dl.acm.org Open in urlscan Pro
172.64.145.167  Public Scan

Submitted URL: http://dx.doi.org/10.1145/1143844.1143859
Effective URL: https://dl.acm.org/doi/10.1145/1143844.1143859
Submission: On February 06 via manual from US — Scanned from DE

Form analysis 3 forms found in the DOM

Name: defaultQuickSearchGET /action/doSearch

<form action="/action/doSearch" name="defaultQuickSearch" method="get" title="Quick Search" class="quick-search--form">
  <div class="quick-search--input">
    <div class="input-group option-0"><label for="AllFieldf73847c0-d936-48ec-9bf9-139b3828507f" class="sr-only">Search ACM Digital Library</label><input type="search" autocomplete="off" id="AllFieldf73847c0-d936-48ec-9bf9-139b3828507f-cloned"
        name="AllField" placeholder="Search ACM Digital Library" data-auto-complete-max-words="7" data-auto-complete-max-chars="32" data-contributors-conf="3" data-topics-conf="3" data-publication-titles-conf="3" data-history-items-conf="3"
        data-group-titles-conf="3" value="" class="auto-complete quick-search__input"></div>
  </div>
  <div class="quick-search--button"><button type="submit" title="Search" aria-label="Search" class="btn quick-search__button icon-Icon_Search"><span class="sr-only">Search</span><span>Search</span></button></div>
</form>

Name: defaultQuickSearchGET /action/doSearch

<form action="/action/doSearch" name="defaultQuickSearch" method="get" title="Quick Search" class="quick-search--form cloned hidden-xs hidden-sm">
  <div class="quick-search--input">
    <div class="input-group option-0"><label for="AllFieldf73847c0-d936-48ec-9bf9-139b3828507f" class="sr-only">Search ACM Digital Library</label>
      <div class="autoComplete_wrapper" role="combobox" aria-owns="autoComplete_list_1" aria-haspopup="true" aria-expanded="false" aria-label="Enter a text or select an option"><input type="search" autocomplete="off"
          id="AllFieldf73847c0-d936-48ec-9bf9-139b3828507f" name="AllField" placeholder="Search ACM Digital Library" data-auto-complete-max-words="7" data-auto-complete-max-chars="32" data-contributors-conf="3" data-topics-conf="3"
          data-publication-titles-conf="3" data-history-items-conf="3" data-group-titles-conf="3" value="" class="auto-complete quick-search__input" aria-controls="autoComplete_list_1" aria-autocomplete="both"></div>
    </div>
    <ul id="autoComplete_list_1" role="listbox" hidden="" class="autoComplete rlist"></ul>
  </div>
  <div class="quick-search--button"><button type="submit" title="Search" aria-label="Search" class="btn quick-search__button icon-Icon_Search"><span class="sr-only">Search</span><span>Search</span></button></div>
</form>

POST /action/exportCiteProcCitation

<form action="/action/exportCiteProcCitation" method="post" target="_blank"><input type="hidden" name="content" value=""><input type="hidden" name="dois" value=""><input type="hidden" name="format" value="">
  <fieldset class="input-group"><label for="citation-format" class="visibility-hidden">Select Citation format</label><select id="citation-format" data-csl-doi="10.1145/1143844.1143859" aria-label="Select Citation format">
      <option value="bibtex" data-format="bibTex">BibTeX</option>
      <option value="endNote" data-format="endNote">EndNote</option>
      <option value="acm" data-format="text">ACM Ref</option>
    </select><span class="select-arrow"><i class="icon-bottom-arrow"></i></span></fieldset>
  <ul class="rlist tab__content">
    <li id="allResultstab" aria-labelledby="allResults" role="tabpanel" class="tab__pane">
      <div class="all-results-tab-container">
        <div class="hidden warning-message mb-2">Please download or close your previous search result export first before starting a new bulk export.</div>
        <div class="desc-text">
          <div class="bold">Preview is not available.</div>By clicking download,<b class="ml-1">a status dialog</b> will open to start the export process. The process may take<b class="ml-1">a few minutes</b> but once it finishes a file will be
          downloadable from your browser. You may continue to browse the DL while the export process is in progress.
        </div>
        <a href="#" title="Download" data-href="/action/searchCitationExport?query=DOI%3D10.1145%252F1143844.1143859%26target%3Dindex-terms" class="btn transparent downloadBtn"><i aria-hidden="true" class="icon-Icon_Download"></i>Download<i aria-hidden="true" class="icon-export"></i></a>
      </div>
    </li>
    <li id="selectedTab" aria-labelledby="selected" role="tabpanel" class="tab__pane active">
      <div class="csl-wrapper copy__text-wrapper">
        <pre class="copy__text csl-response"></pre>
        <div id="export-warning"></div>
        <div class="pull-right">
          <ul role="menu" class="rlist--inline separator">
            <li><a href="javascript:void(0)" role="menuitem" title="Download citation" class="download__btn disabled"><label class="visibility-hidden">Download citation</label><i aria-hidden="true" class="icon-Icon_Download"></i></a></li>
            <li><input type="hidden" id="doisLimitNumber"
                value="1000"><a href="javascript:void(0)" role="menuitem" title="Copy citation" class="copy__btn disabled"><label class="visibility-hidden">Copy citation</label><i aria-hidden="true" class="icon-pages"></i></a></li>
          </ul>
        </div>
      </div>
    </li>
  </ul>
</form>

Text Content

THIS WEBSITE USES COOKIES

We occasionally run membership recruitment campaigns on social media channels
and use cookies to track post-clicks. We also share information about your use
of our site with our social media, advertising and analytics partners who may
combine it with other information that you’ve provided to them or that they’ve
collected from your use of their services. Use the check boxes below to choose
the types of cookies you consent to have stored on your device.


Do not sell or share my personal information
Use necessary cookies only Allow all cookies Show details
OK
Use necessary cookies only Allow selected cookies Allow all cookies
Necessary
Preferences
Statistics
Marketing
Show details
Cookie declaration [#IABV2SETTINGS#] About
 Necessary (12)  Preferences (5)  Statistics (19)  Marketing (21)  Unclassified
(1)

Necessary cookies help make a website usable by enabling basic functions like
page navigation and access to secure areas of the website. The website cannot
function properly without these cookies. These cookies do not gather information
about you that could be used for marketing purposes and do not remember where
you have been on the internet.


NameProviderPurposeExpiryTypecf_chl_probe_#ACMPendingPersistentHTMLAWSALBMopinionRegisters
which server-cluster is serving the visitor. This is used in context with load
balancing, in order to optimize user experience. 7
daysHTTPAWSALBCORSMopinionRegisters which server-cluster is serving the visitor.
This is used in context with load balancing, in order to optimize user
experience. 7 daysHTTP__jidc.disquscdn.comUsed to add comments to the website
and remember the user's Disqus login credentials across websites that use said
service.SessionHTTPdisqusauthc.disquscdn.comRegisters whether the user is logged
in. This allows the website owner to make parts of the website inaccessible,
based on the user's log-in status. SessionHTTP__cf_bmACMThis cookie is used to
distinguish between humans and bots. This is beneficial for the website, in
order to make valid reports on the use of their website.1 dayHTTP_cfuvidACMThis
cookie is a part of the services provided by Cloudflare - Including
load-balancing, deliverance of website content and serving DNS connection for
website operators. SessionHTTPcf_chl_1ACMThis cookie is a part of the services
provided by Cloudflare - Including load-balancing, deliverance of website
content and serving DNS connection for website operators. 1
dayHTTPcf_chl_rc_niACMThis cookie is a part of the services provided by
Cloudflare - Including load-balancing, deliverance of website content and
serving DNS connection for website operators. 1
dayHTTPCookieConsentCookiebotStores the user's cookie consent state for the
current domain1 yearHTTPCONSENTYouTubeUsed to detect if the visitor has accepted
the marketing category in the cookie banner. This cookie is necessary for
GDPR-compliance of the website. 2 yearsHTTPVISITOR_PRIVACY_METADATAYouTubeStores
the user's cookie consent state for the current domain180 daysHTTP

Preference cookies enable a website to remember information that changes the way
the website behaves or looks, like your preferred language or the region that
you are in.

NameProviderPurposeExpiryTypeaet-dismissc.disquscdn.comNecessary for the
functionality of the website's
comment-system.PersistentHTMLdrafts.queuec.disquscdn.comNecessary for the
functionality of the website's
comment-system.PersistentHTMLsubmitted_posts_cachec.disquscdn.comNecessary for
the functionality of the website's
comment-system.PersistentHTMLmopDeploy [x2]MopinionPendingPersistentHTML

Statistic cookies help website owners understand how visitors interact with
websites by collecting and reporting information anonymously.

NameProviderPurposeExpiryType_gaGoogleRegisters a unique ID that is used to
generate statistical data on how the visitor uses the website.2
yearsHTTP_ga_#GoogleUsed by Google Analytics to collect data on the number of
times a user has visited the website as well as dates for the first and most
recent visit. 2 yearsHTTP_gatGoogleUsed by Google Analytics to throttle request
rate1 dayHTTP_gidGoogleRegisters a unique ID that is used to generate
statistical data on how the visitor uses the website.1
dayHTTP_hjAbsoluteSessionInProgressHotjarThis cookie is used to count how many
times a website has been visited by different visitors - this is done by
assigning the visitor an ID, so the visitor does not get registered twice.1
dayHTTP_hjFirstSeenHotjarThis cookie is used to determine if the visitor has
visited the website before, or if it is a new visitor on the website.1
dayHTTP_hjIncludedInSessionSample_#HotjarCollects statistics on the visitor's
visits to the website, such as the number of visits, average time spent on the
website and what pages have been read.1 dayHTTP_hjSession_#HotjarCollects
statistics on the visitor's visits to the website, such as the number of visits,
average time spent on the website and what pages have been read.1
dayHTTP_hjSessionUser_#HotjarCollects statistics on the visitor's visits to the
website, such as the number of visits, average time spent on the website and
what pages have been read.1 yearHTTP_hjTLDTestHotjarRegisters statistical data
on users' behaviour on the website. Used for internal analytics by the website
operator. SessionHTTP_hp2_#Heap AnalyticsCollects data on the user’s navigation
and behavior on the website. This is used to compile statistical reports and
heatmaps for the website owner.1 dayHTTP_hp2_hld#.#Heap AnalyticsCollects data
on the user’s navigation and behavior on the website. This is used to compile
statistical reports and heatmaps for the website owner.1 dayHTTP_hp2_id.#Heap
AnalyticsCollects data on the user’s navigation and behavior on the website.
This is used to compile statistical reports and heatmaps for the website owner.1
yearHTTP_hp2_ses_props.#Heap AnalyticsCollects data on the user’s navigation and
behavior on the website. This is used to compile statistical reports and
heatmaps for the website owner.1 dayHTTPdisqus_uniquec.disquscdn.comCollects
statistics related to the user's visits to the website, such as number of
visits, average time spent on the website and loaded
pages.SessionHTTPcollectGoogleUsed to send data to Google Analytics about the
visitor's device and behavior. Tracks the visitor across devices and marketing
channels.SessionPixelhjActiveViewportIdsHotjarThis cookie contains an ID string
on the current session. This contains non-personal information on what subpages
the visitor enters – this information is used to optimize the visitor's
experience.PersistentHTMLhjViewportIdHotjarSaves the user's screen size in order
to adjust the size of images on the website.SessionHTMLtdGoogleRegisters
statistical data on users' behaviour on the website. Used for internal analytics
by the website operator. SessionPixel

Marketing cookies are used to track visitors across websites. The intention is
to display ads that are relevant and engaging for the individual user and
thereby more valuable for publishers and third party advertisers.

NameProviderPurposeExpiryTypebadges-messagec.disquscdn.comCollects data on the
visitor’s use of the comment system on the website, and what blogs/articles the
visitor has read. This can be used for marketing purposes. PersistentHTMLhHeap
AnalyticsCollects data on user behaviour and interaction in order to optimize
the website and make advertisement on the website more relevant.
SessionPixelLAST_RESULT_ENTRY_KEYYouTubeUsed to track user’s interaction with
embedded
content.SessionHTTPLogsDatabaseV2:V#||LogsRequestsStoreYouTubePendingPersistentIDBnextIdYouTubeUsed
to track user’s interaction with embedded
content.SessionHTTPremote_sidYouTubeNecessary for the implementation and
functionality of YouTube video-content on the website.
SessionHTTPrequestsYouTubeUsed to track user’s interaction with embedded
content.SessionHTTPServiceWorkerLogsDatabase#SWHealthLogYouTubeNecessary for the
implementation and functionality of YouTube video-content on the website.
PersistentIDBTESTCOOKIESENABLEDYouTubeUsed to track user’s interaction with
embedded content.1 dayHTTPVISITOR_INFO1_LIVEYouTubePending180
daysHTTPYSCYouTubePendingSessionHTTPyt.innertube::nextIdYouTubeRegisters a
unique ID to keep statistics of what videos from YouTube the user has
seen.PersistentHTMLytidb::LAST_RESULT_ENTRY_KEYYouTubeUsed to track user’s
interaction with embedded content.PersistentHTMLYtIdbMeta#databasesYouTubeUsed
to track user’s interaction with embedded
content.PersistentIDByt-remote-cast-availableYouTubeStores the user's video
player preferences using embedded YouTube
videoSessionHTMLyt-remote-cast-installedYouTubeStores the user's video player
preferences using embedded YouTube
videoSessionHTMLyt-remote-connected-devicesYouTubeStores the user's video player
preferences using embedded YouTube
videoPersistentHTMLyt-remote-device-idYouTubeStores the user's video player
preferences using embedded YouTube
videoPersistentHTMLyt-remote-fast-check-periodYouTubeStores the user's video
player preferences using embedded YouTube
videoSessionHTMLyt-remote-session-appYouTubeStores the user's video player
preferences using embedded YouTube
videoSessionHTMLyt-remote-session-nameYouTubeStores the user's video player
preferences using embedded YouTube videoSessionHTML

Unclassified cookies are cookies that we are in the process of classifying,
together with the providers of individual cookies.

NameProviderPurposeExpiryTypeGSPGooglePending400 daysHTTP

 [#IABV2_LABEL_PURPOSES#]  [#IABV2_LABEL_FEATURES#]  [#IABV2_LABEL_PARTNERS#]
[#IABV2_BODY_PURPOSES#]
[#IABV2_BODY_FEATURES#]
[#IABV2_BODY_PARTNERS#]

Cookies are small text files that can be used by websites to make a user's
experience more efficient. Other than those strictly necessary for the operation
of the site,  we need your permission to store any type of cookies on your
device. Learn more about ACM, how you can contact us, and how we process
personal data in our Privacy Policy. Also please consult our Cookie Notice.


You can change or withdraw your consent from the Cookie Declaration on our
website at any time by visiting the Cookie Declaration page. If contacting us
regarding your consent, please state your consent ID and date from that page.



Your consent applies to the following domains: dl.acm.org


Cookie declaration last updated on 11.01.24 by Cookiebot
skip to main content
 * Advanced Search
 * Browse
 * About
 *  * Sign in
    * Register

 * Search ACM Digital Library
   SearchSearch
 * Advanced Search
 * Journals
 * Magazines
 * Proceedings
 * Books
 * SIGs
 * Conferences
 * People
 *  * Browse
    * About

 * More
 * 

Search ACM Digital Library

SearchSearch
Advanced Search

10.1145/1143844.1143859acmotherconferencesArticle/Chapter
ViewAbstractPublication PagesicmlConference Proceedingsconference-collections
icml
 * Conference
 * Proceedings
 * Upcoming Events
 * Authors
 * Affiliations
 * Award Winners
 * More





 * Home
 * Conferences
 * ICML
 * Proceedings
 * ICML '06
 * Dynamic topic models

Article

Share on
 * 
 * 
 * 
 * 
 * 
   
   


DYNAMIC TOPIC MODELS

 * Authors:
 * David M. Blei
   
   Princeton University, Princeton, NJ
   
   Princeton University, Princeton, NJ
   
   View Profile
   ,
 * John D. Lafferty
   
   Carnegie Mellon University, Pittsburgh PA
   
   Carnegie Mellon University, Pittsburgh PA
   
   View Profile

Authors Info & Claims
ICML '06: Proceedings of the 23rd international conference on Machine
learningJune 2006Pages 113–120https://doi.org/10.1145/1143844.1143859
Published:25 June 2006Publication History
 * 1,362citation
 * 9,605
 * Downloads

Metrics
Total Citations1,362
Total Downloads9,605
Last 12 Months803
Last 6 weeks64
 * Get Citation Alerts
 * Save to Binder
   Close modal
   
   SAVE TO BINDER
   
   
   
   Create a New Binder
   Name
   256
    * Cancel
    * Create

 * Export Citation
 * Publisher Site

 * 
 * Get Access




ICML '06: PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON MACHINE LEARNING

Dynamic topic models
Pages 113–120
PreviousChapterNextChapter
 * * 
 * * ABSTRACT
   * References
   * Cited By
   * Index Terms
   * Recommendations
   * Comments




ICML '06: PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON MACHINE LEARNING

Dynamic topic models
Pages 113–120
PreviousChapterNextChapter
 * * 
 * * ABSTRACT
   * References
   * Cited By
   * Index Terms
   * Recommendations
   * Comments


 * 
 * 
 * 
 * 15References
 * 
 * 
 * 


ABSTRACT

A family of probabilistic time series models is developed to analyze the time
evolution of topics in large document collections. The approach is to use state
space models on the natural parameters of the multinomial distributions that
represent the topics. Variational approximations based on Kalman filters and
nonparametric wavelet regression are developed to carry out approximate
posterior inference over the latent topics. In addition to giving quantitative,
predictive models of a sequential corpus, dynamic topic models provide a
qualitative window into the contents of a large document collection. The models
are demonstrated by analyzing the OCR'ed archives of the journal Science from
1880 through 2000.




REFERENCES

 1.  Aitchison, J. (1982). The statistical analysis of compositional data.
     Journal of the Royal Statistical Society, Series B, 44(2):139--177.]]Google
     Scholar
 2.  Blei, D., Ng, A., and Jordan, M. (2003). Latent Dirichlet allocation.
     Journal of Machine Learning Research, 3:993--1022.]] Google ScholarDigital
     Library
 3.  Blei, D. M. and Lafferty, J. D. (2006). Correlated topic models. In Weiss,
     Y., Schölkopf, B., and Platt, J., editors, Advances in Neural Information
     Processing Systems 18. MIT Press, Cambridge, MA.]]Google Scholar
 4.  Buntine, W. and Jakulin, A. (2004). Applying discrete PCA in data analysis.
     In Proceedings of the 20th Conference on Uncertainty in Artificial
     Intelligence, pages 59--66. AUAI Press.]] Google ScholarDigital Library
 5.  Erosheva, E. (2002). Grade of membership and latent structure models with
     application to disability survey data. PhD thesis, Carnegie Mellon
     University, Department of Statistics.]]Google Scholar
 6.  Fei-Fei, L. and Perona, P. (2005). A Bayesian hierarchical model for
     learning natural scene categories. IEEE Computer Vision and Pattern
     Recognition.]]Google ScholarDigital Library
 7.  Griffiths, T. and Steyvers, M. (2004). Finding scientific topics.
     Proceedings of the National Academy of Science, 101:5228--5235.]]Google
     ScholarCross Ref
 8.  Kalman, R. (1960). A new approach to linear filtering and prediction
     problems. Transaction of the AMSE: Journal of Basic Engineering,
     82:35--45.]]Google ScholarCross Ref
 9.  McCallum, A., Corrada-Emmanuel, A., and Wang, X. (2004). The
     author-recipient-topic model for topic and role discovery in social
     networks: Experiments with Enron and academic email. Technical report,
     University of Massachusetts, Amherst.]]Google Scholar
 10. Pritchard, J., Stephens, M., and Donnelly, P. (2000). Inference of
     population structure using multilocus genotype data. Genetics,
     155:945--959.]]Google ScholarCross Ref
 11. Rosen-Zvi, M., Griffiths, T., Steyvers, M., and Smith, P. (2004). The
     author-topic model for authors and documents. In Proceedings of the 20th
     Conference on Uncertainty in Artificial Intelligence, pages 487--494. AUAI
     Press.]] Google ScholarDigital Library
 12. Sivic, J., Rusell, B., Efros, A., Zisserman, A., and Freeman, W. (2005).
     Discovering objects and their location in images. In International
     Conference on Computer Vision (ICCV 2005).]] Google ScholarDigital Library
 13. Snelson, E. and Ghahramani, Z. (2006). Sparse Gaussian processes using
     pseudo-inputs. In Weiss, Y., Schölkopf, B., and Platt, J., editors,
     Advances in Neural Information Processing Systems 18, Cambridge, MA. MIT
     Press.]]Google Scholar
 14. Wasserman, L. (2006). All of Nonparametric Statistics. Springer.]] Google
     ScholarDigital Library
 15. West, M. and Harrison, J. (1997). Bayesian Forecasting and Dynamic Models.
     Springer.]] Google ScholarDigital Library

Show All References


CITED BY

View all

 1.    Moral P. (2023). A tale of heroes and villains: Russia’s strategic
       narratives on Twitter during the COVID-19 pandemic. Journal of
       Information Technology & Politics. 10.1080/19331681.2023.2182862. 21:2.
       (146-165). Online publication date: 2-Apr-2024.
       
       https://www.tandfonline.com/doi/full/10.1080/19331681.2023.2182862

 2.    Watanabe K and Baturo A. (2023). Seeded Sequential LDA: A Semi-Supervised
       Algorithm for Topic-Specific Analysis of Sentences. Social Science
       Computer Review. 10.1177/08944393231178605. 42:1. (224-248). Online
       publication date: 1-Feb-2024.
       
       http://journals.sagepub.com/doi/10.1177/08944393231178605

 3.    Schwiderowski J, Pedersen A and Beck R. (2023). Crypto Tokens and Token
       Systems. Information Systems Frontiers. 10.1007/s10796-023-10382-w. 26:1.
       (319-332). Online publication date: 1-Feb-2024.
       
       https://link.springer.com/10.1007/s10796-023-10382-w

 4.    Du C, Yao K, Zhu H, Wang D, Zhuang F and Xiong H. (2024). Mining
       technology trends in scientific publications: a graph propagated neural
       topic modeling approach. Knowledge and Information Systems.
       10.1007/s10115-023-02005-2.
       
       https://link.springer.com/10.1007/s10115-023-02005-2

 5.    Wu D, Zhong S, Wu J and Song H. (2024). Tourism and Hospitality
       Forecasting With Big Data: A Systematic Review of the Literature. Journal
       of Hospitality & Tourism Research. 10.1177/10963480231223151.
       
       http://journals.sagepub.com/doi/10.1177/10963480231223151

 6.    Wu X, Nguyen T and Luu A. (2024). A survey on neural topic models:
       methods, applications, and challenges. Artificial Intelligence Review.
       10.1007/s10462-023-10661-7. 57:2.
       
       https://link.springer.com/10.1007/s10462-023-10661-7

 7.    Chen H, Wu Y, Tang H, Lei J, Wang G, Zhao W, Liao J, Wang F and Wang Z.
       (2024). Visual Analysis Method for Traffic Trajectory with Dynamic Topic
       Movement Patterns Based on the Improved Markov Decision Process.
       Electronics. 10.3390/electronics13030467. 13:3. (467).
       
       https://www.mdpi.com/2079-9292/13/3/467

 8.    Figuera P and García Bringas P. (2024). Revisiting Probabilistic Latent
       Semantic Analysis: Extensions, Challenges and Insights. Technologies.
       10.3390/technologies12010005. 12:1. (5).
       
       https://www.mdpi.com/2227-7080/12/1/5

 9.    Gao X, Jolly E, Yu H, Liu H, Zhou X and Chang L. (2024). The
       psychological, computational, and neural foundations of indebtedness.
       Nature Communications. 10.1038/s41467-023-44286-9. 15:1.
       
       https://www.nature.com/articles/s41467-023-44286-9

 10.   Kumar A, Bala P, Chakraborty S and Behera R. (2024). Exploring
       antecedents impacting user satisfaction with voice assistant app: A text
       mining-based analysis on Alexa services. Journal of Retailing and
       Consumer Services. 10.1016/j.jretconser.2023.103586. 76. (103586). Online
       publication date: 1-Jan-2024.
       
       https://linkinghub.elsevier.com/retrieve/pii/S0969698923003375

 11.   Keith Norambuena B, Mitra T and North C. (2023). A Survey on Event-Based
       News Narrative Extraction. ACM Computing Surveys. 55:14s. (1-39). Online
       publication date: 31-Dec-2024.
       
       https://doi.org/10.1145/3584741

 12.   Alfaqeeh M and Skillicorn D. (2023). Community detection in social
       networks by spectral embedding of typed graphs. Social Network Analysis
       and Mining. 10.1007/s13278-023-01172-y. 14:1.
       
       https://link.springer.com/10.1007/s13278-023-01172-y

 13.   Wang H, Prakash N, Hoang N, Hee M, Naseem U and Lee R. (2023). Prompting
       Large Language Models for Topic Modeling 2023 IEEE International
       Conference on Big Data (BigData). 10.1109/BigData59044.2023.10386113.
       979-8-3503-2445-7. (1236-1241).
       
       https://ieeexplore.ieee.org/document/10386113/

 14.   Chen Y and Ding C. (2023). Multidimensional evolutionary analysis of
       China’s BIM technology policy based on quantitative mapping.
       Architectural Engineering and Design Management.
       10.1080/17452007.2023.2291585. (1-18).
       
       https://www.tandfonline.com/doi/full/10.1080/17452007.2023.2291585

 15.   Ramón-Ferrer V, Badenes-Olmedo C and Corcho O. Automatic Topic Label
       Generation using Conversational Models. Proceedings of the 12th Knowledge
       Capture Conference 2023. (17-24).
       
       https://doi.org/10.1145/3587259.3627574

 16.   Lee J, Zo H and Steinberger T. (2023). Exploring trends in blockchain
       publications with topic modeling: Implications for forecasting the
       emergence of industry applications. ETRI Journal.
       10.4218/etrij.2022-0257. 45:6. (982-995). Online publication date:
       1-Dec-2023.
       
       https://onlinelibrary.wiley.com/doi/10.4218/etrij.2022-0257

 17.   Zhou W, Zhang C, Wu L and Shashidhar M. (2023). ChatGPT and marketing:
       Analyzing public discourse in early Twitter posts. Journal of Marketing
       Analytics. 10.1057/s41270-023-00250-6. 11:4. (693-706). Online
       publication date: 1-Dec-2023.
       
       https://link.springer.com/10.1057/s41270-023-00250-6

 18.   Ghazinoori S, Roshani S, Hafezi R and Wood D. (2023). Bursting into the
       Public Eye: Analyzing the Development of Renewable Energy Research
       Interests. Renewable Energy Focus. 10.1016/j.ref.2023.100496. 47.
       (100496). Online publication date: 1-Dec-2023.
       
       https://linkinghub.elsevier.com/retrieve/pii/S1755008423000923

 19.   Zhang Y, Guo W, Ma J, Fu Z, Chang Z and Wang L. (2023). Evolution
       analysis of cross-domain collaborative research topic: a case study of
       cognitive-based product conceptual design. Scientometrics.
       10.1007/s11192-023-04865-5. 128:12. (6695-6718). Online publication date:
       1-Dec-2023.
       
       https://link.springer.com/10.1007/s11192-023-04865-5

 20.   Laureate C, Buntine W and Linger H. (2023). A systematic review of the
       use of topic models for short text social media analysis. Artificial
       Intelligence Review. 10.1007/s10462-023-10471-x. 56:12. (14223-14255).
       Online publication date: 1-Dec-2023.
       
       https://link.springer.com/10.1007/s10462-023-10471-x

 21.   Choi E, Kim R, Chae J, Yang A, Jang E and Lee K. (2023). Analysis of
       Nature-Based Solutions Research Trends and Integrated Means of
       Implementation in Climate Change. Atmosphere. 10.3390/atmos14121775.
       14:12. (1775).
       
       https://www.mdpi.com/2073-4433/14/12/1775

 22.   Wagner K, Gainous J and Vélez-Serrano M. (2023). The politics of evasion:
       The missing statehood debate in puerto rico. Party Politics.
       10.1177/13540688231215653.
       
       http://journals.sagepub.com/doi/10.1177/13540688231215653

 23.   Park J, Lee H and Cho S. (2023). Hot topic detection in central bankers’
       speeches. Expert Systems with Applications: An International Journal.
       230:C. Online publication date: 15-Nov-2023.
       
       https://doi.org/10.1016/j.eswa.2023.120563

 24.   Niroomand K, Saady N, Bazan C, Zendehboudi S, Soares A and Albayati T.
       (2023). Smart investigation of artificial intelligence in renewable
       energy system technologies by natural language processing. Engineering
       Applications of Artificial Intelligence. 126:PA. Online publication date:
       1-Nov-2023.
       
       https://doi.org/10.1016/j.engappai.2023.106848

 25.   Song B, Luan C and Liang D. (2023). Identification of emerging technology
       topics (ETTs) using BERT-based model and sematic analysis: a perspective
       of multiple-field characteristics of patented inventions (MFCOPIs).
       Scientometrics. 10.1007/s11192-023-04819-x. 128:11. (5883-5904). Online
       publication date: 1-Nov-2023.
       
       https://link.springer.com/10.1007/s11192-023-04819-x

 26.   Jun I, Feng Z, Avanasi R, Brain R, Prosperi M and Bian J. (2023).
       Evaluating the perceptions of pesticide use, safety, and regulation and
       identifying common pesticide‐related topics on Twitter. Integrated
       Environmental Assessment and Management. 10.1002/ieam.4777. 19:6.
       (1581-1599). Online publication date: 1-Nov-2023.
       
       https://setac.onlinelibrary.wiley.com/doi/10.1002/ieam.4777

 27.   Vargas C and Ponce H. (2023). Recurrent Embedded Topic Model. Applied
       Sciences. 10.3390/app132011561. 13:20. (11561).
       
       https://www.mdpi.com/2076-3417/13/20/11561

 28.   Mohamed A and van der Laag Yamu C. (2023). Space Syntax has Come of Age:
       A Bibliometric Review from 1976 to 2023. Journal of Planning Literature.
       10.1177/08854122231208018.
       
       http://journals.sagepub.com/doi/10.1177/08854122231208018

 29.   Kumar J, Shao J, Kumar R, Din S, Mawuli C and Yang Q. (2023). A
       context-enhanced Dirichlet model for online clustering in short text
       streams. Expert Systems with Applications: An International Journal.
       228:C. Online publication date: 15-Oct-2023.
       
       https://doi.org/10.1016/j.eswa.2023.120262

 30.   Moreno-Vera F. (2023). Inferring Discussion Topics about Exploitation of
       Vulnerabilities from Underground Hacking Forums 2023 14th International
       Conference on Information and Communication Technology Convergence
       (ICTC). 10.1109/ICTC58733.2023.10393244. 979-8-3503-1327-7. (816-821).
       
       https://ieeexplore.ieee.org/document/10393244/

 31.   Preis A and Schwaar S. (2023). Change point detection in text data.
       Behaviormetrika. 10.1007/s41237-023-00207-0.
       
       https://link.springer.com/10.1007/s41237-023-00207-0

 32.   Dang T and Nguyen M. (2023). Mining User-Generated Content for Enhanced
       Customer Experience in Hospitality Industry 2023 3rd International
       Conference on Emerging Smart Technologies and Applications (eSmarTA).
       10.1109/eSmarTA59349.2023.10293621. 979-8-3503-0533-3. (1-8).
       
       https://ieeexplore.ieee.org/document/10293621/

 33.   Klopp O, Panov M, Sigalla S and Tsybakov A. Assigning topics to documents
       by successive projections. The Annals of Statistics. 10.1214/23-AOS2316.
       51:5.
       
       https://projecteuclid.org/journals/annals-of-statistics/volume-51/issue-5/Assigning-topics-to-documents-by-successive-projections/10.1214/23-AOS2316.full

 34.   Yang Z, Islam N, Shi Y, Venkatachalam K and Huang L. The Evolution of
       Interindustry Technology Linkage Topics and Its Analysis Framework in
       Three-Dimensional Printing Technology. IEEE Transactions on Engineering
       Management. 10.1109/TEM.2021.3086760. 70:10. (3601-3621).
       
       https://ieeexplore.ieee.org/document/9519609/

 35.   Di Zio S, Tontodimamma A, del Gobbo E and Fontanella L. (2023). Exploring
       the research dynamics of futures studies: An analysis of six top
       journals. Futures. 10.1016/j.futures.2023.103232. 153. (103232). Online
       publication date: 1-Oct-2023.
       
       https://linkinghub.elsevier.com/retrieve/pii/S0016328723001362

 36.   Shen D, Zhu H, Xiao K, Zhang X and Xiong H. (2023). Exploiting
       Connections among Personality, Job Position, and Work Behavior: Evidence
       from Joint Bayesian Learning. ACM Transactions on Management Information
       Systems. 14:3. (1-20). Online publication date: 30-Sep-2023.
       
       https://doi.org/10.1145/3607875

 37.   KURNAZ A. (2023). Konu Modelleme Analizi ile İş İlanlarında İstenilen
       Pazarlama Becerilerinin AraştırılmasıExploring Desired Marketing Skills
       in Job Postings with Topic Modeling Analysis. İktisadi İdari ve Siyasal
       Araştırmalar Dergisi. 10.25204/iktisad.1345181. (937-951).
       
       http://dergipark.org.tr/tr/doi/10.25204/iktisad.1345181

 38.   Yang H, Chae J, Yang A, Suwignyo R and Choi E. (2023). Trends of Peatland
       Research Based on Topic Modeling: Toward Sustainable Management under
       Climate Change. Forests. 10.3390/f14091818. 14:9. (1818).
       
