendation 2016 IEEE International Conference on Web Services (ICWS). 10.1109/ICWS.2016.13. 978-1-5090-2675-3. (25-32). http://ieeexplore.ieee.org/document/7557981/ 859. Kun Yuan , Junjie Wu and Zhonghua Zhao . (2016). Burst prediction from Weibo: A crowd-sensing and tweet-centric method 2016 13th International Conference on Service Systems and Service Management (ICSSSM). 10.1109/ICSSSM.2016.7538627. 978-1-5090-2842-9. (1-6). http://ieeexplore.ieee.org/document/7538627/ 860. Hao Lin , Bo Sun , Wu J and Xiong H. (2016). Topic Detection from Short Text: A Term-based Consensus Clustering method 2016 13th International Conference on Service Systems and Service Management (ICSSSM). 10.1109/ICSSSM.2016.7538624. 978-1-5090-2842-9. (1-6). http://ieeexplore.ieee.org/document/7538624/ 861. Ma T, Qu D, Ma R, Feng W and Li K. (2016). Online Topic Evolution Modeling Based on Hierarchical Dirichlet Process 2016 IEEE First International Conference on Data Science in Cyberspace (DSC). 10.1109/DSC.2016.60. 978-1-5090-1192-6. (400-405). http://ieeexplore.ieee.org/document/7866158/ 862. Speier W, Ong M and Arnold C. (2016). Using phrases and document metadata to improve topic modeling of clinical reports. Journal of Biomedical Informatics. 61:C. (260-266). Online publication date: 1-Jun-2016. https://doi.org/10.1016/j.jbi.2016.04.005 863. Kim E and Kim M. (2016). Topic-tracking-based dynamic user modeling with TV recommendation applications. Applied Intelligence. 44:4. (771-792). Online publication date: 1-Jun-2016. https://doi.org/10.1007/s10489-015-0720-8 864. Zhu C, Zhu H, Ge Y, Chen E, Liu Q, Xu T and Xiong H. (2016). Tracking the evolution of social emotions with topic models. Knowledge and Information Systems. 47:3. (517-544). Online publication date: 1-Jun-2016. https://doi.org/10.1007/s10115-015-0865-0 865. Xi Y, Li B and Tang Y. (2016). Topic Model Based New Event Detection Within Topics. Journal of Advanced Computational Intelligence and Intelligent Informatics. 10.20965/jaciii.2016.p0467. 20:3. (467-476). Online publication date: 19-May-2016. https://www.fujipress.jp/jaciii/jc/jacii002000030467 866. Griffin W, Li X and El-Deredy W. (2016). Using Bayesian Nonparametric Hidden Semi-Markov Models to Disentangle Affect Processes during Marital Interaction. PLOS ONE. 10.1371/journal.pone.0155706. 11:5. (e0155706). http://dx.plos.org/10.1371/journal.pone.0155706 867. Bouakkaz M, Loudcher S and Ouinten Y. (2016). OLAP textual aggregation approach using the Google similarity distance. International Journal of Business Intelligence and Data Mining. 11:1. (31-48). Online publication date: 1-May-2016. https://doi.org/10.1504/IJBIDM.2016.076425 868. Sun X, Liu X, Li B, Duan Y, Yang H and Hu J. (2016). Exploring topic models in software engineering data analysis: A survey 2016 17th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD). 10.1109/SNPD.2016.7515925. 978-1-5090-2239-7. (357-362). http://ieeexplore.ieee.org/document/7515925/ 869. Zhou G and Chen G. (2016). Hierarchical Latent Semantic Mapping for automated topic generation 2016 17th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD). 10.1109/SNPD.2016.7515878. 978-1-5090-2239-7. (57-63). http://ieeexplore.ieee.org/document/7515878/ 870. Rahimi M, Zahedi M and Mashayekhi H. (2016). A two level probabilistic topic model 2016 24th Iranian Conference on Electrical Engineering (ICEE). 10.1109/IranianCEE.2016.7585499. 978-1-4673-8789-7. (108-112). http://ieeexplore.ieee.org/document/7585499/ 871. Jensen S, Liu X, Yu Y and Milojevic S. (2016). Generation of topic evolution trees from heterogeneous bibliographic networks. Journal of Informetrics. 10.1016/j.joi.2016.04.002. 10:2. (606-621). Online publication date: 1-May-2016. https://linkinghub.elsevier.com/retrieve/pii/S1751157715302145 872. Ma B, Zhang N, Liu G, Li L and Yuan H. (2016). Semantic search for public opinions on urban affairs. Information Processing and Management: an International Journal. 52:3. (430-445). Online publication date: 1-May-2016. https://doi.org/10.1016/j.ipm.2015.10.004 873. Chen L, Tozammel Hossain K, Butler P, Ramakrishnan N and Prakash B. (2016). Syndromic surveillance of Flu on Twitter using weakly supervised temporal topic models. Data Mining and Knowledge Discovery. 30:3. (681-710). Online publication date: 1-May-2016. https://doi.org/10.1007/s10618-015-0434-x 874. Takeishi N, Yairi T, Nishimura N, Nakajima Y and Takata N. Dynamic Grouped Mixture Models for Intermittent Multivariate Sensor Data. Proceedings, Part II, of the 20th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining - Volume 9652. (221-232). https://doi.org/10.1007/978-3-319-31750-2_18 875. Bhadury A, Chen J, Zhu J and Liu S. Scaling up Dynamic Topic Models. Proceedings of the 25th International Conference on World Wide Web. (381-390). https://doi.org/10.1145/2872427.2883046 876. Zhang Y, Jatowt A and Tanaka K. Detecting Evolution of Concepts based on Cause-Effect Relationships in Online Reviews. Proceedings of the 25th International Conference on World Wide Web. (649-660). https://doi.org/10.1145/2872427.2883013 877. Kaushik K. Analyzing the effect of brand building activities on brand image using topic modeling techniques. Proceedings of the 31st Annual ACM Symposium on Applied Computing. (1189-1190). https://doi.org/10.1145/2851613.2852010 878. Choi Y, Oh J and Park J. (2016). A Novel Approach to Managing the Dynamic Nature of Semantic Relatedness. Journal of Database Management. 27:2. (1-26). Online publication date: 1-Apr-2016. https://doi.org/10.4018/JDM.2016040101 879. Wang X, Zhu P, Liu T and Xu K. (2016). BioTopic. International Journal of Data Mining and Bioinformatics. 14:4. (373-386). Online publication date: 1-Apr-2016. https://doi.org/10.1504/IJDMB.2016.075822 880. Calderon F and Chen Y. (2016). Influence Value: Quantifying Topic Influence on Social Media 2016 IEEE Second International Conference on Multimedia Big Data (BigMM). 10.1109/BigMM.2016.59. 978-1-5090-2179-6. (49-55). http://ieeexplore.ieee.org/document/7544995/ 881. Song J, Huang Y, Qi X, Li Y, Li F, Fu K and Huang T. (2016). Discovering hierarchical topic evolution in time-stamped documents. Journal of the Association for Information Science and Technology. 67:4. (915-927). Online publication date: 1-Apr-2016. https://doi.org/10.1002/asi.23439 882. di Sciascio C, Sabol V and Veas E. Rank As You Go. Proceedings of the 21st International Conference on Intelligent User Interfaces. (118-129). https://doi.org/10.1145/2856767.2856797 883. Rossetti M, Stella F and Zanker M. (2015). Analyzing user reviews in tourism with topic models. Information Technology & Tourism. 10.1007/s40558-015-0035-y. 16:1. (5-21). Online publication date: 1-Mar-2016. http://link.springer.com/10.1007/s40558-015-0035-y 884. Dang E, Luk R and Allan J. (2016). A context-dependent relevance model. Journal of the Association for Information Science and Technology. 67:3. (582-593). Online publication date: 1-Mar-2016. https://doi.org/10.1002/asi.23419 885. Wang B and Klabjan D. Temporal topic analysis with endogenous and exogenous processes. Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence. (3045-3051). /doi/10.5555/3016100.3016328 886. Chen P, Zhang N, Poon L and Chen Z. Progressive EM for latent tree models and hierarchical topic detection. Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence. (1498-1504). /doi/10.5555/3016100.3016108 887. Qian S, Zhang T, Xu C and Shao J. Multi-Modal Event Topic Model for Social Event Analysis. IEEE Transactions on Multimedia. 10.1109/TMM.2015.2510329. 18:2. (233-246). http://ieeexplore.ieee.org/document/7360932/ 888. Jeong Y, Sang-Hun Lee and Gweon G. Discovery of research interests of authors over time using a topic model. Proceedings of the 2016 International Conference on Big Data and Smart Computing (BigComp). (24-31). https://doi.org/10.1109/BIGCOMP.2016.7425797 889. Roe G, Gladstone C and Morrissey R. (2016). Discourses and Disciplines in the Enlightenment: Topic Modeling the French Encyclopédie. Frontiers in Digital Humanities. 10.3389/fdigh.2015.00008. 2. http://journal.frontiersin.org/Article/10.3389/fdigh.2015.00008/abstract 890. Hua T, Zhao L, Chen F, Lu C and Ramakrishnan N. (2016). How events unfold. SIGSPATIAL Special. 7:3. (19-25). Online publication date: 11-Jan-2016. https://doi.org/10.1145/2876480.2876485 891. Liu P, Jameel S, Wu K and Meng H. Learning Track Representation and Trends for Conference Analytics. Proceedings of the 2016 49th Hawaii International Conference on System Sciences (HICSS). (1671-1680). https://doi.org/10.1109/HICSS.2016.211 892. Jacobi C, van Atteveldt W and Welbers K. (2015). Quantitative analysis of large amounts of journalistic texts using topic modelling. Digital Journalism. 10.1080/21670811.2015.1093271. 4:1. (89-106). Online publication date: 2-Jan-2016. http://www.tandfonline.com/doi/full/10.1080/21670811.2015.1093271 893. Günther E and Quandt T. (2015). Word Counts and Topic Models. Digital Journalism. 10.1080/21670811.2015.1093270. 4:1. (75-88). Online publication date: 2-Jan-2016. http://www.tandfonline.com/doi/full/10.1080/21670811.2015.1093270 894. Cao N and Cui W. (2016). Visualizing Document Content. Introduction to Text Visualization. 10.2991/978-94-6239-186-4_5. (57-102). http://link.springer.com/10.2991/978-94-6239-186-4_5 895. Shirota Y, Hashimoto T and Chakraborty B. (2016). Visual Materials to Teach Gibbs Sampler. International Journal of Knowledge Engineering. 10.18178/ijke.2016.2.2.059. 2:2. (92-95). http://www.ijke.org/show-42-101-1.html 896. HATAKEYAMA Y, OGAWA T, IKEDA H and HASEYAMA M. (2016). A Most Resource-Consuming Disease Estimation Method from Electronic Claim Data Based on Labeled LDA. IEICE Transactions on Information and Systems. 10.1587/transinf.2015EDL8128. E99.D:3. (763-768). https://www.jstage.jst.go.jp/article/transinf/E99.D/3/E99.D_2015EDL8128/_article 897. Shimizu T and Okadome T. (2016). Dyamic Stacked Topic Model. Transactions of the Japanese Society for Artificial Intelligence. 10.1527/tjsai.M-F92. 31:2. (M-F92_1-8). https://www.jstage.jst.go.jp/article/tjsai/31/2/31_M-F92_1/_article/-char/ja/ 898. Fu X, Li J, Yang K, Cui L and Yang L. (2016). Dynamic Online HDP model for discovering evolutionary topics from Chinese social texts. Neurocomputing. 171:C. (412-424). Online publication date: 1-Jan-2016. https://doi.org/10.1016/j.neucom.2015.06.047 899. Parra D, Trattner C, Gómez D, Hurtado M, Wen X and Lin Y. (2016). Twitter in academic events. Computer Communications. 73:PB. (301-314). Online publication date: 1-Jan-2016. https://doi.org/10.1016/j.comcom.2015.07.001 900. Kannan S, Karuppusamy S, Nedunchezhian A, Venkateshan P, Wang P, Bojja N and Kejariwal A. (2016). Big Data Analytics for Social Media. Big Data. 10.1016/B978-0-12-805394-2.00003-9. (63-94). https://linkinghub.elsevier.com/retrieve/pii/B9780128053942000039 901. Kusajima S and Sumi Y. (2016). Twitter Bot for Activation of Online Discussion and Promotion of Understanding by Providing Related Articles. Collaboration Technologies and Social Computing. 10.1007/978-981-10-2618-8_1. (1-16). http://link.springer.com/10.1007/978-981-10-2618-8_1 902. Todor A, Lukasiewicz W, Athan T and Paschke A. (2016). Enriching Topic Models with DBpedia. On the Move to Meaningful Internet Systems: OTM 2016 Conferences. 10.1007/978-3-319-48472-3_46. (735-751). http://link.springer.com/10.1007/978-3-319-48472-3_46 903. Hu Y, Xu X and Li L. (2016). Analyzing Topic-Sentiment and Topic Evolution over Time from Social Media. Knowledge Science, Engineering and Management. 10.1007/978-3-319-47650-6_8. (97-109). http://link.springer.com/10.1007/978-3-319-47650-6_8 904. Dam H and Ghose A. (2016). Analyzing Topics and Trends in the PRIMA Literature. PRIMA 2016: Princiles and Practice of Multi-Agent Systems. 10.1007/978-3-319-44832-9_13. (216-229). http://link.springer.com/10.1007/978-3-319-44832-9_13 905. Dehghani M, Azarbonyad H, Kamps J and Marx M. (2016). Two-Way Parsimonious Classification Models for Evolving Hierarchies. Experimental IR Meets Multilinguality, Multimodality, and Interaction. 10.1007/978-3-319-44564-9_6. (69-82). http://link.springer.com/10.1007/978-3-319-44564-9_6 906. Gruetze T, Krestel R and Naumann F. (2016). Topic Shifts in StackOverflow: Ask it Like Socrates. Natural Language Processing and Information Systems. 10.1007/978-3-319-41754-7_18. (213-221). http://link.springer.com/10.1007/978-3-319-41754-7_18 907. Amami M, Pasi G, Stella F and Faiz R. (2016). An LDA-Based Approach to Scientific Paper Recommendation. Natural Language Processing and Information Systems. 10.1007/978-3-319-41754-7_17. (200-210). http://link.springer.com/10.1007/978-3-319-41754-7_17 908. Peng M, Xie Q, Huang J, Zhu J, Ouyang S, Huang J and Tian G. (2016). Sparse Topical Coding with Sparse Groups. Web-Age Information Management. 10.1007/978-3-319-39937-9_32. (415-426). http://link.springer.com/10.1007/978-3-319-39937-9_32 909. Hedeler C, Kempf A and Steinberg J. (2016). Subject Indexing for Author Name Disambiguation: Opportunities and Challenges. Analysis of Large and Complex Data. 10.1007/978-3-319-25226-1_55. (639-649). https://link.springer.com/10.1007/978-3-319-25226-1_55 910. Spiliopoulou M, Ntoutsi E and Zimmermann M. (2016). Opinion Stream Mining. Encyclopedia of Machine Learning and Data Mining. 10.1007/978-1-4899-7502-7_905-1. (1-10). https://link.springer.com/10.1007/978-1-4899-7502-7_905-1 911. Yamamoto S, Wakabayashi K, Kando N and Satoh T. BUTE. Proceedings of the 17th International Conference on Information Integration and Web-based Applications & Services. (1-9). https://doi.org/10.1145/2837185.2837198 912. Nishioka C, Scherp A and Dellschaft K. Comparing Tweet Classifications by Authors' Hashtags, Machine Learning, and Human Annotators. Proceedings of the 2015 IEEE / WIC / ACM International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT) - Volume 01. (67-74). https://doi.org/10.1109/WI-IAT.2015.69 913. Morton B and Kim Y. (2015). Acoustic Features for Recognizing Musical Artist Influence 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA). 10.1109/ICMLA.2015.136. 978-1-5090-0287-0. (1117-1122). http://ieeexplore.ieee.org/document/7424469/ 914. Laitonjam N, Padmanabhan V, Pujari A and Lal R. (2015). Topic Modelling for Songs 2015 International Conference on Information Technology (ICIT). 10.1109/ICIT.2015.47. 978-1-5090-0487-4. (130-135). http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7437603 915. Pivovarov R, Perotte A, Grave E, Angiolillo J, Wiggins C and Elhadad N. (2015). Learning probabilistic phenotypes from heterogeneous EHR data. Journal of Biomedical Informatics. 58:C. (156-165). Online publication date: 1-Dec-2015. https://doi.org/10.1016/j.jbi.2015.10.001 916. Kharratzadeh M, Renard B and Coates M. (2015). Bayesian topic model approaches to online and time-dependent clustering. Digital Signal Processing. 47:C. (25-35). Online publication date: 1-Dec-2015. https://doi.org/10.1016/j.dsp.2015.03.010 917. Madani A, Boussaid O and Zegour D. (2015). Real-time trending topics detection and description from Twitter content. Social Network Analysis and Mining. 10.1007/s13278-015-0298-5. 5:1. Online publication date: 1-Dec-2015. http://link.springer.com/10.1007/s13278-015-0298-5 918. Chen Y, Peng Y, Liang J, Saravia E, Calderon F, Chang C, Chuang Y, Chen T and Kwan E. (2015). Concept-based event identification from social streams using evolving social graph sequences. Social Network Analysis and Mining. 10.1007/s13278-015-0269-x. 5:1. Online publication date: 1-Dec-2015. http://link.springer.com/10.1007/s13278-015-0269-x 919. An L, Lin X, Yu C and Zhang X. (2015). Measuring and visualizing the contributions of Chinese and American LIS research institutions to emerging themes and salient themes. Scientometrics. 105:3. (1605-1634). Online publication date: 1-Dec-2015. https://doi.org/10.1007/s11192-015-1640-4 920. Clarke A and Steele R. (2015). Smartphone-based public health information systems. Journal of the Association for Information Science and Technology. 66:12. (2596-2608). Online publication date: 1-Dec-2015. https://doi.org/10.1002/asi.23356 921. Li D, Tang J, Ding Y, Shuai X, Chambers T, Sun G, Luo Z and Zhang J. (2015). Topic-level opinion influence model TOIM. Journal of the Association for Information Science and Technology. 66:12. (2657-2673). Online publication date: 1-Dec-2015. https://doi.org/10.1002/asi.23350 922. Hu B, Dong X, Zhang C, Bowman T, Ding Y, Milojević S, Ni C, Yan E and Larivière V. (2015). A lead-lag analysis of the topic evolution patterns for preprints and publications. Journal of the Association for Information Science and Technology. 66:12. (2643-2656). Online publication date: 1-Dec-2015. https://doi.org/10.1002/asi.23347 923. Chen Y, Zhang H, Wu J, Wang X, Liu R and Lin M. Modeling Emerging, Evolving and Fading Topics Using Dynamic Soft Orthogonal NMF with Sparse Representation. Proceedings of the 2015 IEEE International Conference on Data Mining (ICDM). (61-70). https://doi.org/10.1109/ICDM.2015.96 924. Liu Y, Ester M, Hu B and Cheung D. Spatio-Temporal Topic Models for Check-in Data. Proceedings of the 2015 IEEE International Conference on Data Mining (ICDM). (889-894). https://doi.org/10.1109/ICDM.2015.45 925. Wang J, Tong W, Yu H, Li M, Ma X, Cai H, Hanratty T and Han J. Mining Multi-aspect Reflection of News Events in Twitter. Proceedings of the 2015 IEEE International Conference on Data Mining (ICDM). (429-438). https://doi.org/10.1109/ICDM.2015.112 926. Gao C, Wang B, He P, Zhu J, Zhou Y and Lyu M. PAID. Proceedings of the 2015 IEEE 26th International Symposium on Software Reliability Engineering (ISSRE). (35-45). https://doi.org/10.1109/ISSRE.2015.7381797 927. Scanlon J and Gerber M. Forecasting Violent Extremist Cyber Recruitment. IEEE Transactions on Information Forensics and Security. 10.1109/TIFS.2015.2464775. 10:11. (2461-2470). http://ieeexplore.ieee.org/document/7180349/ 928. Chan K, Xinxin Zhan and Jiali Wang . (2015). Facial expression recognition by correlated Topic Models and Bayes modeling 2015 International Conference on Image and Vision Computing New Zealand (IVCNZ). 10.1109/IVCNZ.2015.7761546. 978-1-5090-0357-0. (1-5). http://ieeexplore.ieee.org/document/7761546/ 929. MITRA S, MITRA R, MAITY S, RIEDL M, BIEMANN C, GOYAL P and MUKHERJEE A. (2015). An automatic approach to identify word sense changes in text media across timescales. Natural Language Engineering. 10.1017/S135132491500011X. 21:5. (773-798). Online publication date: 1-Nov-2015. https://www.cambridge.org/core/product/identifier/S135132491500011X/type/journal_article 930. Jatowt A, Au Yeung C and Tanaka K. (2015). Generic method for detecting focus time of documents. Information Processing and Management: an International Journal. 51:6. (851-868). Online publication date: 1-Nov-2015. https://doi.org/10.1016/j.ipm.2015.05.001 931. Zhao L, Chen F, Lu C and Ramakrishnan N. Dynamic theme tracking in Twitter. Proceedings of the 2015 IEEE International Conference on Big Data (Big Data). (561-570). https://doi.org/10.1109/BigData.2015.7363800 932. Yu R, He X and Liu Y. (2015). GLAD. ACM Transactions on Knowledge Discovery from Data. 10:2. (1-22). Online publication date: 26-Oct-2015. https://doi.org/10.1145/2811268 933. Wang J, Li L, Tan F, Zhu Y, Feng W and Xia C. (2015). Detecting Hotspot Information Using Multi-Attribute Based Topic Model. PLOS ONE. 10.1371/journal.pone.0140539. 10:10. (e0140539). https://dx.plos.org/10.1371/journal.pone.0140539 934. Schnober C and Gurevych I. Combining Topic Models for Corpus Exploration. Proceedings of the 2015 Workshop on Topic Models: Post-Processing and Applications. (11-20). https://doi.org/10.1145/2809936.2809939 935. Park S, Lee W and Moon I. Supervised Dynamic Topic Models for Associative Topic Extraction with A Numerical Time Series. Proceedings of the 2015 Workshop on Topic Models: Post-Processing and Applications. (49-54). https://doi.org/10.1145/2809936.2809938 936. Wang P, Zhang P, Zhou C, Li Z and Li G. Modeling Infinite Topics on Social Behavior Data with Spatio-temporal Dependence. Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. (1919-1922). https://doi.org/10.1145/2806416.2806635 937. Jiang Z, Liu X and Gao L. Chronological Citation Recommendation with Information-Need Shifting. Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. (1291-1300). https://doi.org/10.1145/2806416.2806567 938. Peng M, Zhu J, Li X, Huang J, Wang H and Zhang Y. Central Topic Model for Event-oriented Topics Mining in Microblog Stream. Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. (1611-1620). https://doi.org/10.1145/2806416.2806561 939. Jo Y, Loghmanpour N and Rosé C. Time Series Analysis of Nursing Notes for Mortality Prediction via a State Transition Topic Model. Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. (1171-1180). https://doi.org/10.1145/2806416.2806541 940. Kenter T, Wevers M, Huijnen P and de Rijke M. Ad Hoc Monitoring of Vocabulary Shifts over Time. Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. (1191-1200). https://doi.org/10.1145/2806416.2806474 941. Große-Bölting G, Nishioka C and Scherp A. A Comparison of Different Strategies for Automated Semantic Document Annotation. Proceedings of the 8th International Conference on Knowledge Capture. (1-8). https://doi.org/10.1145/2815833.2815838 942. Haoling Dong , Siliang Tang , Si Li , Fei Wu and Yueting Zhuang . (2015). HTMVS: Visualizing hierarchical topics and their evolution 2015 IEEE Conference on Visual Analytics Science and Technology (VAST). 10.1109/VAST.2015.7347675. 978-1-4673-9783-4. (195-196). http://ieeexplore.ieee.org/document/7347675/ 943. Chen Q, Hu L, Xu J, Liu W and Cao L. (2015). Document similarity analysis via involving both explicit and implicit semantic couplings 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA). 10.1109/DSAA.2015.7344832. 978-1-4673-8272-4. (1-10). http://ieeexplore.ieee.org/document/7344832/ 944. Kou N, U L, Yang Y and Gong Z. (2015). Travel topic analysis. Geoinformatica. 19:4. (693-721). Online publication date: 1-Oct-2015. https://doi.org/10.1007/s10707-015-0226-x 945. Hecking T, Chounta I and Hoppe H. Analysis of User Roles and the Emergence of Themes in Discussion Forums. Proceedings of the 2015 Second European Network Intelligence Conference. (114-121). https://doi.org/10.1109/ENIC.2015.24 946. Huang Z. An investigation of emotion changes from speech. Proceedings of the 2015 International Conference on Affective Computing and Intelligent Interaction (ACII). (733-736). https://doi.org/10.1109/ACII.2015.7344650 947. Rule A, Cointet J and Bearman P. (2015). Lexical shifts, substantive changes, and continuity in State of the Union discourse, 1790–2014. Proceedings of the National Academy of Sciences. 10.1073/pnas.1512221112. 112:35. (10837-10844). Online publication date: 1-Sep-2015. https://pnas.org/doi/full/10.1073/pnas.1512221112 948. Park S, Lee W and Moon I. (2015). Associative topic models with numerical time series. Information Processing and Management: an International Journal. 51:5. (737-755). Online publication date: 1-Sep-2015. https://doi.org/10.1016/j.ipm.2015.06.007 949. Huang G, He J, Zhang Y, Zhou W, Liu H, Zhang P, Ding Z, You Y and Cao J. (2015). Mining streams of short text for analysis of world-wide event evolutions. World Wide Web. 18:5. (1201-1217). Online publication date: 1-Sep-2015. https://doi.org/10.1007/s11280-014-0293-1 950. Ju B, Qian Y, Ye M, Ni R, Zhu C and Deng Z. (2015). Using Dynamic Multi-Task Non-Negative Matrix Factorization to Detect the Evolution of User Preferences in Collaborative Filtering. PLOS ONE. 10.1371/journal.pone.0135090. 10:8. (e0135090). https://dx.plos.org/10.1371/journal.pone.0135090 951. Wang Q, Zhu H, Hu W, Shen Z and Yao Y. Discerning Tactical Patterns for Professional Soccer Teams. Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. (2197-2206). https://doi.org/10.1145/2783258.2788577 952. Du N, Farajtabar M, Ahmed A, Smola A and Song L. Dirichlet-Hawkes Processes with Applications to Clustering Continuous-Time Document Streams. Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. (219-228). https://doi.org/10.1145/2783258.2783411 953. Kalyanam J, Mantrach A, Saez-Trumper D, Vahabi H and Lanckriet G. Leveraging Social Context for Modeling Topic Evolution. Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. (517-526). https://doi.org/10.1145/2783258.2783319 954. Zhang H, Kim G and Xing E. Dynamic Topic Modeling for Monitoring Market Competition from Online Text and Image Data. Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. (1425-1434). https://doi.org/10.1145/2783258.2783293 955. Caballero Barajas K and Akella R. Dynamically Modeling Patient's Health State from Electronic Medical Records. Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. (69-78). https://doi.org/10.1145/2783258.2783289 956. Talmon R, Mallat S, Zaveri H and Coifman R. Manifold Learning for Latent Variable Inference in Dynamical Systems. IEEE Transactions on Signal Processing. 10.1109/TSP.2015.2432731. 63:15. (3843-3856). http://ieeexplore.ieee.org/document/7105924/ 957. Guan Z, Yang S, Sun H, Srivatsa M and Yan X. Fine-Grained Knowledge Sharing in Collaborative Environments. IEEE Transactions on Knowledge and Data Engineering. 10.1109/TKDE.2015.2411283. 27:8. (2163-2174). http://ieeexplore.ieee.org/document/7056511/ 958. Zhang Y, Chen H, Zhang G, Zhu D and Lu J. (2015). Multiple science data-oriented Technology Roadmapping method 2015 Portland International Conference on Management of Engineering and Technology (PICMET). 10.1109/PICMET.2015.7273099. 978-1-8908-4331-1. (2278-2287). http://ieeexplore.ieee.org/document/7273099/ 959. Tran H and Takasu A. (2015). Partitioning algorithms for improving efficiency of topic modeling parallelization 2015 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM). 10.1109/PACRIM.2015.7334854. 978-1-4673-7788-1. (315-320). http://ieeexplore.ieee.org/document/7334854/ 960. Djuric P and Yu K. (2015). On generative models for sequential formation of clusters 2015 23rd European Signal Processing Conference (EUSIPCO). 10.1109/EUSIPCO.2015.7362892. 978-0-9928-6263-3. (2786-2790). http://ieeexplore.ieee.org/document/7362892/ 961. Liu X. Modeling users' dynamic preference for personalized recommendation. Proceedings of the 24th International Conference on Artificial Intelligence. (1785-1791). /doi/10.5555/2832415.2832497 962. Perera K and Karunarathne D. (2015). KeyGraph and WordNet hypernyms for topic detection 2015 12th International Joint Conference on Computer Science and Software Engineering (JCSSE). 10.1109/JCSSE.2015.7219814. 978-1-4799-1966-6. (303-308). http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7219814 963. Greene D and Cross J. Unveiling the Political Agenda of the European Parliament Plenary. Proceedings of the ACM Web Science Conference. (1-10). https://doi.org/10.1145/2786451.2786464 964. Huang C and Wu C. Effects of Word Assignment in LDA for News Topic Discovery. Proceedings of the 2015 IEEE International Congress on Big Data. (374-380). https://doi.org/10.1109/BigDataCongress.2015.62 965. Liu S, Wang X, Song Y and Guo B. Evolutionary Bayesian Rose Trees. IEEE Transactions on Knowledge and Data Engineering. 10.1109/TKDE.2014.2373384. 27:6. (1533-1546). http://ieeexplore.ieee.org/document/6964811/ 966. Jiangchao Yao , Ya Zhang , Zhe Xu , Jun Sun , Jun Zhou and Xiao Gu . (2015). Joint Latent Dirichlet Allocation for non-iid social tags 2015 IEEE International Conference on Multimedia and Expo (ICME). 10.1109/ICME.2015.7177490. 978-1-4799-7082-7. (1-6). http://ieeexplore.ieee.org/document/7177490/ 967. Gunhee Kim , Seungwhan Moon and Sigal L. (2015). Ranking and retrieval of image sequences from multiple paragraph queries 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 10.1109/CVPR.2015.7298810. 978-1-4673-6964-0. (1993-2001). http://ieeexplore.ieee.org/document/7298810/ 968. Rana S, Gupta S, Phung D and Venkatesh S. (2015). A predictive framework for modeling healthcare data with evolving clinical interventions. Statistical Analysis and Data Mining. 8:3. (162-182). Online publication date: 1-Jun-2015. https://doi.org/10.1002/sam.11262 969. Gad S, Javed W, Ghani S, Elmqvist N, Ewing T, Hampton K and Ramakrishnan N. ThemeDelta: Dynamic Segmentations over Temporal Topic Models. IEEE Transactions on Visualization and Computer Graphics. 10.1109/TVCG.2014.2388208. 21:5. (672-685). http://ieeexplore.ieee.org/document/7001093/ 970. Zhong Y, Fan Y, Huang K, Tan W and Zhang J. Time-Aware Service Recommendation for Mashup Creation. IEEE Transactions on Services Computing. 10.1109/TSC.2014.2381496. 8:3. (356-368). http://ieeexplore.ieee.org/document/6985668/ 971. Bin Li , Xingquan Zhu , Ruijiang Li and Chengqi Zhang . Rating Knowledge Sharing in Cross-Domain Collaborative Filtering. IEEE Transactions on Cybernetics. 10.1109/TCYB.2014.2343982. 45:5. (1068-1082). https://ieeexplore.ieee.org/document/6876146 972. Rahimi M, Zahedi M and Mashayekhi H. (2015). Incorporating local word relationships into probabilistic topic models 2015 7th Conference on Information and Knowledge Technology (IKT). 10.1109/IKT.2015.7288758. 978-1-4673-7483-5. (1-4). http://ieeexplore.ieee.org/document/7288758/ 973. Venugopalan S and Rai V. (2015). Topic based classification and pattern identification in patents. Technological Forecasting and Social Change. 10.1016/j.techfore.2014.10.006. 94. (236-250). Online publication date: 1-May-2015. https://linkinghub.elsevier.com/retrieve/pii/S0040162514002923 974. Xu Z. (2016). Doctoral Dissertations in Chinese Interpreting Studies. FORUM. Revue internationale d’interprétation et de traduction / International Journal of Interpretation and TranslationFORUM / Revue internationale d’interprétation et de traduction / International Journal of Interpretation and TranslationFORUM. 10.1075/forum.13.1.07xuz. 13:1. (131-165). Online publication date: 1-Apr-2015. http://www.jbe-platform.com/content/journals/10.1075/forum.13.1.07xuz 975. Gao C, Xu H, Hu J and Zhou Y. AR-Tracker. Proceedings of the 2015 IEEE Symposium on Service-Oriented System Engineering. (284-290). https://doi.org/10.1109/SOSE.2015.13 976. Hao Z, Xiaotao D, Lei Y, Jie Z, Hwang I and Youm S. Contextual User Interest Modeling Approaches for Personalized Services on Multiple Devices. Proceedings of the 2015 IEEE 29th International Conference on Advanced Information Networking and Applications Workshops. (123-130). https://doi.org/10.1109/WAINA.2015.126 977. Yin H, Cui B, Chen L, Hu Z and Zhou X. (2015). Dynamic User Modeling in Social Media Systems. ACM Transactions on Information Systems. 33:3. (1-44). Online publication date: 23-Mar-2015. https://doi.org/10.1145/2699670 978. Hu J, Sun X, Lo D and Li B. (2015). Modeling the evolution of development topics using Dynamic Topic Models 2015 IEEE 22nd International Conference on Software Analysis, Evolution and Reengineering (SANER). 10.1109/SANER.2015.7081810. 978-1-4799-8469-5. (3-12). http://ieeexplore.ieee.org/document/7081810/ 979. Chen F and Neill D. (2015). Human Rights Event Detection from Heterogeneous Social Media Graphs. Big Data. 10.1089/big.2014.0072. 3:1. (34-40). Online publication date: 1-Mar-2015. http://www.liebertpub.com/doi/10.1089/big.2014.0072 980. Piepenbrink A and Nurmammadov E. (2015). Topics in the literature of transition economies and emerging markets. Scientometrics. 102:3. (2107-2130). Online publication date: 1-Mar-2015. https://doi.org/10.1007/s11192-014-1513-2 981. Jiang Z. Chronological Scientific Information Recommendation via Supervised Dynamic Topic Modeling. Proceedings of the Eighth ACM International Conference on Web Search and Data Mining. (453-458). https://doi.org/10.1145/2684822.2697036 982. Foti N and Williamson S. A Survey of Non-Exchangeable Priors for Bayesian Nonparametric Models. IEEE Transactions on Pattern Analysis and Machine Intelligence. 10.1109/TPAMI.2013.224. 37:2. (359-371). http://ieeexplore.ieee.org/document/6654119/ 983. Sheikh I, Illina I and Fohr D. (2015). Recognition of OOV proper names in diachronic audio news 2015 6th International Conference on Information Systems and Economic Intelligence (SIIE). 10.1109/ISEI.2015.7358721. 978-1-4799-8934-8. (31-37). http://ieeexplore.ieee.org/document/7358721/ 984. Lu H. (2015). Detecting short-term cyclical topic dynamics in the user-generated content and news. Decision Support Systems. 70:C. (1-14). Online publication date: 1-Feb-2015. https://doi.org/10.1016/j.dss.2014.11.006 985. Cohen Priva U and Austerweil J. (2015). Analyzing the history of Cognition using Topic Models. Cognition. 10.1016/j.cognition.2014.11.006. 135. (4-9). Online publication date: 1-Feb-2015. https://linkinghub.elsevier.com/retrieve/pii/S0010027714002261 986. Li X, Ouyang J, Lu Y, Zhou X and Tian T. (2014). Group topic model: organizing topics into groups. Information Retrieval Journal. 10.1007/s10791-014-9244-9. 18:1. (1-25). Online publication date: 1-Feb-2015. http://link.springer.com/10.1007/s10791-014-9244-9 987. Heinrich K. Welcome to the Party. Recent Advances in Intelligent Technologies and Information Systems. 