       https://www.mdpi.com/1999-4907/14/9/1818

 39.   Cao J, Gu Z and Hasan I. (2023). Exploring Accounting Research Topic
       Evolution: An Unsupervised Machine Learning Approach. Journal of
       International Accounting Research. 10.2308/JIAR-2021-073. (1-30). Online
       publication date: 1-Sep-2023.
       
       https://publications.aaahq.org/jiar/article/doi/10.2308/JIAR-2021-073/11596/Exploring-Accounting-Research-Topic-Evolution-An

 40.   Chadefaux T. (2023). An automated pattern recognition system for
       conflict. Journal of Computational Science. 10.1016/j.jocs.2023.102074.
       72. (102074). Online publication date: 1-Sep-2023.
       
       https://linkinghub.elsevier.com/retrieve/pii/S1877750323001345

 41.   Yu D and Xiang B. (2023). Discovering topics and trends in the field of
       Artificial Intelligence. Expert Systems with Applications: An
       International Journal. 225:C. Online publication date: 1-Sep-2023.
       
       https://doi.org/10.1016/j.eswa.2023.120114

 42.   Niekler A, Kahmann C, Burghardt M and Heyer G. (2023). The interactive
       Leipzig Corpus Miner: An extensible and adaptable text analysis tool for
       content analysisDer interaktive Leipzig Corpus Miner: Ein erweiterbares
       und anpassungsfähiges Textanalysewerkzeug für die Inhaltsanalyse.
       Publizistik. 10.1007/s11616-023-00809-4. 68:2-3. (325-354). Online
       publication date: 1-Sep-2023.
       
       https://link.springer.com/10.1007/s11616-023-00809-4

 43.   de Campos L, Fernández-Luna J and Huete J. (2023). Use of topical and
       temporal profiles and their hybridisation for content-based
       recommendation. User Modeling and User-Adapted Interaction.
       10.1007/s11257-022-09354-7. 33:4. (911-937). Online publication date:
       1-Sep-2023.
       
       https://link.springer.com/10.1007/s11257-022-09354-7

 44.   Dore G. (2023). A Natural Language Processing Analysis of Newspapers
       Coverage of Hong Kong Protests Between 1998 and 2020. Social Indicators
       Research. 10.1007/s11205-023-03147-0. 169:1-2. (143-166). Online
       publication date: 1-Sep-2023.
       
       https://link.springer.com/10.1007/s11205-023-03147-0

 45.   Rizzoli V, Trevisani M and Tuzzi A. (2023). Portraying the life cycle of
       ideas in social psychology through functional (textual) data analysis: a
       toolkit for digital history. Scientometrics. 10.1007/s11192-023-04722-5.
       128:9. (5197-5226). Online publication date: 1-Sep-2023.
       
       https://link.springer.com/10.1007/s11192-023-04722-5

 46.   Schäfermeier B, Hirth J and Hanika T. (2022). Research topic flows in
       co-authorship networks. Scientometrics. 10.1007/s11192-022-04529-w.
       128:9. (5051-5078). Online publication date: 1-Sep-2023.
       
       https://link.springer.com/10.1007/s11192-022-04529-w

 47.   Chen Y, Fernandes E, Adams B and Hassan A. (2023). On practitioners’
       concerns when adopting service mesh frameworks. Empirical Software
       Engineering. 28:5. Online publication date: 1-Sep-2023.
       
       https://doi.org/10.1007/s10664-023-10348-1

 48.   Martínez-Comeche J. (2023). Veinticinco años de investigación en redes
       sociales: evolución de temas entre 1997 y 2021 empleando el algoritmo
       Asignación Latente de Dirichlet. Investigación Bibliotecológica:
       archivonomía, bibliotecología e información.
       10.22201/iibi.24488321xe.2023.96.58777. 37:96. (145-177).
       
       http://rev-ib.unam.mx/ib/index.php/ib/article/view/58777

 49.   Wang H, Li K and Shang S. (2023). DLRD: dual-level network for rumor
       detection on geo-textual data. GeoInformatica.
       10.1007/s10707-023-00505-5.
       
       https://link.springer.com/10.1007/s10707-023-00505-5

 50.   Singh J, Pandey D and Singh A. (2023). Event detection from real-time
       twitter streaming data using community detection algorithm. Multimedia
       Tools and Applications. 10.1007/s11042-023-16263-3.
       
       https://link.springer.com/10.1007/s11042-023-16263-3

 51.   Verma S, Bhatia R and Harit S. (2023). Developing a Content-based
       Recommender System for Author Specialization using Topic Modelling and
       Ranking Framework. Artificial Intelligence and Data Science in
       Recommendation System: Current Trends, Technologies and Applications.
       10.2174/9789815136746123010008. (110-125). Online publication date:
       14-Aug-2023.
       
       https://www.eurekaselect.com/node/219808

 52.   van der Vegt I and Kleinberg B. (2023). A multi-modal panel dataset to
       understand the psychological impact of the pandemic. Scientific Data.
       10.1038/s41597-023-02438-y. 10:1.
       
       https://www.nature.com/articles/s41597-023-02438-y

 53.   Cross J, Greene D, Umansky N and Calò S. (2023). Speaking in unison?
       Explaining the role of agenda-setter constellations in the ECB policy
       agenda using a network-based approach. Journal of European Public Policy.
       10.1080/13501763.2023.2242891. (1-27).
       
       https://www.tandfonline.com/doi/full/10.1080/13501763.2023.2242891

 54.   Miao W, Lin K, Wu C, Sun J, Sun W, Wei W and Gu C. (2023). How Could
       Consumers’ Online Review Help Improve Product Design Strategy?.
       Information. 10.3390/info14080434. 14:8. (434).
       
       https://www.mdpi.com/2078-2489/14/8/434

 55.   Campbell T, Syed S, Yang C, Jordan M and Broderick T. Local
       exchangeability. Bernoulli. 10.3150/22-BEJ1533. 29:3.
       
       https://projecteuclid.org/journals/bernoulli/volume-29/issue-3/Local-exchangeability/10.3150/22-BEJ1533.full

 56.   Zhu H, Balsells-Rodas C and Li Y. Markovian Gaussian process variational
       autoencoders. Proceedings of the 40th International Conference on Machine
       Learning. (42938-42961).
       
       /doi/10.5555/3618408.3620218

 57.   Wu X, Dong X, Nguyen T and Luu A. Effective neural topic modeling with
       embedding clustering regularization. Proceedings of the 40th
       International Conference on Machine Learning. (37335-37357).
       
       /doi/10.5555/3618408.3619962

 58.   Zhang Y, Li G, Li X and Li D. (2023). Research on Juristic Sentiment
       Topic Model on Legal Texts 2023 IEEE 6th International Conference on
       Electronic Information and Communication Technology (ICEICT).
       10.1109/ICEICT57916.2023.10245033. 979-8-3503-9905-9. (622-627).
       
       https://ieeexplore.ieee.org/document/10245033/

 59.   Yoshida T, Hisano R, Ohnishi T and Srinivasan K. (2023). Gaussian
       hierarchical latent Dirichlet allocation: Bringing polysemy back. PLOS
       ONE. 10.1371/journal.pone.0288274. 18:7. (e0288274).
       
       https://dx.plos.org/10.1371/journal.pone.0288274

 60.   Nisch S. (2023). Public opinion about Finland joining NATO: analysing
       Twitter posts by performing natural language processing. Journal of
       Contemporary European Studies. 10.1080/14782804.2023.2235565. (1-19).
       
       https://www.tandfonline.com/doi/full/10.1080/14782804.2023.2235565

 61.   Hu C, Liang Q, Luo N and Lu S. (2023). Topic-Clustering Model with
       Temporal Distribution for Public Opinion Topic Analysis of Geospatial
       Social Media Data. ISPRS International Journal of Geo-Information.
       10.3390/ijgi12070274. 12:7. (274).
       
       https://www.mdpi.com/2220-9964/12/7/274

 62.   Yadav H and Sagar M. (2023). Exploring COVID-19 vaccine hesitancy and
       behavioral themes using social media big-data: a text mining approach.
       Kybernetes. 10.1108/K-06-2022-0810. 52:7. (2616-2648). Online publication
       date: 7-Jul-2023.
       
       https://www.emerald.com/insight/content/doi/10.1108/K-06-2022-0810/full/html

 63.   Wu R, Zhang L and Tony Cai T. (2022). Sparse Topic Modeling:
       Computational Efficiency, Near-Optimal Algorithms, and Statistical
       Inference. Journal of the American Statistical Association.
       10.1080/01621459.2021.2018329. 118:543. (1849-1861). Online publication
       date: 3-Jul-2023.
       
       https://www.tandfonline.com/doi/full/10.1080/01621459.2021.2018329

 64.   Pentucci M, Sarra A and Laici C. Feedback to align teacher and student in
       a Digital Learning Ecosystem. EDUCATION SCIENCES AND SOCIETY.
       10.3280/ess1-2023oa15761:1. (242-260).
       
       https://www.medra.org/servlet/MREngine?hdl=10.3280/ess1-2023oa15761

 65.   Xie Q, Ma W and Li X. (2023). Identifying Transformative Technologies on
       Emerging Stage: Monitoring Dynamic Evolution of Weak Signals 2023
       Portland International Conference on Management of Engineering and
       Technology (PICMET). 10.23919/PICMET59654.2023.10216901.
       978-1-890843-43-4. (1-9).
       
       https://ieeexplore.ieee.org/document/10216901/

 66.   Ennajari H, Bouguila N and Bentahar J. Combining Knowledge Graph and Word
       Embeddings for Spherical Topic Modeling. IEEE Transactions on Neural
       Networks and Learning Systems. 10.1109/TNNLS.2021.3112045. 34:7.
       (3609-3623).
       
       https://ieeexplore.ieee.org/document/9547420/

 67.   Tutubalina E and Nikolenko S. (2023). Topic Models with Sentiment Priors
       Based on Distributed Representations. Journal of Mathematical Sciences.
       10.1007/s10958-023-06525-8. 273:4. (639-652). Online publication date:
       1-Jul-2023.
       
       https://link.springer.com/10.1007/s10958-023-06525-8

 68.   Levis M, Levy J, Dufort V, Russ C and Shiner B. (2023). Dynamic suicide
       topic modelling: Deriving population‐specific, psychosocial and
       time‐sensitive suicide risk variables from Electronic Health Record
       psychotherapy notes. Clinical Psychology & Psychotherapy.
       10.1002/cpp.2842. 30:4. (795-810). Online publication date: 1-Jul-2023.
       
       https://onlinelibrary.wiley.com/doi/10.1002/cpp.2842

 69.   Griciūtė B, Han L and Nenadic G. (2023). Topic Modelling of Swedish
       Newspaper Articles about Coronavirus: a Case Study using Latent Dirichlet
       Allocation Method 2023 IEEE 11th International Conference on Healthcare
       Informatics (ICHI). 10.1109/ICHI57859.2023.00110. 979-8-3503-0263-9.
       (627-636).
       
       https://ieeexplore.ieee.org/document/10337151/

 70.   Reetesh Kumar Srivastava , Shalini Sharma and Dr. Piyush Pratap Singh .
       (2023). Exploring Latent Themes-Analysis of various Topic Modelling
       Algorithms. International Journal of Advanced Research in Science,
       Communication and Technology. 10.48175/IJARSCT-11635. (225-229).
       
       https://ijarsct.co.in/Paper11635.pdf

 71.   D’Uggento A, Biafora A, Manca F, Marin C and Bilancia M. (2022). A text
       data mining approach to the study of emotions triggered by new
       advertising formats during the COVID-19 pandemic. Quality & Quantity.
       10.1007/s11135-022-01460-3. 57:3. (2303-2325). Online publication date:
       1-Jun-2023.
       
       https://link.springer.com/10.1007/s11135-022-01460-3

 72.   Murshed B, Mallappa S, Abawajy J, Saif M, Al-ariki H and Abdulwahab H.
       (2022). Short text topic modelling approaches in the context of big data:
       taxonomy, survey, and analysis. Artificial Intelligence Review.
       10.1007/s10462-022-10254-w. 56:6. (5133-5260). Online publication date:
       1-Jun-2023.
       
       https://link.springer.com/10.1007/s10462-022-10254-w

 73.   Ranta M, Ylinen M and Järvenpää M. (2022). Machine Learning in Management
       Accounting Research: Literature Review and Pathways for the Future.
       European Accounting Review. 10.1080/09638180.2022.2137221. 32:3.
       (607-636). Online publication date: 27-May-2023.
       
       https://www.tandfonline.com/doi/full/10.1080/09638180.2022.2137221

 74.   Zhao R, Gui L, Yan H and He Y. (2023). Tracking Brand-Associated
       Polarity-Bearing Topics in User Reviews. Transactions of the Association
       for Computational Linguistics. 10.1162/tacl_a_00555. 11. (404-418).
       Online publication date: 9-May-2023.
       
       https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00555/115894/Tracking-Brand-Associated-Polarity-Bearing-Topics

 75.   Boussalis C, Dukalskis A and Gerschewski J. (2022). Why It Matters What
       Autocrats Say: Assessing Competing Theories of Propaganda. Problems of
       Post-Communism. 10.1080/10758216.2021.2012199. 70:3. (241-252). Online
       publication date: 4-May-2023.
       
       https://www.tandfonline.com/doi/full/10.1080/10758216.2021.2012199

 76.   Ferguson-Cradler G. (2021). Narrative and computational text analysis in
       business and economic history. Scandinavian Economic History Review.
       10.1080/03585522.2021.1984299. 71:2. (103-127). Online publication date:
       4-May-2023.
       
       https://www.tandfonline.com/doi/full/10.1080/03585522.2021.1984299

 77.   Malaterre C and Lareau F. (2023). The Emergence of Astrobiology: A
       Topic-Modeling Perspective. Astrobiology. 10.1089/ast.2022.0122. 23:5.
       (496-512). Online publication date: 1-May-2023.
       
       https://www.liebertpub.com/doi/10.1089/ast.2022.0122

 78.   Lou W and Meng J. (2023). The diversity of canonical and ubiquitous
       progress in computer vision. Information Processing and Management: an
       International Journal. 60:3. Online publication date: 1-May-2023.
       
       https://doi.org/10.1016/j.ipm.2022.103238

 79.   Churchill R and Singh L. (2023). Using topic-noise models to generate
       domain-specific topics across data sources. Knowledge and Information
       Systems. 10.1007/s10115-022-01805-2. 65:5. (2159-2186). Online
       publication date: 1-May-2023.
       
       https://link.springer.com/10.1007/s10115-022-01805-2

 80.   Mashina E. (2023). Creating intellectual support tools for recruiting
       procedures of innovative enterprise by using Natural language processing
       methods. Vestnik of Astrakhan State Technical University. Series:
       Management, computer science and informatics.
       10.24143/2072-9502-2023-2-125-134. 2023:2. (125-134). Online publication
       date: 28-Apr-2023.
       
       http://vestnik.astu.org/en/nauka/article/64126/view

 81.   An W, Wang L and Zhang D. (2023). Comprehensive commodity price
       forecasting framework using text mining methods. Journal of Forecasting.
       10.1002/for.2985.
       
       https://onlinelibrary.wiley.com/doi/10.1002/for.2985

 82.   Zelenkov Y and Solntsev I. (2023). Analysis of research dynamics in sport
       management using topic modelling. Managing Sport and Leisure.
       10.1080/23750472.2023.2200449. (1-22).
       
       https://www.tandfonline.com/doi/full/10.1080/23750472.2023.2200449

 83.   Srivamsi D, Deepak O, Praveena M and Christy A. (2023). Cosine Similarity
       Based Word2Vec Model for Biomedical Data Analysis 2023 7th International
       Conference on Trends in Electronics and Informatics (ICOEI).
       10.1109/ICOEI56765.2023.10125794. 979-8-3503-9728-4. (1400-1404).
       
       https://ieeexplore.ieee.org/document/10125794/

 84.   Машина Е and Балакшин П. (2023). METHODOLOGY FOR ASSESSING DIGITAL
       MATURITY OF INDUSTRIAL ECOSYSTEMS. Organizer of Production.
       10.36622/VSTU.2023.24.14.007:1(31). (85-101). Online publication date:
       3-Apr-2023.
       
       http://org-proizvodstva.ru/wp-content/uploads/2023/03/7-Машина-Балакшин-85-101.pdf

 85.   Chen Y, Peng Z, Kim S and Choi C. (2023). What We Can Do and Cannot Do
       with Topic Modeling: A Systematic Review. Communication Methods and
       Measures. 10.1080/19312458.2023.2167965. 17:2. (111-130). Online
       publication date: 3-Apr-2023.
       
       https://www.tandfonline.com/doi/full/10.1080/19312458.2023.2167965

 86.   Weston S, Shryock I, Light R and Fisher P. (2023). Selecting the Number
       and Labels of Topics in Topic Modeling: A Tutorial. Advances in Methods
       and Practices in Psychological Science. 10.1177/25152459231160105. 6:2.
       (251524592311601). Online publication date: 1-Apr-2023.
       
       http://journals.sagepub.com/doi/10.1177/25152459231160105

 87.   Bach T, Anh N, Van Linh N and Than K. Dynamic Transformation of Prior
       Knowledge Into Bayesian Models for Data Streams. IEEE Transactions on
       Knowledge and Data Engineering. 10.1109/TKDE.2021.3139469. 35:4.
       (3742-3750).
       
       https://ieeexplore.ieee.org/document/9667285/

 88.   Cogo F, Xia X and Hassan A. (2023). Assessing the Alignment between the
       Information Needs of Developers and the Documentation of Programming
       Languages: A Case Study on Rust. ACM Transactions on Software Engineering
       and Methodology. 32:2. (1-48). Online publication date: 31-Mar-2023.
       
       https://doi.org/10.1145/3546945

 89.   Mankala S, Durai A, Padiyar A, Gkountouna O and Mahabir R. (2023).
       Understanding public discourse surrounding the impact of bitcoin on the
       environment in social media. GeoJournal. 10.1007/s10708-023-10856-z.
       88:4. (4243-4267).
       
       https://link.springer.com/10.1007/s10708-023-10856-z

 90.   Amat-Lefort N, Barravecchia F and Mastrogiacomo L. (2022). Quality 4.0:
       big data analytics to explore service quality attributes and their
       relation to user sentiment in Airbnb reviews. International Journal of
       Quality & Reliability Management. 10.1108/IJQRM-01-2022-0024. 40:4.
       (990-1008). Online publication date: 23-Mar-2023.
       
       https://www.emerald.com/insight/content/doi/10.1108/IJQRM-01-2022-0024/full/html

 91.   Asatani K, Oki S, Momma T and Sakata I. (2023). Quantifying progress in
       research topics across nations. Scientific Reports.
       10.1038/s41598-023-31452-8. 13:1.
       
       https://www.nature.com/articles/s41598-023-31452-8

 92.   Uchiyama T and Hokimoto T. (2023). Analysis of Solution Diversity in
       Topic Models for Smart City Applications. Sustainable Smart Cities - A
       Vision for Tomorrow. 10.5772/intechopen.106009.
       
       https://www.intechopen.com/chapters/82818

 93.   Yang Y and Deng K. Generalized theme dictionary models for association
       pattern discovery. The Annals of Applied Statistics. 10.1214/22-AOAS1626.
       17:1.
       
       https://projecteuclid.org/journals/annals-of-applied-statistics/volume-17/issue-1/Generalized-theme-dictionary-models-for-association-pattern-discovery/10.1214/22-AOAS1626.full

 94.   Taher Harikandeh S, Aliakbary S and Taheri S. (2023). An embedding
       approach for analyzing the evolution of research topics with a case study
       on computer science subdomains. Scientometrics.
       10.1007/s11192-023-04642-4. 128:3. (1567-1582). Online publication date:
       1-Mar-2023.
       
       https://link.springer.com/10.1007/s11192-023-04642-4

 95.   Nguyen V and Ho T. (2023). Analysing online customer experience in hotel
       sector using dynamic topic modelling and net promoter score. Journal of
       Hospitality and Tourism Technology. 10.1108/JHTT-04-2021-0116. 14:2.
       (258-277). Online publication date: 17-Feb-2023.
       
       https://www.emerald.com/insight/content/doi/10.1108/JHTT-04-2021-0116/full/html

 96.   Wu X, Dong X, Nguyen T, Liu C, Pan L and Luu A. InfoCTM. Proceedings of
       the Thirty-Seventh AAAI Conference on Artificial Intelligence and
       Thirty-Fifth Conference on Innovative Applications of Artificial
       Intelligence and Thirteenth Symposium on Educational Advances in
       Artificial Intelligence. (13763-13771).
       
       https://doi.org/10.1609/aaai.v37i11.26612

 97.   Cvejoski K, Sánchez R and Ojeda C. Neural dynamic focused topic model.
       Proceedings of the Thirty-Seventh AAAI Conference on Artificial
       Intelligence and Thirty-Fifth Conference on Innovative Applications of
       Artificial Intelligence and Thirteenth Symposium on Educational Advances
       in Artificial Intelligence. (12719-12727).
       
       https://doi.org/10.1609/aaai.v37i11.26496

 98.   Roh M, Choi Y and Park H. (2023). Analysis of Issues in Fitness Centers
       through News Articles before and after the COVID-19 Pandemic in South
       Korea: Applying Big Data Analysis. Sustainability. 10.3390/su15032660.
       15:3. (2660).
       
       https://www.mdpi.com/2071-1050/15/3/2660

 99.   Abdelrazek A, Eid Y, Gawish E, Medhat W and Hassan A. (2023). Topic
       modeling algorithms and applications. Information Systems. 112:C. Online
       publication date: 1-Feb-2023.
       
       https://doi.org/10.1016/j.is.2022.102131

 100.  Ma J, Wang L, Zhang Y, Yuan W and Guo W. (2023). An integrated latent
       Dirichlet allocation and Word2vec method for generating the topic
       evolution of mental models from global to local. Expert Systems with
       Applications: An International Journal. 212:C. Online publication date:
       1-Feb-2023.
       
       https://doi.org/10.1016/j.eswa.2022.118695

 101.  Yin W and Fan H. (2023). Perception changes and the attribution of the
       impact of Lancang-Mekong hydropower dams in the media of riparian
       countries from 1971 to 2020. Journal of Hydrology: Regional Studies.
       10.1016/j.ejrh.2022.101302. 45. (101302). Online publication date:
       1-Feb-2023.
       
       https://linkinghub.elsevier.com/retrieve/pii/S2214581822003159

 102.  Shimizu G, Izbicki R and Valle D. (2023). A new LDA formulation with
       covariates. Communications in Statistics - Simulation and Computation.
       10.1080/03610918.2023.2171059. (1-18).
       
       https://www.tandfonline.com/doi/full/10.1080/03610918.2023.2171059

 103.  Wang P, Zhang M, Wang Y and Yuan X. (2023). Sustainable Career
       Development of Chinese Generation Z (Post-00s) Attending and Graduating
       from University: Dynamic Topic Model Analysis Based on Microblogging.
       Sustainability. 10.3390/su15031754. 15:3. (1754).
       
       https://www.mdpi.com/2071-1050/15/3/1754

 104.  Saha A and Ganesan B. Short Text Clustering in Continuous Time Using
       Stacked Dirichlet-Hawkes Process with Inverse Cluster Frequency Prior.
       Proceedings of the 6th Joint International Conference on Data Science &
       Management of Data (10th ACM IKDD CODS and 28th COMAD). (118-122).
       
       https://doi.org/10.1145/3570991.3571059

 105.  Villamor Martin M, Kirsch D and Prieto-Nañez F. (2023). The promise of
       machine-learning- driven text analysis techniques for historical
       research: topic modeling and word embedding. Management & Organizational
       History. 10.1080/17449359.2023.2181184. 18:1. (81-96). Online publication
       date: 2-Jan-2023.
       
       https://www.tandfonline.com/doi/full/10.1080/17449359.2023.2181184

 106.  Ru Z, Liu J, Miosz K, Liao X and Li X. (2023). An Interpretable
       Preference Learning Model Admitting Dynamic and Context-Dependent
       Preferences. SSRN Electronic Journal. 10.2139/ssrn.4606645.
       
       https://www.ssrn.com/abstract=4606645

 107.  Próchniak J, Płoska R, Komorowska O and Raca K. (2023). Sustainability
       communication on Twitter: disability disclosures of listed companies in
       Poland. Journal of Modern Science. 10.13166/jms/175990. 53:4. (419-436).
       
       https://www.jomswsge.com/Sustainability-communication-on-Twitter-disability-disclosures-of-listed-companies,175990,0,2.html

 108.  Stich C, Tranos E and Nathan M. (2022). Modeling clusters from the ground
       up: A web data approach. Environment and Planning B: Urban Analytics and
       City Science. 10.1177/23998083221108185. 50:1. (244-267). Online
       publication date: 1-Jan-2023.
       
       http://journals.sagepub.com/doi/10.1177/23998083221108185

 109.  Miner A, Stewart S, Halley M, Nelson L and Linos E. (2023). Formally
       comparing topic models and human-generated qualitative coding of
       physician mothers’ experiences of workplace discrimination. Big Data &
       Society. 10.1177/20539517221149106. 10:1. (205395172211491). Online
       publication date: 1-Jan-2023.
       
       http://journals.sagepub.com/doi/10.1177/20539517221149106

 110.  An Y, Kim D, Lee J, Oh H, Lee J and Jeong D. Topic Modeling-Based
       Framework for Extracting Marketing Information From E-Commerce Reviews.
       IEEE Access. 10.1109/ACCESS.2023.3337808. 11. (135049-135060).
       
       https://ieeexplore.ieee.org/document/10335184/

 111.  Jung H, Lee H and Kim J. Unveiling Cryptocurrency Conversations: Insights
       From Data Mining and Unsupervised Learning Across Multiple Platforms.
       IEEE Access. 10.1109/ACCESS.2023.3334617. 11. (130573-130583).
       
       https://ieeexplore.ieee.org/document/10323327/

 112.  Khan Z, Xia Y, Ali S, Khan J, Askar S, Abouhawwash M and El-Rashidy N.
       Identifying Hot Topic Trends in Streaming Text Data Using News Sequential
       Evolution Model Based on Distributed Representations. IEEE Access.
       10.1109/ACCESS.2023.3312764. 11. (98787-98804).
       
       https://ieeexplore.ieee.org/document/10243000/

 113.  Encinas Quille R, Barros J, Júnior M, De Almeida F and Corrêa P.
       Detecting Favorite Topics in Computing Scientific Literature via Dynamic
       Topic Modeling. IEEE Access. 10.1109/ACCESS.2023.3269660. 11.
       (41535-41545).
       
       https://ieeexplore.ieee.org/document/10107367/

 114.  A. A, Robledo S and Zuluaga M. Topic Modeling: Perspectives From a
       Literature Review. IEEE Access. 10.1109/ACCESS.2022.3232939. 11.
       (4066-4078).
       
       https://ieeexplore.ieee.org/document/10002352/

 115.  Chi Y and Liu Y. (2023). Research on Fintech Public Opinion Situation and
       Risk Identification Based on DTM. Procedia Computer Science. 221:C.
       (1178-1186). Online publication date: 1-Jan-2023.
       
       https://doi.org/10.1016/j.procs.2023.08.104

 116.  Avasthi S, Chauhan R and Acharjya D. (2022). Extracting information and
       inferences from a large text corpus. International Journal of Information
       Technology. 10.1007/s41870-022-01123-4. 15:1. (435-445). Online
       publication date: 1-Jan-2023.
       
       https://link.springer.com/10.1007/s41870-022-01123-4

 117.  Jee S and Sohn S. (2022). Firms’ influence on the evolution of published
       knowledge when a science-related technology emerges: the case of
       artificial intelligence. Journal of Evolutionary Economics.
       10.1007/s00191-022-00804-4. 33:1. (209-247). Online publication date:
       1-Jan-2023.
       
       https://link.springer.com/10.1007/s00191-022-00804-4

 118.  Jiang D, Zhang C and Song Y. (2023). Topic Models. Probabilistic Topic
       Models. 10.1007/978-981-99-2431-8_2. (27-46).
       
       https://link.springer.com/10.1007/978-981-99-2431-8_2

 119.  Lei H, Liu K and Chen Y. (2023). Exclusive Topic Model. Research Papers
       in Statistical Inference for Time Series and Related Models.
       10.1007/978-981-99-0803-5_3. (83-109).
       
       https://link.springer.com/10.1007/978-981-99-0803-5_3

 120.  Soni A, Rasool A, Dubey A and Khare N. (2023). Visualizing Commenters
       Opinions Through Topic Analysis. ICT Analysis and Applications.
       10.1007/978-981-19-5224-1_27. (249-257).
       
       https://link.springer.com/10.1007/978-981-19-5224-1_27

 121.  Papilloud C and Schultze E. (2023). Die Nanomedizin in den Leitmedien der
       Presse. Translation in der Nanomedizin. 10.1007/978-3-658-39836-1_1.
       (1-52).
       
       https://link.springer.com/10.1007/978-3-658-39836-1_1

 122.  Hung L, Tang M and Lin S. (2023). Using Co-word Network Community
       Detection and LDA Topic Modeling to Extract Topics in TED Talks. HCI in
       Business, Government and Organizations. 10.1007/978-3-031-36049-7_11.
       (140-154).
       
       https://link.springer.com/10.1007/978-3-031-36049-7_11

 123.  Geller M, Vasconcelos V and Pinheiro F. (2023). Toxicity in Evolving
       Twitter Topics. Computational Science – ICCS 2023.
       10.1007/978-3-031-36027-5_4. (40-54).
       
       https://link.springer.com/10.1007/978-3-031-36027-5_4

 124.  Poux-Médard G, Velcin J and Loudcher S. (2023). Dirichlet-Survival
       Process: Scalable Inference of Topic-Dependent Diffusion Networks.
       Advances in Information Retrieval. 10.1007/978-3-031-28238-6_47.
       (562-570).
       
       https://link.springer.com/10.1007/978-3-031-28238-6_47

 125.  Poux-Médard G, Velcin J and Loudcher S. (2023). Multivariate Powered
       Dirichlet-Hawkes Process. Advances in Information Retrieval.
       10.1007/978-3-031-28238-6_4. (47-61).
       
       https://link.springer.com/10.1007/978-3-031-28238-6_4

 126.  Ohsawa Y, Kondo S and Hayashi T. (2023). Living Beyond Data with Feature
       Concepts. Living Beyond Data. 10.1007/978-3-031-11593-6_1. (3-27).
       
       https://link.springer.com/10.1007/978-3-031-11593-6_1

 127.  Kant G, Weisser C, Kneib T and Säfken B. (2023). Topic Model—Machine
       Learning Classifier Integrations on Geocoded Twitter Data. Biomedical and
       Other Applications of Soft Computing. 10.1007/978-3-031-08580-2_11.
       (105-120).
       
       https://link.springer.com/10.1007/978-3-031-08580-2_11

 128.  Jung S and Segev A. (2022). Identifying a common pattern within ancestors
       of emerging topics for pan-domain topic emergence prediction.
       Knowledge-Based Systems. 258:C. Online publication date: 22-Dec-2022.
       
       https://doi.org/10.1016/j.knosys.2022.110020

 129.  Mueller H and Rauh C. (2022). The Hard Problem of Prediction for Conflict
       Prevention. Journal of the European Economic Association.
       10.1093/jeea/jvac025. 20:6. (2440-2467). Online publication date:
       21-Dec-2022.
       
       https://academic.oup.com/jeea/article/20/6/2440/6574413

 130.  Reyad I, Rashad M and Abdelfatah M. (2022). A Comparative Study of Topic
       Modeling Methods for Document Retrieval 2022 32nd International
       Conference on Computer Theory and Applications (ICCTA).
       10.1109/ICCTA58027.2022.10206075. 979-8-3503-2019-0. (74-79).
       
       https://ieeexplore.ieee.org/document/10206075/

 131.  Jung S and Segev A. (2022). Optimizing the Descendant-Aware Clustering
       Parameters 2022 IEEE International Conference on Big Data (Big Data).
       10.1109/BigData55660.2022.10020332. 978-1-6654-8045-1. (3675-3683).
       
       https://ieeexplore.ieee.org/document/10020332/

 132.  Jung S and Segev A. (2022). Semantic Similarity Analysis between Future
       Topics and Their Neighbors in Topic Networks for Network-based Topic
       Evolution 2022 IEEE International Conference on Big Data (Big Data).
       10.1109/BigData55660.2022.10020287. 978-1-6654-8045-1. (5952-5961).
       
       https://ieeexplore.ieee.org/document/10020287/

 133.  Lidan Z. (2022). Topic Modeling Based on Attributed Graph 2022 19th
       International Computer Conference on Wavelet Active Media Technology and
       Information Processing (ICCWAMTIP). 10.1109/ICCWAMTIP56608.2022.10016527.
       978-1-6654-9387-1. (1-4).
       
       https://ieeexplore.ieee.org/document/10016527/

 134.  Ramachandran K, Perez-Mendoza A, Joshi K, Parikh S, Saini D and Gonzáles
       J. (2022). Deep Learning-based Topic-level Examination of Social Media
       2022 5th International Conference on Contemporary Computing and
       Informatics (IC3I). 10.1109/IC3I56241.2022.10073324. 979-8-3503-9826-7.
       (1684-1687).
       
       https://ieeexplore.ieee.org/document/10073324/

 135.  Xu W, Tshimula J, Dubé È, Graham J, Greyson D, MacDonald N and Meyer S.
       (2022). Unmasking the Twitter Discourses on Masks During the COVID-19
       Pandemic: User Cluster–Based BERT Topic Modeling Approach. JMIR
       Infodemiology. 10.2196/41198. 2:2. (e41198).
       
       https://infodemiology.jmir.org/2022/2/e41198

 136.  Chen K, Babaeianjelodar M, Shi Y, Aanegola R, Cheung L, Nakov P, Yadav S,
       Bancroft A, KhudaBukhsh A, De Choudhury M, Altice F and Kumar N. US News
       and Social Media Framing Around Vaping. Computational Data and Social
       Networks . (188-199).
       
       https://doi.org/10.1007/978-3-031-26303-3_17

 137.  Kumar J, Din S, Yang Q, Kumar R and Shao J. An Online Semantic-Enhanced
       Graphical Model for Evolving Short Text Stream Clustering. IEEE
       Transactions on Cybernetics. 10.1109/TCYB.2021.3108897. 52:12.
       (13809-13820).
       
       https://ieeexplore.ieee.org/document/9555489/

 138.  Zhu X, Wang Y, Kochupillai M, Werner M, Haberle M, Hoffmann E, Taubenbock
       H, Tuia D, Levering A, Jacobs N, Kruspe A and Abdulahhad K.
       Geoinformation Harvesting From Social Media Data: A community remote
       sensing approach. IEEE Geoscience and Remote Sensing Magazine.
       10.1109/MGRS.2022.3219584. 10:4. (150-180).
       
       https://ieeexplore.ieee.org/document/10049246/

 139.  Stracqualursi L and Agati P. (2022). Tweet topics and sentiments relating
       to distance learning among Italian Twitter users. Scientific Reports.
       10.1038/s41598-022-12915-w. 12:1. Online publication date: 1-Dec-2022.
       
       https://www.nature.com/articles/s41598-022-12915-w

 140.  Bashar M, Nayak R and Balasubramaniam T. (2022). Deep learning based
       topic and sentiment analysis: COVID19 information seeking on social
       media. Social Network Analysis and Mining. 10.1007/s13278-022-00917-5.
       12:1. Online publication date: 1-Dec-2022.
       
       https://link.springer.com/10.1007/s13278-022-00917-5

 141.  Sun M, Zhao X, Lin J, Jing J, Wang D and Jia G. (2022). PSLDA: a novel
       supervised pseudo document-based topic model for short texts. Frontiers
       of Computer Science. 10.1007/s11704-021-0606-3. 16:6. Online publication
       date: 1-Dec-2022.
       
       https://link.springer.com/10.1007/s11704-021-0606-3

 142.  Chauhan R, Acharjya D and Avasthi S. (2022). Topic Modeling Techniques
       for Text Mining Over a Large-Scale Scientific and Biomedical Text Corpus.
       International Journal of Ambient Computing and Intelligence. 13:1.
       (1-18). Online publication date: 23-Nov-2022.
       
       https://doi.org/10.4018/IJACI.293137

 143.  Stracqualursi L, Agati P and Sasahara K. (2022). Covid-19 vaccines in
       Italian public opinion: Identifying key issues using Twitter and Natural
       Language Processing. PLOS ONE. 10.1371/journal.pone.0277394. 17:11.
       (e0277394).
       
       https://dx.plos.org/10.1371/journal.pone.0277394

 144.  Diaf S and Fritsche U. (2022). Topic Scaling: A Joint Document
       Scaling–Topic Model Approach to Learn Time-Specific Topics. Algorithms.
       10.3390/a15110430. 15:11. (430).
       
       https://www.mdpi.com/1999-4893/15/11/430

 145.  Nobles M, Lall R, Mathes R and Neill D. (2022). Presyndromic surveillance
       for improved detection of emerging public health threats. Science
       Advances. 10.1126/sciadv.abm4920. 8:44. Online publication date:
       4-Nov-2022.
       
       https://www.science.org/doi/10.1126/sciadv.abm4920

 146.  Zafar S and Nicholls G. (2022). Measuring diachronic sense change:
       New models and Monte Carlo methods for Bayesian inference. Journal of the
       Royal Statistical Society: Series C (Applied Statistics).
       10.1111/rssc.12591. 71:5. (1569-1604). Online publication date:
       1-Nov-2022.
       
       https://onlinelibrary.wiley.com/doi/10.1111/rssc.12591

 147.  Singh R and Nakamura E. (2022). Dynamic cluster structure and predictive
       modelling of music creation style distributions. Royal Society Open
       Science. 10.1098/rsos.220516. 9:11. Online publication date: 1-Nov-2022.
       
       https://royalsocietypublishing.org/doi/10.1098/rsos.220516

 148.  Rahman M, Frame J, Lin J and Nearing G. (2022). Hydrology research
       articles are becoming more topically diverse. Journal of Hydrology.
       10.1016/j.jhydrol.2022.128551. 614. (128551). Online publication date:
       1-Nov-2022.
       
       https://linkinghub.elsevier.com/retrieve/pii/S0022169422011210

 149.  Poux-Médard G, Velcin J and Loudcher S. (2022). Powered Dirichlet–Hawkes
       process: challenging textual clustering using a flexible temporal prior.
       Knowledge and Information Systems. 10.1007/s10115-022-01731-3. 64:11.
       (2921-2944). Online publication date: 1-Nov-2022.
       
       https://link.springer.com/10.1007/s10115-022-01731-3

 150.  Li K, Guo B, Liu J, Wang J, Ren H, Yi F and Yu Z. (2022). Dynamic
       Probabilistic Graphical Model for Progressive Fake News Detection on
       Social Media Platform. ACM Transactions on Intelligent Systems and
       Technology. 13:5. (1-24). Online publication date: 31-Oct-2022.
       
       https://doi.org/10.1145/3523060

 151.  Shen A and Chow K. (2022). Entity-Based Integration Framework on Social
       Unrest Event Detection in Social Media. Electronics.
       10.3390/electronics11203416. 11:20. (3416).
       
       https://www.mdpi.com/2079-9292/11/20/3416

 152.  Beldi A, Sassi S and Jemai A. Learn2Sum. Proceedings of the 14th
       International Conference on Management of Digital EcoSystems. (136-143).
       
       https://doi.org/10.1145/3508397.3564853

 153.  Cheng L, Foster J and Lee H. (2022). A Simple, interpretable method to
       identify surprising topic shifts in scientific fields. Frontiers in
       Research Metrics and Analytics. 10.3389/frma.2022.1001754. 7.
       
       https://www.frontiersin.org/articles/10.3389/frma.2022.1001754/full

 154.  Ji R and Han Q. (2022). Understanding heterogeneity of investor sentiment
       on social media: A structural topic modeling approach. Frontiers in
       Artificial Intelligence. 10.3389/frai.2022.884699. 5.
       
       https://www.frontiersin.org/articles/10.3389/frai.2022.884699/full

 155.  Browne I, Bernau J, Tatum K and Jieyu J. (2021). Immigration Coverage in
       the Black Press and the General Audience Press: What Can Mixed Methods
       Reveal about Race and Immigration?. The Sociological Quarterly.
       10.1080/00380253.2021.1947757. 63:4. (688-710). Online publication date:
       2-Oct-2022.
       
       https://www.tandfonline.com/doi/full/10.1080/00380253.2021.1947757

 156.  Chen X, Huang K and Jiang H. Detecting Changes in the Spatiotemporal
       Pattern of Bike Sharing: A Change-Point Topic Model. IEEE Transactions on
       Intelligent Transportation Systems. 10.1109/TITS.2022.3161623. 23:10.
       (18361-18377).
       
       https://ieeexplore.ieee.org/document/9782132/

 157.  Li X, Bai Y and Kang Y. (2022). Exploring the social influence of the
       Kaggle virtual community on the M5 competition. International Journal of
       Forecasting. 10.1016/j.ijforecast.2021.10.001. 38:4. (1507-1518). Online
       publication date: 1-Oct-2022.
       
       https://linkinghub.elsevier.com/retrieve/pii/S0169207021001643

 158.  Kim Y. (2022). A topic modeling analysis of domestic research on
       information and communication in North Korea. Journal of Digital Contents
       Society. 10.9728/dcs.2022.23.9.1833. 23:9. (1833-1846). Online
       publication date: 30-Sep-2022.
       
       http://journal.dcs.or.kr/_common/do.php?a=current&b=11&bidx=3071&aidx=34277

 159.  Chauhan U and Shah A. (2021). Topic Modeling Using Latent Dirichlet
       allocation. ACM Computing Surveys. 54:7. (1-35). Online publication date:
       30-Sep-2022.
       
       https://doi.org/10.1145/3462478

 160.  Armaselu F, Apostol E, Khan A, Liebeskind C, McGillivray B, Truică C,
       Utka A, Valūnaitė Oleškevičienė G, van Erp M, Cimiano P, Bosque-Gil J,
       Cimiano P and Dojchinovski M. LL(O)D and NLP perspectives on semantic
       change for humanities research. Semantic Web. 10.3233/SW-222848. 13:6.
       (1051-1080).
       
       https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/SW-222848

 161.  Singh R, Nagpal S, Pinna N and Mande S. (2022). Tracking mutational
       semantics of SARS-CoV-2 genomes. Scientific Reports.
       10.1038/s41598-022-20000-5. 12:1.
       
       https://www.nature.com/articles/s41598-022-20000-5

 162.  Marshall P. (2021). Contribution of open-ended questions in student
       evaluation of teaching. Higher Education Research & Development.
       10.1080/07294360.2021.1967887. 41:6. (1992-2005). Online publication
       date: 19-Sep-2022.
       
       https://www.tandfonline.com/doi/full/10.1080/07294360.2021.1967887

 163.  Desikan B and Evans J. Misalignment Between Skills Discovered,
       Disseminated, and Deployed in the Knowledge Economy. Journal of Social
       Computing. 10.23919/JSC.2022.0013. 3:3. (191-205).
       
       https://ieeexplore.ieee.org/document/9964053/

 164.  Cintron D and Montrosse-Moorhead B. (2021). Integrating Big Data Into
       Evaluation: R Code for Topic Identification and Modeling. American
       Journal of Evaluation. 10.1177/10982140211031640. 43:3. (412-436). Online
       publication date: 1-Sep-2022.
       
       http://journals.sagepub.com/doi/10.1177/10982140211031640

 165.  Oliveira P, Guerreiro J and Rita P. (2022). Neuroscience research in
       consumer behavior: A review and future research agenda. International
       Journal of Consumer Studies. 10.1111/ijcs.12800. 46:5. (2041-2067).
       Online publication date: 1-Sep-2022.
       
       https://onlinelibrary.wiley.com/doi/10.1111/ijcs.12800

 166.  Wang J and Weiss R. (2022). Local and global topics in text modeling of
       web pages nested in web sites. Computational Statistics & Data Analysis.
       173:C. Online publication date: 1-Sep-2022.
       
       https://doi.org/10.1016/j.csda.2022.107518

 167.  Huang L, Chen X, Zhang Y, Wang C, Cao X and Liu J. (2022). Identification
       of topic evolution: network analytics with piecewise linear
       representation and word embedding. Scientometrics. 127:9. (5353-5383).
       Online publication date: 1-Sep-2022.
       
       https://doi.org/10.1007/s11192-022-04273-1

 168.  Kashmola R and Al-Talib G. (2022). A Survey Study on Extracting Trending
       Topics from Textual Data 2022 8th International Conference on
       Contemporary Information Technology and Mathematics (ICCITM).
       10.1109/ICCITM56309.2022.10031932. 979-8-3503-3486-9. (192-196).
       
       https://ieeexplore.ieee.org/document/10031932/

 169.  Feng J, Miao J, Tang Y, Li Y and Feng J. (2022). The Performance of Topic
       Evolution Based on a Feature Maximization Measurement for the Linguistics
       Domain. Axioms. 10.3390/axioms11080412. 11:8. (412).
       
       https://www.mdpi.com/2075-1680/11/8/412

 170.  Song Z, Hu Y, Verma A, Buckeridge D and Li Y. Automatic Phenotyping by a
       Seed-guided Topic Model. Proceedings of the 28th ACM SIGKDD Conference on
       Knowledge Discovery and Data Mining. (4713-4723).
       
       https://doi.org/10.1145/3534678.3542675

 171.  Chen Y, Zhang Z and Wang T. (2022). Dire Straits: How tourists on the
       Diamond Princess cruise endured the COVID-19 crisis. Tourism Management.
       10.1016/j.tourman.2022.104503. 91. (104503). Online publication date:
       1-Aug-2022.
       
       https://linkinghub.elsevier.com/retrieve/pii/S0261517722000164

 172.  Costa G and Ortale R. (2022). Hierarchical Bayesian text modeling for the
       unsupervised joint analysis of latent topics and semantic clusters.
       International Journal of Approximate Reasoning.
       10.1016/j.ijar.2022.05.002. 147. (23-39). Online publication date:
       1-Aug-2022.
       
       https://linkinghub.elsevier.com/retrieve/pii/S0888613X22000652

 173.  Liu X, Jiang L, Zhang T and Huang T. (2022). Research on Hot Topic
       Recognition and Its Evolution Analysis Method Based on LDA. Journal of
       The Institution of Engineers (India): Series B.
       10.1007/s40031-022-00764-0. 103:4. (1383-1394). Online publication date:
       1-Aug-2022.
       
       https://link.springer.com/10.1007/s40031-022-00764-0

 174.  Kalamara E, Turrell A, Redl C, Kapetanios G and Kapadia S. (2022). Making
       text count: Economic forecasting using newspaper text. Journal of Applied
       Econometrics. 10.1002/jae.2907. 37:5. (896-919). Online publication date:
       1-Aug-2022.
       
       https://onlinelibrary.wiley.com/doi/10.1002/jae.2907

 175.  Choudhary R, Alsayed O, Doboli S and Minai A. (2022). Building Semantic
       Cognitive Maps with Text Embedding and Clustering 2022 International
       Joint Conference on Neural Networks (IJCNN).
       10.1109/IJCNN55064.2022.9892429. 978-1-7281-8671-9. (01-08).
       
       https://ieeexplore.ieee.org/document/9892429/

 176.  Mueller H and Rauh C. (2022). Using past violence and current news to
       predict changes in violence. International Interactions.
       10.1080/03050629.2022.2063853. 48:4. (579-596). Online publication date:
       4-Jul-2022.
       
       https://www.tandfonline.com/doi/full/10.1080/03050629.2022.2063853

 177.  Chen X, Zanocco C, Flora J and Rajagopal R. (2022). Constructing dynamic
       residential energy lifestyles using Latent Dirichlet Allocation. Applied
       Energy. 10.1016/j.apenergy.2022.119109. 318. (119109). Online publication
       date: 1-Jul-2022.
       
       https://linkinghub.elsevier.com/retrieve/pii/S0306261922004925

 178.  Zhu H, Qian L, Qin W, Wei J and Shen C. (2022). Evolution analysis of
       online topics based on ‘word-topic’ coupling network. Scientometrics.
       10.1007/s11192-022-04439-x. 127:7. (3767-3792). Online publication date:
       1-Jul-2022.
       
       https://link.springer.com/10.1007/s11192-022-04439-x

 179.  Sridhar D, Daumé H and Blei D. (2022). Heterogeneous Supervised Topic
       Models. Transactions of the Association for Computational Linguistics.
       10.1162/tacl_a_00487. 10. (732-745). Online publication date:
       17-Jun-2022.
       
       https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00487/111727/Heterogeneous-Supervised-Topic-Models

 180.  McInnes B, Downie J, Hao Y, Jett J, Keating K, Nakum G, Ranjan S,
       Rodriguez N, Tang J, Xiang D, Young E and Nguyen M. (2022). Discovering
       Content through Text Mining for a Synthetic Biology Knowledge System. ACS
       Synthetic Biology. 10.1021/acssynbio.1c00611. 11:6. (2043-2054). Online
       publication date: 17-Jun-2022.
       
       https://pubs.acs.org/doi/10.1021/acssynbio.1c00611

 181.  Wu J, Ward O, Curley J and Zheng T. Markov-modulated Hawkes processes for
       modeling sporadic and bursty event occurrences in social interactions.
       The Annals of Applied Statistics. 10.1214/21-AOAS1539. 16:2.
       
       https://projecteuclid.org/journals/annals-of-applied-statistics/volume-16/issue-2/Markov-modulated-Hawkes-processes-for-modeling-sporadic-and-bursty-event/10.1214/21-AOAS1539.full

 182.  Erni J and Zhang Y. (2022). Wild hopes: Sourcing the political vocabulary
       of digital citizenship from the LIHKG forum. International Communication
       Gazette. 10.1177/17480485221094123. 84:4. (349-375). Online publication
       date: 1-Jun-2022.
       
       http://journals.sagepub.com/doi/10.1177/17480485221094123

 183.  Chan N, Kim J and Leung V. (2021). COVID-19 and Asian Americans: How
       Elite Messaging and Social Exclusion Shape Partisan Attitudes.
       Perspectives on Politics. 10.1017/S1537592721003091. 20:2. (618-634).
       Online publication date: 1-Jun-2022.
       
       https://www.cambridge.org/core/product/identifier/S1537592721003091/type/journal_article

 184.  Levy D, Mayer T and Raviv A. (2022). Economists in the 2008 financial
       crisis: Slow to see, fast to act. Journal of Financial Stability.
       10.1016/j.jfs.2022.100986. 60. (100986). Online publication date:
       1-Jun-2022.
       
       https://linkinghub.elsevier.com/retrieve/pii/S1572308922000158

 185.  Goyal A and Kashyap I. (2022). Latent Dirichlet Allocation - An approach
       for topic discovery 2022 International Conference on Machine Learning,
       Big Data, Cloud and Parallel Computing (COM-IT-CON).
       10.1109/COM-IT-CON54601.2022.9850912. 978-1-6654-9602-5. (97-102).
       
       https://ieeexplore.ieee.org/document/9850912/

 186.  Jiang L, Zhang T and Huang T. (2022). Empirical Research of Hot Topic
       Recognition and its Evolution Path Method for Scientific and
       Technological Literature. Journal of Advanced Computational Intelligence
       and Intelligent Informatics. 10.20965/jaciii.2022.p0299. 26:3. (299-308).
       Online publication date: 20-May-2022.
       
       https://www.fujipress.jp/jaciii/jc/jacii002600030299

 187.  Churchill R and Singh L. Dynamic Topic-Noise Models for Social Media.
       Advances in Knowledge Discovery and Data Mining. (429-443).
       
       https://doi.org/10.1007/978-3-031-05936-0_34

 188.  Bernau J. (2022). The Institutionalization of Kübler-Ross’s Five-Stage
       Model of Death and Dying. OMEGA - Journal of Death and Dying.
       10.1177/00302228221098893. (003022282210988).
       
       http://journals.sagepub.com/doi/10.1177/00302228221098893

 189.  Zhang J, Fan Y, Zhang J and Bai B. Learning to Build Accurate Service
       Representations and Visualization. IEEE Transactions on Services
       Computing. 10.1109/TSC.2020.3001307. 15:3. (1551-1563).
       
       https://ieeexplore.ieee.org/document/9113339/

 190.  Rahimi M, Zahedi M and Mashayekhi H. (2022). A probabilistic topic model
       based on short distance Co-occurrences. Expert Systems with Applications:
       An International Journal. 193:C. Online publication date: 1-May-2022.
       
       https://doi.org/10.1016/j.eswa.2022.116518

 191.  Foltas A. (2022). Testing Investment Forecast Efficiency with Forecasting
       Narratives. Jahrbücher für Nationalökonomie und Statistik.
       10.1515/jbnst-2020-0027. 242:2. (191-222). Online publication date:
       26-Apr-2022.. Online publication date: 1-Apr-2022.
       
       https://www.degruyter.com/document/doi/10.1515/jbnst-2020-0027/html

 192.  Gourru A, Velcin J, Gravier C and Jacques J. Dynamic Gaussian Embedding
       of Authors. Proceedings of the ACM Web Conference 2022. (2109-2119).
       
       https://doi.org/10.1145/3485447.3512084

 193.  Vasudeva Raju S, Kumar Bolla B, Nayak D and Kh J. (2022). Topic Modelling
       on Consumer Financial Protection Bureau Data: An Approach Using BERT
       Based Embeddings 2022 IEEE 7th International conference for Convergence
       in Technology (I2CT). 10.1109/I2CT54291.2022.9824873. 978-1-6654-2168-3.
       (1-6).
       
       https://ieeexplore.ieee.org/document/9824873/

 194.  Huang X, Hou H and Sun M. (2022). A novel temporal recommendation method
       based on user query topic evolution. Knowledge-Based Systems. 241:C.
       Online publication date: 6-Apr-2022.
       
       https://doi.org/10.1016/j.knosys.2022.108239

 195.  Lind F, Eberl J, Eisele O, Heidenreich T, Galyga S and Boomgaarden H.
       (2021). Building the Bridge: Topic Modeling for Comparative Research.
       Communication Methods and Measures. 10.1080/19312458.2021.1965973. 16:2.
       (96-114). Online publication date: 3-Apr-2022.
       
       https://www.tandfonline.com/doi/full/10.1080/19312458.2021.1965973

 196.  Meaney C, Escobar M, Moineddin R, Stukel T, Kalia S, Aliarzadeh B, Chen
       T, O'Neill B and Greiver M. (2022). Non-negative matrix factorization
       temporal topic models and clinical text data identify COVID-19 pandemic
       effects on primary healthcare and community health in Toronto, Canada.
       Journal of Biomedical Informatics. 128:C. Online publication date:
       1-Apr-2022.
       
       https://doi.org/10.1016/j.jbi.2022.104034

 197.  Roh M. (2022). Analysis of Research Trends in The Journal of Korean
       Association of Physical Education and Sport for Girls and Women Using
       Topic Modeling. Journal of Korean Association of Physical Education and
       Sport for Girls and Women. 10.16915/jkapesgw.2022.3.36.1.73. 36:1.
       (73-91). Online publication date: 31-Mar-2022.
       
       http://www.dbpia.co.kr/Journal/ArticleDetail/NODE11048999

 198.  Zheng J and Qiang M. (2022). UNDERSTANDING THE CHANGES IN CONSTRUCTION
       PROJECT MANAGERS’ COMPETENCES THROUGH RESUME DATA MINING. JOURNAL OF
       CIVIL ENGINEERING AND MANAGEMENT. 10.3846/jcem.2022.16579. 28:4.
       (305-319). Online publication date: 24-Mar-2022.
       
       https://journals.vilniustech.lt/index.php/JCEM/article/view/16579

 199.  Hodges D and Paxton-Fear K. (2021). An analysis of the writing of
       ‘suicide cult’ members. Digital Scholarship in the Humanities.
       10.1093/llc/fqab051. 37:1. (137-151). Online publication date:
       23-Mar-2022.
       
       https://academic.oup.com/dsh/article/37/1/137/6291823

 200.  Zhang Z. (2022). Dynamic Topic Model for Short Texts about Hot Issues on
       Microblog Based on TFIDF 2022 4th International Conference on Natural
       Language Processing (ICNLP). 10.1109/ICNLP55136.2022.00092.
       978-1-6654-9544-8. (505-508).
       
       https://ieeexplore.ieee.org/document/9885860/

 201.  Ortu M, Vacca S, Destefanis G and Conversano C. (2022). Cryptocurrency
       ecosystems and social media environments: An empirical analysis through
       Hawkes’ models and natural language processing. Machine Learning with
       Applications. 10.1016/j.mlwa.2021.100229. 7. (100229). Online publication
       date: 1-Mar-2022.
       
       https://linkinghub.elsevier.com/retrieve/pii/S2666827021001158

 202.  Gao Q, Huang X, Dong K, Liang Z and Wu J. (2022). Semantic-enhanced topic
       evolution analysis: a combination of the dynamic topic model and
       word2vec. Scientometrics. 10.1007/s11192-022-04275-z. 127:3. (1543-1563).
       Online publication date: 1-Mar-2022.
       
       https://link.springer.com/10.1007/s11192-022-04275-z

 203.  He J, Kang J, Sun S, Cooper M, Zickgraf H and Zhai Y. (2022). The
       landscape of eating disorders research: A 40‐year bibliometric analysis.
       European Eating Disorders Review. 10.1002/erv.2884. 30:2. (96-109).
       Online publication date: 1-Mar-2022.
       
       https://onlinelibrary.wiley.com/doi/10.1002/erv.2884

 204.  Guo J, Cao L and Gong Z. (2021). Recurrent Coupled Topic Modeling over
       Sequential Documents. ACM Transactions on Knowledge Discovery from Data.
       16:1. (1-32). Online publication date: 28-Feb-2022.
       
       https://doi.org/10.1145/3451530

 205.  Guo Y and Li J. (2021). Distributed Latent Dirichlet Allocation on
       Streams. ACM Transactions on Knowledge Discovery from Data. 16:1. (1-20).
       Online publication date: 28-Feb-2022.
       
       https://doi.org/10.1145/3451528

 206.  Steuber F, Schneider S and Schoenfeld M. (2022). Embedding Semantic
       Anchors to Guide Topic Models on Short Text Corpora. Big Data Research.
       27:C. Online publication date: 28-Feb-2022.
       
       https://doi.org/10.1016/j.bdr.2021.100293

 207.  Noga-Hartmann E and Kotzinos D. (2022). Assessing Together the Trends in
       Newspaper Topics and User Opinions. Handbook of Research on Opinion
       Mining and Text Analytics on Literary Works and Social Media.
       10.4018/978-1-7998-9594-7.ch014. (348-370).
       
       https://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-7998-9594-7.ch014

 208.  Lyu Y, Yin M, Xi F and Hu X. (2022). Progress and Knowledge Transfer from
       Science to Technology in the Research Frontier of CRISPR Based on the LDA
       Model. Journal of Data and Information Science. 10.2478/jdis-2022-0004.
       7:1. (1-19). Online publication date: 1-Feb-2022.. Online publication
       date: 1-Feb-2022.
       
       https://www.sciendo.com/article/10.2478/jdis-2022-0004

 209.  Churchill R and Singh L. (2022). The Evolution of Topic Modeling. ACM
       Computing Surveys. 54:10s. (1-35). Online publication date: 31-Jan-2022.
       
       https://doi.org/10.1145/3507900

 210.  Han J and Cho K. (2020). Emerging industrial root technologies: a
       structural topic model- and topic matrix analysis-based approach. Asian
       Journal of Technology Innovation. 10.1080/19761597.2020.1836662. 30:1.
       (178-197). Online publication date: 2-Jan-2022.
       
       https://www.tandfonline.com/doi/full/10.1080/19761597.2020.1836662

 211.  Baden C, Pipal C, Schoonvelde M and van der Velden M. (2021). Three Gaps
       in Computational Text Analysis Methods for Social Sciences: A Research
       Agenda. Communication Methods and Measures.
       10.1080/19312458.2021.2015574. 16:1. (1-18). Online publication date:
       2-Jan-2022.
       
       https://www.tandfonline.com/doi/full/10.1080/19312458.2021.2015574

 212.  KATO K and KOBAYASHI H. (2022). Extraction of news topics in quality
       papers using topic models based on word
       embeddingsクオリティペーパーを対象とした分散表現に基づくトピック分析. Journal of Food System Research.
       10.5874/jfsr.21_00007. 28:4. (328-333).
       
       https://www.jstage.jst.go.jp/article/jfsr/28/4/28_7/_article/-char/ja/

 213.  Baklāne A and Saulespurēns V. (2022). The application of latent Dirichlet
       allocation for the analysis of latvian historical newspapers: Oskars
       Kalpaks’ case study. Science, technologies, innovation.
       10.35668/2520-6524-2022-1-05:1(21). (29-37).
       
       http://nti.ukrintei.ua/?page_id=4196&lang=en

 214.  Alam M, Buscaldi D, Cochez M, Osborne F, Recupero D, Sack H, Jung S,
       Segev A, Alam M, Buscaldi D, Cochez M, Osborne F, Refogiato Recupero D
       and Sack H. (2022). Analyzing the generalizability of the network-based
       topic emergence identification method. Semantic Web. 13:3. (423-439).
       Online publication date: 1-Jan-2022.
       
       https://doi.org/10.3233/SW-212951

 215.  Ferrario B and Stantcheva S. (2022). Eliciting People's First-Order
       Concerns: Text Analysis of Open-Ended Survey Questions. SSRN Electronic
       Journal. 10.2139/ssrn.4016105.
       
       https://www.ssrn.com/abstract=4016105

 216.  de Wildt T and Jine Schweizer V. Exploring value change. Prometheus.
       10.13169/prometheus.38.1.0025. 38:1.
       
       https://scienceopen.com/hosted-document?doi=10.13169/prometheus.38.1.0025

 217.  Vo D, Tran T, Shirai K and Huynh V. Deep Generative Networks Coupled With
       Evidential Reasoning for Dynamic User Preferences Using Short Texts. IEEE
       Transactions on Knowledge and Data Engineering.
       10.1109/TKDE.2022.3188497. (1-16).
       
       https://ieeexplore.ieee.org/document/9833343/

 218.  Murshed B, Abawajy J, Mallappa S, Saif M, Al-Ghuribi S and Ghanem F.
       Enhancing Big Social Media Data Quality for Use in Short-Text Topic
       Modeling. IEEE Access. 10.1109/ACCESS.2022.3211396. 10. (105328-105351).
       
       https://ieeexplore.ieee.org/document/9906976/

 219.  Cendrero J, Gonzalo J, Galletero M and Zapata I. Time Series Impact
       Through Topic Modeling. IEEE Access. 10.1109/ACCESS.2022.3202960. 10.
       (97327-97347).
       
       https://ieeexplore.ieee.org/document/9869829/

 220.  Ma R, Zhang Y, Chen J, Wen H and Zhao S. (2022). Patent research front
       mining of GaN semiconductor based on the LDA model. SHS Web of
       Conferences. 10.1051/shsconf/202214001019. 140. (01019).
       
       https://www.shs-conferences.org/10.1051/shsconf/202214001019

 221.  Rouhani S and Mozaffari F. (2022). Sentiment analysis researches story
       narrated by topic modeling approach. Social Sciences & Humanities Open.
       10.1016/j.ssaho.2022.100309. 6:1. (100309).
       
       https://linkinghub.elsevier.com/retrieve/pii/S2590291122000638

 222.  Wang Y, Li X, Ouyang J, Guo Z and Wang Y. (2021). Extracting nonlinear
       neural topics with neural variational bayes. World Wide Web.
       10.1007/s11280-021-00970-8. 25:1. (131-149). Online publication date:
       1-Jan-2022.
       
       https://link.springer.com/10.1007/s11280-021-00970-8

 223.  Lu X, Guo Y, Chen J and Wang F. (2021). Topic change point detection
       using a mixed Bayesian model. Data Mining and Knowledge Discovery.
       10.1007/s10618-021-00804-1. 36:1. (146-173). Online publication date:
       1-Jan-2022.
       
       https://link.springer.com/10.1007/s10618-021-00804-1

 224.  Austin E, Trabelsi A, Largeron C and Zaïane O. (2022). Hierarchical Topic
       Model Inference by Community Discovery on Word Co-occurrence Networks.
       Data Mining. 10.1007/978-981-19-8746-5_11. (148-162).
       
       https://link.springer.com/10.1007/978-981-19-8746-5_11

 225.  Avasthi S, Chauhan R and Acharjya D. (2022). Information Extraction and
       Sentiment Analysis to Gain Insight into the COVID-19 Crisis.
       International Conference on Innovative Computing and Communications.
       10.1007/978-981-16-2594-7_28. (343-353).
       
       https://link.springer.com/10.1007/978-981-16-2594-7_28

 226.  Biemann C, Heyer G and Quasthoff U. (2022). Maschinelles Lernen für
       Sprachverarbeitung. Wissensrohstoff Text. 10.1007/978-3-658-35969-0_6.
       (257-309).
       
       https://link.springer.com/10.1007/978-3-658-35969-0_6

 227.  Afolabi I and Uzor C. (2022). Topic Modelling for Research Perception:
       Techniques, Processes and a Case Study. Recent Innovations in Artificial
       Intelligence and Smart Applications. 10.1007/978-3-031-14748-7_13.
       (221-237).
       
       https://link.springer.com/10.1007/978-3-031-14748-7_13

 228.  Sear R, Restrepo N, Lupu Y and Johnson N. (2022). Dynamic Topic Modeling
       Reveals Variations in Online Hate Narratives. Intelligent Computing.
       10.1007/978-3-031-10464-0_38. (564-578).
       
       https://link.springer.com/10.1007/978-3-031-10464-0_38

 229.  van de Poel I, de Wildt T and van Kooten Pássaro D. (2022). COVID-19 and
       Changing Values. Values for a Post-Pandemic Future.
       10.1007/978-3-031-08424-9_2. (23-58).
       
       https://link.springer.com/10.1007/978-3-031-08424-9_2

 230.  Yamasaki S and Teraoka T. (2022). Focus Estimation Using Associative
       Information to Support Understanding of Art. Design, User Experience, and
       Usability: Design Thinking and Practice in Contemporary and Emerging
       Technologies. 10.1007/978-3-031-05906-3_21. (279-288).
       
       https://link.springer.com/10.1007/978-3-031-05906-3_21

 231.  Aggarwal C. (2022). Matrix Factorization and Topic Modeling. Machine
       Learning for Text. 10.1007/978-3-030-96623-2_3. (33-74).
       
       https://link.springer.com/10.1007/978-3-030-96623-2_3

 232.  Sear R, Leahy R, Restrepo N, Lupu Y and Johnson N. (2022). Machine
       Learning Reveals Adaptive COVID-19 Narratives in Online Anti-Vaccination
       Network. Proceedings of the 2021 Conference of The Computational Social
       Science Society of the Americas. 10.1007/978-3-030-96188-6_12. (164-175).
       
       https://link.springer.com/10.1007/978-3-030-96188-6_12

 233.  Zhang Y, Li Z and Xi D. (2022). An Interactive Visual System for Data
       Analytics of Social Media. Algorithms and Architectures for Parallel
       Processing. 10.1007/978-3-030-95391-1_6. (81-100).
       