10.4018/978-1-4666-6639-9.ch004. (63-82). http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-4666-6639-9.ch004 988. XU J, LIU J and ARAKI K. (2015). A Hybrid Topic Model for Multi-Document Summarization. IEICE Transactions on Information and Systems. 10.1587/transinf.2014EDP7229. E98.D:5. (1089-1094). https://www.jstage.jst.go.jp/article/transinf/E98.D/5/E98.D_2014EDP7229/_article 989. Sasaki K, Yoshikawa T and Furuhashi T. (2015). Time Series Mixture Model Considering Dependence to Multiple Topics. Transactions of the Japanese Society for Artificial Intelligence. 10.1527/tjsai.30.466. 30:2. (466-472). https://www.jstage.jst.go.jp/article/tjsai/30/2/30_30_466/_article/-char/ja/ 990. Govindaraju V, Nwogu I and Setlur S. (2015). Document Informatics for Scientific Learning and Accelerated Discovery. Big Data Analytics. 10.1016/B978-0-444-63492-4.00001-0. (3-28). https://linkinghub.elsevier.com/retrieve/pii/B9780444634924000010 991. Wu C, Liu C and Su P. (2015). Sentence extraction with topic modeling for question---answer pair generation. Soft Computing - A Fusion of Foundations, Methodologies and Applications. 19:1. (39-46). Online publication date: 1-Jan-2015. https://doi.org/10.1007/s00500-014-1386-6 992. Chien J. (2015). Topic Modeling for Speech and Language Processing. Modern Methodology and Applications in Spatial-Temporal Modeling. 10.1007/978-4-431-55339-7_4. (87-111). http://link.springer.com/10.1007/978-4-431-55339-7_4 993. Pépin L, Blanchard J, Guillet F, Kuntz P and Suignard P. (2015). Visual Analysis of Topics in Twitter Based on Co-evolution of Terms. Data Science, Learning by Latent Structures, and Knowledge Discovery. 10.1007/978-3-662-44983-7_15. (169-178). https://link.springer.com/10.1007/978-3-662-44983-7_15 994. Utsuro T, Inoue Y, Imada T, Yoshioka M and Kando N. (2015). Detecting Bursty Topics of Correlated News and Twitter for Government Services. Social Media for Government Services. 10.1007/978-3-319-27237-5_7. (135-149). http://link.springer.com/10.1007/978-3-319-27237-5_7 995. Tutubalina E and Nikolenko S. (2015). Inferring Sentiment-Based Priors in Topic Models. Advances in Artificial Intelligence and Its Applications. 10.1007/978-3-319-27101-9_7. (92-104). http://link.springer.com/10.1007/978-3-319-27101-9_7 996. Shamanta D, Naim S, Saraf P, Ramakrishnan N and Hossain M. (2015). Concurrent Inference of Topic Models and Distributed Vector Representations. Machine Learning and Knowledge Discovery in Databases. 10.1007/978-3-319-23525-7_27. (441-457). http://link.springer.com/10.1007/978-3-319-23525-7_27 997. Bart E, Price B and Hanley J. (2015). Temporally Coherent Role-Topic Models (TCRTM): Deinterlacing Overlapping Activity Patterns. Machine Learning and Knowledge Discovery in Databases. 10.1007/978-3-319-23525-7_24. (390-405). http://link.springer.com/10.1007/978-3-319-23525-7_24 998. Zhu J, Li X, Peng M, Huang J, Qian T, Huang J, Liu J, Hong R and Liu P. (2015). Coherent Topic Hierarchy: A Strategy for Topic Evolutionary Analysis on Microblog Feeds. Web-Age Information Management. 10.1007/978-3-319-21042-1_6. (70-82). https://link.springer.com/10.1007/978-3-319-21042-1_6 999. Smith A, Malik S and Shneiderman B. (2015). Visual Analysis of Topical Evolution in Unstructured Text: Design and Evaluation of TopicFlow. Applications of Social Media and Social Network Analysis. 10.1007/978-3-319-19003-7_9. (159-175). https://link.springer.com/10.1007/978-3-319-19003-7_9 1000. Hou L, Li J, Li X and Su Y. (2015). Measuring the Influence from User-Generated Content to News via Cross-dependence Topic Modeling. Database Systems for Advanced Applications. 10.1007/978-3-319-18120-2_8. (125-141). https://link.springer.com/10.1007/978-3-319-18120-2_8 1001. Beykikhoshk A, Arandjelović O, Venkatesh S and Phung D. (2015). Hierarchical Dirichlet Process for Tracking Complex Topical Structure Evolution and Its Application to Autism Research Literature. Advances in Knowledge Discovery and Data Mining. 10.1007/978-3-319-18038-0_43. (550-562). https://link.springer.com/10.1007/978-3-319-18038-0_43 1002. Wang P, Zhou C, Zhang P, Feng W, Guo L and Fang B. (2015). Evolving Chinese Restaurant Processes for Modeling Evolutionary Traces in Temporal Data. Advances in Knowledge Discovery and Data Mining. 10.1007/978-3-319-18032-8_7. (79-91). https://link.springer.com/10.1007/978-3-319-18032-8_7 1003. Kim Y, Velcin J, Bonnevay S and Rizoiu M. (2015). Temporal Multinomial Mixture for Instance-Oriented Evolutionary Clustering. Advances in Information Retrieval. 10.1007/978-3-319-16354-3_66. (593-604). http://link.springer.com/10.1007/978-3-319-16354-3_66 1004. Rossetti M, Stella F, Cao L and Zanker M. (2015). Analysing User Reviews in Tourism with Topic Models. Information and Communication Technologies in Tourism 2015. 10.1007/978-3-319-14343-9_4. (47-58). https://link.springer.com/10.1007/978-3-319-14343-9_4 1005. Gliwa B, Zygmunt A and Bober P. (2015). Analysis of Content of Posts and Comments in Evolving Social Groups. Advances in ICT for Business, Industry and Public Sector. 10.1007/978-3-319-11328-9_3. (35-55). https://link.springer.com/10.1007/978-3-319-11328-9_3 1006. Mao Q, Feng B and Pan S. A Bayesian Nonparametric Topic Model for User Interest Modeling. Proceedings of the 2014 IEEE 17th International Conference on Computational Science and Engineering. (527-534). https://doi.org/10.1109/CSE.2014.122 1007. Dermouche M, Velcin J, Khouas L and Loudcher S. A Joint Model for Topic-Sentiment Evolution over Time. Proceedings of the 2014 IEEE International Conference on Data Mining. (773-778). https://doi.org/10.1109/ICDM.2014.82 1008. Liu G, Fu Y, Xu T, Xiong H and Chen G. Discovering Temporal Retweeting Patterns for Social Media Marketing Campaigns. Proceedings of the 2014 IEEE International Conference on Data Mining. (905-910). https://doi.org/10.1109/ICDM.2014.48 1009. Chen L, Hossain K, Butler P, Ramakrishnan N and Prakash B. Flu Gone Viral. Proceedings of the 2014 IEEE International Conference on Data Mining. (755-760). https://doi.org/10.1109/ICDM.2014.137 1010. Zhu C, Zhu H, Ge Y, Chen E and Liu Q. Tracking the Evolution of Social Emotions. Proceedings of the 2014 IEEE International Conference on Data Mining. (697-706). https://doi.org/10.1109/ICDM.2014.121 1011. Liu G, Xu X, Zhu Y and Li L. An Improved Latent Dirichlet Allocation Model for Hot Topic Extraction. Proceedings of the 2014 IEEE Fourth International Conference on Big Data and Cloud Computing. (470-476). https://doi.org/10.1109/BDCloud.2014.55 1012. Sun Y, Tang J, Han J, Chen C and Gupta M. Co-Evolution of Multi-Typed Objects in Dynamic Star Networks. IEEE Transactions on Knowledge and Data Engineering. 10.1109/TKDE.2013.103. 26:12. (2942-2955). http://ieeexplore.ieee.org/document/6547141/ 1013. Sasaki K, Yoshikawa T and Furuhashi T. (2014). Twitter-TTM: An efficient online topic modeling for Twitter considering dynamics of user interests and topic trends 2014 Joint 7th International Conference on Soft Computing and Intelligent Systems (SCIS) and 15th International Symposium on Advanced Intelligent Systems (ISIS). 10.1109/SCIS-ISIS.2014.7044512. 978-1-4799-5955-6. (440-445). http://ieeexplore.ieee.org/document/7044512/ 1014. Hashimoto T, Chakraborty B, Aramvith S, Kuboyama T and Shirota Y. (2014). Affected people's needs detection after the East Japan Great Earthquake — Time series analysis using LDA 2014 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA). 10.1109/APSIPA.2014.7041714. 978-6-1636-1823-8. (1-6). http://ieeexplore.ieee.org/document/7041714/ 1015. Qi X, Huang Y, Chen Z, Liu X, Tian J, Huang T and Wang H. (2015). Burst-LDA: A new topic model for detecting bursty topics from stream text. Journal of Electronics (China). 10.1007/s11767-014-4074-x. 31:6. (565-575). Online publication date: 1-Dec-2014. http://link.springer.com/10.1007/s11767-014-4074-x 1016. Huang D and Mu D. Topic Detection in Twitter Based on Label Propagation Model. Proceedings of the 2014 13th International Symposium on Distributed Computing and Applications to Business, Engineering and Science. (97-101). https://doi.org/10.1109/DCABES.2014.23 1017. Huai B, Chen E, Zhu H, Xiong H, Bao T, Liu Q and Tian J. (2014). Toward Personalized Context Recognition for Mobile Users. ACM Transactions on Knowledge Discovery from Data. 9:2. (1-29). Online publication date: 17-Nov-2014. https://doi.org/10.1145/2629504 1018. Jiang Z, Liu X and Gao L. Dynamic Topic/Citation Influence Modeling for Chronological Citation Recommendation. Proceedings of the 5th International Workshop on Web-scale Knowledge Representation Retrieval & Reasoning. (15-18). https://doi.org/10.1145/2663792.2663795 1019. Derntl M, Günnemann N, Tillmann A, Klamma R and Jarke M. Building and Exploring Dynamic Topic Models on the Web. Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management. (2012-2014). https://doi.org/10.1145/2661829.2661833 1020. Zhang J, Wang C, Wang J and Yu J. (2014). Inferring continuous dynamic social influence and personal preference for temporal behavior prediction. Proceedings of the VLDB Endowment. 8:3. (269-280). Online publication date: 1-Nov-2014. https://doi.org/10.14778/2735508.2735516 1021. Xu Z, Zhang Y and Cao L. Social Image Analysis From a Non-IID Perspective. IEEE Transactions on Multimedia. 10.1109/TMM.2014.2342658. 16:7. (1986-1998). http://ieeexplore.ieee.org/document/6863689/ 1022. Bulut A. TopicMachine: Conversion Prediction in Search Advertising Using Latent Topic Models. IEEE Transactions on Knowledge and Data Engineering. 10.1109/TKDE.2014.2313868. 26:11. (2846-2858). http://ieeexplore.ieee.org/document/6778798/ 1023. Tavakol M and Brefeld U. Factored MDPs for detecting topics of user sessions. Proceedings of the 8th ACM Conference on Recommender systems. (33-40). https://doi.org/10.1145/2645710.2645739 1024. Wu Q, Zhang C, Hong Q and Chen L. (2014). Topic evolution based on LDA and HMM and its application in stem cell research. Journal of Information Science. 40:5. (611-620). Online publication date: 1-Oct-2014. https://doi.org/10.1177/0165551514540565 1025. Duan D, Li Y, Li R, Zhang R, Gu X and Wen K. LIMTopic: A Framework of Incorporating Link Based Importance into Topic Modeling. IEEE Transactions on Knowledge and Data Engineering. 10.1109/TKDE.2013.2297912. 26:10. (2493-2506). http://ieeexplore.ieee.org/document/6702464/ 1026. Park S, Choi D, Lee W, Jung D, Kim M and Moon I. (2014). Disease-medicine topic model for prescription record mining 2014 IEEE International Conference on Systems, Man and Cybernetics - SMC. 10.1109/SMC.2014.6973889. 978-1-4799-3840-7. (86-93). http://ieeexplore.ieee.org/document/6973889/ 1027. Buchler M, Franzini G, Franzini E and Moritz M. (2014). Scaling historical text re-use 2014 IEEE International Conference on Big Data (Big Data). 10.1109/BigData.2014.7004449. 978-1-4799-5666-1. (23-31). http://ieeexplore.ieee.org/document/7004449/ 1028. Wang B, Liu S, Ding K, Liu Z and Xu J. (2014). Identifying technological topics and institution-topic distribution probability for patent competitive intelligence analysis. Scientometrics. 101:1. (685-704). Online publication date: 1-Oct-2014. https://doi.org/10.1007/s11192-014-1342-3 1029. Shirai M, Yanagisawa T and Miura T. (2013). Context-Based Query Using Dependency Structures Based on Latent Topic Model. Journal on Data Semantics. 10.1007/s13740-013-0031-3. 3:3. (157-168). Online publication date: 1-Sep-2014. http://link.springer.com/10.1007/s13740-013-0031-3 1030. Yau C, Porter A, Newman N and Suominen A. (2014). Clustering scientific documents with topic modeling. Scientometrics. 100:3. (767-786). Online publication date: 1-Sep-2014. https://doi.org/10.1007/s11192-014-1321-8 1031. Liu L, Tang L, Li H and Yao S. The Framework of Infrared Video Mining Based on Topic Model. Proceedings of the 2014 Sixth International Conference on Intelligent Human-Machine Systems and Cybernetics - Volume 02. (354-359). https://doi.org/10.1109/IHMSC.2014.187 1032. Ghassemi M, Naumann T, Doshi-Velez F, Brimmer N, Joshi R, Rumshisky A and Szolovits P. Unfolding physiological state. Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. (75-84). https://doi.org/10.1145/2623330.2623742 1033. Günnemann S, Günnemann N and Faloutsos C. Detecting anomalies in dynamic rating data. Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. (841-850). https://doi.org/10.1145/2623330.2623721 1034. Yu R, He X and Liu Y. GLAD. Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. (372-381). https://doi.org/10.1145/2623330.2623719 1035. Hu D, Hall R and Attenberg J. Style in the long tail. Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. (1640-1649). https://doi.org/10.1145/2623330.2623338 1036. Hansmann T and Niemeyer P. Big Data - Characterizing an Emerging Research Field Using Topic Models. Proceedings of the 2014 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT) - Volume 01. (43-51). https://doi.org/10.1109/WI-IAT.2014.15 1037. Ren Z, Peetz M, Liang S, van Dolen W and de Rijke M. Hierarchical multi-label classification of social text streams. Proceedings of the 37th international ACM SIGIR conference on Research & development in information retrieval. (213-222). https://doi.org/10.1145/2600428.2609595 1038. Hu X, Zheng D, Sun W and Li S. (2014). Topic model-based micro-blog user interest analysis 2014 International Conference on Audio, Language and Image Processing (ICALIP). 10.1109/ICALIP.2014.7009833. 978-1-4799-3903-9. (443-448). http://ieeexplore.ieee.org/document/7009833/ 1039. Xian H and Madhavan K. (2014). Anatomy of Scholarly Collaboration in Engineering Education: A Big‐Data Bibliometric Analysis. Journal of Engineering Education. 10.1002/jee.20052. 103:3. (486-514). Online publication date: 1-Jul-2014. https://onlinelibrary.wiley.com/doi/10.1002/jee.20052 1040. Inouye D, Ravikumar P and Dhillon I. Admixture of Poisson MRFs. Proceedings of the 31st International Conference on International Conference on Machine Learning - Volume 32. (I-683-I-691). /doi/10.5555/3044805.3044883 1041. Yin H, Cui B, Chen L, Hu Z and Huang Z. A temporal context-aware model for user behavior modeling in social media systems. Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data. (1543-1554). https://doi.org/10.1145/2588555.2593685 1042. Aggarwal C. (2014). Mining text and social streams. ACM SIGKDD Explorations Newsletter. 15:2. (9-19). Online publication date: 16-Jun-2014. https://doi.org/10.1145/2641190.2641194 1043. Marchand-Maillet S and Hofreiter B. (2014). Big Data Management and Analysis for Business Informatics - A Survey. Enterprise Modelling and Information Systems Architectures. 10.1007/s40786-014-0007-2. 9:1. (90-105). Online publication date: 1-Jun-2014. https://www.springerprofessional.de/doi/10.1007/s40786-014-0007-2 1044. M. A. Basher A and Fung B. (2014). Analyzing topics and authors in chat logs for crime investigation. Knowledge and Information Systems. 39:2. (351-381). Online publication date: 1-May-2014. https://doi.org/10.1007/s10115-013-0617-y 1045. Vaca C, Mantrach A, Jaimes A and Saerens M. A time-based collective factorization for topic discovery and monitoring in news. Proceedings of the 23rd international conference on World wide web. (527-538). https://doi.org/10.1145/2566486.2568041 1046. Tsolmon B and Lee K. Extracting Social Events Based on Timeline and User Reliability Analysis on Twitter. Proceedings of the 15th International Conference on Computational Linguistics and Intelligent Text Processing - Volume 8404. (213-223). https://doi.org/10.1007/978-3-642-54903-8_18 1047. Liu S, Liu L and Cheng R. (2014). Combining parametric and nonparametric topic model to discover microblog event 2014 International Conference on Information Science, Electronics and Electrical Engineering (ISEEE). 10.1109/InfoSEEE.2014.6946176. 978-1-4799-3197-2. (1527-1531). http://ieeexplore.ieee.org/document/6946176/ 1048. Zhang Z, Yu L, Fang K, You Z, Liu C, Liu H and Yan X. (2014). Website-oriented recommendation based on heat spreading and tag-aware collaborative filtering. Physica A: Statistical Mechanics and its Applications. 10.1016/j.physa.2013.12.030. 399. (82-88). Online publication date: 1-Apr-2014. https://linkinghub.elsevier.com/retrieve/pii/S0378437113011540 1049. Hu Z, Wang H and Zhu J. The discovery of user related rare sequential patterns of topics in the internet document stream. Proceedings of the 29th Annual ACM Symposium on Applied Computing. (137-138). https://doi.org/10.1145/2554850.2555075 1050. Deng K, Geng Z and Liu J. (2013). Association pattern discovery via theme dictionary models. Journal of the Royal Statistical Society: Series B (Statistical Methodology). 