       https://link.springer.com/10.1007/978-3-030-95391-1_6

 234.  Ling J and Sorokina N. (2022). Visualizing and Comparing Online Travel
       Reviews of the Great Walls: A Data Mining Approach. Information and
       Communication Technologies in Tourism 2022. 10.1007/978-3-030-94751-4_39.
       (423-427).
       
       https://link.springer.com/10.1007/978-3-030-94751-4_39

 235.  Ho J and Shahid A. (2022). Natural Language Processing for Exploring
       Culture in Finance: Theory and Applications. Financial Data Analytics.
       10.1007/978-3-030-83799-0_9. (269-291).
       
       https://link.springer.com/10.1007/978-3-030-83799-0_9

 236.  Ellingsen J, Larsen V and Thorsrud L. (2021). News media versus FRED‐MD
       for macroeconomic forecasting. Journal of Applied Econometrics.
       10.1002/jae.2859. 37:1. (63-81). Online publication date: 1-Jan-2022.
       
       https://onlinelibrary.wiley.com/doi/10.1002/jae.2859

 237.  Lee G and Lee J. (2021). Analysis of "social distancing" news during the
       second COVID-19 wave : Focusing on featured news selected by the
       newsrooms using deep learning. Korean Journal of Journalism &
       Communication Studies. 10.20879/kjjcs.2021.65.6.006. 65:6. (249-294).
       Online publication date: 31-Dec-2022.
       
       http://www.dbpia.co.kr/Journal/ArticleDetail/NODE10820546

 238.  SAKAMOTO T. (2021). Looking Back on 60 Years of African Studies in
       Japan:『アフリカ研究』1号~99号の動向. Journal of African Studies.
       10.11619/africa.2021.100_3. 2021:100. (3-16). Online publication date:
       31-Dec-2022.
       
       https://www.jstage.jst.go.jp/article/africa/2021/100/2021_3/_article/-char/ja/

 239.  Hashimoto T, Uno T, Takedomi Y, Shepard D, Toyoda M, Yoshinaga N,
       Kitsuregawa M and Kobayashi R. (2021). Two-stage Clustering Method for
       Discovering People's Perceptions: A Case Study of the COVID-19 Vaccine
       from Twitter 2021 IEEE International Conference on Big Data (Big Data).
       10.1109/BigData52589.2021.9671982. 978-1-6654-3902-2. (614-621).
       
       https://ieeexplore.ieee.org/document/9671982/

 240.  Wang X, Zhang L and Klabjan D. (2021). Keyword-based Topic Modeling and
       Keyword Selection 2021 IEEE International Conference on Big Data (Big
       Data). 10.1109/BigData52589.2021.9671416. 978-1-6654-3902-2. (1148-1154).
       
       https://ieeexplore.ieee.org/document/9671416/

 241.  Zhang Z. (2021). Analyzing cultural expatriates' attitudes toward
       “Englishnization” using dynamic topic modeling. Journal of
       Computer-Assisted Linguistic Research. 10.4995/jclr.2021.15909. 5:1.
       (1-26).
       
       https://polipapers.upv.es/index.php/jclr/article/view/15909

 242.  Kato S, Nakanishi T, Ahsan B and Shimauchi H. (2021). Time-series topic
       analysis using singular spectrum transformation for detecting political
       business cycles. Journal of Cloud Computing: Advances, Systems and
       Applications. 10:1. Online publication date: 11-Dec-2021.
       
       https://doi.org/10.1186/s13677-020-00197-4

 243.  Jiang S, Zhao H and Guo J. (2021). A Review : Personalized News
       Recommendation fusion with Topic Model 2021 3rd International Academic
       Exchange Conference on Science and Technology Innovation (IAECST).
       10.1109/IAECST54258.2021.9695777. 978-1-6654-0267-5. (612-617).
       
       https://ieeexplore.ieee.org/document/9695777/

 244.  Tang K, Li K, So M and Safro I. (2021). Predicting standardized absolute
       returns using rolling-sample textual modelling. PLOS ONE.
       10.1371/journal.pone.0260132. 16:12. (e0260132).
       
       https://dx.plos.org/10.1371/journal.pone.0260132

 245.  Yaqub U, Chun S, Atluri V, Vaidya J, Sandoval-Almazan R, Kavanaugh A and
       Ignacio Criado J. Analyzing social media messages of public sector
       organizations utilizing sentiment analysis and topic modeling.
       Information Polity. 10.3233/IP-210321. 26:4. (375-390).
       
       https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/IP-210321

 246.  Rijcken E, Scheepers F, Mosteiro P, Zervanou K, Spruit M and Kaymak U.
       (2021). A Comparative Study of Fuzzy Topic Models and LDA in terms of
       Interpretability 2021 IEEE Symposium Series on Computational Intelligence
       (SSCI). 10.1109/SSCI50451.2021.9660139. 978-1-7281-9048-8. (1-8).
       
       https://ieeexplore.ieee.org/document/9660139/

 247.  Harrison C and Sidey-Gibbons C. (2021). Machine learning in medicine: a
       practical introduction to natural language processing. BMC Medical
       Research Methodology. 10.1186/s12874-021-01347-1. 21:1. Online
       publication date: 1-Dec-2021.
       
       https://bmcmedresmethodol.biomedcentral.com/articles/10.1186/s12874-021-01347-1

 248.  Poux-Medard G, Velcin J and Loudcher S. (2021). Powered Hawkes-Dirichlet
       Process: Challenging Textual Clustering using a Flexible Temporal Prior
       2021 IEEE International Conference on Data Mining (ICDM).
       10.1109/ICDM51629.2021.00062. 978-1-6654-2398-4. (509-518).
       
       https://ieeexplore.ieee.org/document/9679096/

 249.  Churchill R and Singh L. (2021). Topic-Noise Models: Modeling Topic and
       Noise Distributions in Social Media Post Collections 2021 IEEE
       International Conference on Data Mining (ICDM).
       10.1109/ICDM51629.2021.00017. 978-1-6654-2398-4. (71-80).
       
       https://ieeexplore.ieee.org/document/9679037/

 250.  Virtanen S. (2021). Uncovering dynamic textual topics that explain crime.
       Royal Society Open Science. 10.1098/rsos.210750. 8:12. Online publication
       date: 1-Dec-2021.
       
       https://royalsocietypublishing.org/doi/10.1098/rsos.210750

 251.  Ito F, Kumoi G and Goto M. (2021). Time Window Topic Model for Analyzing
       Customer Browsing Behavior 2021 IEEE 12th International Workshop on
       Computational Intelligence and Applications (IWCIA).
       10.1109/IWCIA52852.2021.9626043. 978-1-6654-4425-5. (1-8).
       
       https://ieeexplore.ieee.org/document/9626043/

 252.  Gyory J, Kotovsky K and Cagan J. (2021). The Influence of Process
       Management: Uncovering the Impact of Real-Time Managerial Interventions
       via a Topic Modeling Approach. Journal of Mechanical Design.
       10.1115/1.4050748. 143:11. Online publication date: 1-Nov-2021.
       
       https://asmedigitalcollection.asme.org/mechanicaldesign/article/143/11/111401/1106113/The-Influence-of-Process-Management-Uncovering-the

 253.  Harikandeh S, Aliakbary S and Taheri S. (2021). Towards Study of Research
       Topics Evolution in Artificial Intelligence based on Topic Embedding 2021
       11th International Conference on Computer Engineering and Knowledge
       (ICCKE). 10.1109/ICCKE54056.2021.9721503. 978-1-6654-0208-8. (406-411).
       
       https://ieeexplore.ieee.org/document/9721503/

 254.  Vo T. (2021). GOWSeqStream: an integrated sequential embedding and
       graph-of-words for short text stream clustering. Neural Computing and
       Applications. 10.1007/s00521-021-06563-w.
       
       https://link.springer.com/10.1007/s00521-021-06563-w

 255.  Murakami R, Chakraborty B and Shirota Y. (2021). Dynamic Topic Tracking
       and Visualization using COVID-19 related Tweets in Multiple Languages
       2021 International Conference on Artificial Intelligence and Big Data
       Analytics (ICAIBDA). 10.1109/ICAIBDA53487.2021.9689742.
       978-1-6654-0890-5. (1-6).
       
       https://ieeexplore.ieee.org/document/9689742/

 256.  Murakami R, Chakraborty B and Shirota Y. (2021). Dynamic Topic Tracking
       and Visualization using COVID-19 related Tweets in Multiple Languages
       2021 International Conference on Artificial Intelligence and Big Data
       Analytics (ICAIBDA). 10.1109/ICAIBDA53487.2021.9689725.
       978-1-6654-0890-5. (16-21).
       
       https://ieeexplore.ieee.org/document/9689725/

 257.  De Pooter M. (2021). Questions and Answers: The Information Content of
       the Post-FOMC Meeting Press Conference. FEDS Notes.
       10.17016/2380-7172.2997. 2021:2997.
       
       https://www.federalreserve.gov/econres/notes/feds-notes/questions-and-answers-the-information-content-of-the-post-fomc-meeting-press-conference-20211012.htm

 258.  Chen Z and Park J. (2021). Analyzing Cultural Assimilation through the
       Lens of Yelp Restaurant Reviews 2021 IEEE 8th International Conference on
       Data Science and Advanced Analytics (DSAA).
       10.1109/DSAA53316.2021.9564170. 978-1-6654-2099-0. (1-10).
       
       https://ieeexplore.ieee.org/document/9564170/

 259.  Virtanen S and Girolami M. (2021). Spatio-Temporal Mixed Membership
       Models for Criminal Activity. Journal of the Royal Statistical Society
       Series A: Statistics in Society. 10.1111/rssa.12642. 184:4. (1220-1244).
       Online publication date: 1-Oct-2021.
       
       https://academic.oup.com/jrsssa/article/184/4/1220/7068834

 260.  Bogovic P, Mestrovic A, Beliga S and Martincic-Ipsic S. (2021). Topic
       Modelling of Croatian News During COVID-19 Pandemic 2021 44th
       International Convention on Information, Communication and Electronic
       Technology (MIPRO). 10.23919/MIPRO52101.2021.9597125. 978-953-233-101-1.
       (1044-1051).
       
       https://ieeexplore.ieee.org/document/9597125/

 261.  Wandabwa H, Naeem M, Mirza F and Pears R. (2021). Multi-interest semantic
       changes over time in short-text microblogs▪. Knowledge-Based Systems.
       228:C. Online publication date: 27-Sep-2021.
       
       https://doi.org/10.1016/j.knosys.2021.107249

 262.  Sun Y, Hayashi T and Ohsawa Y. (2021). A Latent Topic Analysis and
       Visualization Framework for Category-Level Target Promotion in the
       Supermarket. The Review of Socionetwork Strategies.
       10.1007/s12626-021-00092-7.
       
       https://link.springer.com/10.1007/s12626-021-00092-7

 263.  Wei J and Zhang X. (2021). Sino-Japanese Relations from the Perspective
       of Chinese Mainstream Media During the Pandemic: Based on Word2vec and
       DTM Model. Journal of Advanced Computational Intelligence and Intelligent
       Informatics. 10.20965/jaciii.2021.p0574. 25:5. (574-580). Online
       publication date: 20-Sep-2021.
       
       https://www.fujipress.jp/jaciii/jc/jacii002500050574

 264.  Vo T and Do P. GOW-Stream: A novel approach of graph-of-words based
       mixture model for semantic-enhanced text stream clustering. Intelligent
       Data Analysis. 10.3233/IDA-205443. 25:5. (1211-1231).
       
       https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/IDA-205443

 265.  Nakamura R, Sano H, Inagaki A, Osawa R, Takagi T and Munemasa I. (2021).
       Dynamic Topic-Enhanced Memory Networks: Time-series Behavior Prediction
       based on Changing Intrinsic Consciousnesses 2021 IEEE 4th International
       Conference on Multimedia Information Processing and Retrieval (MIPR).
       10.1109/MIPR51284.2021.00035. 978-1-6654-1865-2. (185-191).
       
       https://ieeexplore.ieee.org/document/9565493/

 266.  Timakum T, Lee S and Song M. (2022). Exploring the research landscape of
       data warehousing and mining based on DaWaK Conference full-text articles.
       Data & Knowledge Engineering. 135:C. Online publication date: 1-Sep-2021.
       
       https://doi.org/10.1016/j.datak.2021.101926

 267.  Pathak A, Pandey M and Rautaray S. (2021). Topic-level sentiment analysis
       of social media data using deep learning. Applied Soft Computing.
       10.1016/j.asoc.2021.107440. 108. (107440). Online publication date:
       1-Sep-2021.
       
       https://linkinghub.elsevier.com/retrieve/pii/S156849462100363X

 268.  Song H, Finn E and Rosenberg M. (2021). Neural signatures of attentional
       engagement during narratives and its consequences for event memory.
       Proceedings of the National Academy of Sciences. 10.1073/pnas.2021905118.
       118:33. Online publication date: 17-Aug-2021.
       
       https://pnas.org/doi/full/10.1073/pnas.2021905118

 269.  Rakib M, Zeh N and Milios E. Efficient clustering of short text streams
       using online-offline clustering. Proceedings of the 21st ACM Symposium on
       Document Engineering. (1-10).
       
       https://doi.org/10.1145/3469096.3469866

 270.  Yang Y, Pan B, Cai D and Sun H. TopNet: Learning from Neural Topic Model
       to Generate Long Stories. Proceedings of the 27th ACM SIGKDD Conference
       on Knowledge Discovery & Data Mining. (1997-2005).
       
       https://doi.org/10.1145/3447548.3467410

 271.  del Gobbo E, Fontanella S, Sarra A and Fontanella L. (2020). Emerging
       Topics in Brexit Debate on Twitter Around the Deadlines. Social
       Indicators Research. 10.1007/s11205-020-02442-4. 156:2-3. (669-688).
       Online publication date: 1-Aug-2021.
       
       https://link.springer.com/10.1007/s11205-020-02442-4

 272.  Tiwaskar M, Garg Y, Li X, Candan K and Sapino M. (2021). Selego: robust
       variate selection for accurate time series forecasting. Data Mining and
       Knowledge Discovery. 10.1007/s10618-021-00777-1.
       
       https://link.springer.com/10.1007/s10618-021-00777-1

 273.  Xu W, Li Y and Qiang J. (2021). Dynamic clustering for short text stream
       based on Dirichlet process. Applied Intelligence.
       10.1007/s10489-021-02263-z.
       
       https://link.springer.com/10.1007/s10489-021-02263-z

 274.  Mosallaie S, Rad M, Schiffauerova A and Ebadi A. (2021). Discovering the
       evolution of artificial intelligence in cancer research using dynamic
       topic modeling. COLLNET Journal of Scientometrics and Information
       Management. 10.1080/09737766.2021.1958659. 15:2. (225-240). Online
       publication date: 3-Jul-2021.
       
       https://www.tandfonline.com/doi/full/10.1080/09737766.2021.1958659

 275.  Pal R, Sekh A, Dogra D, Kar S, Roy P and Prasad D. (2021). Topic-based
       Video Analysis. ACM Computing Surveys. 10.1145/3459089. 54:6. (1-34).
       Online publication date: 1-Jul-2021.
       
       https://dl.acm.org/doi/10.1145/3459089

 276.  Baggio J. (2021). Knowledge generation via social-knowledge network
       co-evolution: 30 years (1990–2019) of adaptation, mitigation and
       transformation related to climate change. Climatic Change.
       10.1007/s10584-021-03146-5. 167:1-2. Online publication date: 1-Jul-2021.
       
       https://link.springer.com/10.1007/s10584-021-03146-5

 277.  Vydra S and Kantorowicz J. (2021). Tracing Policy-relevant Information in
       Social Media: The Case of Twitter before and during the COVID-19 Crisis.
       Statistics, Politics and Policy. 10.1515/spp-2020-0013. 12:1. (87-127).
       Online publication date: 25-Jun-2021.. Online publication date:
       1-Jun-2021.
       
       https://www.degruyter.com/document/doi/10.1515/spp-2020-0013/html

 278.  Wu H, Yi H and Li C. (2021). An integrated approach for detecting and
       quantifying the topic evolutions of patent technology: a case study on
       graphene field. Scientometrics. 10.1007/s11192-021-04000-2.
       
       https://link.springer.com/10.1007/s11192-021-04000-2

 279.  Zhang Z. (2021). It is all about TOEIC: discovering topics and trends in
       employee perceptions of corporate language policy. Journal of
       Multilingual and Multicultural Development.
       10.1080/01434632.2021.1938087. (1-19).
       
       https://www.tandfonline.com/doi/full/10.1080/01434632.2021.1938087

 280.  Bernau J. (2021). From Christ to Compassion: The Changing Language of
       Pastoral Care. Journal for the Scientific Study of Religion.
       10.1111/jssr.12711. 60:2. (362-381). Online publication date: 1-Jun-2021.
       
       https://onlinelibrary.wiley.com/doi/10.1111/jssr.12711

 281.  Chae B and Olson D. (2018). A Topical Exploration of the Intellectual
       Development of Decision Sciences 1975–2016 . Decision Sciences.
       10.1111/deci.12326. 52:3. (543-566). Online publication date: 1-Jun-2021.
       
       https://onlinelibrary.wiley.com/doi/10.1111/deci.12326

 282.  Shao Y, Li X, Chen Y, Yu L and Cui B. Sys-TM: A Fast and General Topic
       Modeling System. IEEE Transactions on Knowledge and Data Engineering.
       10.1109/TKDE.2019.2956518. 33:6. (2790-2802).
       
       https://ieeexplore.ieee.org/document/8917682/

 283.  Li W, Saigo H, Tong B and Suzuki E. (2021). Topic modeling for sequential
       documents based on hybrid inter-document topic dependency. Journal of
       Intelligent Information Systems. 10.1007/s10844-020-00635-4. 56:3.
       (435-458). Online publication date: 1-Jun-2021.
       
       https://link.springer.com/10.1007/s10844-020-00635-4

 284.  Seifollahi S, Piccardi M and Jolfaei A. (2021). An Embedding-Based Topic
       Model for Document Classification. ACM Transactions on Asian and
       Low-Resource Language Information Processing. 20:3. (1-13). Online
       publication date: 31-May-2021.
       
       https://doi.org/10.1145/3431728

 285.  Wang Q, Li C and Ali G. (2021). An evolutionary analysis of new energy
       and industry policy tools in China based on large-scale policy topic
       modeling. PLOS ONE. 10.1371/journal.pone.0252502. 16:5. (e0252502).
       
       https://dx.plos.org/10.1371/journal.pone.0252502

 286.  Schaefermeier B, Stumme G and Hanika T. (2021). Topic space trajectories.
       Scientometrics. 10.1007/s11192-021-03931-0.
       
       https://link.springer.com/10.1007/s11192-021-03931-0

 287.  Ovádek M, Dyevre A and Wigard K. (2021). Analysing EU Treaty-Making and
       Litigation With Network Analysis and Natural Language Processing.
       Frontiers in Physics. 10.3389/fphy.2021.657607. 9.
       
       https://www.frontiersin.org/articles/10.3389/fphy.2021.657607/full

 288.  Maltseva A, Shilkina N, Evseev E, Matveev M and Makhnytkina O. (2021).
       Topic Modeling of Russian-Language Texts Using the Parts-of-Speech
       Composition of Topics (on the Example of Volunteer Movement Semantics in
       Social Media) 2021 29th Conference of Open Innovations Association
       (FRUCT). 10.23919/FRUCT52173.2021.9435475. 978-952-69244-5-8. (247-253).
       
       https://ieeexplore.ieee.org/document/9435475/

 289.  Ding K, Choo W, Ng K, Ng S and Song P. (2021). Exploring Sources of
       Satisfaction and Dissatisfaction in Airbnb Accommodation Using
       Unsupervised and Supervised Topic Modeling. Frontiers in Psychology.
       10.3389/fpsyg.2021.659481. 12.
       
       https://www.frontiersin.org/articles/10.3389/fpsyg.2021.659481/full

 290.  Liu S, Zhang R and Kishimoto T. (2020). Analysis and prospect of clinical
       psychology based on topic models: hot research topics and scientific
       trends in the latest decades. Psychology, Health & Medicine.
       10.1080/13548506.2020.1738019. 26:4. (395-407). Online publication date:
       21-Apr-2021.
       
       https://www.tandfonline.com/doi/full/10.1080/13548506.2020.1738019

 291.  Si J, Guo L and Zhou D. Unsupervised latent event representation learning
       and storyline extraction from news articles based on neural networks.
       Intelligent Data Analysis. 10.3233/IDA-195061. 25:3. (589-603).
       
       https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/IDA-195061

 292.  Deligiannis P, Vergoulis T, Chatzopoulos S and Tryfonopoulos C.
       Visualising Scientific Topic Evolution. Companion Proceedings of the Web
       Conference 2021. (468-472).
       
       https://doi.org/10.1145/3442442.3451371

 293.  Gerts D, Shelley C, Parikh N, Pitts T, Watson Ross C, Fairchild G,
       Vaquera Chavez N and Daughton A. (2021). “Thought I’d Share First” and
       Other Conspiracy Theory Tweets from the COVID-19 Infodemic: Exploratory
       Study. JMIR Public Health and Surveillance. 10.2196/26527. 7:4. (e26527).
       
       https://publichealth.jmir.org/2021/4/e26527

 294.  Das K, Ghosh P and Daniels M. (2021). Modeling Multiple Time-Varying
       Related Groups: A Dynamic Hierarchical Bayesian Approach With an
       Application to the Health and Retirement Study. Journal of the American
       Statistical Association. 10.1080/01621459.2021.1886105. 116:534.
       (558-568). Online publication date: 3-Apr-2021.
       
       https://www.tandfonline.com/doi/full/10.1080/01621459.2021.1886105

 295.  Béchara H, Herzog A, Jankin S and John P. (2021). Transfer learning for
       topic labeling: Analysis of the UK House of Commons speeches 1935–2014.
       Research & Politics. 10.1177/20531680211022206. 8:2. (205316802110222).
       Online publication date: 1-Apr-2021.
       
       http://journals.sagepub.com/doi/10.1177/20531680211022206

 296.  Windsor C. (2021). THE INTELLECTUAL IDEAS INSIDE CENTRAL BANKS: WHAT'S
       CHANGED (OR NOT) SINCE THE CRISIS?. Journal of Economic Surveys.
       10.1111/joes.12413. 35:2. (539-565). Online publication date: 1-Apr-2021.
       
       https://onlinelibrary.wiley.com/doi/10.1111/joes.12413

 297.  Bertsch C, Hull I and Zhang X. (2021). Narrative fragmentation and the
       business cycle. Economics Letters. 10.1016/j.econlet.2021.109783. 201.
       (109783). Online publication date: 1-Apr-2021.
       
       https://linkinghub.elsevier.com/retrieve/pii/S0165176521000604

 298.  Jebari C, Herrera-Viedma E and Cobo M. (2021). The use of citation
       context to detect the evolution of research topics: a large-scale
       analysis. Scientometrics. 126:4. (2971-2989). Online publication date:
       1-Apr-2021.
       
       https://doi.org/10.1007/s11192-020-03858-y

 299.  Taranto-Vera G, Galindo-Villardón P, Merchán-Sánchez-Jara J, Salazar-Pozo
       J, Moreno-Salazar A and Salazar-Villalva V. (2021). Algorithms and
       software for data mining and machine learning: a critical comparative
       view from a systematic review of the literature. The Journal of
       Supercomputing. 10.1007/s11227-021-03708-5.
       
       http://link.springer.com/10.1007/s11227-021-03708-5

 300.  Soni S, Lerman K and Eisenstein J. (2021). Follow the leader. Journal of
       the Association for Information Science and Technology. 72:4. (478-492).
       Online publication date: 8-Mar-2021.
       
       https://doi.org/10.1002/asi.24421

 301.  Chauhan U and Shah A. (2021). Improving Semantic Coherence of Gujarati
       Text Topic Model Using Inflectional Forms Reduction and Single-letter
       Words Removal. ACM Transactions on Asian and Low-Resource Language
       Information Processing. 10.1145/3447760. 20:1. (1-18). Online publication
       date: 1-Mar-2021.
       
       https://dl.acm.org/doi/10.1145/3447760

 302.  Lafia S, Kuhn W, Caylor K and Hemphill L. (2021). Mapping research topics
       at multiple levels of detail. Patterns. 10.1016/j.patter.2021.100210.
       2:3. (100210). Online publication date: 1-Mar-2021.
       
       https://linkinghub.elsevier.com/retrieve/pii/S2666389921000209

 303.  Elakiya E and Rajkumar N. (2019). RETRACTED ARTICLE: In text mining:
       detection of topic and sub-topic using multiple spider hunting model.
       Journal of Ambient Intelligence and Humanized Computing.
       10.1007/s12652-019-01588-5. 12:3. (3571-3580). Online publication date:
       1-Mar-2021.
       
       https://link.springer.com/10.1007/s12652-019-01588-5

 304.  Ma S, Zhang H, Zhang C and Liu X. (2021). Chronological citation
       recommendation with time preference. Scientometrics.
       10.1007/s11192-021-03878-2.
       
       http://link.springer.com/10.1007/s11192-021-03878-2

 305.  Heusser A, Fitzpatrick P and Manning J. (2021). Geometric models reveal
       behavioural and neural signatures of transforming experiences into
       memories. Nature Human Behaviour. 10.1038/s41562-021-01051-6. 5:7.
       (905-919).
       
       https://www.nature.com/articles/s41562-021-01051-6

 306.  Müller-Hansen F, Callaghan M, Lee Y, Leipprand A, Flachsland C and Minx
       J. (2021). Who cares about coal? Analyzing 70 years of German
       parliamentary debates on coal with dynamic topic modeling. Energy
       Research & Social Science. 10.1016/j.erss.2020.101869. 72. (101869).
       Online publication date: 1-Feb-2021.
       
       https://linkinghub.elsevier.com/retrieve/pii/S2214629620304448

 307.  Kwayu K, Kwigizile V, Lee K and Oh J. (2021). Discovering latent themes
       in traffic fatal crash narratives using text mining analytics and network
       topology. Accident Analysis & Prevention. 10.1016/j.aap.2020.105899. 150.
       (105899). Online publication date: 1-Feb-2021.
       
       https://linkinghub.elsevier.com/retrieve/pii/S000145752031719X

 308.  Bonaccorsi A, Chiarello F and Fantoni G. (2020). Impact for whom? Mapping
       the users of public research with lexicon-based text mining.
       Scientometrics. 10.1007/s11192-020-03803-z. 126:2. (1745-1774). Online
       publication date: 1-Feb-2021.
       
       http://link.springer.com/10.1007/s11192-020-03803-z

 309.  Pathak A, Pandey M and Rautaray S. Adaptive Framework for Deep Learning
       Based Dynamic and Temporal Topic Modeling from Big Data. Recent Patents
       on Engineering. 10.2174/1872212113666190329234812. 14:3. (394-402).
       
       https://www.eurekaselect.com/171165/article

 310.  Vijayarani J and Geetha T. (2021). Joint learning of author and citation
       contexts for computing drift in scholarly documents. International
       Journal of Machine Learning and Cybernetics. 10.1007/s13042-020-01265-6.
       
       http://link.springer.com/10.1007/s13042-020-01265-6

 311.  Delasalles E, Lamprier S and Denoyer L. (2021). Deep dynamic neural
       networks for temporal language modeling in author communities. Knowledge
       and Information Systems. 10.1007/s10115-020-01539-z.
       
       http://link.springer.com/10.1007/s10115-020-01539-z

 312.  Garg Y and Candan K. (2021). SDMA: Saliency-Driven Mutual Cross Attention
       for Multi-Variate Time Series 2020 25th International Conference on
       Pattern Recognition (ICPR). 10.1109/ICPR48806.2021.9412552.
       978-1-7281-8808-9. (7242-7249).
       
       https://ieeexplore.ieee.org/document/9412552/

 313.  Muchene L, Safari W and Amancio D. (2021). Two-stage topic modelling of
       scientific publications: A case study of University of Nairobi, Kenya.
       PLOS ONE. 10.1371/journal.pone.0243208. 16:1. (e0243208).
       
       https://dx.plos.org/10.1371/journal.pone.0243208

 314.  Dash A, Zhang D and Zhou L. (2021). Personalized Ranking of Online
       Reviews Based on Consumer Preferences in Product Features. International
       Journal of Electronic Commerce. 10.1080/10864415.2021.1846852. 25:1.
       (29-50). Online publication date: 2-Jan-2021.
       
       https://www.tandfonline.com/doi/full/10.1080/10864415.2021.1846852

 315.  Moss F and Rohrmeier M. (2021). Discovering Tonal Profiles with Latent
       Dirichlet Allocation. Music & Science. 10.1177/20592043211048827. 4.
       (205920432110488). Online publication date: 1-Jan-2021.
       
       http://journals.sagepub.com/doi/10.1177/20592043211048827

 316.  Yang S, Huang G, Zhou X, Mak V and Yearwood J. (2021). EWNStream+:
       Effective and Real-time Clustering of Short Text Streams Using
       Evolutionary Word Relation Network. International Journal of Information
       Technology & Decision Making. 10.1142/S0219622021500024. 20:01.
       (341-370). Online publication date: 1-Jan-2021.
       
       https://www.worldscientific.com/doi/abs/10.1142/S0219622021500024

 317.  Filstroff L, Gouvert O, Fevotte C and Cappe O. A Comparative Study of
       Gamma Markov Chains for Temporal Non-Negative Matrix Factorization. IEEE
       Transactions on Signal Processing. 10.1109/TSP.2021.3060000. 69.
       (1614-1626).
       
       https://ieeexplore.ieee.org/document/9359515/

 318.  Zhang Y, Calyam P, Joshi T, Nair S and Xu D. Domain-specific Topic Model
       for Knowledge Discovery in Computational and Data-Intensive Scientific
       Communities. IEEE Transactions on Knowledge and Data Engineering.
       10.1109/TKDE.2021.3093350. (1-1).
       
       https://ieeexplore.ieee.org/document/9470954/

 319.  MAHALAKSHMI G, SIVA R and SENDHILKUMAR S. On the Expressive Power of
       Scientific Manuscripts. IEEE Transactions on Emerging Topics in
       Computing. 10.1109/TETC.2018.2870179. 9:1. (269-279).
       
       https://ieeexplore.ieee.org/document/8466913/

 320.  Kuhr F, Lichtenberger M, Braun T and Moller R. (2021). Enhancing
       Relational Topic Models with Named Entity Induced Links 2021 IEEE 15th
       International Conference on Semantic Computing (ICSC).
       10.1109/ICSC50631.2021.00059. 978-1-7281-8899-7. (314-317).
       
       https://ieeexplore.ieee.org/document/9364577/

 321.  Di-Fei M, Na L, Ming-Xia L and Hao-Long S. An Improved Dynamic
       Collaborative Filtering Algorithm Based on LDA. IEEE Access.
       10.1109/ACCESS.2021.3094519. 9. (122568-122577).
       
       https://ieeexplore.ieee.org/document/9474435/

 322.  Alattar F and Shaalan K. Using Artificial Intelligence to Understand What
       Causes Sentiment Changes on Social Media. IEEE Access.
       10.1109/ACCESS.2021.3073657. 9. (61756-61767).
       
       https://ieeexplore.ieee.org/document/9405608/

 323.  Alattar F and Shaalan K. A Survey on Opinion Reason Mining and
       Interpreting Sentiment Variations. IEEE Access.
       10.1109/ACCESS.2021.3063921. 9. (39636-39655).
       
       https://ieeexplore.ieee.org/document/9369288/

 324.  Boehm F and Hanlon B. (2021). What Is Happening on Twitter? A Framework
       for Student Research Projects With Tweets. Journal of Statistics and Data
       Science Education. 10.1080/10691898.2020.1848486. 29:sup1. (S95-S102).
       Online publication date: 1-Jan-2021.
       
       https://www.tandfonline.com/doi/full/10.1080/10691898.2020.1848486

 325.  Sun Y, Hayashi T and Ohsawa Y. (2021). A Latent Topic Analysis Framework
       for Category-Level Target Promotion in the Supermarket. Procedia Computer
       Science. 192:C. (2170-2179). Online publication date: 1-Jan-2021.
       
       https://doi.org/10.1016/j.procs.2021.08.230

 326.  Kim B, Yoo M, Park K, Lee K and Kim J. (2021). A value of civic voices
       for smart city: A big data analysis of civic queries posed by Seoul
       citizens. Cities. 10.1016/j.cities.2020.102941. 108. (102941). Online
       publication date: 1-Jan-2021.
       
       https://linkinghub.elsevier.com/retrieve/pii/S0264275120312890

 327.  Zong C, Xia R and Zhang J. (2021). Topic Model. Text Data Mining.
       10.1007/978-981-16-0100-2_7. (145-162).
       
       https://link.springer.com/10.1007/978-981-16-0100-2_7

 328.  Bickel M and Liedtke C. (2021). Angewandtes Text Mining im Kontext der
       Nachhaltigkeitsforschung am Beispiel der deutschen Forschungslandkarte
       der Hochschulrektorenkonferenz. Digitalisierung und Nachhaltigkeit.
       10.1007/978-3-662-61534-8_8. (147-164).
       
       http://link.springer.com/10.1007/978-3-662-61534-8_8

 329.  Fedorov A, Datyev I and Shchur A. (2021). Social Media Communities Topic
       Modeling. Data Science and Intelligent Systems.
       10.1007/978-3-030-90321-3_50. (605-614).
       
       https://link.springer.com/10.1007/978-3-030-90321-3_50

 330.  He Y, Rao A, Burghardt K and Lerman K. (2021). Identifying Shifts in
       Collective Attention to Topics on Social Media. Social, Cultural, and
       Behavioral Modeling. 10.1007/978-3-030-80387-2_22. (224-234).
       
       https://link.springer.com/10.1007/978-3-030-80387-2_22

 331.  Mützel S and Kressin L. (2021). From Simmel to Relational Sociology.
       Handbook of Classical Sociological Theory. 10.1007/978-3-030-78205-4_10.
       (217-238).
       
       https://link.springer.com/10.1007/978-3-030-78205-4_10

 332.  Korkeamäki L. (2021). Further Semiotic Perspectives on the Outcome-Based
       vs Performance-Based Semantic Dispute. The Palgrave Handbook of
       Servitization. 10.1007/978-3-030-75771-7_9. (133-147).
       
       https://link.springer.com/10.1007/978-3-030-75771-7_9

 333.  Puhakka V and Ojala A. (2021). A Review of International Entrepreneurship
       as Part of Broader Opportunity Research: Topic Modelling Approach.
       Empirical International Entrepreneurship. 10.1007/978-3-030-68972-8_6.
       (89-113).
       
       https://link.springer.com/10.1007/978-3-030-68972-8_6

 334.  Nguyen B, Kiyoaki S and Huynh V. (2021). Topics in Financial Filings and
       Bankruptcy Prediction with Distributed Representations of Textual Data.
       Machine Learning and Knowledge Discovery in Databases. Applied Data
       Science and Demo Track. 10.1007/978-3-030-67670-4_19. (306-322).
       
       http://link.springer.com/10.1007/978-3-030-67670-4_19

 335.  Rawte V, Gupta A and Zaki M. (2021). A Comparative Analysis of Temporal
       Long Text Similarity: Application to Financial Documents. Mining Data for
       Financial Applications. 10.1007/978-3-030-66981-2_7. (77-91).
       
       http://link.springer.com/10.1007/978-3-030-66981-2_7

 336.  Oiva M. (2021). Topic Modeling Russian History. The Palgrave Handbook of
       Digital Russia Studies. 10.1007/978-3-030-42855-6_24. (427-442).
       
       https://link.springer.com/10.1007/978-3-030-42855-6_24

 337.  Melluso N, Bonaccorsi A, Chiarello F, Fantoni G and Gherghina S. (2020).
       Rapid detection of fast innovation under the pressure of COVID-19. PLOS
       ONE. 10.1371/journal.pone.0244175. 15:12. (e0244175).
       
       https://dx.plos.org/10.1371/journal.pone.0244175

 338.  Sakhovskiy A, Tutubalina E, Solovyev V and Solnyshkina M. (2020). Topic
       Modeling as a Method of Educational Text Structuring 2020 13th
       International Conference on Developments in eSystems Engineering (DeSE).
       10.1109/DeSE51703.2020.9450232. 978-1-6654-2238-3. (399-405).
       
       https://ieeexplore.ieee.org/document/9450232/

 339.  Jung S, Datta R and Segev A. (2020). Identification and Prediction of
       Emerging Topics through Their Relationships to Existing Topics 2020 IEEE
       International Conference on Big Data (Big Data).
       10.1109/BigData50022.2020.9378277. 978-1-7281-6251-5. (5078-5087).
       
       https://ieeexplore.ieee.org/document/9378277/

 340.  Rezaee M and Ferraro F. A discrete variational recurrent topic model
       without the reparametrization trick. Proceedings of the 34th
       International Conference on Neural Information Processing Systems.
       (13831-13843).
       
       /doi/10.5555/3495724.3496884

 341.  ZHANG L and LI C. (2020). Research on Hotspot Mining Method of Twitter
       News Report Based on LDA and Sentiment Analysis 2020 International
       Conference on Machine Learning and Cybernetics (ICMLC).
       10.1109/ICMLC51923.2020.9469557. 978-1-6654-1943-7. (40-44).
       
       https://ieeexplore.ieee.org/document/9469557/

 342.  Popa A. (2021). Supporting secondary research in early drug discovery
       process through a Natural Language Processing based system. Proceedings
       of the International Conference on Applied Statistics.
       10.2478/icas-2021-0023. 2:1. (254-267). Online publication date:
       1-Dec-2020.. Online publication date: 1-Dec-2020.
       
       https://www.sciendo.com/article/10.2478/icas-2021-0023

 343.  Popa A. (2021). Supporting secondary research in early drug discovery
       process through a Natural Language Processing based system. Proceedings
       of the International Conference on Applied Statistics.
       10.2478/icas-2021-0019. 2:1. (209-222). Online publication date:
       1-Dec-2020.. Online publication date: 1-Dec-2020.
       
       https://www.sciendo.com/article/10.2478/icas-2021-0019

 344.  Peng X, Han C, Ouyang F and Liu Z. (2020). Topic tracking model for
       analyzing student-generated posts in SPOC discussion forums.
       International Journal of Educational Technology in Higher Education.
       10.1186/s41239-020-00211-4. 17:1. Online publication date: 1-Dec-2020.
       
       https://educationaltechnologyjournal.springeropen.com/articles/10.1186/s41239-020-00211-4

 345.  Rizk A and Elragal A. (2020). Data science: developing theoretical
       contributions in information systems via text analytics. Journal of Big
       Data. 10.1186/s40537-019-0280-6. 7:1. Online publication date:
       1-Dec-2020.
       
       https://journalofbigdata.springeropen.com/articles/10.1186/s40537-019-0280-6

 346.  Birks D, Coleman A and Jackson D. (2020). Unsupervised identification of
       crime problems from police free-text data. Crime Science.
       10.1186/s40163-020-00127-4. 9:1. Online publication date: 1-Dec-2020.
       
       https://crimesciencejournal.biomedcentral.com/articles/10.1186/s40163-020-00127-4

 347.  Vayansky I and Kumar S. (2020). A review of topic modeling methods.
       Information Systems. 10.1016/j.is.2020.101582. 94. (101582). Online
       publication date: 1-Dec-2020.
       
       https://linkinghub.elsevier.com/retrieve/pii/S0306437920300703

 348.  Ashihara K, El Vaigh C, Chu C, Renoust B, Okubo N, Takemura N, Nakashima
       Y and Nagahara H. (2020). Improving topic modeling through homophily for
       legal documents. Applied Network Science. 10.1007/s41109-020-00321-y.
       5:1. Online publication date: 1-Dec-2020.
       
       https://appliednetsci.springeropen.com/articles/10.1007/s41109-020-00321-y

 349.  Daou H. (2020). Sentiment of the public: the role of social media in
       revealing important events. Online Information Review.
       10.1108/OIR-12-2019-0373. ahead-of-print:ahead-of-print. Online
       publication date: 27-Nov-2020.
       
       https://www.emerald.com/insight/content/doi/10.1108/OIR-12-2019-0373/full/html

 350.  Suzuki T. (2020). Bayesian Modeling of Random Walker for Community
       Detection in Networks. Journal of the Physical Society of Japan.
       10.7566/JPSJ.89.114006. 89:11. (114006). Online publication date:
       15-Nov-2020.
       
       https://journals.jps.jp/doi/10.7566/JPSJ.89.114006

 351.  Ahmed M, Sadri A, Pradhananga P, Elzomor M and Pradhananga N. (2020).
       Social Media Communication Patterns of Construction Industry in Major
       Disasters Construction Research Congress 2020. 10.1061/9780784482865.072.
       9780784482865. (678-687). Online publication date: 9-Nov-2020.
       
       http://ascelibrary.org/doi/10.1061/9780784482865.072

 352.  Tighe P, Sannapaneni B, Fillingim R, Doyle C, Kent M, Shickel B and
       Rashidi P. (2020). Forty-two Million Ways to Describe Pain: Topic
       Modeling of 200,000 PubMed Pain-Related Abstracts Using Natural Language
       Processing and Deep Learning–Based Text Generation. Pain Medicine.
       10.1093/pm/pnaa061. 21:11. (3133-3160). Online publication date:
       1-Nov-2020.
       
       https://academic.oup.com/painmedicine/article/21/11/3133/5816322

 353.  Lu C, Peltonen J, Nummenmaa J and Järvelin K. Probabilistic Dynamic
       Non-negative Group Factor Model for Multi-source Text Mining. Proceedings
       of the 29th ACM International Conference on Information & Knowledge
       Management. (1035-1043).
       
       https://doi.org/10.1145/3340531.3411956

 354.  Fazelnia G, Ibrahim M, Modarres C, Wu K and Paisley J. Mixed membership
       recurrent neural networks for modeling customer purchases. Proceedings of
       the First ACM International Conference on AI in Finance. (1-8).
       
       https://doi.org/10.1145/3383455.3422543

 355.  Gozzi N, Tizzani M, Starnini M, Ciulla F, Paolotti D, Panisson A and
       Perra N. (2020). Collective Response to Media Coverage of the COVID-19
       Pandemic on Reddit and Wikipedia: Mixed-Methods Analysis. Journal of
       Medical Internet Research. 10.2196/21597. 22:10. (e21597).
       
       http://www.jmir.org/2020/10/e21597/

 356.  Han X. (2020). Evolution of research topics in LIS between 1996 and 2019:
       an analysis based on latent Dirichlet allocation topic model.
       Scientometrics. 10.1007/s11192-020-03721-0.
       
       http://link.springer.com/10.1007/s11192-020-03721-0

 357.  Huang Y, Shi L, Su Y, Hu Y, Tong H, Wang C, Yang T, Wang D and Liang S.
       Eiffel: Evolutionary Flow Map for Influence Graph Visualization. IEEE
       Transactions on Visualization and Computer Graphics.
       10.1109/TVCG.2019.2906900. 26:10. (2944-2960).
       
       https://ieeexplore.ieee.org/document/8673661/

 358.  Zhang Y, Li Z, Tang X and Chen F. (2020). Time-aware Service
       Recommendation Based on Dynamic Preference and QoS 2020 IEEE
       International Conference on Web Services (ICWS).
       10.1109/ICWS49710.2020.00052. 978-1-7281-8786-0. (347-354).
       
       https://ieeexplore.ieee.org/document/9284128/

 359.  Guo M, Liao X, Liu J and Zhang Q. (2020). Consumer preference analysis: A
       data-driven multiple criteria approach integrating online information.
       Omega. 10.1016/j.omega.2019.05.010. 96. (102074). Online publication
       date: 1-Oct-2020.
       
       https://linkinghub.elsevier.com/retrieve/pii/S0305048318311654

 360.  Hashimoto T, Shepard D, Kuboyama T, Shin K, Kobayashi R and Uno T.
       (2020). Analyzing temporal patterns of topic diversity using graph
       clustering. The Journal of Supercomputing. 10.1007/s11227-020-03433-5.
       
       http://link.springer.com/10.1007/s11227-020-03433-5

 361.  Ihou K, Bouguila N and Bouachir W. (2020). Efficient integration of
       generative topic models into discriminative classifiers using robust
       probabilistic kernels. Pattern Analysis and Applications.
       10.1007/s10044-020-00917-1.
       
       http://link.springer.com/10.1007/s10044-020-00917-1

 362.  Toubia O. (2020). A Poisson Factorization Topic Model for the Study of
       Creative Documents (and Their Summaries). Journal of Marketing Research.
       10.1177/0022243720943209. (002224372094320).
       
       http://journals.sagepub.com/doi/10.1177/0022243720943209

 363.  Li Y, Nair P, Wen Z, Chafi I, Okhmatovskaia A, Powell G, Shen Y and
       Buckeridge D. Global Surveillance of COVID-19 by mining news media using
       a multi-source dynamic embedded topic model. Proceedings of the 11th ACM
       International Conference on Bioinformatics, Computational Biology and
       Health Informatics. (1-14).
       
       https://doi.org/10.1145/3388440.3412418

 364.  Bizzoni Y, Degaetano-Ortlieb S, Fankhauser P and Teich E. (2020).
       Linguistic Variation and Change in 250 Years of English Scientific
       Writing: A Data-Driven Approach. Frontiers in Artificial Intelligence.
       10.3389/frai.2020.00073. 3.
       
       https://www.frontiersin.org/article/10.3389/frai.2020.00073/full

 365.  Liu H, Chen Z, Tang J, Zhou Y and Liu S. (2020). Mapping the technology
       evolution path: a novel model for dynamic topic detection and tracking.
       Scientometrics. 10.1007/s11192-020-03700-5.
       
       http://link.springer.com/10.1007/s11192-020-03700-5

 366.  Munro E and Ng S. (2020). Latent Dirichlet Analysis of Categorical Survey
       Responses. Journal of Business & Economic Statistics.
       10.1080/07350015.2020.1802285. (1-16).
       
       https://www.tandfonline.com/doi/full/10.1080/07350015.2020.1802285

 367.  Chen S, Andrienko N, Andrienko G, Adilova L, Barlet J, Kindermann J,
       Nguyen P, Thonnard O and Turkay C. LDA Ensembles for Interactive
       Exploration and Categorization of Behaviors. IEEE Transactions on
       Visualization and Computer Graphics. 10.1109/TVCG.2019.2904069. 26:9.
       (2775-2792).
       
       https://ieeexplore.ieee.org/document/8663312/

 368.  Bai Y, Jia S and Chen L. (2020). Topic Evolution Analysis of COVID-19
       News Articles. Journal of Physics: Conference Series.
       10.1088/1742-6596/1601/5/052009. 1601. (052009). Online publication date:
       1-Aug-2020.
       
       https://iopscience.iop.org/article/10.1088/1742-6596/1601/5/052009

 369.  Zheng J, Wen Q and Qiang M. (2020). Understanding Demand for Project
       Manager Competences in the Construction Industry: Data Mining Approach.
       Journal of Construction Engineering and Management.
       10.1061/(ASCE)CO.1943-7862.0001865. 146:8. Online publication date:
       1-Aug-2020.
       
       https://ascelibrary.org/doi/10.1061/%28ASCE%29CO.1943-7862.0001865

 370.  Qian Y, Liu Y and Sheng Q. (2020). Understanding hierarchical structural
       evolution in a scientific discipline: A case study of artificial
       intelligence. Journal of Informetrics. 10.1016/j.joi.2020.101047. 14:3.
       (101047). Online publication date: 1-Aug-2020.
       
       https://linkinghub.elsevier.com/retrieve/pii/S1751157719302925

 371.  Jin J, Niu B, Ji P and Geng Q. (2018). An integer linear programming
       model of reviewer assignment with research interest considerations.
       Annals of Operations Research. 10.1007/s10479-018-2919-7. 291:1-2.
       (409-433). Online publication date: 1-Aug-2020.
       
       http://link.springer.com/10.1007/s10479-018-2919-7

 372.  Guo D, Chen B, Lu R and Zhou M. Recurrent hierarchical topic-guided RNN
       for language generation. Proceedings of the 37th International Conference
       on Machine Learning. (3810-3821).
       
       /doi/10.5555/3524938.3525295

 373.  Oghaz T, Mutlu E, Jasser J, Yousefi N and Garibay I. Probabilistic Model
       of Narratives Over Topical Trends in Social Media. Proceedings of the
       31st ACM Conference on Hypertext and Social Media. (281-290).
       
       https://doi.org/10.1145/3372923.3404790

 374.  Zhong N and Schweidel D. (2020). Capturing Changes in Social Media
       Content. Marketing Science. 39:4. (827-846). Online publication date:
       1-Jul-2020.
       
       https://doi.org/10.1287/mksc.2019.1212

 375.  Algaba A, Ardia D, Bluteau K, Borms S and Boudt K. (2020). ECONOMETRICS
       MEETS SENTIMENT: AN OVERVIEW OF METHODOLOGY AND APPLICATIONS. Journal of
       Economic Surveys. 10.1111/joes.12370. 34:3. (512-547). Online publication
       date: 1-Jul-2020.
       
       https://onlinelibrary.wiley.com/doi/10.1111/joes.12370

 376.  Chen Y, Wu J, Lin J, Liu R, Zhang H and Ye Z. Affinity Regularized
       Non-Negative Matrix Factorization for Lifelong Topic Modeling. IEEE
       Transactions on Knowledge and Data Engineering.
       10.1109/TKDE.2019.2904687. 32:7. (1249-1262).
       
       https://ieeexplore.ieee.org/document/8666058/

 377.  Cheng K, Wang Z, Huang P, Chundi P and Song M. (2020). TopExplorer: Tool
       Support for Extracting and Visualizing Topic Models in Bioengineering
       Text Corpora 2020 IEEE International Conference on Electro Information
       Technology (EIT). 10.1109/EIT48999.2020.9208294. 978-1-7281-5317-9.
       (334-343).
       
       https://ieeexplore.ieee.org/document/9208294/

 378.  Lou S, Li T, Kong X, Zhang J, Liu J, Lee D and Gerstein M. (2020).
       TopicNet: a framework for measuring transcriptional regulatory network
       change. Bioinformatics. 10.1093/bioinformatics/btaa403. 36:Supplement_1.
       (i474-i481). Online publication date: 1-Jul-2020.
       
       https://academic.oup.com/bioinformatics/article/36/Supplement_1/i474/5870518

 379.  Zhao Z, Koutsopoulos H and Zhao J. (2020). Discovering latent activity
       patterns from transit smart card data: A spatiotemporal topic model.
       Transportation Research Part C: Emerging Technologies.
       10.1016/j.trc.2020.102627. 116. (102627). Online publication date:
       1-Jul-2020.
       
       https://linkinghub.elsevier.com/retrieve/pii/S0968090X19310022

 380.  Uras N, Vacca S and Destefanis G. Investigation of Mutual-Influence among
       Blockchain Development Communities and Cryptocurrency Price Changes.
       Proceedings of the IEEE/ACM 42nd International Conference on Software
       Engineering Workshops. (779-782).
       
       https://doi.org/10.1145/3387940.3392245

 381.  Wang A and Zhang J. (2020). Topic discovery method based on topic model
       combined with hierarchical clustering 2020 IEEE 5th Information
       Technology and Mechatronics Engineering Conference (ITOEC).
       10.1109/ITOEC49072.2020.9141892. 978-1-7281-4323-1. (814-818).
       
       https://ieeexplore.ieee.org/document/9141892/

 382.  Lee M and Song M. (2020). Incorporating citation impact into analysis of
       research trends. Scientometrics. 10.1007/s11192-020-03508-3.
       
       http://link.springer.com/10.1007/s11192-020-03508-3

 383.  Ghoorchian K and Sahlgren M. (2020). GDTM: Graph-based Dynamic Topic
       Models. Progress in Artificial Intelligence. 10.1007/s13748-020-00206-2.
       
       http://link.springer.com/10.1007/s13748-020-00206-2

 384.  Sleeman J, Finin T and Halem M. (2020). Temporal Understanding of
       Cybersecurity Threats 2020 IEEE 6th Intl Conference on Big Data Security
       on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and
       Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and
       Security (IDS). 10.1109/BigDataSecurity-HPSC-IDS49724.2020.00030.
       978-1-7281-6873-9. (115-121).
       
       https://ieeexplore.ieee.org/document/9123059/

 385.  Ezzeldin M and El-Dakhakhni W. (2020). Metaresearching Structural
       Engineering Using Text Mining: Trend Identifications and Knowledge Gap
       Discoveries. Journal of Structural Engineering.
       10.1061/(ASCE)ST.1943-541X.0002523. 146:5. Online publication date:
       1-May-2020.
       
       https://ascelibrary.org/doi/10.1061/%28ASCE%29ST.1943-541X.0002523

 386.  Ebadi A, Tremblay S, Goutte C and Schiffauerova A. (2020). Application of
       machine learning techniques to assess the trends and alignment of the
       funded research output. Journal of Informetrics.
       10.1016/j.joi.2020.101018. 14:2. (101018). Online publication date:
       1-May-2020.
       
       https://linkinghub.elsevier.com/retrieve/pii/S1751157718301901

 387.  Costa G and Ortale R. (2019). Topic-aware joint analysis of overlapping
       communities and roles in social media. International Journal of Data
       Science and Analytics. 10.1007/s41060-019-00190-4. 9:4. (415-429). Online
       publication date: 1-May-2020.
       
       http://link.springer.com/10.1007/s41060-019-00190-4

 388.  Yang H. Learning Topic Map from Large Scale Social Media Data. Companion
       Proceedings of the Web Conference 2020. (279-283).
       
       https://doi.org/10.1145/3366424.3382088

 389.  Cross J and Greene D. (2019). Talk is not cheap: Policy agendas,
       information processing, and the unusually proportional nature of European
       Central Bank communications policy responses. Governance.
       10.1111/gove.12441. 33:2. (425-444). Online publication date: 1-Apr-2020.
       
       https://onlinelibrary.wiley.com/doi/10.1111/gove.12441

 390.  Musa I, Xu K, Liu F, Zamit I, Abro W and Qi G. A cross-lingual sentiment
       topic model evolution over time. Intelligent Data Analysis.
       10.3233/IDA-184449. 24:2. (253-266).
       
       https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/IDA-184449

 391.  Ammirato S, Felicetti A, Linzalone R, Volpentesta A and Schiuma G.
       (2020). A systematic literature review of revenue management in passenger
       transportation. Measuring Business Excellence. 10.1108/MBE-09-2019-0096.
       24:2. (223-242). Online publication date: 23-Mar-2020.
       
       https://www.emerald.com/insight/content/doi/10.1108/MBE-09-2019-0096/full/html

 392.  Kreutz C, Sahitaj P and Schenkel R. (2020). Evaluating semantometrics
       from computer science publications. Scientometrics.
       10.1007/s11192-020-03409-5.
       
       http://link.springer.com/10.1007/s11192-020-03409-5

 393.  Xuan J, Luo X, Lu J and Zhang G. (2020). Web event evolution trend
       prediction based on its computational social context. World Wide Web.
       10.1007/s11280-019-00753-2.
       
       http://link.springer.com/10.1007/s11280-019-00753-2

 394.  Savov P, Jatowt A and Nielek R. (2020). Identifying breakthrough
       scientific papers. Information Processing and Management: an
       International Journal. 57:2. Online publication date: 1-Mar-2020.
       
       https://doi.org/10.1016/j.ipm.2019.102168

 395.  Guo L, Zhou D, He Y and Xu H. Storyline extraction from news articles
       with dynamic dependency. Intelligent Data Analysis. 10.3233/IDA-184448.
       24:1. (183-197).
       
       https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/IDA-184448

 396.  Keller T, Hase V, Thaker J, Mahl D and Schäfer M. (2019). News Media
       Coverage of Climate Change in India 1997–2016: Using Automated Content
       Analysis to Assess Themes and Topics. Environmental Communication.
       10.1080/17524032.2019.1643383. 14:2. (219-235). Online publication date:
       17-Feb-2020.
       
       https://www.tandfonline.com/doi/full/10.1080/17524032.2019.1643383

 397.  Sbalchiero S and Eder M. (2020). Topic modeling, long texts and the best
       number of topics. Some Problems and solutions. Quality & Quantity.
       10.1007/s11135-020-00976-w.
       
       http://link.springer.com/10.1007/s11135-020-00976-w

 398.  TOYAMA A, NAKAMURA K and TANAKA S. (2020). Research Concerning Topic
       Extraction Method Using Burst Levels in
       Microblogsマイクロブログのバースト度合いを用いたトピック抽出手法に関する研究. Journal of Japan Society for
       Fuzzy Theory and Intelligent Informatics. 10.3156/jsoft.32.1_570. 32:1.
       (570-579). Online publication date: 15-Feb-2020.
       
       https://www.jstage.jst.go.jp/article/jsoft/32/1/32_570/_article/-char/ja/

 399.  Huang Z, Epps J, Joachim D and Sethu V. Natural Language Processing
       Methods for Acoustic and Landmark Event-Based Features in Speech-Based
       Depression Detection. IEEE Journal of Selected Topics in Signal
       Processing. 10.1109/JSTSP.2019.2949419. 14:2. (435-448).
       
       https://ieeexplore.ieee.org/document/8882493/

 400.  Kuhr F, Bender M, Braun T and Moller R. (2020). Maintaining Topic Models
       for Growing Corpora 2020 IEEE 14th International Conference on Semantic
       Computing (ICSC). 10.1109/ICSC.2020.00087. 978-1-7281-6332-1. (451-458).
       
       https://ieeexplore.ieee.org/document/9031467/

 401.  Karell D and Freedman M. (2020). Sociocultural mechanisms of conflict:
       Combining topic and stochastic actor-oriented models in an analysis of
       Afghanistan, 1979–2001. Poetics. 10.1016/j.poetic.2019.101403. 78.
       (101403). Online publication date: 1-Feb-2020.
       
       https://linkinghub.elsevier.com/retrieve/pii/S0304422X18302766

 402.  Choi Y, Oh J and Park J. (2020). A Novel Approach to Managing the Dynamic
       Nature of Semantic Relatedness. Natural Language Processing.
       10.4018/978-1-7998-0951-7.ch052. (1085-1114).
       
       http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-7998-0951-7.ch052

 403.  KIM S, TADA R and KATSUMTA S. (2020). A Quantitative Model for Natural
       Language Dataset with Evaluation Information:What Topic makes Consumer
       Reviews “Helpful”?評価付き自然言語データの定量分析. Kodo Keiryogaku (The Japanese Journal
       of Behaviormetrics). 10.2333/jbhmk.47.99. 47:2. (99-109).
       
       https://www.jstage.jst.go.jp/article/jbhmk/47/2/47_99/_article/-char/ja/

 404.  OKUI T. (2020). A Topic Model for Repeated-Measures Data:an Application
       to Prescription Drug Data繰り返し測定データに対するトピックモデル:薬剤処方データへの適用. Kodo
       Keiryogaku (The Japanese Journal of Behaviormetrics).
       10.2333/jbhmk.47.59. 47:1. (59-70).
       
       https://www.jstage.jst.go.jp/article/jbhmk/47/1/47_59/_article/-char/ja/

 405.  Pan J and Roberts M. (2020). Censorship’s Effect on Incidental Exposure
       to Information: Evidence From Wikipedia. SAGE Open.
       10.1177/2158244019894068. 10:1. (215824401989406). Online publication
       date: 1-Jan-2020.
       
       http://journals.sagepub.com/doi/10.1177/2158244019894068

 406.  Ge J, Shi L, Wu Y and Liu J. Human-Driven Dynamic Community Influence
       Maximization in Social Media Data Streams. IEEE Access.
       10.1109/ACCESS.2020.3022096. 8. (162238-162251).
       
       https://ieeexplore.ieee.org/document/9187341/

 407.  Balili C, Lee U, Segev A, Kim J and Ko M. TermBall: Tracking and
       Predicting Evolution Types of Research Topics by Using Knowledge
       Structures in Scholarly Big Data. IEEE Access.
       10.1109/ACCESS.2020.3000948. 8. (108514-108529).
       
       https://ieeexplore.ieee.org/document/9110856/

 408.  Meng X, Li P and Zhang X. A Personalized and Approximated Spatial Keyword
       Query Approach. IEEE Access. 10.1109/ACCESS.2020.2977996. 8.
       (44889-44902).
       
       https://ieeexplore.ieee.org/document/9022863/

 409.  Yang P, Yao Y and Zhou H. Leveraging Global and Local Topic Popularities
       for LDA-Based Document Clustering. IEEE Access.
       10.1109/ACCESS.2020.2969525. 8. (24734-24745).
       
       https://ieeexplore.ieee.org/document/8970318/

 410.  Liu Z, Lin Y and Sun M. (2020). Document Representation. Representation
       Learning for Natural Language Processing. 10.1007/978-981-15-5573-2_5.
       (91-123).
       
       http://link.springer.com/10.1007/978-981-15-5573-2_5

 411.  Mittal V and Srivastava R. (2020). A Taxonomy of Methods for Handling
       Data Streams in Presence of Concepts Drifts. Futuristic Trends in
       Networks and Computing Technologies. 10.1007/978-981-15-4451-4_41.
       (521-531).
       
       http://link.springer.com/10.1007/978-981-15-4451-4_41

 412.  Yang S, Huang G, Zhou X and Xiang Y. (2020). Dynamic Clustering of Stream
       Short Documents Using Evolutionary Word Relation Network. Data Science.
       10.1007/978-981-15-2810-1_40. (418-428).
       
       http://link.springer.com/10.1007/978-981-15-2810-1_40

 413.  Yin H, Yang S and Li J. (2020). Detecting Topic and Sentiment Dynamics
       Due to COVID-19 Pandemic Using Social Media. Advanced Data Mining and
       Applications. 10.1007/978-3-030-65390-3_46. (610-623).
       
       http://link.springer.com/10.1007/978-3-030-65390-3_46

 414.  Roy S, Malladi V, Sengupta A and Das S. (2020). Online Topic Modeling for
       Short Texts. Service-Oriented Computing. 10.1007/978-3-030-65310-1_41.
       (563-579).
       
       http://link.springer.com/10.1007/978-3-030-65310-1_41

 415.  Ayele W and Juell-Skielse G. (2020). A Process Model for Generating and
       Evaluating Ideas: The Use of Machine Learning and Visual Analytics to
       Support Idea Mining. Electronic Government and the Information Systems
       Perspective. 10.1007/978-3-030-58957-8_14. (189-203).
       
       http://link.springer.com/10.1007/978-3-030-58957-8_14

 416.  Suk J, Yang Y, Jeong Y, Xiang M and Kim K. (2020). Consumer Experience of
       a Disruptive Technology: An O2O Food Delivery App Case. Intelligent Human
       Systems Integration 2020. 10.1007/978-3-030-39512-4_178. (1171-1177).
       
       http://link.springer.com/10.1007/978-3-030-39512-4_178

 417.  Ayele W and Juell-Skielse G. (2020). Eliciting Evolving Topics, Trends
       and Foresight about Self-driving Cars Using Dynamic Topic Modeling.
       Advances in Information and Communication. 10.1007/978-3-030-39445-5_37.
       (488-509).
       
       http://link.springer.com/10.1007/978-3-030-39445-5_37

 418.  Christophe C, Velcin J, Cugliari J, Suignard P and Boumghar M. (2020).
       How to Detect Novelty in Textual Data Streams? A Comparative Study of
       Existing Methods. Advanced Analytics and Learning on Temporal Data.
       10.1007/978-3-030-39098-3_9. (110-125).
       
       http://link.springer.com/10.1007/978-3-030-39098-3_9

 419.  Ashihara K, Chu C, Renoust B, Okubo N, Takemura N, Nakashima Y and
       Nagahara H. (2020). Legal Information as a Complex Network: Improving
       Topic Modeling Through Homophily. Complex Networks and Their Applications
       VIII. 10.1007/978-3-030-36683-4_3. (28-39).
       
       http://link.springer.com/10.1007/978-3-030-36683-4_3

 420.  Iannotta I and Vitale P. (2020). Research Topics: A Multidisciplinary
       Analysis of Online Communities to Detect Policy-Making Indicators.
       Advances on P2P, Parallel, Grid, Cloud and Internet Computing.
       10.1007/978-3-030-33509-0_22. (246-257).
       
       http://link.springer.com/10.1007/978-3-030-33509-0_22

 421.  Kumar D and Singh S. Prioritized Named Entity Driven LDA for Document
       Clustering. Pattern Recognition and Machine Intelligence. (294-301).
       
       https://doi.org/10.1007/978-3-030-34872-4_33

 422.  Yurochkin M, Fan Z, Guha A, Koutris P and Nguyen X. Scalable inference of
       topic evolution via models for latent geometric structures. Proceedings
       of the 33rd International Conference on Neural Information Processing
       Systems. (5951-5961).
       
       /doi/10.5555/3454287.3454822

 423.  Khan M, Wakabayashi K and Fukuyama S. Events Insights Extraction from
       Twitter Using LDA and Day-Hashtag Pooling. Proceedings of the 21st
       International Conference on Information Integration and Web-based
       Applications & Services. (240-244).
       
       https://doi.org/10.1145/3366030.3366090

 424.  Kato S, Nakanishi T, Shimauchi H and Ahsan B. Topic Variation Detection
       Method for Detecting Political Business Cycles. Proceedings of the 6th
       IEEE/ACM International Conference on Big Data Computing, Applications and
       Technologies. (85-93).
       
       https://doi.org/10.1145/3365109.3368787

 425.  Yu W, Li J, Bhuiyan Z, Zhang R and Huai J. Ring: Real-Time Emerging
       Anomaly Monitoring System Over Text Streams. IEEE Transactions on Big
       Data. 10.1109/TBDATA.2017.2672672. 5:4. (506-519).
       
       https://ieeexplore.ieee.org/document/7862778/

 426.  Nguyen P and Vo C. (2019). Early In-trouble Student Identification Based
       on Temporal Educational Data Clustering 2019 International Conference on
       Information Technology (ICIT). 10.1109/ICIT48102.2019.00062.
       978-1-7281-6052-8. (313-318).
       
       https://ieeexplore.ieee.org/document/9031978/

 427.  Gropp C, Herzog A, Safro I, Wilson P and Apon A. (2019). Clustered Latent
       Dirichlet Allocation for Scientific Discovery 2019 IEEE International
       Conference on Big Data (Big Data). 10.1109/BigData47090.2019.9005964.
       978-1-7281-0858-2. (4503-4511).
       
       https://ieeexplore.ieee.org/document/9005964/

 428.  Lee C and Wilkinson D. (2019). A review of stochastic block models and
       extensions for graph clustering. Applied Network Science.
       10.1007/s41109-019-0232-2. 4:1. Online publication date: 1-Dec-2019.
       
       https://appliednetsci.springeropen.com/articles/10.1007/s41109-019-0232-2

 429.  Ma C, Zhang Y, Robert N and Li Y. (2019). Visual analysis of the opinion
       flow among multiple social groups. Journal of Visualization.
       10.1007/s12650-019-00615-z.
       
       http://link.springer.com/10.1007/s12650-019-00615-z

 430.  Perrie J, Xie J, Nayebi M, Fokaefs M, Lyons K and Stroulia E. City on the
       river. Proceedings of the 29th Annual International Conference on
       Computer Science and Software Engineering. (82-91).
       