10.1111/rssb.12032. 76:2. (319-347). Online publication date: 1-Mar-2014. http://doi.wiley.com/10.1111/rssb.12032 1051. Thomas S, Adams B, Hassan A and Blostein D. (2014). Studying software evolution using topic models. Science of Computer Programming. 80:PB. (457-479). Online publication date: 1-Feb-2014. /doi/10.5555/2748144.2748399 1052. Dehong Gao , Wenjie Li , Xiaoyan Cai , Renxian Zhang and You Ouyang . (2014). Sequential Summarization. IEEE/ACM Transactions on Audio, Speech and Language Processing. 22:2. (293-302). Online publication date: 1-Feb-2014. https://doi.org/10.1109/TASL.2013.2282191 1053. Oh K, Lee W, Lim C and Choi H. (2014). Personalized news recommendation using classified keywords to capture user preference 2014 16th International Conference on Advanced Communication Technology (ICACT). 10.1109/ICACT.2014.6779166. 978-89-968650-3-2. (1283-1287). http://ieeexplore.ieee.org/document/6779166/ 1054. Jeong Y, Lee W and Choi H. (2014). Topic grouping by spectral clustering 2014 16th International Conference on Advanced Communication Technology (ICACT). 10.1109/ICACT.2014.6779044. 978-89-968650-3-2. (657-661). http://ieeexplore.ieee.org/document/6779044/ 1055. Blei D. (2014). Build, Compute, Critique, Repeat: Data Analysis with Latent Variable Models. Annual Review of Statistics and Its Application. 10.1146/annurev-statistics-022513-115657. 1:1. (203-232). Online publication date: 3-Jan-2014. https://www.annualreviews.org/doi/10.1146/annurev-statistics-022513-115657 1056. Qin X, Greene D and Cunningham P. A latent space analysis of editor lifecycles in Wikipedia. Proceedings of the 5th and 1st International Conference on Big Data Analytics in the Social and Ubiquitous Context - 5th International Workshop on Modeling Social Media, 5th International Workshop on Mining Ubiquitous and Social Environments and First International Workshop on Machine Learning for Urban Sensor Data. (46-69). /doi/10.5555/3120818.3120821 1057. Bouchard G, Clinchant S and Darling W. (2014). Hot Topic Sensing, Text Analysis, and Summarization. Handbook of Research on Advanced ICT Integration for Governance and Policy Modeling. 10.4018/978-1-4666-6236-0.ch012. (216-247). http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-4666-6236-0.ch012 1058. Armano G and Giuliani A. Novel Text Summarization Techniques for Contextual Advertising. Innovative Document Summarization Techniques. 10.4018/978-1-4666-5019-0.ch008. (185-204). http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-4666-5019-0.ch008 1059. Emonet R, Varadarajan J and Odobez J. (2014). Temporal Analysis of Motif Mixtures Using Dirichlet Processes. IEEE Transactions on Pattern Analysis and Machine Intelligence. 36:1. (140-156). Online publication date: 1-Jan-2014. https://doi.org/10.1109/TPAMI.2013.100 1060. Fukazawa Y and Ota J. (2014). Companion context dependent topic modeling 2014 Seventh International Conference on Mobile Computing and Ubiquitous Networking (ICMU). 10.1109/ICMU.2014.6799079. 978-1-4799-2231-4. (105-110). http://ieeexplore.ieee.org/document/6799079/ 1061. Wang J, Liu X, Wang J and Zhao W. (2014). News Topic Evolution Tracking by Incorporating Temporal Information. Natural Language Processing and Chinese Computing. 10.1007/978-3-662-45924-9_43. (465-472). https://link.springer.com/10.1007/978-3-662-45924-9_43 1062. Cai G, Peng L and Wang Y. (2014). Topic Detection and Evolution Analysis on Microblog. Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. 10.1007/978-3-662-44980-6_8. (67-77). http://link.springer.com/10.1007/978-3-662-44980-6_8 1063. Chen C, Zheng X, Zhou C and Chen D. (2014). Making Recommendations on Microblogs through Topic Modeling. Web Information Systems Engineering – WISE 2013 Workshops. 10.1007/978-3-642-54370-8_21. (252-265). https://link.springer.com/10.1007/978-3-642-54370-8_21 1064. Xu S, Shi Q, Qiao X, Zhu L, Jung H, Lee S and Choi S. (2014). Author-Topic over Time (AToT): A Dynamic Users’ Interest Model. Mobile, Ubiquitous, and Intelligent Computing. 10.1007/978-3-642-40675-1_37. (239-245). https://link.springer.com/10.1007/978-3-642-40675-1_37 1065. Büchler M, Burns P, Müller M, Franzini E and Franzini G. (2014). Towards a Historical Text Re-use Detection. Text Mining. 10.1007/978-3-319-12655-5_11. (221-238). https://link.springer.com/10.1007/978-3-319-12655-5_11 1066. Gadelshin I, Antonova A and Ilvovsky D. (2014). Detection of Domain-Specific Trends in Text Collections. Analysis of Images, Social Networks and Texts. 10.1007/978-3-319-12580-0_7. (78-84). https://link.springer.com/10.1007/978-3-319-12580-0_7 1067. Zhou N, Zhang X and Wang S. (2014). Theme-Aware Social Strength Inference from Spatiotemporal Data. Web-Age Information Management. 10.1007/978-3-319-08010-9_56. (498-509). http://link.springer.com/10.1007/978-3-319-08010-9_56 1068. Saga R, Kobayashi H, Miyamoto T and Tsuji H. (2014). Measurement Evaluation of Keyword Extraction Based on Topic Coverage. HCI International 2014 - Posters’ Extended Abstracts. 10.1007/978-3-319-07857-1_40. (224-227). http://link.springer.com/10.1007/978-3-319-07857-1_40 1069. Kim G, Park S and Jang D. (2014). Technology Analysis from Patent Data Using Latent Dirichlet Allocation. Soft Computing in Big Data Processing. 10.1007/978-3-319-05527-5_8. (71-80). https://link.springer.com/10.1007/978-3-319-05527-5_8 1070. Huang K, Yao J, Fan Y, Tan W, Nepal S, Ni Y and Chen S. Mirror, Mirror, on the Web, Which Is the Most Reputable Service of Them All?. Proceedings of the 11th International Conference on Service-Oriented Computing - Volume 8274. (343-357). https://doi.org/10.1007/978-3-642-45005-1_24 1071. He Y, Lin C, Gao W and Wong K. (2014). Dynamic joint sentiment-topic model. ACM Transactions on Intelligent Systems and Technology. 5:1. (1-21). Online publication date: 1-Dec-2013. https://doi.org/10.1145/2542182.2542188 1072. Shanzeng Qiao and Aili Han . (2013). A way to construct evolution model of scientific papers based on the seed document and OLDA models 2013 International Conference on Mechatronic Sciences, Electric Engineering and Computer (MEC). 10.1109/MEC.2013.6885187. 978-1-4799-2565-0. (900-903). http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6885187 1073. Xie W, Zhu F, Jiang J, Lim E and Wang K. (2013). TopicSketch: Real-Time Bursty Topic Detection from Twitter 2013 IEEE International Conference on Data Mining (ICDM). 10.1109/ICDM.2013.86. 978-0-7695-5108-1. (837-846). http://ieeexplore.ieee.org/document/6729568/ 1074. Dai B and Lauw H. (2013). Modeling Preferences with Availability Constraints 2013 IEEE International Conference on Data Mining (ICDM). 10.1109/ICDM.2013.41. 978-0-7695-5108-1. (101-110). http://ieeexplore.ieee.org/document/6729494/ 1075. Mehdi R, Mohamed Q and Mustapha A. Encoding Local Correspondence in Topic Models. Proceedings of the 2013 IEEE 25th International Conference on Tools with Artificial Intelligence. (602-609). https://doi.org/10.1109/ICTAI.2013.95 1076. de Waal A and Mouton F. (2013). Topic modelling in the information warfare domain 2013 International Conference on Adaptive Science and Technology (ICAST). 10.1109/ICASTech.2013.6707492. 978-1-4799-3067-8. (1-7). http://ieeexplore.ieee.org/document/6707492/ 1077. Günnemann N, Derntl M, Klamma R and Jarke M. (2013). An Interactive System for Visual Analytics of Dynamic Topic Models. Datenbank-Spektrum. 10.1007/s13222-013-0134-x. 13:3. (213-223). Online publication date: 1-Nov-2013. http://link.springer.com/10.1007/s13222-013-0134-x 1078. Mirylenka D and Passerini A. Navigating the topical structure of academic search results via the Wikipedia category network. Proceedings of the 22nd ACM international conference on Information & Knowledge Management. (891-896). https://doi.org/10.1145/2505515.2505621 1079. Tsai C, Kundu G and Roth D. Concept-based analysis of scientific literature. Proceedings of the 22nd ACM international conference on Information & Knowledge Management. (1733-1738). https://doi.org/10.1145/2505515.2505613 1080. Kim H, Castellanos M, Hsu M, Zhai C, Rietz T and Diermeier D. Mining causal topics in text data. Proceedings of the 22nd ACM international conference on Information & Knowledge Management. (885-890). https://doi.org/10.1145/2505515.2505612 1081. Yang T and Lee D. On handling textual errors in latent document modeling. Proceedings of the 22nd ACM international conference on Information & Knowledge Management. (2089-2098). https://doi.org/10.1145/2505515.2505555 1082. Qin L and Zhu X. Functional dirichlet process. Proceedings of the 22nd ACM international conference on Information & Knowledge Management. (1331-1340). https://doi.org/10.1145/2505515.2505537 1083. Emms M. Dynamic EM in Neologism Evolution. Proceedings of the 14th International Conference on Intelligent Data Engineering and Automated Learning --- IDEAL 2013 - Volume 8206. (286-293). https://doi.org/10.1007/978-3-642-41278-3_35 1084. Cao L and Tang X. Prevailing Trends Detection of Public Opinions Based on Tianya Forum. Proceedings of the 14th International Conference on Intelligent Data Engineering and Automated Learning --- IDEAL 2013 - Volume 8206. (186-193). https://doi.org/10.1007/978-3-642-41278-3_23 1085. Steinmacher I, Silva M, Côgo F, Chaves A and Gerosa M. Tópicos de pesquisa e rede de coautoria no Simpósio Brasileiro de Sistemas Colaborativos. Proceedings of the X Brazilian Symposium in Collaborative Systems. (88-95). /doi/10.5555/2542508.2542524 1086. Aiello L, Petkos G, Martin C, Corney D, Papadopoulos S, Skraba R, Goker A, Kompatsiaris I and Jaimes A. (2013). Sensing Trending Topics in Twitter. IEEE Transactions on Multimedia. 15:6. (1268-1282). Online publication date: 1-Oct-2013. https://doi.org/10.1109/TMM.2013.2265080 1087. Guerra J, Sosnovsky S and Brusilovsky P. When One Textbook Is Not Enough. Proceedings of the 8th European Conference on Scaling up Learning for Sustained Impact - Volume 8095. (125-138). https://doi.org/10.1007/978-3-642-40814-4_11 1088. Tavenard R, Emonet R and Odobez J. (2013). Time-sensitive topic models for action recognition in videos 2013 20th IEEE International Conference on Image Processing (ICIP). 10.1109/ICIP.2013.6738615. 978-1-4799-2341-0. (2988-2992). http://ieeexplore.ieee.org/document/6738615/ 1089. Christidis K and Mentzas G. (2013). A topic-based recommender system for electronic marketplace platforms. Expert Systems with Applications: An International Journal. 40:11. (4370-4379). Online publication date: 1-Sep-2013. https://doi.org/10.1016/j.eswa.2013.01.014 1090. Malik S, Smith A, Hawes T, Papadatos P, Li J, Dunne C and Shneiderman B. TopicFlow. Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. (720-726). https://doi.org/10.1145/2492517.2492639 1091. Chakrabort T, Sikdar S, Tammana V, Ganguly N and Mukherjee A. Computer science fields as ground-truth communities. Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. (426-433). https://doi.org/10.1145/2492517.2492536 1092. Rajagopal D, Olsher D, Cambria E and Kwok K. Commonsense-based topic modeling. Proceedings of the Second International Workshop on Issues of Sentiment Discovery and Opinion Mining. (1-8). https://doi.org/10.1145/2502069.2502075 1093. Fu B, Lin J, Li L, Faloutsos C, Hong J and Sadeh N. Why people hate your app. Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining. (1276-1284). https://doi.org/10.1145/2487575.2488202 1094. Wang X, Zhai C and Roth D. Understanding evolution of research themes. Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining. (1115-1123). https://doi.org/10.1145/2487575.2487698 1095. Wang X, Liu S, Song Y and Guo B. Mining evolutionary multi-branch trees from text streams. Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining. (722-730). https://doi.org/10.1145/2487575.2487603 1096. El-Arini K, Xu M, Fox E and Guestrin C. Representing documents through their readers. Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining. (14-22). https://doi.org/10.1145/2487575.2487596 1097. Zhou Z and Li F. (2013). A Topic Study of Microblog Based on Specific Events. Applied Mechanics and Materials. 10.4028/www.scientific.net/AMM.347-350.2625. 347-350. (2625-2630). https://www.scientific.net/AMM.347-350.2625 1098. Chen Y, Amiri H, Li Z and Chua T. Emerging topic detection for organizations from microblogs. Proceedings of the 36th international ACM SIGIR conference on Research and development in information retrieval. (43-52). https://doi.org/10.1145/2484028.2484057 1099. Ren Z, Liang S, Meij E and de Rijke M. Personalized time-aware tweets summarization. Proceedings of the 36th international ACM SIGIR conference on Research and development in information retrieval. (513-522). https://doi.org/10.1145/2484028.2484052 1100. Tamura K, Yoshikawa T and Furuhashi T. A study on document retrieval system based on visualization to manage OCR documents. Proceedings of the 15th international conference on Human-Computer Interaction: interaction modalities and techniques - Volume Part IV. (740-749). https://doi.org/10.1007/978-3-642-39330-3_80 1101. Lade P, Balasubramanian V, Venkateswara H and Panchanathan S. (2013). Detection of changes in human affect dimensions using an Adaptive Temporal Topic model 2013 IEEE International Conference on Multimedia and Expo (ICME). 10.1109/ICME.2013.6607627. 978-1-4799-0015-2. (1-6). http://ieeexplore.ieee.org/document/6607627/ 1102. Bordogna G and Pasi G. (2013). A fuzzy approach to the conceptual identification of ememes on the blogosphere 2013 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). 10.1109/FUZZ-IEEE.2013.6622390. 978-1-4799-0022-0. (1-8). http://ieeexplore.ieee.org/document/6622390/ 1103. Chuang J, Gupta S, Manning C and Heer J. Topic model diagnostics. Proceedings of the 30th International Conference on International Conference on Machine Learning - Volume 28. (III-612-III-620). /doi/10.5555/3042817.3043005 1104. Gopal S and Yang Y. Distributed training of large-scale logistic models. Proceedings of the 30th International Conference on International Conference on Machine Learning - Volume 28. (II-289-II-297). /doi/10.5555/3042817.3042926 1105. Yang S and Zha H. Mixture of mutually exciting processes for viral diffusion. Proceedings of the 30th International Conference on International Conference on Machine Learning - Volume 28. (II-1-II-9). /doi/10.5555/3042817.3042894 1106. Zhang A, Zhu J and Zhang B. Sparse online topic models. Proceedings of the 22nd international conference on World Wide Web. (1489-1500). https://doi.org/10.1145/2488388.2488518 1107. Wen T, Lee H, Su P and Lee L. (2013). Interactive spoken content retrieval by extended query model and continuous state space Markov Decision Process ICASSP 2013 - 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 10.1109/ICASSP.2013.6639326. 978-1-4799-0356-6. (8510-8514). http://ieeexplore.ieee.org/document/6639326/ 1108. Varadarajan J, Emonet R and Odobez J. (2012). A Sequential Topic Model for Mining Recurrent Activities from Long Term Video Logs. International Journal of Computer Vision. 10.1007/s11263-012-0596-6. 103:1. (100-126). Online publication date: 1-May-2013. http://link.springer.com/10.1007/s11263-012-0596-6 1109. Yin H, Cui B, Huang Y, Lu H and Yao J. A unified model for stable and temporal topic detection from social media data. Proceedings of the 2013 IEEE International Conference on Data Engineering (ICDE 2013). (661-672). https://doi.org/10.1109/ICDE.2013.6544864 1110. Jameel S and Lam W. An n-gram topic model for time-stamped documents. Proceedings of the 35th European conference on Advances in Information Retrieval. (292-304). https://doi.org/10.1007/978-3-642-36973-5_25 1111. Pan S, Zhou M, Song Y, Qian W, Wang F and Liu S. Optimizing temporal topic segmentation for intelligent text visualization. Proceedings of the 2013 international conference on Intelligent user interfaces. (339-350). https://doi.org/10.1145/2449396.2449441 1112. Wang E, Salazar E, Dunson D and Carin L. Spatio-Temporal Modeling of Legislation and Votes. Bayesian Analysis. 10.1214/13-BA810. 8:1. https://projecteuclid.org/journals/bayesian-analysis/volume-8/issue-1/Spatio-Temporal-Modeling-of-Legislation-and-Votes/10.1214/13-BA810.full 1113. Liu S and Chen C. (2013). The differences between latent topics in abstracts and citation contexts of citing papers. Journal of the American Society for Information Science and Technology. 10.1002/asi.22771. 