       /doi/10.5555/3370272.3370281

 431.  Chu Z, Cai R and Wang H. Accounting for Temporal Dynamics in Document
       Streams. Proceedings of the 28th ACM International Conference on
       Information and Knowledge Management. (1813-1822).
       
       https://doi.org/10.1145/3357384.3358022

 432.  Singh J, Kaur I and Singh A. (2019). Event detection from Twitter data
       2019 4th International Conference on Information Systems and Computer
       Networks (ISCON). 10.1109/ISCON47742.2019.9036286. 978-1-7281-3651-6.
       (793-798).
       
       https://ieeexplore.ieee.org/document/9036286/

 433.  Wang C, Miao Z, Lin Y and Gao J. (2019). User and Topic Hybrid Context
       Embedding for Finance-Related Text Data Mining 2019 International
       Conference on Data Mining Workshops (ICDMW). 10.1109/ICDMW.2019.00112.
       978-1-7281-4896-0. (751-760).
       
       https://ieeexplore.ieee.org/document/8955635/

 434.  Delasalles E, Lamprier S and Denoyer L. (2019). Learning Dynamic Author
       Representations with Temporal Language Models 2019 IEEE International
       Conference on Data Mining (ICDM). 10.1109/ICDM.2019.00022.
       978-1-7281-4604-1. (120-129).
       
       https://ieeexplore.ieee.org/document/8970806/

 435.  Fu C. (2019). Tracking user-role evolution via topic modeling in
       community question answering. Information Processing and Management: an
       International Journal. 56:6. Online publication date: 1-Nov-2019.
       
       https://doi.org/10.1016/j.ipm.2019.102075

 436.  Marrone M. (2019). Application of entity linking to identify research
       fronts and trends. Scientometrics. 10.1007/s11192-019-03274-x.
       
       http://link.springer.com/10.1007/s11192-019-03274-x

 437.  Katsurai M and Ono S. (2019). TrendNets: mapping emerging research trends
       from dynamic co-word networks via sparse representation. Scientometrics.
       10.1007/s11192-019-03241-6.
       
       http://link.springer.com/10.1007/s11192-019-03241-6

 438.  Tikhonov A, Bogdanov V, Merzlyakov A and Guseinova K. (2019). Development
       and Implementation Problems of scientific and Technological Progress
       strategic Programs in the Russian Federation Regions: social and
       Organizational Barriers Part 2. MIR (Modernization. Innovation.
       Research). 10.18184/2079-4665.2019.10.3.340-368. 10:3. (340-368).
       
       https://www.mir-nayka.com/jour/article/view/927

 439.  Radford J and Lazer D. (2019). Big Data for Sociological Research. The
       Wiley Blackwell Companion to Sociology. 10.1002/9781119429333.ch24.
       (417-443). Online publication date: 15-Oct-2019.
       
       https://onlinelibrary.wiley.com/doi/10.1002/9781119429333.ch24

 440.  Dew R, Ansari A and Li Y. (2019). Modeling Dynamic Heterogeneity Using
       Gaussian Processes. Journal of Marketing Research.
       10.1177/0022243719874047. (002224371987404).
       
       http://journals.sagepub.com/doi/10.1177/0022243719874047

 441.  Wang H, Hsu T and Sari Y. (2019). Personal research idea recommendation
       using research trends and a hierarchical topic model. Scientometrics.
       10.1007/s11192-019-03258-x.
       
       http://link.springer.com/10.1007/s11192-019-03258-x

 442.  Sankaran K and Holmes S. (2018). Latent variable modeling for the
       microbiome. Biostatistics. 10.1093/biostatistics/kxy018. 20:4. (599-614).
       Online publication date: 1-Oct-2019.
       
       https://academic.oup.com/biostatistics/article/20/4/599/5032578

 443.  Introne J and Goggins S. (2019). Advice reification, learning, and
       emergent collective intelligence in online health support communities.
       Computers in Human Behavior. 99:C. (205-218). Online publication date:
       1-Oct-2019.
       
       https://doi.org/10.1016/j.chb.2019.05.028

 444.  Keogh G. (2019). A Lexical Approach to Estimating Environmental Goods and
       Services Output in the Construction Sector via Soft Classification of
       Enterprise Activity Descriptions Using Latent Dirichlet Allocation.
       Journal of Official Statistics. 10.2478/jos-2019-0026. 35:3. (625-651).
       Online publication date: 1-Sep-2019.. Online publication date:
       1-Sep-2019.
       
       https://www.sciendo.com/article/10.2478/jos-2019-0026

 445.  Park B, Murdie A and Davis D. (2018). The (co)evolution of human rights
       advocacy: Understanding human rights issue emergence over time.
       Cooperation and Conflict. 10.1177/0010836718808315. 54:3. (313-334).
       Online publication date: 1-Sep-2019.
       
       http://journals.sagepub.com/doi/10.1177/0010836718808315

 446.  Maitre J, Menard M, Chiron G, Bouju A and Sidere N. (2019). A Meaningful
       Information Extraction System for Interactive Analysis of Documents 2019
       International Conference on Document Analysis and Recognition (ICDAR).
       10.1109/ICDAR.2019.00024. 978-1-7281-3014-9. (92-99).
       
       https://ieeexplore.ieee.org/document/8978125/

 447.  Choi S and Ko E. (2019). Analysis of <Korean Journal of Journalism &
       Communication Studies> from 1960 to 2018 using Metadata with Dynamic
       Topic Modeling. Korean Journal of Journalism & Communication Studies.
       10.20879/kjjcs.2019.63.4.001. 63:4. (7-42). Online publication date:
       31-Aug-2019.
       
       http://www.dbpia.co.kr/Journal/ArticleDetail/NODE08767049

 448.  Xu S, Zhai D, Wang F, An X, Pang H and Sun Y. (2019). A novel method for
       topic linkages between scientific publications and patents. Journal of
       the Association for Information Science and Technology. 70:9.
       (1026-1042). Online publication date: 2-Aug-2019.
       
       https://doi.org/10.1002/asi.24175

 449.  Denter N, Caferoglu H and Moehrle M. (2019). Applying Dynamic Topic
       Modeling for Understanding the Evolution of the RFID Technology 2019
       Portland International Conference on Management of Engineering and
       Technology (PICMET). 10.23919/PICMET.2019.8893914. 978-1-890843-39-7.
       (1-9).
       
       https://ieeexplore.ieee.org/document/8893914/

 450.  Zhang C, Butepage J, Kjellstrom H and Mandt S. Advances in Variational
       Inference. IEEE Transactions on Pattern Analysis and Machine
       Intelligence. 10.1109/TPAMI.2018.2889774. 41:8. (2008-2026).
       
       https://ieeexplore.ieee.org/document/8588399/

 451.  Malhotra R, Taneja A and Arora A. (2019). Temporal Recommendations for
       Discovering Author Interests 2019 Twelfth International Conference on
       Contemporary Computing (IC3). 10.1109/IC3.2019.8844932.
       978-1-7281-3591-5. (1-6).
       
       https://ieeexplore.ieee.org/document/8844932/

 452.  Haimson O. (2019). Mapping gender transition sentiment patterns via
       social media data: toward decreasing transgender mental health
       disparities. Journal of the American Medical Informatics Association.
       10.1093/jamia/ocz056. 26:8-9. (749-758). Online publication date:
       1-Aug-2019.
       
       https://academic.oup.com/jamia/article/26/8-9/749/5497782

 453.  De Lorenzo A, Bartoli A, Castelli M, Medvet E and Xue B. (2019). Genetic
       programming in the twenty-first century: a bibliometric and content-based
       analysis from both sides of the fence. Genetic Programming and Evolvable
       Machines. 10.1007/s10710-019-09363-3.
       
       http://link.springer.com/10.1007/s10710-019-09363-3

 454.  Nosakhare E and Picard R. Probabilistic Latent Variable Modeling for
       Assessing Behavioral Influences on Well-Being. Proceedings of the 25th
       ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.
       (2718-2726).
       
       https://doi.org/10.1145/3292500.3330738

 455.  J P N and Babu L. (2018). Analyzing the impact of news trends on research
       publications and scientific collaboration networks. Concurrency and
       Computation: Practice and Experience. 10.1002/cpe.5058. 31:14. Online
       publication date: 25-Jul-2019.
       
       https://onlinelibrary.wiley.com/doi/10.1002/cpe.5058

 456.  Burnie A and Yilmaz E. An Analysis of the Change in Discussions on Social
       Media with Bitcoin Price. Proceedings of the 42nd International ACM SIGIR
       Conference on Research and Development in Information Retrieval.
       (889-892).
       
       https://doi.org/10.1145/3331184.3331304

 457.  Liu S, Wang X, Collins C, Dou W, Ouyang F, El-Assady M, Jiang L and Keim
       D. Bridging Text Visualization and Mining: A Task-Driven Survey. IEEE
       Transactions on Visualization and Computer Graphics.
       10.1109/TVCG.2018.2834341. 25:7. (2482-2504).
       
       https://ieeexplore.ieee.org/document/8356097/

 458.  Zhang Y, Qian Y, Gan M, Tang X and Lin Z. (2019). Service Recommendation
       Based on User Dynamic Preference Extraction and Prediction 2019 IEEE
       World Congress on Services (SERVICES). 10.1109/SERVICES.2019.00040.
       978-1-7281-3851-0. (121-126).
       
       https://ieeexplore.ieee.org/document/8817297/

 459.  Wu X, Fan Y, Zhang J, Lin H and Zhang J. (2019). QF-RNN: QI-Matrix
       Factorization Based RNN for Time-Aware Service Recommendation 2019 IEEE
       International Conference on Services Computing (SCC).
       10.1109/SCC.2019.00042. 978-1-7281-2720-0. (202-209).
       
       https://ieeexplore.ieee.org/document/8813923/

 460.  He S, Yang H, Zheng X, Wang B, Zhou Y, Xiong Y and Zeng D. (2019).
       Massive Meme Identification and Popularity Analysis in Geopolitics 2019
       IEEE International Conference on Intelligence and Security Informatics
       (ISI). 10.1109/ISI.2019.8823294. 978-1-7281-2504-6. (116-121).
       
       https://ieeexplore.ieee.org/document/8823294/

 461.  Dang T and Nguyen N. (2019). SpacePhaser: Phase Space Embedding Visual
       Analytics 2019 IEEE 43rd Annual Computer Software and Applications
       Conference (COMPSAC). 10.1109/COMPSAC.2019.10213. 978-1-7281-2607-4.
       (239-244).
       
       https://ieeexplore.ieee.org/document/8753913/

 462.  Yin L and Liu H. (2019). Searching Activity Trajectories with Semantics.
       Journal of Computer Science and Technology. 10.1007/s11390-019-1942-8.
       34:4. (775-794). Online publication date: 1-Jul-2019.
       
       http://link.springer.com/10.1007/s11390-019-1942-8

 463.  Corneli M, Bouveyron C, Latouche P and Rossi F. (2019). The dynamic
       stochastic topic block model for dynamic networks with textual edges.
       Statistics and Computing. 29:4. (677-695). Online publication date:
       1-Jul-2019.
       
       https://doi.org/10.1007/s11222-018-9832-4

 464.  Henry T, Banks D, Owens-Oas D and Chai C. (2019). Modeling Community
       Structure and Topics in Dynamic Text Networks. Journal of Classification.
       36:2. (322-349). Online publication date: 1-Jul-2019.
       
       https://doi.org/10.1007/s00357-018-9289-3

 465.  Xu J, Ding Y, Bu Y, Deng S, Yu C, Zou Y and Madden A. (2019).
       Interdisciplinary scholarly communication. Scientometrics. 119:3.
       (1597-1619). Online publication date: 15-Jun-2019.
       
       https://doi.org/10.1007/s11192-019-03106-y

 466.  Zhou Y, Sharma J, Ke Q, Landman R, Yuan J, Chen H, Hayden D, Fisher J,
       Jiang M, Menegas W, Aida T, Yan T, Zou Y, Xu D, Parmar S, Hyman J,
       Fanucci-Kiss A, Meisner O, Wang D, Huang Y, Li Y, Bai Y, Ji W, Lai X, Li
       W, Huang L, Lu Z, Wang L, Anteraper S, Sur M, Zhou H, Xiang A, Desimone
       R, Feng G and Yang S. (2019). Atypical behaviour and connectivity in
       SHANK3-mutant macaques. Nature. 10.1038/s41586-019-1278-0.
       
       http://www.nature.com/articles/s41586-019-1278-0

 467.  Gobbo B, Balsamo D, Mauri M, Bajardi P, Panisson A and Ciuccarelli P.
       (2019). Topic Tomographies (TopTom): a visual approach to distill
       information from media streams. Computer Graphics Forum.
       10.1111/cgf.13714. 38:3. (609-621). Online publication date: 1-Jun-2019.
       
       https://onlinelibrary.wiley.com/doi/10.1111/cgf.13714

 468.  Peng M, Xie Q, Wang H, Zhang Y and Tian G. Bayesian Sparse Topical
       Coding. IEEE Transactions on Knowledge and Data Engineering.
       10.1109/TKDE.2018.2847707. 31:6. (1080-1093).
       
       https://ieeexplore.ieee.org/document/8386675/

 469.  Bindu K, Gowrikrishna G and Parameswaran L. (2019). A Performance
       Evaluation of Correlated and Dynamic Topic Modeling on a QA Dataset 2019
       3rd International conference on Electronics, Communication and Aerospace
       Technology (ICECA). 10.1109/ICECA.2019.8822023. 978-1-7281-0167-5. (1-7).
       
       https://ieeexplore.ieee.org/document/8822023/

 470.  Jelodar H, Wang Y, Yuan C, Feng X, Jiang X, Li Y and Zhao L. (2019).
       Latent Dirichlet allocation (LDA) and topic modeling. Multimedia Tools
       and Applications. 78:11. (15169-15211). Online publication date:
       1-Jun-2019.
       
       https://doi.org/10.1007/s11042-018-6894-4

 471.  Liang Q and Wang K. (2019). Monitoring of user‐generated reviews via a
       sequential reverse joint sentiment‐topic model. Quality and Reliability
       Engineering International. 10.1002/qre.2452. 35:4. (1180-1199). Online
       publication date: 1-Jun-2019.
       
       https://onlinelibrary.wiley.com/doi/10.1002/qre.2452

 472.  Peng J, Ma Z, Jiang D and Wu H. Integrating Bayesian and Neural Networks
       for Discourse Coherence. Companion Proceedings of The 2019 World Wide Web
       Conference. (294-300).
       
       https://doi.org/10.1145/3308560.3316582

 473.  Tavabi N, Bartley N, Abeliuk A, Soni S, Ferrara E and Lerman K.
       Characterizing Activity on the Deep and Dark Web. Companion Proceedings
       of The 2019 World Wide Web Conference. (206-213).
       
       https://doi.org/10.1145/3308560.3316502

 474.  Xu A, Wang F and Ying P. Xiaomi Brand Appraisal Research Based on Zhihu
       by Text Mining Technology. Proceedings of the 4th International
       Conference on Big Data and Computing. (221-225).
       
       https://doi.org/10.1145/3335484.3335515

 475.  Chandrasegaran S, Bryan C, Shidara H, Chuang T and Ma K. TalkTraces.
       Proceedings of the 2019 CHI Conference on Human Factors in Computing
       Systems. (1-14).
       
       https://doi.org/10.1145/3290605.3300807

 476.  Anderlucci L, Montanari A and Viroli C. The Importance of Being
       Clustered: Uncluttering the Trends of Statistics from 1970 to 2015.
       Statistical Science. 10.1214/18-STS686. 34:2.
       
       https://projecteuclid.org\journals\statistical-science\volume-34\issue-2\The-Importance-of-Being-Clustered--Uncluttering-the-Trends-of\10.1214/18-STS686.full

 477.  Bradley J, Wikle C and Holan S. (2019). Spatio‐temporal models for big
       multinomial data using the conditional multivariate logit‐beta
       distribution. Journal of Time Series Analysis. 10.1111/jtsa.12468. 40:3.
       (363-382). Online publication date: 1-May-2019.
       
       https://onlinelibrary.wiley.com/doi/10.1111/jtsa.12468

 478.  Gao Z, Fan Y, Wu C, Tan W, Zhang J, Ni Y, Bai B and Chen S. SeCo-LDA:
       Mining Service Co-Occurrence Topics for Composition Recommendation. IEEE
       Transactions on Services Computing. 10.1109/TSC.2018.2821149. 12:3.
       (446-459).
       
       https://ieeexplore.ieee.org/document/8328903/

 479.  Huang Z, Epps J and Joachim D. (2019). Speech Landmark Bigrams for
       Depression Detection from Naturalistic Smartphone Speech ICASSP 2019 -
       2019 IEEE International Conference on Acoustics, Speech and Signal
       Processing (ICASSP). 10.1109/ICASSP.2019.8682916. 978-1-4799-8131-1.
       (5856-5860).
       
       https://ieeexplore.ieee.org/document/8682916/

 480.  Xia L, Luo D, Zhang C and Wu Z. (2019). A Survey of Topic Models in Text
       Classification 2019 2nd International Conference on Artificial
       Intelligence and Big Data (ICAIBD). 10.1109/ICAIBD.2019.8836970.
       978-1-7281-0829-2. (244-250).
       
       https://ieeexplore.ieee.org/document/8836970/

 481.  Mele I, Bahrainian S and Crestani F. (2019). Event mining and timeliness
       analysis from heterogeneous news streams. Information Processing and
       Management: an International Journal. 56:3. (969-993). Online publication
       date: 1-May-2019.
       
       https://doi.org/10.1016/j.ipm.2019.02.003

 482.  Lesnikowski A, Belfer E, Rodman E, Smith J, Biesbroek R, Wilkerson J,
       Ford J and Berrang‐Ford L. (2019). Frontiers in data analytics for
       adaptation research: Topic modeling. WIREs Climate Change.
       10.1002/wcc.576. 10:3. Online publication date: 1-May-2019.
       
       https://wires.onlinelibrary.wiley.com/doi/10.1002/wcc.576

 483.  Huang M, Zolnoori M, Balls-Berry J, Brockman T, Patten C and Yao L.
       (2019). Technological Innovations in Disease Management: Text Mining US
       Patent Data From 1995 to 2017. Journal of Medical Internet Research.
       10.2196/13316. 21:4. (e13316).
       
       http://www.jmir.org/2019/4/e13316/

 484.  Jha K, Xun G, Gopalakrishnan V and Zhang A. (2019). DWE-Med. ACM
       Transactions on Knowledge Discovery from Data. 13:2. (1-21). Online
       publication date: 30-Apr-2019.
       
       https://doi.org/10.1145/3310254

 485.  Rich A and Gureckis T. (2019). Lessons for artificial intelligence from
       the study of natural stupidity. Nature Machine Intelligence.
       10.1038/s42256-019-0038-z. 1:4. (174-180).
       
       https://www.nature.com/articles/s42256-019-0038-z

 486.  Gavhane S, Bhadave S and Vengatesan K. . Review on Latest Trending Topic
       Detection in Twitter With Stream Processing (Using Fission Pattern).
       International Journal of Applied Evolutionary Computation.
       10.4018/IJAEC.2019040106. 10:2. (43-47).
       
       http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJAEC.2019040106

 487.  Riehmann P, Kiesel D, Kohlhaas M and Froehlich B. (2019). Visualizing a
       Thinker's Life. IEEE Transactions on Visualization and Computer Graphics.
       25:4. (1803-1816). Online publication date: 1-Apr-2019.
       
       https://doi.org/10.1109/TVCG.2018.2824822

 488.  Umemoto K, Goda K, Mitsutake N and Kitsuregawa M. (2019). A Prescription
       Trend Analysis using Medical Insurance Claim Big Data 2019 IEEE 35th
       International Conference on Data Engineering (ICDE).
       10.1109/ICDE.2019.00209. 978-1-5386-7474-1. (1928-1939).
       
       https://ieeexplore.ieee.org/document/8731577/

 489.  Reisenbichler M and Reutterer T. (2018). Topic modeling in marketing:
       recent advances and research opportunities. Journal of Business
       Economics. 10.1007/s11573-018-0915-7. 89:3. (327-356). Online publication
       date: 1-Apr-2019.
       
       http://link.springer.com/10.1007/s11573-018-0915-7

 490.  Akhtar N, Beg M, Thampi S and El-Alfy E. User graph topic model. Journal
       of Intelligent & Fuzzy Systems. 10.3233/JIFS-169934. 36:3. (2229-2240).
       
       https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/JIFS-169934

 491.  Ohsawa Y, Hayashi T and Yoshino T. (2019). Tangled String for
       Multi-Timescale Explanation of Changes in Stock Market. Information.
       10.3390/info10030118. 10:3. (118).
       
       https://www.mdpi.com/2078-2489/10/3/118

 492.  Carriquiry A, Reid N and Slavković A. (2019). Stephen Elliott Fienberg
       1942–2016, Founding Editor of the Annual Review of Statistics and Its
       Application . Annual Review of Statistics and Its Application.
       10.1146/annurev-statistics-030718-105334. 6:1. (1-18). Online publication
       date: 7-Mar-2019.
       
       https://www.annualreviews.org/doi/10.1146/annurev-statistics-030718-105334

 493.  Glynn C, Tokdar S, Howard B and Banks D. Bayesian Analysis of Dynamic
       Linear Topic Models. Bayesian Analysis. 10.1214/18-BA1100. 14:1.
       
       https://projecteuclid.org/journals/bayesian-analysis/volume-14/issue-1/Bayesian-Analysis-of-Dynamic-Linear-Topic-Models/10.1214/18-BA1100.full

 494.  Wu Q, Kuang Y, Hong Q and She Y. (2019). Frontier knowledge discovery and
       visualization in cancer field based on KOS and LDA. Scientometrics.
       118:3. (979-1010). Online publication date: 1-Mar-2019.
       
       https://doi.org/10.1007/s11192-018-2989-y

 495.  Kim H, Hong I, Jung W and Portela J. (2019). Measuring national
       capability over big science’s multidisciplinarity: A case study of
       nuclear fusion research. PLOS ONE. 10.1371/journal.pone.0211963. 14:2.
       (e0211963).
       
       http://dx.plos.org/10.1371/journal.pone.0211963

 496.  Liang S, Yilmaz E and Kanoulas E. (2019). Collaboratively Tracking
       Interests for User Clustering in Streams of Short Texts. IEEE
       Transactions on Knowledge and Data Engineering. 31:2. (257-272). Online
       publication date: 1-Feb-2019.
       
       https://doi.org/10.1109/TKDE.2018.2832211

 497.  Lin L, Gong L and Wang H. Learning Personalized Topical Compositions with
       Item Response Theory. Proceedings of the Twelfth ACM International
       Conference on Web Search and Data Mining. (609-617).
       
       https://doi.org/10.1145/3289600.3291022

 498.  Spitz A, Almasian S and Gertz M. TopExNet. Proceedings of the Twelfth ACM
       International Conference on Web Search and Data Mining. (798-801).
       
       https://doi.org/10.1145/3289600.3290619

 499.  Liang S. Collaborative, dynamic and diversified user profiling.
       Proceedings of the Thirty-Third AAAI Conference on Artificial
       Intelligence and Thirty-First Innovative Applications of Artificial
       Intelligence Conference and Ninth AAAI Symposium on Educational Advances
       in Artificial Intelligence. (4269-4276).
       
       https://doi.org/10.1609/aaai.v33i01.33014269

 500.  Zhang L, Liu P and Gulla J. (2019). Dynamic attention-integrated neural
       network for session-based news recommendation. Machine Learning.
       10.1007/s10994-018-05777-9.
       
       http://link.springer.com/10.1007/s10994-018-05777-9

 501.  Wang Y. Convergence rates of latent topic models under relaxed
       identifiability conditions. Electronic Journal of Statistics.
       10.1214/18-EJS1516. 13:1.
       
       https://projecteuclid.org/journals/electronic-journal-of-statistics/volume-13/issue-1/Convergence-rates-of-latent-topic-models-under-relaxed-identifiability-conditions/10.1214/18-EJS1516.full

 502.  Mahalakshmi G, Muthu Selvi G, Sendhilkumar S, Vijayakumar P, Zhu Y and
       Chang V. Sustainable Computing Based Deep Learning Framework for Writing
       Research Manuscripts. IEEE Transactions on Sustainable Computing.
       10.1109/TSUSC.2018.2829196. 4:1. (4-16).
       
       https://ieeexplore.ieee.org/document/8344521/

 503.  Zou X, Zhu Y, Feng J, Lu J and Li X. A Novel Hierarchical Topic Model for
       Horizontal Topic Expansion With Observed Label Information. IEEE Access.
       10.1109/ACCESS.2019.2960468. 7. (184242-184253).
       
       https://ieeexplore.ieee.org/document/8936331/

 504.  Tang C, Zhu Y, Blackley S, Plasek J, Wan M, Zhou L, Ma J and Bates D.
       Visualizing Literature Review Theme Evolution on Timeline Maps:
       Comparison Across Disciplines. IEEE Access. 10.1109/ACCESS.2019.2925706.
       (1-1).
       
       https://ieeexplore.ieee.org/document/8750853/

 505.  Mendez J, Lobel H, Parra D and Herrera J. Using Twitter to Infer User
       Satisfaction With Public Transport: The Case of Santiago, Chile. IEEE
       Access. 10.1109/ACCESS.2019.2915107. 7. (60255-60263).
       
       https://ieeexplore.ieee.org/document/8708245/

 506.  Li C, Feng S, Zeng Q, Ni W, Zhao H and Duan H. Mining Dynamics of
       Research Topics Based on the Combined LDA and WordNet. IEEE Access.
       10.1109/ACCESS.2018.2887314. 7. (6386-6399).
       
       https://ieeexplore.ieee.org/document/8580532/

 507.  Huang R, Zhu Y, Chen Y, Yang Y, Xu W, Yang J and Meng Y. (2019).
       Adjusting the Inheritance of Topic for Dynamic Document Clustering.
       Theoretical Computer Science. 10.1007/978-981-15-0105-0_4. (46-63).
       
       http://link.springer.com/10.1007/978-981-15-0105-0_4

 508.  Lee B and Sohn S. (2019). Dynamics of Topics in Antimalarial Patents:
       Comparison Between the USPTO and SIPO. Intellectual Property Issues in
       Microbiology. 10.1007/978-981-13-7466-1_16. (309-321).
       
       http://link.springer.com/10.1007/978-981-13-7466-1_16

 509.  Liqing Q, Haiyan L, Xin F and Wei J. (2019). Hot Topic Detection Based on
       VSM and Improved LDA Hybrid Model. Genetic and Evolutionary Computing.
       10.1007/978-981-13-5841-8_61. (583-593).
       
       http://link.springer.com/10.1007/978-981-13-5841-8_61

 510.  Yu J, Pan L, Li J and Du X. (2019). Predicting Concept-Based Research
       Trends with Rhetorical Framing. Knowledge Graph and Semantic Computing.
       Knowledge Computing and Language Understanding.
       10.1007/978-981-13-3146-6_10. (116-128).
       
       http://link.springer.com/10.1007/978-981-13-3146-6_10

 511.  Kherwa P and Bansal P. (2019). Empirical Evaluation of Inference
       Technique for Topic Models. Progress in Advanced Computing and
       Intelligent Engineering. 10.1007/978-981-13-1708-8_22. (237-246).
       
       http://link.springer.com/10.1007/978-981-13-1708-8_22

 512.  Anikin A, Sychev O and Gurtovoy V. (2019). Multi-level Modeling of
       Structural Elements of Natural Language Texts and Its Applications.
       Biologically Inspired Cognitive Architectures 2018.
       10.1007/978-3-319-99316-4_1. (1-8).
       
       http://link.springer.com/10.1007/978-3-319-99316-4_1

 513.  Anandarajan M, Hill C and Nolan T. (2019). Probabilistic Topic Models.
       Practical Text Analytics. 10.1007/978-3-319-95663-3_8. (117-130).
       
       https://link.springer.com/10.1007/978-3-319-95663-3_8

 514.  Zhang S and Qiao H. (2019). Matching User Accounts Across Social Networks
       Based on LDA Model. Human Centered Computing.
       10.1007/978-3-030-37429-7_33. (333-340).
       
       http://link.springer.com/10.1007/978-3-030-37429-7_33

 515.  Glazkova A, Kruzhinov V and Sokova Z. (2019). Dynamic Topic Models for
       Retrospective Event Detection: A Study on Soviet Opposition-Leaning
       Media. Analysis of Images, Social Networks and Texts.
       10.1007/978-3-030-37334-4_13. (145-154).
       
       http://link.springer.com/10.1007/978-3-030-37334-4_13

 516.  Delasalles E, Lamprier S and Denoyer L. (2019). Dynamic Neural Language
       Models. Neural Information Processing. 10.1007/978-3-030-36718-3_24.
       (282-294).
       
       http://link.springer.com/10.1007/978-3-030-36718-3_24

 517.  Lin Z, Wan X and Guo Z. (2019). Learning Diachronic Word Embeddings with
       Iterative Stable Information Alignment. Natural Language Processing and
       Chinese Computing. 10.1007/978-3-030-32233-5_58. (749-760).
       
       http://link.springer.com/10.1007/978-3-030-32233-5_58

 518.  Shin S and Suh C. (2019). Discovering Platform Government Research Trends
       Using Topic Modeling. Model and Data Engineering.
       10.1007/978-3-030-32065-2_5. (67-82).
       
       http://link.springer.com/10.1007/978-3-030-32065-2_5

 519.  Tanaka K and Hori K. (2019). Finding Diachronic Objects of Drifting
       Descriptions by Similar Mentions. Knowledge Management and Acquisition
       for Intelligent Systems. 10.1007/978-3-030-30639-7_4. (32-43).
       
       http://link.springer.com/10.1007/978-3-030-30639-7_4

 520.  Chen P, Chen Z and Zhang N. (2019). A Novel Document Generation Process
       for Topic Detection Based on Hierarchical Latent Tree Models. Symbolic
       and Quantitative Approaches to Reasoning with Uncertainty.
       10.1007/978-3-030-29765-7_22. (265-276).
       
       http://link.springer.com/10.1007/978-3-030-29765-7_22

 521.  Wang B, Buccio E and Melucci M. (2019). Representing Words in Vector
       Space and Beyond. Quantum-Like Models for Information Retrieval and
       Decision-Making. 10.1007/978-3-030-25913-6_5. (83-113).
       
       http://link.springer.com/10.1007/978-3-030-25913-6_5

 522.  Deviatkin D, Shelmanov A and Larionov D. (2019). Discovering,
       Classification, and Localization of Emergency Events via Analyzing of
       Social Network Text Streams. Data Analytics and Management in Data
       Intensive Domains. 10.1007/978-3-030-23584-0_11. (180-196).
       
       http://link.springer.com/10.1007/978-3-030-23584-0_11

 523.  Semedo D and Magalhães J. (2019). Dynamic-Keyword Extraction from Social
       Media. Advances in Information Retrieval. 10.1007/978-3-030-15712-8_62.
       (852-860).
       
       http://link.springer.com/10.1007/978-3-030-15712-8_62

 524.  Chaoua I, Consoli S, Härmä A, Helaoui R and Reforgiato Recupero D.
       (2019). Analysis of Topic Propagation in Therapy Sessions Using Partially
       Labeled Latent Dirichlet Allocation. Artificial Intelligence in Health.
       10.1007/978-3-030-12738-1_5. (59-75).
       
       http://link.springer.com/10.1007/978-3-030-12738-1_5

 525.  Skryzalin J, Field R, Fisher A and Bauer T. (2019). Temporal Methods to
       Detect Content-Based Anomalies in Social Media. From Security to
       Community Detection in Social Networking Platforms.
       10.1007/978-3-030-11286-8_10. (213-230).
       
       http://link.springer.com/10.1007/978-3-030-11286-8_10

 526.  Zitt M, Lelu A, Cadot M and Cabanac G. (2019). Bibliometric Delineation
       of Scientific Fields. Springer Handbook of Science and Technology
       Indicators. 10.1007/978-3-030-02511-3_2. (25-68).
       
       http://link.springer.com/10.1007/978-3-030-02511-3_2

 527.  Lu Y and Zheng Y. (2019). Subject Analysis of the Microblog About US
       Presidential Election Based on LDA. Intelligent Systems and Applications.
       10.1007/978-3-030-01054-6_69. (998-1008).
       
       http://link.springer.com/10.1007/978-3-030-01054-6_69

 528.  Philipps A. (2018). Text Mining-Verfahren als Herausforderung für die
       rekonstruktive Sozialforschung. Sozialer Sinn. 10.1515/sosi-2018-0017.
       19:2. (367-387). Online publication date: 19-Dec-2018.. Online
       publication date: 1-Dec-2018.
       
       https://www.degruyter.com/document/doi/10.1515/sosi-2018-0017/html

 529.  Figurnov M, Mohamed S and Mnih A. Implicit reparameterization gradients.
       Proceedings of the 32nd International Conference on Neural Information
       Processing Systems. (439-450).
       
       /doi/10.5555/3326943.3326984

 530.  Mankad S, Hu S and Gopal A. Single stage prediction with embedded topic
       modeling of online reviews for mobile app management. The Annals of
       Applied Statistics. 10.1214/18-AOAS1152. 12:4.
       
       https://projecteuclid.org/journals/annals-of-applied-statistics/volume-12/issue-4/Single-stage-prediction-with-embedded-topic-modeling-of-online-reviews/10.1214/18-AOAS1152.full

 531.  Costa G and Ortale R. (2018). Topical Cluster Discovery in Semistructured
       Healthcare Data 2018 IEEE/WIC/ACM International Conference on Web
       Intelligence (WI). 10.1109/WI.2018.00014. 978-1-5386-7325-6. (772-775).
       
       https://ieeexplore.ieee.org/document/8609689/

 532.  Duan R and Li C. (2018). An Adaptive Dirichlet Multinomial Mixture Model
       for Short Text Streaming Clustering 2018 IEEE/WIC/ACM International
       Conference on Web Intelligence (WI). 10.1109/WI.2018.0-108.
       978-1-5386-7325-6. (49-55).
       
       https://ieeexplore.ieee.org/document/8609575/

 533.  Lee H, Chung P, Wu Y, Lin T and Wen T. (2018). Interactive Spoken Content
       Retrieval by Deep Reinforcement Learning. IEEE/ACM Transactions on Audio,
       Speech and Language Processing. 26:12. (2447-2459). Online publication
       date: 1-Dec-2018.
       
       https://doi.org/10.1109/TASLP.2018.2852739

 534.  Fu Y, Han Z, Ye O and Li G. (2018). A Semi-Supervised Novel
       Recommendation Algorithm 2018 International Symposium on Computer,
       Consumer and Control (IS3C). 10.1109/IS3C.2018.00074. 978-1-5386-7036-1.
       (266-269).
       
       https://ieeexplore.ieee.org/document/8644752/

 535.  Zhang Y, Calyam P, Joshi T, Nair S and Xu D. (2018). Domain-specific
       Topic Model for Knowledge Discovery through Conversational Agents in Data
       Intensive Scientific Communities 2018 IEEE International Conference on
       Big Data (Big Data). 10.1109/BigData.2018.8622309. 978-1-5386-5035-6.
       (4886-4895).
       
       https://ieeexplore.ieee.org/document/8622309/

 536.  Barranco R, Dos Santos R, Hossain M and Akbar M. (2018). Tracking the
       Evolution of Words with Time-reflective Text Representations 2018 IEEE
       International Conference on Big Data (Big Data).
       10.1109/BigData.2018.8621902. 978-1-5386-5035-6. (2088-2097).
       
       https://ieeexplore.ieee.org/document/8621902/

 537.  Tang C, Plasek J, Zhang H, Xiong Y, Bates D and Zhou L. (2018). A Deep
       Learning Approach to Handling Temporal Variation in Chronic Obstructive
       Pulmonary Disease Progression 2018 IEEE International Conference on
       Bioinformatics and Biomedicine (BIBM). 10.1109/BIBM.2018.8621489.
       978-1-5386-5488-0. (502-509).
       
       https://ieeexplore.ieee.org/document/8621489/

 538.  Li N, Luo W, Yang K, Zhuang F, He Q and Shi Z. (2017). Self-organizing
       weighted incremental probabilistic latent semantic analysis.
       International Journal of Machine Learning and Cybernetics.
       10.1007/s13042-017-0681-9. 9:12. (1987-1998). Online publication date:
       1-Dec-2018.
       
       http://link.springer.com/10.1007/s13042-017-0681-9

 539.  Ohsawa Y. (2018). Graph-Based Entropy for Detecting Explanatory Signs of
       Changes in Market. The Review of Socionetwork Strategies.
       10.1007/s12626-018-0023-8. 12:2. (183-203). Online publication date:
       1-Dec-2018.
       
       http://link.springer.com/10.1007/s12626-018-0023-8

 540.  Fukuyama S and Wakabayashi K. Extracting time series variation of topic
       popularity in microblogs. Proceedings of the 20th International
       Conference on Information Integration and Web-based Applications &
       Services. (365-369).
       
       https://doi.org/10.1145/3282373.3282409

 541.  Das A, Mueller F, Hargrove P, Roman E and Baden S. Doomsday. Proceedings
       of the International Conference for High Performance Computing,
       Networking, Storage, and Analysis. (1-14).
       
       /doi/10.5555/3291656.3291668

 542.  Das A, Mueller F, Hargrove P, Roman E and Baden S. Doomsday. Proceedings
       of the International Conference for High Performance Computing,
       Networking, Storage, and Analysis. (1-14).
       
       https://doi.org/10.1109/SC.2018.00012

 543.  Valdez D, Pickett A and Goodson P. (2018). Topic Modeling: Latent
       Semantic Analysis for the Social Sciences. Social Science Quarterly.
       10.1111/ssqu.12528. 99:5. (1665-1679). Online publication date:
       1-Nov-2018.
       
       https://onlinelibrary.wiley.com/doi/10.1111/ssqu.12528

 544.  Mendoza M, Ormeno P and Valle C. (2018). Ad-hoc Information Retrieval
       based on Boosted Latent Dirichlet Allocated Topics 2018 37th
       International Conference of the Chilean Computer Science Society (SCCC).
       10.1109/SCCC.2018.8705252. 978-1-5386-9233-2. (1-7).
       
       https://ieeexplore.ieee.org/document/8705252/

 545.  Chau L, Chau V and Phung N. (2018). On Temporal Cluster Analysis for
       Early Identifying In-trouble Students in an Academic Credit System 2018
       5th NAFOSTED Conference on Information and Computer Science (NICS).
       10.1109/NICS.2018.8606827. 978-1-5386-7983-8. (171-176).
       
       https://ieeexplore.ieee.org/document/8606827/

 546.  Nguyen T and Do P. (2018). Discovering Topic Evolution in Heterogeneous
       Bibliographic Network 2018 10th International Conference on Knowledge and
       Systems Engineering (KSE). 10.1109/KSE.2018.8573400. 978-1-5386-6113-0.
       (91-96).
       
       https://ieeexplore.ieee.org/document/8573400/

 547.  Mulunda C, Wagacha P and Muchemi L. (2018). Review of Trends in Topic
       Modeling Techniques, Tools, Inference Algorithms and Applications 2018
       5th International Conference on Soft Computing & Machine Intelligence
       (ISCMI). 10.1109/ISCMI.2018.8703231. 978-1-7281-1301-2. (28-37).
       
       https://ieeexplore.ieee.org/document/8703231/

 548.  Yajun M and Sheng L. (2018). Application of LDA-LR in Personalized News
       Recommendation System 2018 IEEE 9th International Conference on Software
       Engineering and Service Science (ICSESS). 10.1109/ICSESS.2018.8663807.
       978-1-5386-6565-7. (279-282).
       
       https://ieeexplore.ieee.org/document/8663807/

 549.  Giaquinto R and Banerjee A. (2018). DAPPER: Scaling Dynamic Author
       Persona Topic Model to Billion Word Corpora 2018 IEEE International
       Conference on Data Mining (ICDM). 10.1109/ICDM.2018.00120.
       978-1-5386-9159-5. (971-976).
       
       https://ieeexplore.ieee.org/document/8594929/

 550.  Siebes A. (2018). Data science as a language: challenges for computer
       science—a position paper. International Journal of Data Science and
       Analytics. 10.1007/s41060-018-0103-4. 6:3. (177-187). Online publication
       date: 1-Nov-2018.
       
       http://link.springer.com/10.1007/s41060-018-0103-4

 551.  González Pinto J and Balke W. (2018). Assessing plausibility of
       scientific claims to support high-quality content in digital collections.
       International Journal on Digital Libraries. 10.1007/s00799-018-0256-8.
       
       http://link.springer.com/10.1007/s00799-018-0256-8

 552.  Jiang Z, Gao L, Yuan K, Gao Z, Tang Z and Liu X. Mathematics Content
       Understanding for Cyberlearning via Formula Evolution Map. Proceedings of
       the 27th ACM International Conference on Information and Knowledge
       Management. (37-46).
       
       https://doi.org/10.1145/3269206.3271694

 553.  Semedo D and Magalhaes J. Temporal Cross-Media Retrieval with
       Soft-Smoothing. Proceedings of the 26th ACM international conference on
       Multimedia. (1038-1046).
       
       https://doi.org/10.1145/3240508.3240665

 554.  Kengphanich J, Buatip J and Phithakkitnukoon S. Eventity. Proceedings of
       the 2018 ACM International Joint Conference and 2018 International
       Symposium on Pervasive and Ubiquitous Computing and Wearable Computers.
       (1051-1059).
       
       https://doi.org/10.1145/3267305.3274160

 555.  Silva M, Ferreira E, Souza A, Alves A and Batista S. (2018). Using
       Eco-Sensors to Support Children's Participation in Environmental Health.
       International Journal of Digital Literacy and Digital Competence. 9:4.
       (33-45). Online publication date: 1-Oct-2018.
       
       https://doi.org/10.4018/IJDLDC.2018100103

 556.  Vishkaie R, Shively K and Wessel Powell C. (2018). Perceptions of Digital
       Tools and Creativity in the Classroom. International Journal of Digital
       Literacy and Digital Competence. 9:4. (1-18). Online publication date:
       1-Oct-2018.
       
       https://doi.org/10.4018/IJDLDC.2018100101

 557.  Yamada T, Maekawa Y, Kato Y and Tomiyama T. (2018). Interactive System
       Using LDA for Exploratory Visualization to Extract Data Association in a
       Data Lake 2018 IEEE International Conference on Systems, Man, and
       Cybernetics (SMC). 10.1109/SMC.2018.00040. 978-1-5386-6650-0. (172-177).
       
       https://ieeexplore.ieee.org/document/8616035/

 558.  El-Assady M, Sperrle F, Sevastjanova R, Sedlmair M and Keim D. (2018).
       LTMA: Layered Topic Matching for the Comparative Exploration, Evaluation,
       and Refinement of Topic Modeling Results 2018 International Symposium on
       Big Data Visual and Immersive Analytics (BDVA).
       10.1109/BDVA.2018.8534018. 978-1-5386-9194-6. (1-10).
       
       https://ieeexplore.ieee.org/document/8534018/

 559.  Rusanov A, Miotto R and Weng C. (2018). Trends in anesthesiology
       research: a machine learning approach to theme discovery and
       summarization. JAMIA Open. 10.1093/jamiaopen/ooy009. 1:2. (283-293).
       Online publication date: 1-Oct-2018.
       
       https://academic.oup.com/jamiaopen/article/1/2/283/5090694

 560.  Tikhonov A, Bogdanov V, Merzlyakov A and Guseinova K. (2018). DEVELOPMENT
       AND IMPLEMENTATION PROBLEMS OF SCIENTIFIC AND TECHNOLOGICAL PROGRESS
       STRATEGIC PROGRAMS IN THE RUSSIAN FEDERATION REGIONS: SOCIAL AND
       ORGANIZATIONAL BARRIERS (based on the remote study in 14 regions of the
       country with different levels of socio-cultural modernization). MIR
       (Modernization. Innovation. Research).
       10.18184/2079-4665.2018.9.3.380-415. 9:3. (380-415).
       
       https://www.mir-nayka.com/jour/article/view/841

 561.  Al-Ghossein M, Murena P, Abdessalem T, Barré A and Cornuéjols A. Adaptive
       collaborative topic modeling for online recommendation. Proceedings of
       the 12th ACM Conference on Recommender Systems. (338-346).
       
       https://doi.org/10.1145/3240323.3240363

 562.  Hwang S, Lee Y and Nam Y. (2018). System for extracting domain topic
       using link analysis and searching for relevant features. Journal of
       Ambient Intelligence and Humanized Computing. 10.1007/s12652-018-1046-2.
       
       http://link.springer.com/10.1007/s12652-018-1046-2

 563.  TANG X. (2018). A state-of-the-art of semantic change computation.
       Natural Language Engineering. 10.1017/S1351324918000220. 24:5. (649-676).
       Online publication date: 1-Sep-2018.
       
       https://www.cambridge.org/core/product/identifier/S1351324918000220/type/journal_article

 564.  Li L, Mao L, Zhang Y, Chi J, Huang T, Cong X and Peng H. (2018).
       Computational linguistics literature and citations oriented citation
       linkage, classification and summarization. International Journal on
       Digital Libraries. 19:2-3. (173-190). Online publication date:
       1-Sep-2018.
       
       https://doi.org/10.1007/s00799-017-0219-5

 565.  Okui T and Nakaji S. (2018). A New Association Analysis Method for
       Longitudinally Measured Microbial Compositional Data Using Latent
       Dirichlet Allocation Model経時的に測定された腸内細菌組成データに対する潜在ディリクレ配分モデルを用いた関連解析法.
       Japanese Journal of Biometrics. 10.5691/jjb.39.37. 39:1. (37-54). Online
       publication date: 1-Aug-2018.
       
       https://www.jstage.jst.go.jp/article/jjb/39/1/39_37/_article/-char/ja/

 566.  Bruens B and Moehrle M. (2018). Understanding the Diffusion of the
       Blockchain Technology: A Patent-based Analysis using the tf-lag-idf for
       Term Novelty Evaluation 2018 Portland International Conference on
       Management of Engineering and Technology (PICMET).
       10.23919/PICMET.2018.8481994. 978-1-890843-37-3. (1-7).
       
       https://ieeexplore.ieee.org/document/8481994/

 567.  Caferoglu H and Moehrle M. (2018). Measuring Technology Diffusion for the
       Case of RFID Technology: A Comparison between tf-lag-idf and Topic
       Modeling 2018 Portland International Conference on Management of
       Engineering and Technology (PICMET). 10.23919/PICMET.2018.8481825.
       978-1-890843-37-3. (1-7).
       
       https://ieeexplore.ieee.org/document/8481825/

 568.  Sidana S, Amer-Yahia S, Clausel M, Rebai M, Mai S and Amini M. Health
       Monitoring on Social Media over Time. IEEE Transactions on Knowledge and
       Data Engineering. 10.1109/TKDE.2018.2795606. 30:8. (1467-1480).
       
       https://ieeexplore.ieee.org/document/8263414/

 569.  Chen L, Zhang H, Jose J, Yu H, Moshfeghi Y and Triantafillou P. (2018).
       Topic detection and tracking on heterogeneous information. Journal of
       Intelligent Information Systems. 51:1. (115-137). Online publication
       date: 1-Aug-2018.
       
       https://doi.org/10.1007/s10844-017-0487-y

 570.  Yin J, Chao D, Liu Z, Zhang W, Yu X and Wang J. Model-based Clustering of
       Short Text Streams. Proceedings of the 24th ACM SIGKDD International
       Conference on Knowledge Discovery & Data Mining. (2634-2642).
       
       https://doi.org/10.1145/3219819.3220094

 571.  Sun Y, Zhu H, Zhuang F, Gu J and He Q. Exploring the Urban
       Region-of-Interest through the Analysis of Online Map Search Queries.
       Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
       Discovery & Data Mining. (2269-2278).
       
       https://doi.org/10.1145/3219819.3220009

 572.  Acharya A, Ghosh J and Zhou M. A Dual Markov Chain Topic Model for
       Dynamic Environments. Proceedings of the 24th ACM SIGKDD International
       Conference on Knowledge Discovery & Data Mining. (1099-1108).
       
       https://doi.org/10.1145/3219819.3219995

 573.  Kim M and Zhu Y. (2018). Scientometrics of Scientometrics: Mapping
       Historical Footprint and Emerging Technologies in Scientometrics.
       Scientometrics. 10.5772/intechopen.77951.
       
       http://www.intechopen.com/books/scientometrics/scientometrics-of-scientometrics-mapping-historical-footprint-and-emerging-technologies-in-scientome

 574.  Zhang W, Xu M and Jiang Q. Opinion Mining and Sentiment Analysis in
       Social Media: Challenges and Applications. HCI in Business, Government,
       and Organizations. (536-548).
       
       https://doi.org/10.1007/978-3-319-91716-0_43

 575.  Zhao Y, Wang C, Chi C, Lam K and Wang S. A comparative study of
       transactional and semantic approaches for predicting cascades on Twitter.
       Proceedings of the 27th International Joint Conference on Artificial
       Intelligence. (1212-1218).
       
       /doi/10.5555/3304415.3304587

 576.  Syed S and Weber C. (2018). Using Machine Learning to Uncover Latent
       Research Topics in Fishery Models. Reviews in Fisheries Science &
       Aquaculture. 10.1080/23308249.2017.1416331. 26:3. (319-336). Online
       publication date: 3-Jul-2018.
       
       https://www.tandfonline.com/doi/full/10.1080/23308249.2017.1416331

 577.  Watts J. (2018). Trend spotting: Using text analysis to model market
       dynamics. International Journal of Market Research.
       10.1177/1470785318758558. 60:4. (408-418). Online publication date:
       1-Jul-2018.
       
       http://journals.sagepub.com/doi/10.1177/1470785318758558

 578.  Syed S, Borit M and Spruit M. (2018). Narrow lenses for capturing the
       complexity of fisheries: A topic analysis of fisheries science from 1990
       to 2016. Fish and Fisheries. 10.1111/faf.12280. 19:4. (643-661). Online
       publication date: 1-Jul-2018.
       
       https://onlinelibrary.wiley.com/doi/10.1111/faf.12280

 579.  Kang Y, Lin K and Cheng I. (2018). Topic Diffusion Discovery Based on
       Sparseness-Constrained Non-Negative Matrix Factorization 2018 IEEE
       International Conference on Information Reuse and Integration for Data
       Science (IRI). 10.1109/IRI.2018.00021. 978-1-5386-2659-7. (94-101).
       
       https://ieeexplore.ieee.org/document/8424692/

 580.  Murena P, Al-Ghossein M, Abdessalem T and Cornuejols A. (2018). Adaptive
       Window Strategy for Topic Modeling in Document Streams 2018 International
       Joint Conference on Neural Networks (IJCNN). 10.1109/IJCNN.2018.8489771.
       978-1-5090-6014-6. (1-7).
       
       https://ieeexplore.ieee.org/document/8489771/

 581.  Mei M, Guo X, Williams B, Doboli S, Kenworthy J, Paulus P and Minai A.
       (2018). Using Semantic Clustering And Autoencoders For Detecting Novelty
       In Corpora Of Short Texts 2018 International Joint Conference on Neural
       Networks (IJCNN). 10.1109/IJCNN.2018.8489431. 978-1-5090-6014-6. (1-8).
       
       https://ieeexplore.ieee.org/document/8489431/

 582.  Zhang Y, Qian Y and Wang Y. (2018). A Recommendation Algorithm Based on
       Dynamic User Preference and Service Quality 2018 IEEE International
       Conference on Web Services (ICWS). 10.1109/ICWS.2018.00019.
       978-1-5386-7247-1. (91-98).
       
       https://ieeexplore.ieee.org/document/8456336/

 583.  Surjandari I, Rosyidah A, Zulkarnain Z and Laoh E. (2018). Mining Web Log
       Data for News Topic Modeling Using Latent Dirichlet Allocation 2018 5th
       International Conference on Information Science and Control Engineering
       (ICISCE). 10.1109/ICISCE.2018.00076. 978-1-5386-5500-9. (331-335).
       
       https://ieeexplore.ieee.org/document/8612574/

 584.  Fernandez-Beltran R and Pla F. (2018). Prior-based probabilistic latent
       semantic analysis for multimedia retrieval. Multimedia Tools and
       Applications. 77:13. (16771-16793). Online publication date: 1-Jul-2018.
       
       https://doi.org/10.1007/s11042-017-5247-z

 585.  Khodadadi A, Hosseini S, Tavakoli E and Rabiee H. (2018). Continuous-Time
       User Modeling in Presence of Badges. ACM Transactions on Knowledge
       Discovery from Data. 12:3. (1-30). Online publication date: 30-Jun-2018.
       
       https://doi.org/10.1145/3162050

 586.  Wu Z, Li C, Zhao Z, Wu F and Mei Q. Identify Shifts of Word Semantics
       through Bayesian Surprise. The 41st International ACM SIGIR Conference on
       Research & Development in Information Retrieval. (825-834).
       
       https://doi.org/10.1145/3209978.3210040

 587.  Phillips R and Gorse D. Mutual-Excitation of Cryptocurrency Market
       Returns and Social Media Topics. Proceedings of the 4th International
       Conference on Frontiers of Educational Technologies. (80-86).
       
       https://doi.org/10.1145/3233347.3233370

 588.  George L and Birla L. (2018). A Study of Topic Modeling Methods 2018
       Second International Conference on Intelligent Computing and Control
       Systems (ICICCS). 10.1109/ICCONS.2018.8663152. 978-1-5386-2842-3.
       (109-113).
       
       https://ieeexplore.ieee.org/document/8663152/

 589.  Chi R, Wu B and Wang L. (2018). Expert Identification Based on Dynamic
       LDA Topic Model 2018 IEEE Third International Conference on Data Science
       in Cyberspace (DSC). 10.1109/DSC.2018.00141. 978-1-5386-4210-8.
       (881-888).
       
       https://ieeexplore.ieee.org/document/8411962/

 590.  Jia Y, Deng L, Zhou B, Fang B, Han W, Li A, Liu Q and Quan Y. (2018).
       Topic Analysis Model for Online Social Network 2018 IEEE Third
       International Conference on Data Science in Cyberspace (DSC).
       10.1109/DSC.2018.00015. 978-1-5386-4210-8. (39-44).
       
       https://ieeexplore.ieee.org/document/8411836/

 591.  Leibon G, Livermore M, Harder R, Riddell A and Rockmore D. (2018).
       Bending the law. Artificial Intelligence and Law. 26:2. (145-167). Online
       publication date: 1-Jun-2018.
       
       https://doi.org/10.1007/s10506-018-9224-2

 592.  Beykikhoshk A, Arandjelović O, Phung D and Venkatesh S. (2018).
       Discovering topic structures of a temporally evolving document corpus.
       Knowledge and Information Systems. 55:3. (599-632). Online publication
       date: 1-Jun-2018.
       
       https://doi.org/10.1007/s10115-017-1095-4

 593.  Chen X, Faviez C, Schuck S, Lillo-Le-Louët A, Texier N, Dahamna B, Huot
       C, Foulquié P, Pereira S, Leroux V, Karapetiantz P, Guenegou-Arnoux A,
       Katsahian S, Bousquet C and Burgun A. (2018). Mining Patients' Narratives
       in Social Media for Pharmacovigilance: Adverse Effects and Misuse of
       Methylphenidate. Frontiers in Pharmacology. 10.3389/fphar.2018.00541. 9.
       
       https://www.frontiersin.org/article/10.3389/fphar.2018.00541/full

 594.  Zuo Z and Zhao K. A Graphical Model for Topical Impact over Time.
       Proceedings of the 18th ACM/IEEE on Joint Conference on Digital
       Libraries. (405-406).
       
       https://doi.org/10.1145/3197026.3203891

 595.  Hong W, Zheng X, Qi J, Wang W, Zheng N and Weng Y. (2018). FinancialFlow:
       Visual analytics of financial news based on hierarchical dirichlet
       process 2018 33rd Youth Academic Annual Conference of Chinese Association
       of Automation (YAC). 10.1109/YAC.2018.8406403. 978-1-5386-7255-6.
       (375-380).
       
       https://ieeexplore.ieee.org/document/8406403/

 596.  Shen L, Sun Y and Li X. (2018). Collaboratively Learning Latent Factors
       and Correlations for New Paper Influence Predication 2018 IEEE 22nd
       International Conference on Computer Supported Cooperative Work in Design
       (CSCWD). 10.1109/CSCWD.2018.8465394. 978-1-5386-1482-2. (4-9).
       
       https://ieeexplore.ieee.org/document/8465394/

 597.  Hansen S, McMahon M and Prat A. (2017). Transparency and Deliberation
       Within the FOMC: A Computational Linguistics Approach*. The Quarterly
       Journal of Economics. 10.1093/qje/qjx045. 133:2. (801-870). Online
       publication date: 1-May-2018.
       
       https://academic.oup.com/qje/article/133/2/801/4582916

 598.  MUELLER H and RAUH C. (2017). Reading Between the Lines: Prediction of
       Political Violence Using Newspaper Text. American Political Science
       Review. 10.1017/S0003055417000570. 112:2. (358-375). Online publication
       date: 1-May-2018.
       
       https://www.cambridge.org/core/product/identifier/S0003055417000570/type/journal_article

 599.  Abuhay T, Kovalchuk S, Bochenina K, Mbogo G, Visheratin A, Kampis G,
       Krzhizhanovskaya V and Lees M. (2018). Analysis of publication activity
       of computational science society in 2001–2017 using topic modelling and
       graph theory. Journal of Computational Science.
       10.1016/j.jocs.2018.04.004. 26. (193-204). Online publication date:
       1-May-2018.
       
       https://linkinghub.elsevier.com/retrieve/pii/S1877750318302461

 600.  Deligianni F, Wong C, Lo B and Yang G. (2018). A fusion framework to
       estimate plantar ground force distributions and ankle dynamics.
       Information Fusion. 41:C. (255-263). Online publication date: 1-May-2018.
       
       https://doi.org/10.1016/j.inffus.2017.09.008

 601.  Qian Z, Xu J, Zheng K, Zhao P and Zhou X. (2018). Semantic-aware top-k
       spatial keyword queries. World Wide Web. 21:3. (573-594). Online
       publication date: 1-May-2018.
       
       https://doi.org/10.1007/s11280-017-0472-y

 602.  Fan Y, Zhou Q, Yue W and Zhu W. (2018). A dynamic causal topic model for
       mining activities from complex videos. Multimedia Tools and Applications.
       77:9. (10669-10684). Online publication date: 1-May-2018.
       
       https://doi.org/10.1007/s11042-017-4760-4

 603.  Rudolph M and Blei D. Dynamic Embeddings for Language Evolution.
       Proceedings of the 2018 World Wide Web Conference. (1003-1011).
       
       https://doi.org/10.1145/3178876.3185999

 604.  Rule W, Duan W, Prakash N, Zhuang N, Alvarado R and Brown D. (2018).
       Social pressure analysis of local events using social media data 2018
       Systems and Information Engineering Design Symposium (SIEDS).
       10.1109/SIEDS.2018.8374751. 978-1-5386-6343-1. (277-281).
       
       https://ieeexplore.ieee.org/document/8374751/

 605.  Elmsili B and Outtaj B. (2018). Artificial neural networks applications
       in economics and management research: An exploratory literature review
       2018 4th International Conference on Optimization and Applications
       (ICOA). 10.1109/ICOA.2018.8370600. 978-1-5386-4225-2. (1-6).
       
       https://ieeexplore.ieee.org/document/8370600/

 606.  Páez-Avilés C, Van Rijnsoever F, Juanola-Feliu E and Samitier J. (2017).
       Multi-disciplinarity breeds diversity: the influence of innovation
       project characteristics on diversity creation in nanotechnology. The
       Journal of Technology Transfer. 10.1007/s10961-016-9553-9. 43:2.
       (458-481). Online publication date: 1-Apr-2018.
       
       http://link.springer.com/10.1007/s10961-016-9553-9

 607.  Bouakkaz M, Ouinten Y, Loudcher S and Fournier-Viger P. (2018).
       Efficiently mining frequent itemsets applied for textual aggregation.
       Applied Intelligence. 48:4. (1013-1019). Online publication date:
       1-Apr-2018.
       
       https://doi.org/10.1007/s10489-017-1050-9

 608.  Gerow A, Hu Y, Boyd-Graber J, Blei D and Evans J. (2018). Measuring
       discursive influence across scholarship. Proceedings of the National
       Academy of Sciences. 10.1073/pnas.1719792115. 115:13. (3308-3313). Online
       publication date: 27-Mar-2018.
       
       https://pnas.org/doi/full/10.1073/pnas.1719792115

 609.  Panteli M, Benetos E and Dixon S. (2018). A review of manual and
       computational approaches for the study of world music corpora. Journal of
       New Music Research. 10.1080/09298215.2017.1418896. 47:2. (176-189).
       Online publication date: 15-Mar-2018.
       
       https://www.tandfonline.com/doi/full/10.1080/09298215.2017.1418896

 610.  Huang C, Wang Q, Yang D and Xu F. Topic mining of tourist attractions
       based on a seasonal context aware LDA model. Intelligent Data Analysis.
       10.3233/IDA-173364. 22:2. (383-405).
       
       http://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/IDA-173364

 611.  Wai T and Aung S. (2018). TPMTM: Topic Modeling over Papers’ Abstract.
       Advances in Science, Technology and Engineering Systems Journal.
       10.25046/aj030208. 3:2. (69-73).
       
       https://astesj.com/v03/i02/p08/

 612.  Bahrainian S and Crestani F. Augmentation of Human Memory. Proceedings of
       the 2018 Conference on Human Information Interaction & Retrieval.
       (150-159).
       
       https://doi.org/10.1145/3176349.3176399

 613.  Wang C, Xin X and Shang J. When to Make a Topic Popular Again? A Temporal
       Model for Topic Rehotting Prediction in Online Social Networks. IEEE
       Transactions on Signal and Information Processing over Networks.
       10.1109/TSIPN.2017.2670498. 4:1. (202-216).
       
       http://ieeexplore.ieee.org/document/7857808/

 614.  GRÜNDER-FAHRER S, SCHLAF A, WIEDEMANN G and HEYER G. (2018). Topics and
       topical phases in German social media communication during a disaster.
       Natural Language Engineering. 10.1017/S1351324918000025. 24:02.
       (221-264). Online publication date: 1-Mar-2018.
       
       https://www.cambridge.org/core/product/identifier/S1351324918000025/type/journal_article

 615.  Yang Z, Ma H, He Z and Wang X. (2018). Finding maximal ranges with unique
       topics in a text database. World Wide Web. 21:2. (289-310). Online
       publication date: 1-Mar-2018.
       
       https://doi.org/10.1007/s11280-017-0448-y

 616.  Su S, Wang Y, Zhang Z, Chang C and Zia M. (2018). Identifying and
       tracking topic-level influencers in the microblog streams. Machine
       Language. 107:3. (551-578). Online publication date: 1-Mar-2018.
       
       https://doi.org/10.1007/s10994-017-5665-1

 617.  Taxidou I, Lieber S, Fischer P, Nies T and Verborgh R. (2018). Web-scale
       provenance reconstruction of implicit information diffusion on social
       media. Distributed and Parallel Databases. 36:1. (47-79). Online
       publication date: 1-Mar-2018.
       
       https://doi.org/10.1007/s10619-017-7211-3

 618.  Rockmore D, Fang C, Foti N, Ginsburg T and Krakauer D. (2018). The
       cultural evolution of national constitutions. Journal of the Association
       for Information Science and Technology. 69:3. (483-494). Online
       publication date: 1-Mar-2018.
       
       https://doi.org/10.1002/asi.23971

 619.  Shaikh Z. (2018). Keyword Detection Techniques: A Comprehensive Study.
       Engineering, Technology & Applied Science Research. 10.48084/etasr.1813.
       8:1. (2590-2594).
       
       https://etasr.com/index.php/ETASR/article/view/1813

 620.  Liang S. Dynamic user profiling for streams of short texts. Proceedings
       of the Thirty-Second AAAI Conference on Artificial Intelligence and
       Thirtieth Innovative Applications of Artificial Intelligence Conference
       and Eighth AAAI Symposium on Educational Advances in Artificial
       Intelligence. (5860-5867).
       