64:3. (627-639). Online publication date: 1-Mar-2013. https://onlinelibrary.wiley.com/doi/10.1002/asi.22771 1114. Introne J and Drescher M. Analyzing the flow of knowledge in computer mediated teams. Proceedings of the 2013 conference on Computer supported cooperative work. (341-356). https://doi.org/10.1145/2441776.2441816 1115. Radinsky K, Diaz F, Dumais S, Shokouhi M, Dong A and Chang Y. Temporal web dynamics and its application to information retrieval. Proceedings of the sixth ACM international conference on Web search and data mining. (781-782). https://doi.org/10.1145/2433396.2433500 1116. Zhao L, Shang L, Gao Y, Yang Y and Jia X. (2013). Video Behavior Analysis Using Topic Models and Rough Sets [Applications Notes]. IEEE Computational Intelligence Magazine. 8:1. (56-67). Online publication date: 1-Feb-2013. https://doi.org/10.1109/MCI.2012.2228597 1117. Wang Q, Xu J, Li H and Craswell N. (2013). Regularized Latent Semantic Indexing. ACM Transactions on Information Systems. 31:1. (1-44). Online publication date: 1-Jan-2013. https://doi.org/10.1145/2414782.2414787 1118. Bodrunova S, Koltsov S, Koltsova O, Nikolenko S and Shimorina A. (2013). Interval Semi-supervised LDA: Classifying Needles in a Haystack. Advances in Artificial Intelligence and Its Applications. 10.1007/978-3-642-45114-0_21. (265-274). http://link.springer.com/10.1007/978-3-642-45114-0_21 1119. Gao Y, Xu Y, Li Y and Liu B. (2013). A Two-Stage Approach for Generating Topic Models. Advances in Knowledge Discovery and Data Mining. 10.1007/978-3-642-37456-2_19. (221-232). http://link.springer.com/10.1007/978-3-642-37456-2_19 1120. Gohr A, Spiliopoulou M and Hinneburg A. (2013). Visually Summarizing Semantic Evolution in Document Streams with Topic Table. Knowledge Discovery, Knowledge Engineering and Knowledge Management. 10.1007/978-3-642-29764-9_9. (136-150). http://link.springer.com/10.1007/978-3-642-29764-9_9 1121. Kelaiaia A and Merouani H. (2013). Clustering with Probabilistic Topic Models on Arabic Texts. Modeling Approaches and Algorithms for Advanced Computer Applications. 10.1007/978-3-319-00560-7_11. (65-74). https://link.springer.com/10.1007/978-3-319-00560-7_11 1122. Gad S, Ramakrishnan N, Hampton K and Kavanaugh A. Bridging the Divide in Democratic Engagement. Proceedings of the 2012 International Conference on Social Informatics. (165-176). https://doi.org/10.1109/SocialInformatics.2012.44 1123. Duan D, Li Y, Li R, Zhang R and Wen A. RankTopic. Proceedings of the 2012 IEEE 12th International Conference on Data Mining. (211-220). https://doi.org/10.1109/ICDM.2012.12 1124. Kim H, Sun Y, Hockenmaier J and Han J. ETM. Proceedings of the 2012 IEEE 12th International Conference on Data Mining. (349-358). https://doi.org/10.1109/ICDM.2012.107 1125. Ahluwalia A, Huang A, Bandari R and Roychowdhury V. An automated multiscale map of conversations. Proceedings of the 4th international conference on Social Informatics. (15-28). https://doi.org/10.1007/978-3-642-35386-4_2 1126. Rao Y and Li Q. Term Weighting Schemes for Emerging Event Detection. Proceedings of the The 2012 IEEE/WIC/ACM International Joint Conferences on Web Intelligence and Intelligent Agent Technology - Volume 01. (105-112). /doi/10.5555/2457524.2457670 1127. Kundu S and Chaudhury S. A Ubiquitous Image Tagging System Using User Context. Proceedings of the The 2012 IEEE/WIC/ACM International Joint Conferences on Web Intelligence and Intelligent Agent Technology - Volume 01. (367-371). /doi/10.5555/2457524.2457616 1128. Rao Y and Li Q. (2012). Term Weighting Schemes for Emerging Event Detection 2012 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT). 10.1109/WI-IAT.2012.66. 978-1-4673-6057-9. (105-112). http://ieeexplore.ieee.org/document/6511872/ 1129. Kundu S and Chaudhury S. (2012). A Ubiquitous Image Tagging System Using User Context 2012 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT). 10.1109/WI-IAT.2012.249. 978-1-4673-6057-9. (367-371). http://ieeexplore.ieee.org/document/6511910/ 1130. Zhang R, Tran T and Mao Y. (2012). Real-time helpfulness prediction based on voter opinions. Concurrency and Computation: Practice & Experience. 24:17. (2167-2178). Online publication date: 1-Dec-2012. https://doi.org/10.1002/cpe.1785 1131. Christidis K and Mentzas G. A Topic-Based Recommender System for Electronic Marketplace Platforms. Proceedings of the 2012 IEEE 24th International Conference on Tools with Artificial Intelligence - Volume 01. (381-388). https://doi.org/10.1109/ICTAI.2012.59 1132. Kim H, Zhai C, Rietz T, Diermeier D, Hsu M, Castellanos M and Ceja Limon C. InCaToMi. Proceedings of the 21st ACM international conference on Information and knowledge management. (2689-2691). https://doi.org/10.1145/2396761.2398727 1133. Masada T and Takasu A. Extraction of topic evolutions from references in scientific articles and its GPU acceleration. Proceedings of the 21st ACM international conference on Information and knowledge management. (1522-1526). https://doi.org/10.1145/2396761.2398465 1134. Tang X and Yang C. TUT. Proceedings of the 21st ACM international conference on Information and knowledge management. (972-981). https://doi.org/10.1145/2396761.2396884 1135. Ma Z, Sun A, Yuan Q and Cong G. Topic-driven reader comments summarization. Proceedings of the 21st ACM international conference on Information and knowledge management. (265-274). https://doi.org/10.1145/2396761.2396798 1136. Xie Y, Cheng Y, Honbo D, Zhang K, Agrawal A, Choudhary A, Gao Y and Gou J. Probabilistic macro behavioral targeting. Proceedings of the 2012 workshop on Data-driven user behavioral modelling and mining from social media. (7-10). https://doi.org/10.1145/2390131.2390135 1137. Arora S, Ge R and Moitra A. Learning Topic Models -- Going beyond SVD. Proceedings of the 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science. (1-10). https://doi.org/10.1109/FOCS.2012.49 1138. He Y, Lin C and Cano A. Online Sentiment and Topic Dynamics Tracking over the Streaming Data. Proceedings of the 2012 ASE/IEEE International Conference on Social Computing and 2012 ASE/IEEE International Conference on Privacy, Security, Risk and Trust. (258-266). https://doi.org/10.1109/SocialCom-PASSAT.2012.14 1139. Bauer S, Noulas A, Seaghdha D, Clark S and Mascolo C. Talking Places. Proceedings of the 2012 ASE/IEEE International Conference on Social Computing and 2012 ASE/IEEE International Conference on Privacy, Security, Risk and Trust. (348-357). https://doi.org/10.1109/SocialCom-PASSAT.2012.107 1140. SCHONHARDT‐BAILEY C, YAGER E and LAHLOU S. (2012). Yes, Ronald Reagan's Rhetoric Was Unique—But Statistically, How Unique? . Presidential Studies Quarterly. 10.1111/j.1741-5705.2012.03990.x. 42:3. (482-513). Online publication date: 1-Sep-2012. https://onlinelibrary.wiley.com/doi/10.1111/j.1741-5705.2012.03990.x 1141. Sundaram H, Xie L, De Choudhury M, Lin Y and Natsev A. Multimedia Semantics: Interactions Between Content and Community. Proceedings of the IEEE. 10.1109/JPROC.2012.2191529. 100:9. (2737-2758). http://ieeexplore.ieee.org/document/6210346/ 1142. Ji H, Deng H and Han J. Uncertainty Reduction for Knowledge Discovery and Information Extraction on the World Wide Web. Proceedings of the IEEE. 10.1109/JPROC.2012.2190489. 100:9. (2658-2674). http://ieeexplore.ieee.org/document/6212297/ 1143. Lauschke C and Ntoutsi E. Monitoring User Evolution in Twitter. Proceedings of the 2012 International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2012). (972-977). https://doi.org/10.1109/ASONAM.2012.171 1144. Li T, Kveton B, Wu Y and Kashyap A. Incorporating metadata into dynamic topic analysis. Proceedings of the Ninth UAI Conference on Bayesian Modeling Applications Workshop - Volume 962. (34-43). /doi/10.5555/3023465.3023470 1145. Xie Y, Honbo D, Choudhary A, Zhang K, Cheng Y and Agrawal A. VOXSUP. Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining. (1556-1559). https://doi.org/10.1145/2339530.2339779 1146. Matsubara Y, Sakurai Y, Faloutsos C, Iwata T and Yoshikawa M. Fast mining and forecasting of complex time-stamped events. Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining. (271-279). https://doi.org/10.1145/2339530.2339577 1147. Wang Y, Agichtein E and Benzi M. TM-LDA. Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining. (123-131). https://doi.org/10.1145/2339530.2339552 1148. Sato I, Kurihara K and Nakagawa H. Practical collapsed variational bayes inference for hierarchical dirichlet process. Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining. (105-113). https://doi.org/10.1145/2339530.2339550 1149. Gillenwater J, Kulesza A and Taskar B. Discovering diverse and salient threads in document collections. Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. (710-720). /doi/10.5555/2390948.2391026 1150. Du L, Buntine W and Jin H. Modelling sequential text with an adaptive topic model. Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. (535-545). /doi/10.5555/2390948.2391010 1151. Wang X, Sun L, Wang Z and Meng D. Group Recommendation Using External Followee for Social TV. Proceedings of the 2012 IEEE International Conference on Multimedia and Expo. (37-42). https://doi.org/10.1109/ICME.2012.122 1152. Mihalcea R and Nastase V. Word epoch disambiguation. Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Short Papers - Volume 2. (259-263). /doi/10.5555/2390665.2390727 1153. Diao Q, Jiang J, Zhu F and Lim E. Finding bursty topics from microblogs. Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Long Papers - Volume 1. (536-544). /doi/10.5555/2390524.2390599 1154. Guo J, Sun H and Zhu C. (2012). Category Level Object Discovery Using Dynamic Topic Model. Applied Mechanics and Materials. 10.4028/www.scientific.net/AMM.190-191.944. 190-191. (944-948). https://www.scientific.net/AMM.190-191.944 1155. Xu T, Zhang Z, Yu P and Long B. (2012). Generative Models for Evolutionary Clustering. ACM Transactions on Knowledge Discovery from Data. 6:2. (1-27). Online publication date: 1-Jul-2012. https://doi.org/10.1145/2297456.2297459 1156. Alamdari S and Mehrabian A. On a DAG partitioning problem. Proceedings of the 9th international conference on Algorithms and Models for the Web Graph. (17-28). https://doi.org/10.1007/978-3-642-30541-2_2 1157. Farrahi K and Gatica-Perez D. Extracting Mobile Behavioral Patterns with the Distant N-Gram Topic Model. Proceedings of the 2012 16th Annual International Symposium on Wearable Computers (ISWC). (1-8). https://doi.org/10.1109/ISWC.2012.20 1158. Du L, Buntine W, Jin H and Chen C. (2011). Sequential latent Dirichlet allocation. Knowledge and Information Systems. 10.1007/s10115-011-0425-1. 31:3. (475-503). Online publication date: 1-Jun-2012. http://link.springer.com/10.1007/s10115-011-0425-1 1159. Jeong Y and Choi H. Sequential entity group topic model for getting topic flows of entity groups within one document. Proceedings of the 16th Pacific-Asia conference on Advances in Knowledge Discovery and Data Mining - Volume Part I. (366-378). https://doi.org/10.1007/978-3-642-30217-6_31 1160. Zheng M, Wu C, Liu Y, Liao X and Chen G. (2012). Topic sentiment trend model: Modeling facets and sentiment dynamics 2012 IEEE International Conference on Computer Science and Automation Engineering (CSAE). 10.1109/CSAE.2012.6273036. 978-1-4673-0089-6. (651-657). http://ieeexplore.ieee.org/document/6273036/ 1161. Tuzhilin A. (2012). Customer relationship management and Web mining. Data Mining and Knowledge Discovery. 24:3. (584-612). Online publication date: 1-May-2012. https://doi.org/10.1007/s10618-012-0256-z 1162. Blei D. (2012). Probabilistic topic models. Communications of the ACM. 55:4. (77-84). Online publication date: 1-Apr-2012. https://doi.org/10.1145/2133806.2133826 1163. Zimmermann M, Ntoutsi I, Siddiqui Z, Spiliopoulou M and Kriegel H. Discovering global and local bursts in a stream of news. Proceedings of the 27th Annual ACM Symposium on Applied Computing. (807-812). https://doi.org/10.1145/2245276.2245433 1164. Yao J, Cui B, Huang Y and Zhou Y. (2012). Bursty event detection from collaborative tags. World Wide Web. 15:2. (171-195). Online publication date: 1-Mar-2012. https://doi.org/10.1007/s11280-011-0136-2 1165. Saha A and Sindhwani V. Learning evolving and emerging topics in social media. Proceedings of the fifth ACM international conference on Web search and data mining. (693-702). https://doi.org/10.1145/2124295.2124376 1166. Iwata T, Yamada T, Sakurai Y and Ueda N. (2012). Sequential Modeling of Topic Dynamics with Multiple Timescales. ACM Transactions on Knowledge Discovery from Data. 5:4. (1-27). Online publication date: 1-Feb-2012. https://doi.org/10.1145/2086737.2086739 1167. Dakka W, Gravano L and Ipeirotis P. (2012). Answering General Time-Sensitive Queries. IEEE Transactions on Knowledge and Data Engineering. 24:2. (220-235). Online publication date: 1-Feb-2012. https://doi.org/10.1109/TKDE.2010.187 1168. Daud A. (2012). Using time topic modeling for semantics-based dynamic research interest finding. Knowledge-Based Systems. 26. (154-163). Online publication date: 1-Feb-2012. https://doi.org/10.1016/j.knosys.2011.07.015 1169. Forestier M, Stavrianou A, Velcin J and Zighed D. (2012). Roles in social networks. Web Intelligence and Agent Systems. 10:1. (117-133). Online publication date: 1-Jan-2012. /doi/10.5555/2589921.2589932 1170. Lin Y, Sundaram H, De Choudhury M and Kelliher A. (2012). Discovering multirelational structure in social media streams. ACM Transactions on Multimedia Computing, Communications, and Applications. 8:1. (1-28). Online publication date: 1-Jan-2012. https://doi.org/10.1145/2071396.2071400 1171. Wang X, Jin X, Chen M, Zhang K and Shen D. (2012). Topic Mining over Asynchronous Text Sequences. IEEE Transactions on Knowledge and Data Engineering. 24:1. (156-169). Online publication date: 1-Jan-2012. https://doi.org/10.1109/TKDE.2010.229 1172. Jen-Tzung Chien and Chuang-Hua Chueh . (2012). Topic-Based Hierarchical Segmentation. IEEE Transactions on Audio, Speech, and Language Processing. 20:1. (55-66). Online publication date: 1-Jan-2012. https://doi.org/10.1109/TASL.2011.2143405 1173. Xu J, Lu Q, Liu Z and Chai J. (2012). Topic Sequence Kernel. Information Retrieval Technology. 10.1007/978-3-642-35341-3_41. (457-466). http://link.springer.com/10.1007/978-3-642-35341-3_41 1174. Takahashi Y, Utsuro T, Yoshioka M, Kando N, Fukuhara T, Nakagawa H and Kiyota Y. (2012). Applying a Burst Model to Detect Bursty Topics in a Topic Model. Advances in Natural Language Processing. 10.1007/978-3-642-33983-7_24. (239-249). http://link.springer.com/10.1007/978-3-642-33983-7_24 1175. Pussep A, Schief M, Schmidt B, Friedrichs F and Buxmann P. (2012). Topics in Software Industry Transformation Research: A Topic Analysis of Major IS Conferences. Software Business. 10.1007/978-3-642-30746-1_11. (128-140). http://link.springer.com/10.1007/978-3-642-30746-1_11 1176. Crain S, Zhou K, Yang S and Zha H. (2012). Dimensionality Reduction and Topic Modeling: From Latent Semantic Indexing to Latent Dirichlet Allocation and Beyond. Mining Text Data. 10.1007/978-1-4614-3223-4_5. (129-161). https://link.springer.com/10.1007/978-1-4614-3223-4_5 1177. Khoshneshin M, Street W and Srinivasan P. Bayesian Embedding of Co-occurrence Data for Query-Based Visualization. Proceedings of the 2011 10th International Conference on Machine Learning and Applications and Workshops - Volume 01. (74-79). https://doi.org/10.1109/ICMLA.2011.42 1178. Yin Z, Cao L, Han J, Zhai C and Huang T. LPTA. Proceedings of the 2011 IEEE 11th International Conference on Data Mining. (904-913). https://doi.org/10.1109/ICDM.2011.96 1179. Gao Z, Song Y, Liu S, Wang H, Wei H, Chen Y and Cui W. Tracking and Connecting Topics via Incremental Hierarchical Dirichlet Processes. Proceedings of the 2011 IEEE 11th International Conference on Data Mining. (1056-1061). https://doi.org/10.1109/ICDM.2011.148 1180. Lin C, Mei Q, Han J, Jiang Y and Danilevsky M. The Joint Inference of Topic Diffusion and Evolution in Social Communities. Proceedings of the 2011 IEEE 11th International Conference on Data Mining. (378-387). https://doi.org/10.1109/ICDM.2011.144 1181. Cao N, Gotz D, Sun J, Lin Y and Qu H. SolarMap. Proceedings of the 2011 IEEE 11th International Conference on Data Mining. (101-110). https://doi.org/10.1109/ICDM.2011.135 1182. Cui W, Liu S, Tan L, Shi C, Song Y, Gao Z, Qu H and Tong X. (2011). TextFlow. IEEE Transactions on Visualization and Computer Graphics. 17:12. (2412-2421). Online publication date: 1-Dec-2011. https://doi.org/10.1109/TVCG.2011.239 1183. Ungar L, Leibholz S and Chaski C. (2011). IntentFinder: A system for discovering significant information implicit in large, heterogeneous document collections and computationally mapping social networks and command nodes 2011 IEEE International Conference on Technologies for Homeland Security (HST). 10.1109/THS.2011.6107874. 978-1-4577-1376-7. (219-223). http://ieeexplore.ieee.org/document/6107874/ 1184. Kumar A, Lease M and Baldridge J. Supervised language modeling for temporal resolution of texts. Proceedings of the 20th ACM international conference on Information and knowledge management. (2069-2072). https://doi.org/10.1145/2063576.2063892 1185. Au Yeung C and Jatowt A. Studying how the past is remembered. Proceedings of the 20th ACM international conference on Information and knowledge management. (1231-1240). https://doi.org/10.1145/2063576.2063755 1186. Ren Z, Ma J, Wang S and Liu Y. Summarizing web forum threads based on a latent topic propagation process. Proceedings of the 20th ACM international conference on Information and knowledge management. (879-884). https://doi.org/10.1145/2063576.2063703 1187. Guo J, Cheng X, Xu G and Zhu X. Intent-aware query similarity. Proceedings of the 20th ACM international conference on Information and knowledge management. (259-268). https://doi.org/10.1145/2063576.2063619 1188. Kim D, Motoyama M, Voelker G and Saul L. Topic modeling of freelance job postings to monitor web service abuse. Proceedings of the 4th ACM workshop on Security and artificial intelligence. (11-20). https://doi.org/10.1145/2046684.2046687 1189. Lin Y, Candan K, Sundaram H and Xie L. (2011). SCENT. ACM Transactions on Multimedia Computing, Communications, and Applications. 7S:1. (1-22). Online publication date: 1-Oct-2011. https://doi.org/10.1145/2037676.2037686 1190. Zhao S, Zhou M, Zhang X, Yuan Q, Zheng W and Fu R. (2011). Who is Doing What and When. ACM Transactions on Intelligent Systems and Technology. 3:1. (1-23). Online publication date: 1-Oct-2011. https://doi.org/10.1145/2036264.2036269 1191. Dou W, Wang X, Chang R and Ribarsky W. (2011). ParallelTopics: A probabilistic approach to exploring document collections 2011 IEEE Conference on Visual Analytics Science and Technology (VAST). 10.1109/VAST.2011.6102461. 978-1-4673-0014-8. (231-240). http://ieeexplore.ieee.org/document/6102461/ 1192. Seyfi M. (2011). Mining discriminative items in multiple data streams with hierarchical counters approach 2011 Fourth International Workshop on Advanced Computational Intelligence (IWACI). 10.1109/IWACI.2011.6159996. 978-1-61284-375-9. (172-176). http://ieeexplore.ieee.org/document/6159996/ 1193. Shang L, Chan K and Pan G. DTTM. Proceedings of the 7th international conference on Advances in visual computing - Volume Part I. (596-606). /doi/10.5555/2045110.2045175 1194. Zhao Q, Qin Z and Wan T. What is the basic semantic unit of Chinese language? a computational approach based on topic models. Proceedings of the 12th biennial conference on The mathematics of language. (143-157). /doi/10.5555/2050185.2050194 1195. Ren Z, Ma J, Wang G, Cui C and Han X. Dynamically Modeling Semantic Dependencies in Web Forum Threads. Proceedings of the 2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology - Volume 01. (348-351). https://doi.org/10.1109/WI-IAT.2011.36 1196. Deng H, Han J, Zhao B, Yu Y and Lin C. Probabilistic topic models with biased propagation on heterogeneous information networks. Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining. (1271-1279). https://doi.org/10.1145/2020408.2020600 1197. Hong L, Dom B, Gurumurthy S and Tsioutsiouliklis K. A time-dependent topic model for multiple text streams. Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining. (832-840). https://doi.org/10.1145/2020408.2020551 1198. Hong L, Yin D, Guo J and Davison B. Tracking trends. Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining. (484-492). https://doi.org/10.1145/2020408.2020485 1199. El-Arini K and Guestrin C. Beyond keyword search. Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining. (439-447). https://doi.org/10.1145/2020408.2020479 1200. Ahmed A, Low Y, Aly M, Josifovski V and Smola A. Scalable distributed inference of dynamic user interests for behavioral targeting. Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining. (114-122). https://doi.org/10.1145/2020408.2020433 1201. Li R, Li B, Jin C, Xue X and Zhu X. Tracking user-preference varying speed in collaborative filtering. Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence. (133-138). /doi/10.5555/2900423.2900444 1202. Kuang W, Luo N and Sun Z. (2011). Resource recommendation based on topic model for educational system 2011 6th IEEE Joint International Information Technology and Artificial Intelligence Conference (ITAIC). 10.1109/ITAIC.2011.6030352. 978-1-4244-8622-9. (370-374). http://ieeexplore.ieee.org/document/6030352/ 1203. Wu Q, Deng X, Zhang C and Jiang C. (2011). LDA-based model for topic evolution mining on text Education (ICCSE 2011). 10.1109/ICCSE.2011.6028792. 978-1-4244-9717-1. (946-949). http://ieeexplore.ieee.org/document/6028792/ 1204. Yogatama D, Heilman M, O'Connor B, Dyer C, Routledge B and Smith N. Predicting a scientific community's response to an article. Proceedings of the Conference on Empirical Methods in Natural Language Processing. (594-604). /doi/10.5555/2145432.2145501 1205. Mimno D and Blei D. Bayesian checking for topic models. Proceedings of the Conference on Empirical Methods in Natural Language Processing. (227-237). /doi/10.5555/2145432.2145459 1206. Shan H and Banerjee A. (2011). Mixed-membership naive Bayes models. Data Mining and Knowledge Discovery. 23:1. (1-62). Online publication date: 1-Jul-2011. https://doi.org/10.1007/s10618-010-0198-2 1207. Johri N, Ramage D, McFarland D and Jurafsky D. A study of academic collaboration in computational linguistics with latent mixtures of authors. Proceedings of the 5th ACL-HLT Workshop on Language Technology for Cultural Heritage, Social Sciences, and Humanities. (124-132). /doi/10.5555/2107636.2107652 1208. Medini S. Scalable Automatic Concept Mining from Execution Traces. Proceedings of the 2011 IEEE 19th International Conference on Program Comprehension. (238-241). https://doi.org/10.1109/ICPC.2011.44 1209. Emonet R, Varadarajan J and Odobez J. Extracting and locating temporal motifs in video scenes using a hierarchical non parametric Bayesian model. Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. (3233-3240). https://doi.org/10.1109/CVPR.2011.5995572 1210. Lau J, Grieser K, Newman D and Baldwin T. Automatic labelling of topic models. Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies - Volume 1. (1536-1545). /doi/10.5555/2002472.2002658 1211. Chaudhuri S and Raj B. A comparison of latent variable models for conversation analysis. Proceedings of the SIGDIAL 2011 Conference. (30-38). /doi/10.5555/2132890.2132895 1212. Wang E, Silva J, Willett R and Carin L. (2011). Dynamic relational topic model for social network analysis with noisy links 2011 IEEE Statistical Signal Processing Workshop (SSP). 10.1109/SSP.2011.5967741. 978-1-4577-0569-4. (497-500). http://ieeexplore.ieee.org/document/5967741/ 1213. Takasu A, Shibata Y and Oguri K. Steering time-dependent estimation of posteriors with hyperparameter indexing in bayesian topic models. Proceedings of the 15th Pacific-Asia conference on Advances in knowledge discovery and data mining - Volume Part I. (435-447). /doi/10.5555/2017863.2017906 1214. Thomas S, Adams B, Hassan A and Blostein D. Modeling the evolution of topics in source code histories. Proceedings of the 8th Working Conference on Mining Software Repositories. (173-182). https://doi.org/10.1145/1985441.1985467 1215. Mao X, Fu J, Chen W, You Q, Fang S and Peng Q. (2011). Structural visualization of sequential DNA data. Journal of Zhejiang University SCIENCE C. 10.1631/jzus.C1000091. 12:4. (263-272). Online publication date: 1-Apr-2011. http://www.springerlink.com/index/10.1631/jzus.C1000091 1216. Liu P, Wang J, She M and Liu H. (2011). Human action recognition based on 3D SIFT and LDA model 2011 IEEE Workshop On Robotic Intelligence In Informationally Structured Space - Part Of 17273 - 2011 Ssci. 10.1109/RIISS.2011.5945790. 978-1-4244-9885-7. (12-17). http://ieeexplore.ieee.org/document/5945790/ 1217. Tang X and Yang C. Following the social media. Proceedings of the 4th international conference on Social computing, behavioral-cultural modeling and prediction. (292-300). /doi/10.5555/1964698.1964739 1218. Ahmed A, Ho Q, Eisenstein J, Xing E, Smola A and Teo C. Unified analysis of streaming news. Proceedings of the 20th international conference on World wide web. (267-276). https://doi.org/10.1145/1963405.1963445 1219. Jo Y, Hopcroft J and Lagoze C. The web of topics. Proceedings of the 20th international conference on World wide web. (257-266). https://doi.org/10.1145/1963405.1963444 1220. Kim D and Oh A. Topic chains for understanding a news corpus. Proceedings of the 12th international conference on Computational linguistics and intelligent text processing - Volume Part II. (163-176). /doi/10.5555/1964750.1964765 1221. Kawamae N. Trend analysis model. Proceedings of the fourth ACM international conference on Web search and data mining. (317-326). https://doi.org/10.1145/1935826.1935880 1222. Han C, Yoo S and Choi J. (2011). Evaluation of Co-occurring Terms in Clinical Documents Using Latent Semantic Indexing. Healthcare Informatics Research. 10.4258/hir.2011.17.1.24. 17:1. (24). https://synapse.koreamed.org/DOIx.php?id=10.4258/hir.2011.17.1.24 1223. RIZOIU M and VELCIN J. Topic Extraction for Ontology Learning. Ontology Learning and Knowledge Discovery Using the Web. 10.4018/978-1-60960-625-1.ch003. (38-60). http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-60960-625-1.ch003 1224. Grimmer J. (2017). An Introduction to Bayesian Inference via Variational Approximations. Political Analysis. 10.1093/pan/mpq027. 19:1. (32-47). https://www.cambridge.org/core/product/identifier/S1047198700012638/type/journal_article 1225. Liao X, Wang Y, Ding L and Gu J. (2011). Extended Probabilistic Latent Semantic Analysis Model For Topics In Time-Stamped Images. Intelligent Automation & Soft Computing. 10.1080/10798587.2011.10643204. 17:7. (997-1007). Online publication date: 1-Jan-2011. http://autosoftjournal.net/paperShow.php?paper=10643204 1226. Shang L, Chan K and Pan G. (2011). DTTM: A Discriminative Temporal Topic Model for Facial Expression Recognition. Advances in Visual Computing. 10.1007/978-3-642-24028-7_55. (596-606). https://link.springer.com/10.1007/978-3-642-24028-7_55 1227. Zhao Q, Qin Z and Wan T. (2011). What Is the Basic Semantic Unit of Chinese Language? A Computational Approach Based on Topic Models. The Mathematics of Language. 10.1007/978-3-642-23211-4_9. (143-157). http://link.springer.com/10.1007/978-3-642-23211-4_9 1228. Musat C, Velcin J, Rizoiu M and Trausan-Matu S. (2011). Concept-Based Topic Model Improvement. Emerging Intelligent Technologies in Industry. 10.1007/978-3-642-22732-5_12. (133-142). https://link.springer.com/10.1007/978-3-642-22732-5_12 1229. Masada T, Takasu A, Shibata Y and Oguri K. (2011). Steering Time-Dependent Estimation of Posteriors with Hyperparameter Indexing in Bayesian Topic Models. Advances in Knowledge Discovery and Data Mining. 10.1007/978-3-642-20841-6_36. (435-447). http://link.springer.com/10.1007/978-3-642-20841-6_36 1230. Tang X and Yang C. (2011). Following the Social Media: Aspect Evolution of Online Discussion. Social Computing, Behavioral-Cultural Modeling and Prediction. 10.1007/978-3-642-19656-0_41. (292-300). http://link.springer.com/10.1007/978-3-642-19656-0_41 1231. Spiliopoulou M. (2011). Evolution in Social Networks: A Survey. Social Network Data Analytics. 10.1007/978-1-4419-8462-3_6. (149-175). https://link.springer.com/10.1007/978-1-4419-8462-3_6 1232. Du L, Buntine W and Jin H. Sequential Latent Dirichlet Allocation. Proceedings of the 2010 IEEE International Conference on Data Mining. (148-157). https://doi.org/10.1109/ICDM.2010.51 1233. Wang E, Liu D, Silva J, Dunson D and Carin L. Joint analysis of time-evolving binary matrices and associated documents. Proceedings of the 23rd International Conference on Neural Information Processing Systems - Volume 2. (2370-2378). /doi/10.5555/2997046.2997160 1234. Petterson J, Smola A, Caetano T, Buntine W and Narayanamurthy S. Word features for Latent Dirichlet Allocation. Proceedings of the 23rd International Conference on Neural Information Processing Systems - Volume 2. (1921-1929). /doi/10.5555/2997046.2997110 1235. Anthes G. (2010). Topic models vs. unstructured data. Communications of the ACM. 53:12. (16-18). Online publication date: 1-Dec-2010. https://doi.org/10.1145/1859204.1859210 1236. Watanabe S, Iwata T, Hori T, Sako A and Ariki Y. (2010). Application of topic tracking model to language model adaptation and meeting analysis 2010 IEEE Spoken Language Technology Workshop (SLT 2010). 10.1109/SLT.2010.5700882. 978-1-4244-7904-7. (378-383). http://ieeexplore.ieee.org/document/5700882/ 1237. Gang Du , Jun Guo , Weiran Xu and Zhen Yang . (2010). Maximizing the reliability of two-state automaton for burst feature detection in news streams 2010 International Conference on Progress in Informatics and Computing (PIC). 10.1109/PIC.2010.5687459. 978-1-4244-6788-4. (229-233). http://ieeexplore.ieee.org/document/5687459/ 1238. Lin Z, Jiang B, Pei J and Jiang D. (2010). Mining discriminative items in multiple data streams. World Wide Web. 13:4. (497-522). Online publication date: 1-Dec-2010. https://doi.org/10.1007/s11280-010-0094-0 1239. Blei D, Carin L and Dunson D. Probabilistic Topic Models. IEEE Signal Processing Magazine. 10.1109/MSP.2010.938079. http://ieeexplore.ieee.org/document/5563111/ 1240. Neuhaus S and Zimmermann T. Security Trend Analysis with CVE Topic Models. Proceedings of the 2010 IEEE 21st International Symposium on Software Reliability Engineering. (111-120). https://doi.org/10.1109/ISSRE.2010.53 1241. Eisenstein J, O'Connor B, Smith N and Xing E. A latent variable model for geographic lexical variation. Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing. (1277-1287). /doi/10.5555/1870658.1870782 1242. Walker D, Lund W and Ringger E. Evaluating models of latent document semantics in the presence of OCR errors. Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing. (240-250). /doi/10.5555/1870658.1870682 1243. He Q, Chang K, Lim E and Banerjee A. (2010). Keep It Simple with Time. IEEE Transactions on Pattern Analysis and Machine Intelligence. 32:10. (1795-1808). Online publication date: 1-Oct-2010. https://doi.org/10.1109/TPAMI.2009.203 1244. Du L, Buntine W and Jin H. (2010). A segmented topic model based on the two-parameter Poisson-Dirichlet process. Machine Language. 81:1. (5-19). Online publication date: 1-Oct-2010. https://doi.org/10.1007/s10994-010-5197-4 1245. Wahabzada M, Xu Z and Kersting K. Topic models conditioned on relations. Proceedings of the 2010 European conference on Machine learning and knowledge discovery in databases: Part III. (402-417). /doi/10.5555/1889788.1889815 1246. Wahabzada M, Xu Z and Kersting K. Topic models conditioned on relations. Proceedings of the 2010 European conference on Machine learning and knowledge discovery in databases: Part III. (402-417). /doi/10.5555/1888339.1888366 1247. Wahabzada M, Xu Z and Kersting K. Topic models conditioned on relations. Proceedings of the 2010th European Conference on Machine Learning and Knowledge Discovery in Databases - Volume Part III. (402-417). https://doi.org/10.1007/978-3-642-15939-8_26 1248. Thomas S, Adams B, Hassan A and Blostein D. Validating the Use of Topic Models for Software Evolution. Proceedings of the 2010 10th IEEE Working Conference on Source Code Analysis and Manipulation. (55-64). https://doi.org/10.1109/SCAM.2010.13 1249. Kim G, Xing E and Torralba A. Modeling and analysis of dynamic behaviors of web image collections. Proceedings of the 11th European conference on Computer vision: Part V. (85-98). /doi/10.5555/1888150.1888158 1250. Wang C. (2010). Discovering objects and their location in videos using spatial-temporal context words. Optical Engineering. 10.1117/1.3488041. 49:9. (097003). Online publication date: 1-Sep-2010. http://opticalengineering.spiedigitallibrary.org/article.aspx?doi=10.1117/1.3488041 1251. Kim S and Lebanon G. Local space-time smoothing for version controlled documents. Proceedings of the 23rd International Conference on Computational Linguistics: Posters. (552-560). /doi/10.5555/1944566.1944629 1252. Han C and Choi J. Effect of Latent Semantic Indexing for Clustering Clinical Documents. Proceedings of the 2010 IEEE/ACIS 9th International Conference on Computer and Information Science. (561-566). https://doi.org/10.1109/ICIS.2010.138 1253. Zhou B, Huang J and Cui K. (2010). A LDA-Based Approach for Interactive Web Mining of Topic Evolutionary Patterns 2010 International Conference on Internet Technology and Applications (iTAP). 10.1109/ITAPP.2010.5566219. 978-1-4244-5142-5. (1-5). http://ieeexplore.ieee.org/document/5566219/ 1254. Daud A, Li J, Zhou L and Muhammad F. (2010). Temporal expert finding through generalized time topic modeling. Knowledge-Based Systems. 23:6. (615-625). Online publication date: 1-Aug-2010. https://doi.org/10.1016/j.knosys.2010.04.008 1255. Zhang J, Song Y, Zhang C and Liu S. Evolutionary hierarchical dirichlet processes for multiple correlated time-varying corpora. Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining. (1079-1088). https://doi.org/10.1145/1835804.1835940 1256. Sato I and Nakagawa H. Topic models with power-law using Pitman-Yor process. Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining. (673-682). https://doi.org/10.1145/1835804.1835890 1257. Iwata T, Yamada T, Sakurai Y and Ueda N. Online multiscale dynamic topic models. Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining. (663-672). https://doi.org/10.1145/1835804.1835889 1258. Goorha S and Ungar L. Discovery of significant emerging trends. Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining. (57-64). https://doi.org/10.1145/1835804.1835815 1259. Sun Y, Tang J, Han J, Gupta M and Zhao B. Community evolution detection in dynamic heterogeneous information networks. Proceedings of the Eighth Workshop on Mining and Learning with Graphs. (137-146). https://doi.org/10.1145/1830252.1830270 1260. Zhang D, Mei Q and Zhai C. Cross-lingual latent topic extraction. Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics. (1128-1137). /doi/10.5555/1858681.1858796 1261. Chang C, Zeng D and Zhao H. (2010). Related Topic Network 2010 IEEE International Conference on Service Operations and Logistics and Informatics (SOLI). 10.1109/SOLI.2010.5551555. 978-1-4244-7118-8. (336-341). http://ieeexplore.ieee.org/document/5551555/ 1262. Gerrish S and Blei D. A language-based approach to measuring scholarly impact. Proceedings of the 27th International Conference on International Conference on Machine Learning. (375-382). /doi/10.5555/3104322.3104371 1263. Newman D, Noh Y, Talley E, Karimi S and Baldwin T. Evaluating topic models for digital libraries. Proceedings of the 10th annual joint conference on Digital libraries. (215-224). https://doi.org/10.1145/1816123.1816156 1264. Raskovsky I, Slezak D, Diuk C and Cecchi G. The emergence of the modern concept of introspection. Proceedings of the NAACL HLT 2010 Young Investigators Workshop on Computational Approaches to Languages of the Americas. (68-75). /doi/10.5555/1868701.1868711 1265. Kleinberg J. The flow of on-line information in global networks. Proceedings of the 2010 ACM SIGMOD International Conference on Management of data. (1-2). https://doi.org/10.1145/1807167.1807169 1266. Masada T, Fukagawa D, Takasu A, Shibata Y and Oguri K. Modeling topical trends over continuous time with priors. Proceedings of the 7th international conference on Advances in Neural Networks - Volume Part II. (302-311). https://doi.org/10.1007/978-3-642-13318-3_38 1267. Xing E, Fu W and Song L. A state-space mixed membership blockmodel for dynamic network tomography. The Annals of Applied Statistics. 10.1214/09-AOAS311. 4:2. https://projecteuclid.org\journals\annals-of-applied-statistics\volume-4\issue-2\A-state-space-mixed-membership-blockmodel-for-dynamic-network-tomography\10.1214/09-AOAS311.full 1268. Pruteanu-Malinici I, Ren L, Paisley J, Wang E and Carin L. (2010). Hierarchical Bayesian Modeling of Topics in Time-Stamped Documents. IEEE Transactions on Pattern Analysis and Machine Intelligence. 32:6. (996-1011). Online publication date: 1-Jun-2010. https://doi.org/10.1109/TPAMI.2009.125 1269. Bin Zhou , Cui Kai , Yan Jia and Jing Li . (2010). Interactive mining topic evolutionary patterns from internet forums 2010 2nd International Conference on Education Technology and Computer (ICETC). 10.1109/ICETC.2010.5530005. 978-1-4244-6367-1. (V5-76-V5-81). http://ieeexplore.ieee.org/document/5530005/ 1270. Wu H, Wang M, Feng J and Pei Y. (2010). Research Topic Evolution in "Bioinformatics" 2010 4th International Conference on Bioinformatics and Biomedical Engineering (iCBBE). 10.1109/ICBBE.2010.5516318. 978-1-4244-4712-1. (1-4). http://ieeexplore.ieee.org/document/5516318/ 1271. Daud A, Li J, Zhou L and Muhammad F. (2010). Knowledge discovery through directed probabilistic topic models: a survey. Frontiers of Computer Science in China. 10.1007/s11704-009-0062-y. 4:2. (280-301). Online publication date: 1-Jun-2010. http://link.springer.com/10.1007/s11704-009-0062-y 1272. (2010). References. Relational Data Clustering. 10.1201/EBK1420072617-b. (185-194). Online publication date: 19-May-2010. http://www.crcnetbase.com/doi/abs/10.1201/EBK1420072617-b 1273. Asuncion H, Asuncion A and Taylor R. Software traceability with topic modeling. Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering - Volume 1. (95-104). https://doi.org/10.1145/1806799.1806817 1274. Kandylas V, Upham S and Ungar L. (2010). Analyzing knowledge communities using foreground and background clusters. ACM Transactions on Knowledge Discovery from Data. 4:2. (1-35). Online publication date: 1-May-2010. https://doi.org/10.1145/1754428.1754430 1275. Kawamae N and Higashinaka R. Trend detection model. Proceedings of the 19th international conference on World wide web. (1129-1130). https://doi.org/10.1145/1772690.1772838 1276. Blei D, Griffiths T and Jordan M. (2010). The nested chinese restaurant process and bayesian nonparametric inference of topic hierarchies. Journal of the ACM. 57:2. (1-30). Online publication date: 1-Jan-2010. https://doi.org/10.1145/1667053.1667056 1277. Quinn K, Monroe B, Colaresi M, Crespin M and Radev D. (2009). How to Analyze Political Attention with Minimal Assumptions and Costs. American Journal of Political Science. 10.1111/j.1540-5907.2009.00427.x. 54:1. (209-228). Online publication date: 1-Jan-2010. https://onlinelibrary.wiley.com/doi/10.1111/j.1540-5907.2009.00427.x 1278. Kim G, Xing E and Torralba A. (2010). Modeling and Analysis of Dynamic Behaviors of Web Image Collections. Computer Vision – ECCV 2010. 10.1007/978-3-642-15555-0_7. (85-98). http://link.springer.com/10.1007/978-3-642-15555-0_7 1279. Shen Z, Luo P, Xiong Y, Sun J and Shen Y. Topic Modeling for Sequences of Temporal Activities. Proceedings of the 2009 Ninth IEEE International Conference on Data Mining. (980-985). https://doi.org/10.1109/ICDM.2009.83 1280. Fan N, Cai W and Zhao Y. (2009). A Method Based on Generation Models for Analyzing Sentiment-Topic in Texts 2009 International Conference on Computational Intelligence and Software Engineering. 10.1109/CISE.2009.5362943. 978-1-4244-4507-3. (1-5). http://ieeexplore.ieee.org/document/5362943/ 1281. Masada T, Fukagawa D, Takasu A, Hamada T, Shibata Y and Oguri K. Dynamic hyperparameter optimization for bayesian topical trend analysis. Proceedings of the 18th ACM conference on Information and knowledge management. (1831-1834). https://doi.org/10.1145/1645953.1646242 1282. He Q, Chen B, Pei J, Qiu B, Mitra P and Giles L. Detecting topic evolution in scientific literature. Proceedings of the 18th ACM conference on Information and knowledge management. (957-966). https://doi.org/10.1145/1645953.1646076 1283. Zhai H, Guo J, Wu Q, Cheng X, Sheng H and Zhang J. Query Classification Based on Regularized Correlated Topic Model. Proceedings of the 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology - Volume 01. (552-555). https://doi.org/10.1109/WI-IAT.2009.91 1284. Li J, Gong S and Xiang T. (2009). On-the-fly global activity prediction and anomaly detection 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops. 10.1109/ICCVW.2009.5457455. 978-1-4244-4442-7. (1330-1337). http://ieeexplore.ieee.org/document/5457455/ 1285. Hospedales T, Gong S and Xiang T. (2009). A Markov Clustering Topic Model for mining behaviour in video 2009 IEEE 12th International Conference on Computer Vision (ICCV). 10.1109/ICCV.2009.5459342. 978-1-4244-4420-5. (1165-1172). http://ieeexplore.ieee.org/document/5459342/ 1286. Moon I, Kim Y, Lee H and Oh A. Temporal Issue Trend Identifications in Blogs. Proceedings of the 2009 International Conference on Computational Science and Engineering - Volume 04. (619-626). https://doi.org/10.1109/CSE.2009.343 1287. Nguyen C, Phan X, Horiguchi S, Nguyen T and Ha Q. (2009). Web Search Clustering and Labeling with Hidden Topics. ACM Transactions on Asian Language Information Processing. 8:3. (1-40). Online publication date: 1-Aug-2009. https://doi.org/10.1145/1568292.1568295 1288. Guo J, Xu G, Cheng X and Li H. Named entity recognition in query. Proceedings of the 32nd international ACM SIGIR conference on Research and development in information retrieval. (267-274). https://doi.org/10.1145/1571941.1571989 1289. Lin C, Yang J, Cai R, Wang X and Wang W. Simultaneously modeling semantics and structure of threaded discussions. Proceedings of the 32nd international ACM SIGIR conference on Research and development in information retrieval. (131-138). https://doi.org/10.1145/1571941.1571966 1290. Iwata T, Watanabe S, Yamada T and Ueda N. Topic tracking model for analyzing consumer purchase behavior. Proceedings of the 21st International Joint Conference on Artificial Intelligence. (1427-1432). /doi/10.5555/1661445.1661674 1291. Leskovec J, Backstrom L and Kleinberg J. Meme-tracking and the dynamics of the news cycle. Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining. (497-506). https://doi.org/10.1145/1557019.1557077 1292. Qin Z, Thint M and Huang Z. Ranking Answers by Hierarchical Topic Models. Proceedings of the 22nd International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems: Next-Generation Applied Intelligence. (103-112). https://doi.org/10.1007/978-3-642-02568-6_11 1293. Liu Y, Niculescu-Mizil A and Gryc W. Topic-link LDA. Proceedings of the 26th Annual International Conference on Machine Learning. (665-672). https://doi.org/10.1145/1553374.1553460 1294. Fu W, Song L and Xing E. Dynamic mixed membership blockmodel for evolving networks. Proceedings of the 26th Annual International Conference on Machine Learning. (329-336). https://doi.org/10.1145/1553374.1553416 1295. Ding Y, Li S, Zhang Z and Shen B. (2009). Hierarchical topic modeling with nested hierarchical Dirichlet process. Journal of Zhejiang University-SCIENCE A. 10.1631/jzus.A0820796. 10:6. (858-867). Online publication date: 1-Jun-2009. http://link.springer.com/10.1631/jzus.A0820796 1296. Masada T, Takasu A, Hamada T, Shibata Y and Oguri K. Bag of Timestamps. Proceedings of the Joint International Conferences on Advances in Data and Web Management. (556-561). https://doi.org/10.1007/978-3-642-00672-2_51 1297. Liu S, Merhav Y, Yee W, Goharian N and Frieder O. A sentence level probabilistic model for evolutionary theme pattern mining from news corpora. Proceedings of the 2009 ACM symposium on Applied Computing. (1742-1747). https://doi.org/10.1145/1529282.1529672 1298. Wang X, Zhang K, Jin X and Shen D. Mining common topics from multiple asynchronous text streams. Proceedings of the Second ACM International Conference on Web Search and Data Mining. (192-201). https://doi.org/10.1145/1498759.1498826 1299. Daud A, Li J, Zhou L and Muhammad F. (2009). Conference Mining via Generalized Topic Modeling. Machine Learning and Knowledge Discovery in Databases. 10.1007/978-3-642-04180-8_33. (244-259). http://link.springer.com/10.1007/978-3-642-04180-8_33 1300. Shaparenko B and Joachims T. (2009). Identifying the Original Contribution of a Document via Language Modeling. Machine Learning and Knowledge Discovery in Databases. 10.1007/978-3-642-04174-7_23. (350-365). http://link.springer.com/10.1007/978-3-642-04174-7_23 1301. Tsoi A, Hagenbuchner M, Chau R and Lee V. (2009). Unsupervised and Supervised Learning of Graph Domains. Innovations in Neural Information Paradigms and Applications. 10.1007/978-3-642-04003-0_3. (43-65). http://link.springer.com/10.1007/978-3-642-04003-0_3 1302. Xu T, Zhang Z, Yu P and Long B. Evolutionary Clustering by Hierarchical Dirichlet Process with Hidden Markov State. Proceedings of the 2008 Eighth IEEE International Conference on Data Mining. (658-667). https://doi.org/10.1109/ICDM.2008.24 1303. Xu T, Zhang Z, Yu P and Long B. Dirichlet Process Based Evolutionary Clustering. Proceedings of the 2008 Eighth IEEE International Conference on Data Mining. (648-657). https://doi.org/10.1109/ICDM.2008.23 1304. Song Y, Zhang L and Giles C. A Non-parametric Approach to Pair-Wise Dynamic Topic Correlation Detection. Proceedings of the 2008 Eighth IEEE International Conference on Data Mining. (1031-1036). https://doi.org/10.1109/ICDM.2008.20 1305. AlSumait L, Barbará D and Domeniconi C. On-line LDA. Proceedings of the 2008 Eighth IEEE International Conference on Data Mining. (3-12). https://doi.org/10.1109/ICDM.2008.140 1306. Kashima H, Hu J, Ray B and Singh M. (2008). K-means clustering of proportional data using L1 distance 2008 19th International Conference on Pattern Recognition (ICPR). 10.1109/ICPR.2008.4760982. 978-1-4244-2174-9. (1-4). http://ieeexplore.ieee.org/document/4760982/ 1307. Kandylas V, Upham S and Ungar L. (2008). Finding cohesive clusters for analyzing knowledge communities. Knowledge and Information Systems. 10.1007/s10115-008-0135-5. 17:3. (335-354). Online publication date: 1-Dec-2008. http://link.springer.com/10.1007/s10115-008-0135-5 1308. Sun C, Gao B, Cao Z and Li H. HTM. Proceedings of the Conference on Empirical Methods in Natural Language Processing. (514-522). /doi/10.5555/1613715.1613779 1309. Hall D, Jurafsky D and Manning C. Studying the history of ideas using topic models. Proceedings of the Conference on Empirical Methods in Natural Language Processing. (363-371). /doi/10.5555/1613715.1613763 1310. Song X, Jermaine C, Ranka S and Gums J. A bayesian mixture model with linear regression mixing proportions. Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining. (659-667). https://doi.org/10.1145/1401890.1401970 1311. Nallapati R, Ahmed A, Xing E and Cohen W. Joint latent topic models for text and citations. Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining. (542-550). https://doi.org/10.1145/1401890.1401957 1312. Hassan A, Fader A, Crespin M, Quinn K, Monroe B, Colaresi M and Radev D. Tracking the dynamic evolution of participant salience in a discussion. Proceedings of the 22nd International Conference on Computational Linguistics - Volume 1. (313-320). /doi/10.5555/1599081.1599121 1313. Simitsis A, Baid A, Sismanis Y and Reinwald B. (2008). Multidimensional content eXploration. Proceedings of the VLDB Endowment. 1:1. (660-671). Online publication date: 1-Aug-2008. https://doi.org/10.14778/1453856.1453929 1314. Ren L, Dunson D and Carin L. The dynamic hierarchical Dirichlet process. Proceedings of the 25th international conference on Machine learning. (824-831). https://doi.org/10.1145/1390156.1390260 1315. Uys J, du Preez N and Uys E. (2008). Leveraging unstructured information using topic modelling Technology. 10.1109/PICMET.2008.4599703. 978-1-890843-17-5. (955-961). http://ieeexplore.ieee.org/document/4599703/ 1316. Bogen P, Johnston J, Karadkar U, Furuta R and Shipman F. Application of kalman filters to identify unexpected change in blogs. Proceedings of the 8th ACM/IEEE-CS joint conference on Digital libraries. (305-312). https://doi.org/10.1145/1378889.1378941 1317. Kobayashi M and Yung R. Tracking topic evolution in on-line postings. Proceedings of the 12th Pacific-Asia conference on Advances in knowledge discovery and data mining. (616-625). /doi/10.5555/1786574.1786635 1318. Tang L, Liu H, Zhang J, Agarwal N and Salerno J. (2008). Topic taxonomy adaptation for group profiling. ACM Transactions on Knowledge Discovery from Data. 1:4. (1-28). Online publication date: 1-Jan-2008. https://doi.org/10.1145/1324172.1324173 1319. Kobayashi M and Yung R. Tracking Topic Evolution in On-Line Postings: 2006 IBM Innovation Jam Data. Advances in Knowledge Discovery and Data Mining. 10.1007/978-3-540-68125-0_57. (616-625). http://link.springer.com/10.1007/978-3-540-68125-0_57 1320. Wang J, Xu C, Shen D, Luo G and Geng X. Understanding topic influence based on module network. Proceedings of the 10th international conference on Asian digital libraries: looking back 10 years and forging new frontiers. (391-399). /doi/10.5555/1780653.1780718 1321. Wang C, Wang J, Xie X and Ma W. Mining geographic knowledge using location aware topic model. Proceedings of the 4th ACM workshop on Geographical information retrieval. (65-70). https://doi.org/10.1145/1316948.1316967 1322. WI'07 Conference Organization. Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence. (xix-xx). https://doi.org/10.1109/WI.2007.114 1323. Mao Y, Dillon J and Lebanon G. (2007). Sequential Document Visualization. IEEE Transactions on Visualization and Computer Graphics. 13:6. (1208-1215). Online publication date: 1-Nov-2007. https://doi.org/10.1109/TVCG.2007.70592 1324. Habich D, Volk P, Lehner W, Dittmann R and Utzny C. Error-Aware Density-Based Clustering of Imprecise Measurement Values. Proceedings of the Seventh IEEE International Conference on Data Mining Workshops. (471-476). https://doi.org/10.1109/ICDMW.2007.39 1325. Kandylas V, Upham S and Ungar L. Finding Cohesive Clusters for Analyzing Knowledge Communities. Proceedings of the 2007 Seventh IEEE International Conference on Data Mining. (203-212). https://doi.org/10.1109/ICDM.2007.22 1326. Hinneburg A, Gabriel H and Gohr A. Bayesian Folding-In with Dirichlet Kernels for PLSI. Proceedings of the 2007 Seventh IEEE International Conference on Data Mining. (499-504). https://doi.org/10.1109/ICDM.2007.15 1327. McCallum A, Wang X and Corrada-Emmanuel A. (2007). Topic and role discovery in social networks with experiments on enron and academic email. Journal of Artificial Intelligence Research. 30:1. (249-272). Online publication date: 1-Sep-2007. /doi/10.5555/1622637.1622644 1328. Wang X, Pal C and McCallum A. Generalized component analysis for text with heterogeneous attributes. Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining. (794-803). https://doi.org/10.1145/1281192.1281277 1329. Nallapati R, Ditmore S, Lafferty J and Ung K. Multiscale topic tomography. Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining. (520-529). https://doi.org/10.1145/1281192.1281249 1330. Mei Q, Shen X and Zhai C. Automatic labeling of multinomial topic models. Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining. (490-499). https://doi.org/10.1145/1281192.1281246 1331. Wang J, Xu C, Li G, Dai Z and Luo G. Understanding research field evolving and trend with dynamic Bayesian networks. Proceedings of the 11th Pacific-Asia conference on Advances in knowledge discovery and data mining. (320-331). /doi/10.5555/1764441.1764475 1332. Wei X, Sun J and Wang X. Dynamic mixture models for multiple time series. Proceedings of the 20th international joint conference on Artifical intelligence. (2909-2914). /doi/10.5555/1625275.1625744 1333. Wang J, Xu C, Shen D, Luo G and Geng X. Understanding Topic Influence Based on Module Network. Asian Digital Libraries. Looking Back 10 Years and Forging New Frontiers. 10.1007/978-3-540-77094-7_50. (391-399). http://link.springer.com/10.1007/978-3-540-77094-7_50 1334. McCallum A, Wang X and Mohanty N. Joint Group and Topic Discovery from Relations and Text. Statistical Network Analysis: Models, Issues, and New Directions. 10.1007/978-3-540-73133-7_3. (28-44). http://link.springer.com/10.1007/978-3-540-73133-7_3 1335. Wang J, Xu C, Li G, Dai Z and Luo G. Understanding Research Field Evolving and Trend with Dynamic Bayesian Networks. Advances in Knowledge Discovery and Data Mining. 10.1007/978-3-540-71701-0_32. (320-331). http://link.springer.com/10.1007/978-3-540-71701-0_32 1336. Wang X and McCallum A. Topics over time. Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining. (424-433). https://doi.org/10.1145/1150402.1150450 1337. McCallum A, Wang X and Mohanty N. Joint group and topic discovery from relations and text. Proceedings of the 2006 conference on Statistical network analysis. (28-44). /doi/10.5555/1768341.1768345 1338. Lee M and Spark A. Unsupervised Generation of Tradable Topic Indices Through Textual Analysis. SSRN Electronic Journal. 10.2139/ssrn.4128068. https://www.ssrn.com/abstract=4128068 1339. Ji R and Han Q. Understanding Heterogeneity of Investor Sentiment on Social Media: A Structural Topic Modeling Approach. SSRN Electronic Journal. 10.2139/ssrn.3997740. https://www.ssrn.com/abstract=3997740 1340. Ashwin J, Kalamara E and Saiz L. Nowcasting Euro Area GDP with News Sentiment: A Tale of Two Crises. SSRN Electronic Journal. 10.2139/ssrn.3971974. https://www.ssrn.com/abstract=3971974 1341. Ranta M, Ylinen M and Järvenpää M. Machine learning in management accounting research: Literature review and pathways for the future. SSRN Electronic Journal. 10.2139/ssrn.3822650. https://www.ssrn.com/abstract=3822650 1342. Levy D, Mayer T and Raviv A. Academic Scholarship in Light of the 2008 Financial Crisis: Textual Analysis of NBER Working Papers. SSRN Electronic Journal. 10.2139/ssrn.3543090. https://www.ssrn.com/abstract=3543090 1343. Bo H. Socially Embedded Knowledge Network and the Making of Opinion Leaders: Evidence from Twitter. SSRN Electronic Journal. 10.2139/ssrn.3493065. https://www.ssrn.com/abstract=3493065 1344. Nay J. Natural Language Processing and Machine Learning for Law and Policy Texts. SSRN Electronic Journal. 10.2139/ssrn.3438276. https://www.ssrn.com/abstract=3438276 1345. Ovadek M, Lampach N and Dyevre A. What's the Talk in Brussels? Leveraging Daily News Coverage to Measure Issue Attention in the European Union. SSRN Electronic Journal. 10.2139/ssrn.3393734. https://www.ssrn.com/abstract=3393734 1346. Anastasopoulos L, Moldogaziev T and Scott T. Computational Text Analysis for Public Management Research. SSRN Electronic Journal. 10.2139/ssrn.3269520. https://www.ssrn.com/abstract=3269520 1347. Espinoza I, Mendoza M, Ortega P, Rivera D and Weiss F. Viscovery: Trend Tracking in Opinion Forums Based on Dynamic Topic Models. SSRN Electronic Journal. 10.2139/ssrn.3171739. https://www.ssrn.com/abstract=3171739 1348. Mittal V and Kashyap I. An Overview of Real World Applications with Concept Drifting Data Streams. SSRN Electronic Journal. 10.2139/ssrn.3170324. https://www.ssrn.com/abstract=3170324 1349. Draca M and Schwarz C. How Polarized are Citizens? Measuring Ideology from the Ground-Up. SSRN Electronic Journal. 10.2139/ssrn.3154431. https://www.ssrn.com/abstract=3154431 1350. Gentzkow M and Kelly B. Text As Data. SSRN Electronic Journal. 10.2139/ssrn.2934001. http://www.ssrn.com/abstract=2934001 1351. Dew R, Li Y and Ansari A. Dynamic Preference Heterogeneity. SSRN Electronic Journal. 10.2139/ssrn.2915632. https://www.ssrn.com/abstract=2915632 1352. Linton M, Teo E, Bommes E and Chen C. Dynamic Topic Modelling for Cryptocurrency Community Forums. SSRN Electronic Journal. 10.2139/ssrn.2875661. http://www.ssrn.com/abstract=2875661 1353. Porter N, Verdery A and Gaddis S. Enhancing Big Data in the Social Sciences with Crowdsourcing: Data Augmentation Practices, Techniques, and Opportunities. SSRN Electronic Journal. 10.2139/ssrn.2844155. https://www.ssrn.com/abstract=2844155 1354. Puschmann C and Scheffler T. Topic Modeling for Media and Communication Research: A Short Primer. SSRN Electronic Journal. 10.2139/ssrn.2836478. http://www.ssrn.com/abstract=2836478 1355. Zhu X, Yang S and Moazeni S. Firm Risk Identification Through Topic Analysis of Textual Financial Disclosures. SSRN Electronic Journal. 10.2139/ssrn.2820313. https://www.ssrn.com/abstract=2820313 1356. Rockmore D, Fang C, Foti N, Ginsburg T and Krakauer D. The Cultural Evolution of National Constitutions. SSRN Electronic Journal. 10.2139/ssrn.2739824. https://www.ssrn.com/abstract=2739824 1357. Watts J. Language Consistency and Trading Volume: An Information Theory of Legitimacy. SSRN Electronic Journal. 10.2139/ssrn.2726410. http://www.ssrn.com/abstract=2726410 1358. Algaba A, Ardia D, Bluteau K, Borms S and Boudt K. Econometrics Meets Sentiment: An Overview of Methodology and Applications. SSRN Electronic Journal. 10.2139/ssrn.2652876. https://www.ssrn.com/abstract=2652876 1359. Tirunillai S and Tellis G. Extracting Dimensions of Consumer Satisfaction with Quality from Online Chatter: Strategic Brand Analysis of Big Data Using Latent Dirichlet Allocation. SSRN Electronic Journal. 10.2139/ssrn.2408855. http://www.ssrn.com/abstract=2408855 1360. Bueschken J and Allenby G. Latent Topic Modeling of Consumer Reviews: Linking Text Evaluations to Customer Satisfaction and Brands. SSRN Electronic Journal. 10.2139/ssrn.2324137. http://www.ssrn.com/abstract=2324137 1361. Maslinsky K, Koltsov S and Koltsova O. Changes in the Topical Structure of Russian-Language LiveJournal: The Impact of Elections 2011. SSRN Electronic Journal. 10.2139/ssrn.2209802. http://www.ssrn.com/abstract=2209802 1362. Lauderdale B and Clark T. Scaling Meaningful Political Dimensions. SSRN Electronic Journal. 10.2139/ssrn.2079561. http://www.ssrn.com/abstract=2079561 Show All Cited By INDEX TERMS 1. DYNAMIC TOPIC MODELS 1. Computing methodologies 1. Machine learning 1. Machine learning approaches 1. Factorization methods 1. Canonical correlation analysis 2. Mathematics of computing 1. Probability and statistics 1. Statistical paradigms 1. Regression analysis 2. Statistical graphics RECOMMENDATIONS * SCALING UP DYNAMIC TOPIC MODELS WWW '16: Proceedings of the 25th International Conference on World Wide Web Dynamic topic models (DTMs) are very effective in discovering topics and capturing their evolution trends in time series data. To do posterior inference of DTMs, existing methods are all batch algorithms that scan the full dataset before each update of ... Read More * TOPIC MODELS WITH TOPIC ORDERING REGULARITIES FOR TOPIC SEGMENTATION ICDM '14: Proceedings of the 2014 IEEE International Conference on Data Mining Documents from the same domain usually discuss similar topics in a similar order. In this paper we present new ordering-based topic models that use generalised Mallows models to capture this regularity to constrain topic assignments. Specifically, these ... Read More * PROBABILISTIC TOPIC MODELS KDD '11 Tutorials: Proceedings of the 17th ACM SIGKDD International Conference Tutorials Probabilistic topic modeling provides a suite of tools for the unsupervised analysis of large collections of documents. Topic modeling algorithms can uncover the underlying themes of a collection and decompose its documents according to those themes. ... Read More COMMENTS Please enable JavaScript to view thecomments powered by Disqus. LOGIN OPTIONS Check if you have access through your login credentials or your institution to get full access on this article. Sign in FULL ACCESS Get this Publication * Information * Contributors * PUBLISHED IN ICML '06: Proceedings of the 23rd international conference on Machine learning June 2006 1154 pages ISBN:1595933832 DOI:10.1145/1143844 * Program Chairs: * William Cohen, * Andrew Moore Copyright © 2006 ACM Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Permissions@acm.org SPONSORS IN-COOPERATION PUBLISHER Association for Computing Machinery New York, NY, United States PUBLICATION HISTORY * Published: 25 June 2006 PERMISSIONS Request permissions about this article. Request Permissions CHECK FOR UPDATES QUALIFIERS * Article CONFERENCE ACCEPTANCE RATES ICML '06 Paper Acceptance Rate140of548submissions,26%Overall Acceptance Rate140of548submissions,26% More FUNDING SOURCES * OTHER METRICS View Article Metrics * Bibliometrics * Citations1,362 * ARTICLE METRICS * 1,362 Total Citations View Citations * 9,605 Total Downloads * Downloads (Last 12 months)803 * Downloads (Last 6 weeks)64 OTHER METRICS View Author Metrics * CITED BY View all PDF FORMAT View or Download as a PDF file. PDF EREADER View online with eReader. eReader DIGITAL EDITION View this article in digital edition. View Digital Edition 1. Aitchison, J. (1982). The statistical analysis of compositional data. Journal of the Royal Statistical Society, Series B, 44(2):139--177.]]Google Scholar 2. Blei, D., Ng, A., and Jordan, M. (2003). Latent Dirichlet allocation. Journal of Machine Learning Research, 3:993--1022.]] Google ScholarDigital Library 3. Blei, D. M. and Lafferty, J. D. (2006). Correlated topic models. In Weiss, Y., Schölkopf, B., and Platt, J., editors, Advances in Neural Information Processing Systems 18. MIT Press, Cambridge, MA.]]Google Scholar 4. Buntine, W. and Jakulin, A. (2004). Applying discrete PCA in data analysis. In Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence, pages 59--66. AUAI Press.]] Google ScholarDigital Library 5. Erosheva, E. (2002). Grade of membership and latent structure models with application to disability survey data. PhD thesis, Carnegie Mellon University, Department of Statistics.]]Google Scholar 6. Fei-Fei, L. and Perona, P. (2005). A Bayesian hierarchical model for learning natural scene categories. IEEE Computer Vision and Pattern Recognition.]]Google ScholarDigital Library 7. Griffiths, T. and Steyvers, M. (2004). Finding scientific topics. Proceedings of the National Academy of Science, 101:5228--5235.]]Google ScholarCross Ref 8. Kalman, R. (1960). A new approach to linear filtering and prediction problems. Transaction of the AMSE: Journal of Basic Engineering, 82:35--45.]]Google ScholarCross Ref 9. McCallum, A., Corrada-Emmanuel, A., and Wang, X. (2004). The author-recipient-topic model for topic and role discovery in social networks: Experiments with Enron and academic email. Technical report, University of Massachusetts, Amherst.]]Google Scholar 10. Pritchard, J., Stephens, M., and Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155:945--959.]]Google ScholarCross Ref 11. Rosen-Zvi, M., Griffiths, T., Steyvers, M., and Smith, P. (2004). The author-topic model for authors and documents. In Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence, pages 487--494. AUAI Press.]] Google ScholarDigital Library 12. Sivic, J., Rusell, B., Efros, A., Zisserman, A., and Freeman, W. (2005). Discovering objects and their location in images. In International Conference on Computer Vision (ICCV 2005).]] Google ScholarDigital Library 13. Snelson, E. and Ghahramani, Z. (2006). Sparse Gaussian processes using pseudo-inputs. In Weiss, Y., Schölkopf, B., and Platt, J., editors, Advances in Neural Information Processing Systems 18, Cambridge, MA. MIT Press.]]Google Scholar 14. Wasserman, L. (2006). All of Nonparametric Statistics. Springer.]] Google ScholarDigital Library 15. West, M. and Harrison, J. (1997). Bayesian Forecasting and Dynamic Models. Springer.]] Google ScholarDigital Library * Figures * Other * None * SHARE THIS PUBLICATION LINK https://dl.acm.org/doi/10.1145/1143844.1143859 Copy Link SHARE ON SOCIAL MEDIA Share on * Twitter * LinkedIn * Reddit * Facebook * Email * * * * 15References * * * Close Figure Viewer Browse AllReturnChange zoom level CAPTION View Table of Contents back Close modal NEW CITATION ALERT ADDED! This alert has been successfully added and will be sent to: You will be notified whenever a record that you have chosen has been cited. To manage your alert preferences, click on the button below. Manage my Alerts Close modal NEW CITATION ALERT! Please log in to your account Close modal EXPORT CITATIONS Select Citation formatBibTeXEndNoteACM Ref * Please download or close your previous search result export first before starting a new bulk export. Preview is not available. By clicking download,a status dialog will open to start the export process. The process may takea few minutes but once it finishes a file will be downloadable from your browser. You may continue to browse the DL while the export process is in progress. Download * * Download citation * Copy citation FOOTER CATEGORIES * Journals * Magazines * Books * Proceedings * SIGs * Conferences * Collections * People ABOUT * About ACM Digital Library * ACM Digital Library Board * Subscription Information * Author Guidelines * Using ACM Digital Library * All Holdings within the ACM Digital Library * ACM Computing Classification System * Digital Library Accessibility JOIN * Join ACM * Join SIGs * Subscribe to Publications * Institutions and Libraries CONNECT * Contact * Facebook * Twitter * Linkedin * Feedback * Bug Report The ACM Digital Library is published by the Association for Computing Machinery. Copyright © 2024 ACM, Inc. * Terms of Usage * Privacy Policy * Code of Ethics Your Search Results Download Request We are preparing your search results for download ... We will inform you here when the file is ready. Download now! Your Search Results Download Request Your file of search results citations is now ready. Download now! Your Search Results Download Request Your search export query has expired. Please try again. Close crossmark popup ✓ Thanks for sharing! AddToAny More…