       /doi/10.5555/3504035.3504754

 621.  Yao Z, Sun Y, Ding W, Rao N and Xiong H. Dynamic Word Embeddings for
       Evolving Semantic Discovery. Proceedings of the Eleventh ACM
       International Conference on Web Search and Data Mining. (673-681).
       
       https://doi.org/10.1145/3159652.3159703

 622.  Kawamae N. Topic Chronicle Forest for Topic Discovery and Tracking.
       Proceedings of the Eleventh ACM International Conference on Web Search
       and Data Mining. (315-323).
       
       https://doi.org/10.1145/3159652.3159653

 623.  Xu K, Qi G, Huang J, Wu T and Fu X. (2018). Detecting bursts in
       sentiment-aware topics from social media. Knowledge-Based Systems. 141:C.
       (44-54). Online publication date: 1-Feb-2018.
       
       https://doi.org/10.1016/j.knosys.2017.11.007

 624.  Citron D and Way S. (2018). Network assembly of scientific communities of
       varying size and specificity. Journal of Informetrics.
       10.1016/j.joi.2017.12.008. 12:1. (181-190). Online publication date:
       1-Feb-2018.
       
       https://linkinghub.elsevier.com/retrieve/pii/S1751157717301797

 625.  Liang S, Ren Z, Zhao Y, Ma J, Yilmaz E and Rijke M. (2017). Inferring
       Dynamic User Interests in Streams of Short Texts for User Clustering. ACM
       Transactions on Information Systems. 36:1. (1-37). Online publication
       date: 31-Jan-2018.
       
       https://doi.org/10.1145/3072606

 626.  Liang S, Yilmaz E, Shen H, Rijke M and Croft W. (2017). Search Result
       Diversification in Short Text Streams. ACM Transactions on Information
       Systems. 36:1. (1-35). Online publication date: 31-Jan-2018.
       
       https://doi.org/10.1145/3057282

 627.  Han J, Huang Y, Kumar K and Bhattacharya S. (2018). Time-Varying Dynamic
       Topic Model. Journal of Global Information Management. 26:1. (104-119).
       Online publication date: 1-Jan-2018.
       
       https://doi.org/10.4018/JGIM.2018010106

 628.  Zhang Y, Lei T and Qin Z. (2018). A Service Recommendation Algorithm
       Based on Modeling of Dynamic and Diverse Demands. International Journal
       of Web Services Research. 15:1. (47-70). Online publication date:
       1-Jan-2018.
       
       https://doi.org/10.4018/IJWSR.2018010103

 629.  Ho T and Do P. (2018). Social Network Analysis Based on Topic Model with
       Temporal Factor. International Journal of Knowledge and Systems Science.
       9:1. (82-97). Online publication date: 1-Jan-2018.
       
       https://doi.org/10.4018/IJKSS.2018010105

 630.  Patrizia O, Murdaca A and Penna A. (2018). Active Learning and
       Self-Determination for the Management of Differences in the Classroom.
       International Journal of Digital Literacy and Digital Competence. 9:1.
       (42-54). Online publication date: 1-Jan-2018.
       
       https://doi.org/10.4018/IJDLDC.2018010104

 631.  Miah S and Khatun M. (2018). Design Methods for Decision Support Systems.
       International Journal of Business Intelligence Research. 9:1. (38-52).
       Online publication date: 1-Jan-2018.
       
       https://doi.org/10.4018/IJBIR.2018010103

 632.  Armano G and Giuliani A. Novel Text Summarization Techniques for
       Contextual Advertising. Information Retrieval and Management.
       10.4018/978-1-5225-5191-1.ch038. (883-903).
       
       http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-5225-5191-1.ch038

 633.  Tools for Educational Researchers Working With Big Data. The Community of
       Inquiry Framework in Contemporary Education.
       10.4018/978-1-5225-5161-4.ch004. (53-75).
       
       http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-5225-5161-4.ch004

 634.  Quinn C, Quinn M, Olinsky A and Quinn J. (2018). Issues and Methods for
       Access, Storage, and Analysis of Data From Online Social Communities.
       Handbook of Research on Big Data Storage and Visualization Techniques.
       10.4018/978-1-5225-3142-5.ch015. (402-432).
       
       http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-5225-3142-5.ch015

 635.  YAMAGUCHI K, TANIMOTO K and CHOSOKABE M. (2018). TEXT ANALYTIC DECISION
       SUPPRT METHODS FOR INTERDISCIPLINARY COLLABORATION IN DISASTER
       PREVENTIONテキスト解析を用いた学際的な防災協働体制づくりの支援手法. Journal of Japan Society of Civil
       Engineers, Ser. F4 (Construction and Management).
       10.2208/jscejcm.74.I_173. 74:2. (I_173-I_181).
       
       https://www.jstage.jst.go.jp/article/jscejcm/74/2/74_I_173/_article/-char/ja/

 636.  WATANABE K, MATSUBAYASHI Y, INUI K, FUKAYAMA S, NAKANO T and GOTO M.
       (2018). Modeling Storylines in Lyrics. IEICE Transactions on Information
       and Systems. 10.1587/transinf.2017EDP7188. E101.D:4. (1167-1179).
       
       https://www.jstage.jst.go.jp/article/transinf/E101.D/4/E101.D_2017EDP7188/_article

 637.  KUSAJIMA S and SUMI Y. (2018). Activating Group Discussion by Topic
       Providing Bots. IEICE Transactions on Information and Systems.
       10.1587/transinf.2016IIP0034. E101.D:4. (856-864).
       
       https://www.jstage.jst.go.jp/article/transinf/E101.D/4/E101.D_2016IIP0034/_article

 638.  Faisal A and Peltoniemi M. (2015). Establishing Video Game Genres Using
       Data-Driven Modeling and Product Databases. Games and Culture.
       10.1177/1555412015601541. 13:1. (20-43). Online publication date:
       1-Jan-2018.
       
       http://journals.sagepub.com/doi/10.1177/1555412015601541

 639.  Glueck M, Naeini M, Doshi-Velez F, Chevalier F, Khan A, Wigdor D and
       Brudno M. PhenoLines: Phenotype Comparison Visualizations for Disease
       Subtyping via Topic Models. IEEE Transactions on Visualization and
       Computer Graphics. 10.1109/TVCG.2017.2745118. 24:1. (371-381).
       
       http://ieeexplore.ieee.org/document/8019821/

 640.  El-Assady M, Sevastjanova R, Sperrle F, Keim D and Collins C. Progressive
       Learning of Topic Modeling Parameters: A Visual Analytics Framework. IEEE
       Transactions on Visualization and Computer Graphics.
       10.1109/TVCG.2017.2745080. 24:1. (382-391).
       
       http://ieeexplore.ieee.org/document/8019825/

 641.  Yao J, Wang Y, Zhang Y, Sun J and Zhou J. (2018). Joint Latent Dirichlet
       Allocation for Social Tags. IEEE Transactions on Multimedia. 20:1.
       (224-237). Online publication date: 1-Jan-2018.
       
       https://doi.org/10.1109/TMM.2017.2716829

 642.  Abulaish M and Fazil M. Modeling Topic Evolution in Twitter: An
       Embedding-Based Approach. IEEE Access. 10.1109/ACCESS.2018.2878494. 6.
       (64847-64857).
       
       https://ieeexplore.ieee.org/document/8513750/

 643.  Wandabwa H, Naeem M, Pears R and Mirza F. A Metamodel Enabled Approach
       for Discovery of Coherent Topics in Short Text Microblogs. IEEE Access.
       10.1109/ACCESS.2018.2878441. 6. (65582-65593).
       
       https://ieeexplore.ieee.org/document/8514104/

 644.  Gou Z, Han L, Sun L, Zhu J and Yan H. Constructing Dynamic Topic Models
       Based on Variational Autoencoder and Factor Graph. IEEE Access.
       10.1109/ACCESS.2018.2869838. 6. (53102-53111).
       
       https://ieeexplore.ieee.org/document/8464062/

 645.  Bittermann A and Fischer A. (2018). How to Identify Hot Topics in
       Psychology Using Topic Modeling. Zeitschrift für Psychologie.
       10.1027/2151-2604/a000318. 226:1. (3-13). Online publication date:
       1-Jan-2018.
       
       https://econtent.hogrefe.com/doi/10.1027/2151-2604/a000318

 646.  Sun M and Zheng H. (2018). Topic Detection for Post Bar Based on LDA
       Model. Data Science. 10.1007/978-981-13-2206-8_13. (136-149).
       
       http://link.springer.com/10.1007/978-981-13-2206-8_13

 647.  Seifollahi S, Piccardi M and Borzeshi E. (2018). A Semi-supervised Hidden
       Markov Topic Model Based on Prior Knowledge. Data Mining.
       10.1007/978-981-13-0292-3_17. (265-276).
       
       http://link.springer.com/10.1007/978-981-13-0292-3_17

 648.  Papilloud C and Hinneburg A. (2018). Topic-Modelle für qualitative
       Textanalysen. Qualitative Textanalyse mit Topic-Modellen.
       10.1007/978-3-658-21980-2_2. (19-42).
       
       http://link.springer.com/10.1007/978-3-658-21980-2_2

 649.  Heiberger R and Koss C. (2018). Computerlinguistische Textanalyse und
       Debatten im Parlament. Soziologie der Parlamente.
       10.1007/978-3-658-19945-6_15. (391-418).
       
       http://link.springer.com/10.1007/978-3-658-19945-6_15

 650.  Gao L, Wang Z and Guo S. (2018). WalkToTopics: Inferring Topic Relations
       from a Feature Learning Perspective. Knowledge Science, Engineering and
       Management. 10.1007/978-3-319-99365-2_4. (42-54).
       
       http://link.springer.com/10.1007/978-3-319-99365-2_4

 651.  He R and Ding D. (2018). Graphical Models with Content Relevance for
       Crucial Date Detection in Social Media Event. Knowledge Science,
       Engineering and Management. 10.1007/978-3-319-99247-1_37. (413-421).
       
       http://link.springer.com/10.1007/978-3-319-99247-1_37

 652.  Masada T and Takasu A. (2018). Mini-Batch Variational Inference for
       Time-Aware Topic Modeling. PRICAI 2018: Trends in Artificial
       Intelligence. 10.1007/978-3-319-97310-4_18. (156-164).
       
       http://link.springer.com/10.1007/978-3-319-97310-4_18

 653.  Sbalchiero S. (2018). Topic Detection: A Statistical Model and a
       Quali-Quantitative Method. Tracing the Life Cycle of Ideas in the
       Humanities and Social Sciences. 10.1007/978-3-319-97064-6_10. (189-210).
       
       http://link.springer.com/10.1007/978-3-319-97064-6_10

 654.  Zhang Z, Li R, Li Y and Gu X. (2018). Rank-Integrated Topic Modeling: A
       General Framework. Web and Big Data. 10.1007/978-3-319-96890-2_2.
       (16-31).
       
       http://link.springer.com/10.1007/978-3-319-96890-2_2

 655.  Liu Q, Hu Y, Lei Y, Wei X, Liu G and Bi W. (2018). Topic-Based Microblog
       Polarity Classification Based on Cascaded Model. Computational Science –
       ICCS 2018. 10.1007/978-3-319-93701-4_16. (206-220).
       
       https://link.springer.com/10.1007/978-3-319-93701-4_16

 656.  Churchill R, Singh L and Kirov C. (2018). A Temporal Topic Model for
       Noisy Mediums. Advances in Knowledge Discovery and Data Mining.
       10.1007/978-3-319-93037-4_4. (42-53).
       
       http://link.springer.com/10.1007/978-3-319-93037-4_4

 657.  Giannakopoulos K and Chen L. (2018). Incremental and Adaptive Topic
       Detection over Social Media. Database Systems for Advanced Applications.
       10.1007/978-3-319-91452-7_30. (460-473).
       
       http://link.springer.com/10.1007/978-3-319-91452-7_30

 658.  Chan J, Dow S and Schunn C. (2018). Do the Best Design Ideas (Really)
       Come from Conceptually Distant Sources of Inspiration?. Engineering a
       Better Future. 10.1007/978-3-319-91134-2_12. (111-139).
       
       http://link.springer.com/10.1007/978-3-319-91134-2_12

 659.  Joseph T and Pe’er I. (2018). Inference of Population Structure from
       Ancient DNA. Research in Computational Molecular Biology.
       10.1007/978-3-319-89929-9_6. (90-104).
       
       http://link.springer.com/10.1007/978-3-319-89929-9_6

 660.  Shang D, Dai X, Ge W, Huang S and Chen J. (2018). A Multi-view Clustering
       Model for Event Detection in Twitter. Computational Linguistics and
       Intelligent Text Processing. 10.1007/978-3-319-77116-8_27. (366-378).
       
       http://link.springer.com/10.1007/978-3-319-77116-8_27

 661.  Bahrainian S, Mele I and Crestani F. (2018). Predicting Topics in
       Scholarly Papers. Advances in Information Retrieval.
       10.1007/978-3-319-76941-7_2. (16-28).
       
       http://link.springer.com/10.1007/978-3-319-76941-7_2

 662.  Spitz A and Gertz M. (2018). Entity-Centric Topic Extraction and
       Exploration: A Network-Based Approach. Advances in Information Retrieval.
       10.1007/978-3-319-76941-7_1. (3-15).
       
       http://link.springer.com/10.1007/978-3-319-76941-7_1

 663.  Isupova O. (2018). Background. Machine Learning Methods for Behaviour
       Analysis and Anomaly Detection in Video. 10.1007/978-3-319-75508-3_2.
       (9-35).
       
       http://link.springer.com/10.1007/978-3-319-75508-3_2

 664.  Aggarwal C. (2018). Matrix Factorization and Topic Modeling. Machine
       Learning for Text. 10.1007/978-3-319-73531-3_3. (31-72).
       
       http://link.springer.com/10.1007/978-3-319-73531-3_3

 665.  Elarnaoty M and Farghaly A. (2018). Machine Learning Implementations in
       Arabic Text Classification. Intelligent Natural Language Processing:
       Trends and Applications. 10.1007/978-3-319-67056-0_15. (295-324).
       
       http://link.springer.com/10.1007/978-3-319-67056-0_15

 666.  Milioris D. (2018). Background and Related Work. Topic Detection and
       Classification in Social Networks. 10.1007/978-3-319-66414-9_2. (9-19).
       
       http://link.springer.com/10.1007/978-3-319-66414-9_2

 667.  Zhang Y, Ma J, Wang Z and Chen B. (2018). Extraction and Tracking of
       Scientific Topics by LDA. Advances in Intelligent Networking and
       Collaborative Systems. 10.1007/978-3-319-65636-6_48. (536-544).
       
       http://link.springer.com/10.1007/978-3-319-65636-6_48

 668.  Ramesh A and Getoor L. (2018). Topic Evolution Models for Long-Running
       MOOCs. Web Information Systems Engineering – WISE 2018.
       10.1007/978-3-030-02925-8_29. (410-421).
       
       http://link.springer.com/10.1007/978-3-030-02925-8_29

 669.  Skitalinskaya G, Alexandrov M and Cardiff J. (2018). Comparison of
       Two-Pass Algorithms for Dynamic Topic Modeling Based on Matrix
       Decompositions. Advances in Computational Intelligence.
       10.1007/978-3-030-02840-4_3. (27-43).
       
       http://link.springer.com/10.1007/978-3-030-02840-4_3

 670.  Basile P and McGillivray B. (2018). Exploiting the Web for Semantic
       Change Detection. Discovery Science. 10.1007/978-3-030-01771-2_13.
       (194-208).
       
       http://link.springer.com/10.1007/978-3-030-01771-2_13

 671.  Adebayo K, Di Caro L and Boella G. (2018). Towards Annotation of Legal
       Documents with Ontology Concepts. AI Approaches to the Complexity of
       Legal Systems. 10.1007/978-3-030-00178-0_23. (337-349).
       
       http://link.springer.com/10.1007/978-3-030-00178-0_23

 672.  Kurata K, Miyata Y, Ishita E, Yamamoto M, Yang F and Iwase A. (2019).
       Analyzing library and information science full‐text articles using a
       topic modeling approach. Proceedings of the Association for Information
       Science and Technology. 10.1002/pra2.2018.14505501143. 55:1. (847-848).
       Online publication date: 1-Jan-2018.
       
       https://asistdl.onlinelibrary.wiley.com/doi/10.1002/pra2.2018.14505501143

 673.  Ye Q and Ma B. (2017). Chapter 14 Semantic Search of Online Reviews on
       E-Business Platforms. Internet+ and Electronic Business in China:
       Innovation and Applications. 10.1108/978-1-78743-115-720171016.
       (461-482). Online publication date: 13-Dec-2017.
       
       https://www.emerald.com/insight/content/doi/10.1108/978-1-78743-115-720171016/full/html

 674.  Henao L. (2017). Análisis sociológico del perdón: discursos dominantes y
       alternativos. REVISTA CONTROVERSIA. 10.54118/controver.vi209.1097:209.
       (111-168).
       
       https://revistacontroversia.com/index.php/controversia/article/view/1097

 675.  Chen J, Wang C, Xiao L, He J, Li L and Deng L. Q-LDA. Proceedings of the
       31st International Conference on Neural Information Processing Systems.
       (4984-4993).
       
       /doi/10.5555/3295222.3295251

 676.  Lan L, Liu Y and Feng Lu W. (2017). Automatic Discovery of Design Task
       Structure Using Deep Belief Nets. Journal of Computing and Information
       Science in Engineering. 10.1115/1.4036198. 17:4. Online publication date:
       1-Dec-2017.
       
       https://asmedigitalcollection.asme.org/computingengineering/article/doi/10.1115/1.4036198/474324/Automatic-Discovery-of-Design-Task-Structure-Using

 677.  Gultekin S and Paisley J. Nonlinear Kalman Filtering With Divergence
       Minimization. IEEE Transactions on Signal Processing.
       10.1109/TSP.2017.2752729. 65:23. (6319-6331).
       
       http://ieeexplore.ieee.org/document/8038055/

 678.  Liu X, Jia Y, Zhou B and Gao L. (2017). The Fine-Grained Topic Evolution
       Based on the Probability Model 2017 10th International Symposium on
       Computational Intelligence and Design (ISCID). 10.1109/ISCID.2017.117.
       978-1-5386-3675-6. (186-189).
       
       http://ieeexplore.ieee.org/document/8283252/

 679.  Zhang X, Zhao L, Chen Z, Boedihardjo A, Dai J and Lu C. (2017). Trendi:
       Tracking stories in news and microblogs via emerging, evolving and fading
       topics 2017 IEEE International Conference on Big Data (Big Data).
       10.1109/BigData.2017.8258093. 978-1-5386-2715-0. (1590-1599).
       
       http://ieeexplore.ieee.org/document/8258093/

 680.  Du Y, Herzog A, Luckow A, Nerella R, Gropp C and Apon A. (2017).
       Representativeness of latent dirichlet allocation topics estimated from
       data samples with application to common crawl 2017 IEEE International
       Conference on Big Data (Big Data). 10.1109/BigData.2017.8258075.
       978-1-5386-2715-0. (1418-1427).
       
       http://ieeexplore.ieee.org/document/8258075/

 681.  Sleeman J, Halem M, Finin T and Cane M. (2017). Discovering scientific
       influence using cross-domain dynamic topic modeling 2017 IEEE
       International Conference on Big Data (Big Data).
       10.1109/BigData.2017.8258063. 978-1-5386-2715-0. (1325-1332).
       
       http://ieeexplore.ieee.org/document/8258063/

 682.  Naim S, Boedihardjo A and Hossain M. (2017). A scalable model for
       tracking topical evolution in large document collections 2017 IEEE
       International Conference on Big Data (Big Data).
       10.1109/BigData.2017.8257988. 978-1-5386-2715-0. (726-735).
       
       http://ieeexplore.ieee.org/document/8257988/

 683.  Parush A, Mastoras G, Bhandari A, Momtahan K, Day K, Weitzman B, Sohmer
       B, Cwinn A, Hamstra S and Calder L. (2017). Can teamwork and situational
       awareness (SA) in ED resuscitations be improved with a technological
       cognitive aid? Design and a pilot study of a team situation display.
       Journal of Biomedical Informatics. 76:C. (154-161). Online publication
       date: 1-Dec-2017.
       
       https://doi.org/10.1016/j.jbi.2017.10.009

 684.  Bouakkaz M, Ouinten Y, Loudcher S and Strekalova Y. (2017). Textual
       aggregation approaches in OLAP context. International Journal of
       Information Management: The Journal for Information Professionals. 37:6.
       (684-692). Online publication date: 1-Dec-2017.
       
       https://doi.org/10.1016/j.ijinfomgt.2017.06.005

 685.  Cao Y, Chan A and Lau R. Mining probabilistic color palettes for
       summarizing color use in artwork collections. SIGGRAPH Asia 2017
       Symposium on Visualization. (1-8).
       
       https://doi.org/10.1145/3139295.3139296

 686.  Mele I, Bahrainian S and Crestani F. Linking News across Multiple Streams
       for Timeliness Analysis. Proceedings of the 2017 ACM on Conference on
       Information and Knowledge Management. (767-776).
       
       https://doi.org/10.1145/3132847.3132988

 687.  Zhang Y, Jatowt A and Tanaka K. Temporal Analog Retrieval using
       Transformation over Dual Hierarchical Structures. Proceedings of the 2017
       ACM on Conference on Information and Knowledge Management. (717-726).
       
       https://doi.org/10.1145/3132847.3132917

 688.  Sheng L and Xu L. (2017). Topic Classification Based on Improved Word
       Embedding 2017 14th Web Information Systems and Applications Conference
       (WISA). 10.1109/WISA.2017.44. 978-1-5386-4806-3. (117-121).
       
       http://ieeexplore.ieee.org/document/8332597/

 689.  Chen Y, Rabbani R, Gupta A and Zaki M. (2017). Comparative text analytics
       via topic modeling in banking 2017 IEEE Symposium Series on Computational
       Intelligence (SSCI). 10.1109/SSCI.2017.8280945. 978-1-5386-2726-6. (1-8).
       
       http://ieeexplore.ieee.org/document/8280945/

 690.  Xie L, Wang L, Lu H, Li N and Wangchj C. (2017). Topics may Evolve: Using
       Complaint Data for Analysis 2017 IEEE 29th International Conference on
       Tools with Artificial Intelligence (ICTAI). 10.1109/ICTAI.2017.00195.
       978-1-5386-3876-7. (1296-1303).
       
       https://ieeexplore.ieee.org/document/8372098/

 691.  Tang C, Zhang H, Lai K, She Y, Xiong Y and Zhou L. (2017). Developing a
       regional classifier to track patient needs in medical literature using
       spiral timelines on a geographical map 2017 IEEE International Conference
       on Bioinformatics and Biomedicine (BIBM). 10.1109/BIBM.2017.8217771.
       978-1-5090-3050-7. (874-879).
       
       http://ieeexplore.ieee.org/document/8217771/

 692.  Shknevsky A, Shahar Y and Moskovitch R. (2017). Consistent discovery of
       frequent interval-based temporal patterns in chronic patients data.
       Journal of Biomedical Informatics. 75:C. (83-95). Online publication
       date: 1-Nov-2017.
       
       https://doi.org/10.1016/j.jbi.2017.10.002

 693.  Kim S, Fiorini N, Wilbur W and Lu Z. (2017). Bridging the gap. Journal of
       Biomedical Informatics. 75:C. (122-127). Online publication date:
       1-Nov-2017.
       
       https://doi.org/10.1016/j.jbi.2017.09.014

 694.  Alam M, Ryu W and Lee S. (2017). Hashtag-based topic evolution in social
       media. World Wide Web. 20:6. (1527-1549). Online publication date:
       1-Nov-2017.
       
       https://doi.org/10.1007/s11280-017-0451-3

 695.  Samé A and Govaert G. (2017). Segmental dynamic factor analysis for time
       series of curves. Statistics and Computing. 27:6. (1617-1637). Online
       publication date: 1-Nov-2017.
       
       https://doi.org/10.1007/s11222-016-9707-5

 696.  Mehta H, Bradley A, Hancock M and Collins C. (2017). Metatation. ACM
       Transactions on Computer-Human Interaction. 24:5. (1-41). Online
       publication date: 31-Oct-2017.
       
       https://doi.org/10.1145/3131609

 697.  Koplenig A. (2017). A Data-Driven Method to Identify (Correlated) Changes
       in Chronological Corpora. Journal of Quantitative Linguistics.
       10.1080/09296174.2017.1311447. 24:4. (289-318). Online publication date:
       2-Oct-2017.
       
       https://www.tandfonline.com/doi/full/10.1080/09296174.2017.1311447

 698.  Chundi P. (2017). Identifying Emerging Topics and Content Change from
       Evolving Document Sets. International Journal of Knowledge-Based
       Organizations. 7:4. (1-18). Online publication date: 1-Oct-2017.
       
       https://doi.org/10.4018/IJKBO.2017100101

 699.  Gurciullo S and Mikhaylov S. (2017). Detecting policy preferences and
       dynamics in the UN general debate with neural word embeddings 2017
       International Conference on the Frontiers and Advances in Data Science
       (FADS). 10.1109/FADS.2017.8253197. 978-1-5386-3148-5. (74-79).
       
       http://ieeexplore.ieee.org/document/8253197/

 700.  Zhang Y, Chen H, Lu J and Zhang G. (2017). Detecting and predicting the
       topic change of Knowledge-based Systems. Knowledge-Based Systems. 133:C.
       (255-268). Online publication date: 1-Oct-2017.
       
       https://doi.org/10.1016/j.knosys.2017.07.011

 701.  Zhou H, Yu H and Hu R. (2017). Topic evolution based on the probabilistic
       topic model. Frontiers of Computer Science: Selected Publications from
       Chinese Universities. 11:5. (786-802). Online publication date:
       1-Oct-2017.
       
       https://doi.org/10.1007/s11704-016-5442-5

 702.  Puranam D, Narayan V and Kadiyali V. (2017). The Effect of Calorie
       Posting Regulation on Consumer Opinion. Marketing Science. 36:5.
       (726-746). Online publication date: 1-Sep-2017.
       
       https://doi.org/10.1287/mksc.2017.1048

 703.  Liu Y, Ester M, Qian Y, Hu B and Cheung D. Microscopic and Macroscopic
       Spatio-Temporal Topic Models for Check-in Data. IEEE Transactions on
       Knowledge and Data Engineering. 10.1109/TKDE.2017.2703825. 29:9.
       (1957-1970).
       
       http://ieeexplore.ieee.org/document/7926441/

 704.  Ashok Kumar P and Vaidehi V. (2017). A transfer learning framework for
       traffic video using neuro-fuzzy approach. Sādhanā.
       10.1007/s12046-017-0705-x. 42:9. (1431-1442). Online publication date:
       1-Sep-2017.
       
       http://link.springer.com/10.1007/s12046-017-0705-x

 705.  Guo J and Gong Z. A density-based nonparametric model for online event
       discovery from the social media data. Proceedings of the 26th
       International Joint Conference on Artificial Intelligence. (1732-1738).
       
       /doi/10.5555/3172077.3172128

 706.  Xun G, Li Y, Zhao W, Gao J and Zhang A. A correlated topic model using
       word embeddings. Proceedings of the 26th International Joint Conference
       on Artificial Intelligence. (4207-4213).
       
       /doi/10.5555/3171837.3171874

 707.  Sybrandt J, Shtutman M and Safro I. MOLIERE. Proceedings of the 23rd ACM
       SIGKDD International Conference on Knowledge Discovery and Data Mining.
       (1633-1642).
       
       https://doi.org/10.1145/3097983.3098057

 708.  Zhang C, Zhang K, Yuan Q, Tao F, Zhang L, Hanratty T and Han J. ReAct.
       Proceedings of the 40th International ACM SIGIR Conference on Research
       and Development in Information Retrieval. (245-254).
       
       https://doi.org/10.1145/3077136.3080814

 709.  Takeda N, Seki Y, Morishita M and Inagaki Y. Evolution of Information
       Needs based on Life Event Experiences with Topic Transition. Proceedings
       of the 40th International ACM SIGIR Conference on Research and
       Development in Information Retrieval. (1009-1012).
       
       https://doi.org/10.1145/3077136.3080703

 710.  Miao Y, Grefenstette E and Blunsom P. Discovering discrete latent topics
       with neural variational inference. Proceedings of the 34th International
       Conference on Machine Learning - Volume 70. (2410-2419).
       
       /doi/10.5555/3305890.3305930

 711.  Bamler R and Mandt S. Dynamic word embeddings. Proceedings of the 34th
       International Conference on Machine Learning - Volume 70. (380-389).
       
       /doi/10.5555/3305381.3305421

 712.  Xu Z, Chen L, Dai Y and Chen G. A Dynamic Topic Model and Matrix
       Factorization-Based Travel Recommendation Method Exploiting Ubiquitous
       Data. IEEE Transactions on Multimedia. 10.1109/TMM.2017.2688928. 19:8.
       (1933-1945).
       
       http://ieeexplore.ieee.org/document/7889010/

 713.  Barranco R, Rodriguez L, Urbina R and Hossain M. (2017). Enhancing Yelp
       Data with Deep Learning and Information Reuse 2017 IEEE International
       Conference on Information Reuse and Integration (IRI).
       10.1109/IRI.2017.17. 978-1-5386-1562-1. (452-461).
       
       http://ieeexplore.ieee.org/document/8102970/

 714.  Zhang Y, Mao W and Lin J. (2017). Modeling Topic Evolution in Social
       Media Short Texts 2017 IEEE International Conference on Big Knowledge
       (ICBK). 10.1109/ICBK.2017.39. 978-1-5386-3120-1. (315-319).
       
       http://ieeexplore.ieee.org/document/8023436/

 715.  Rani M, Dhar A and Vyas O. (2017). Semi-automatic terminology ontology
       learning based on topic modeling. Engineering Applications of Artificial
       Intelligence. 10.1016/j.engappai.2017.05.006. 63. (108-125). Online
       publication date: 1-Aug-2017.
       
       https://linkinghub.elsevier.com/retrieve/pii/S0952197617300891

 716.  Shaffer R. (2017). Cognitive load and issue engagement in congressional
       discourse. Cognitive Systems Research. 44:C. (89-99). Online publication
       date: 1-Aug-2017.
       
       https://doi.org/10.1016/j.cogsys.2017.03.006

 717.  Iyer R, Wong J, Tavanapong W and Peterson D. Identifying Policy Agenda
       Sub-Topics in Political Tweets based on Community Detection. Proceedings
       of the 2017 IEEE/ACM International Conference on Advances in Social
       Networks Analysis and Mining 2017. (698-705).
       
       https://doi.org/10.1145/3110025.3116208

 718.  Skryzalin J, Field R, Fisher A and Bauer T. Temporal Anomaly Detection in
       Social Media. Proceedings of the 2017 IEEE/ACM International Conference
       on Advances in Social Networks Analysis and Mining 2017. (505-509).
       
       https://doi.org/10.1145/3110025.3110056

 719.  Zhang H, Xu S, Wang Z, Zhu L, Luo H, Deng D and Wu H. (2017). Text and
       Data Mining of Social Media in Science and Technology Publicity 2017
       Portland International Conference on Management of Engineering and
       Technology (PICMET). 10.23919/PICMET.2017.8125345. 978-1-890843-36-6.
       (1-7).
       
       http://ieeexplore.ieee.org/document/8125345/

 720.  Ranaei S and Suominen A. (2017). Using Machine Learning Approaches to
       Identify Emergence: Case of Vehicle Related Patent Data 2017 Portland
       International Conference on Management of Engineering and Technology
       (PICMET). 10.23919/PICMET.2017.8125290. 978-1-890843-36-6. (1-8).
       
       http://ieeexplore.ieee.org/document/8125290/

 721.  Li W, Cao Y, Zhao J, Zou Y and Xie B. (2017). Toward Summary Extraction
       Method for Functional Topic 2017 IEEE International Conference on
       Software Quality, Reliability and Security Companion (QRS-C).
       10.1109/QRS-C.2017.13. 978-1-5386-2072-4. (16-23).
       
       http://ieeexplore.ieee.org/document/8004289/

 722.  Zhang Y, Mao W and Zeng D. (2017). Topic evolution modeling in social
       media short texts based on recurrent semantic dependent CRP 2017 IEEE
       International Conference on Intelligence and Security Informatics (ISI).
       10.1109/ISI.2017.8004885. 978-1-5090-6727-5. (119-124).
       
       http://ieeexplore.ieee.org/document/8004885/

 723.  Huang C. (2017). Investigating topic coherence and task performance for
       varied types of words in LDA 2017 International Conference on Machine
       Learning and Cybernetics (ICMLC). 10.1109/ICMLC.2017.8107775.
       978-1-5386-0406-9. (260-265).
       
       http://ieeexplore.ieee.org/document/8107775/

 724.  Vries H, Strub F, Chandar S, Pietquin O, Larochelle H and Courville A.
       (2017). GuessWhat?! Visual Object Discovery through Multi-modal Dialogue
       2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
       10.1109/CVPR.2017.475. 978-1-5386-0457-1. (4466-4475).
       
       http://ieeexplore.ieee.org/document/8099958/

 725.  Shirota Y, Hashimoto T and Chakraborty B. Visualization challenge on time
       series statistical data. Proceedings of the Computer Graphics
       International Conference. (1-4).
       
       https://doi.org/10.1145/3095140.3095152

 726.  Celikten E, Le Falher G and Mathioudakis M. Modeling Urban Behavior by
       Mining Geotagged Social Data. IEEE Transactions on Big Data.
       10.1109/TBDATA.2016.2628398. 3:2. (220-233).
       
       http://ieeexplore.ieee.org/document/7742983/

 727.  Bai B, Fan Y, Tan W and Zhang J. (2017). SR-LDA: Mining Effective
       Representations for Generating Service Ecosystem Knowledge Maps 2017 IEEE
       International Conference on Services Computing (SCC).
       10.1109/SCC.2017.23. 978-1-5386-2005-2. (124-131).
       
       http://ieeexplore.ieee.org/document/8034976/

 728.  Gao Z, Fan Y, Wu C, Tan W and Zhang J. (2017). Service Recommendation
       from the Evolution of Composition Patterns 2017 IEEE International
       Conference on Services Computing (SCC). 10.1109/SCC.2017.21.
       978-1-5386-2005-2. (108-115).
       
       http://ieeexplore.ieee.org/document/8034974/

 729.  Keshav B and Rajeshwari J. (2017). Topic sketch: Real time bursty topic
       detection from social media 2017 International Conference on Intelligent
       Computing and Control Systems (ICICCS). 10.1109/ICCONS.2017.8250596.
       978-1-5386-2745-7. (904-908).
       
       http://ieeexplore.ieee.org/document/8250596/

 730.  Barde B and Bainwad A. (2017). An overview of topic modeling methods and
       tools 2017 International Conference on Intelligent Computing and Control
       Systems (ICICCS). 10.1109/ICCONS.2017.8250563. 978-1-5386-2745-7.
       (745-750).
       
       http://ieeexplore.ieee.org/document/8250563/

 731.  Wang Y, Zhang Y, Zhou B and Jia Y. (2017). Semi-Supervised Collective
       Matrix Factorization for Topic Detection and Document Clustering 2017
       IEEE Second International Conference on Data Science in Cyberspace (DSC).
       10.1109/DSC.2017.17. 978-1-5386-1600-0. (88-97).
       
       http://ieeexplore.ieee.org/document/8005460/

 732.  Liu Y and Xu S. (2017). A local context-aware LDA model for topic
       modeling in a document network. Journal of the Association for
       Information Science and Technology. 68:6. (1429-1448). Online publication
       date: 1-Jun-2017.
       
       https://doi.org/10.1002/asi.23822

 733.  Zhou H, Yu H, Hu R and Hu J. (2017). A survey on trends of cross-media
       topic evolution map. Knowledge-Based Systems. 124:C. (164-175). Online
       publication date: 15-May-2017.
       
       https://doi.org/10.1016/j.knosys.2017.03.009

 734.  Liu P, Wu K and Meng H. (2017). A model of extended paragraph vector for
       document categorization and trend analysis 2017 International Joint
       Conference on Neural Networks (IJCNN). 10.1109/IJCNN.2017.7966147.
       978-1-5090-6182-2. (2400-2406).
       
       http://ieeexplore.ieee.org/document/7966147/

 735.  Lu K, Cai X, Ajiferuke I and Wolfram D. (2017). Vocabulary size and its
       effect on topic representation. Information Processing and Management: an
       International Journal. 53:3. (653-665). Online publication date:
       1-May-2017.
       
       https://doi.org/10.1016/j.ipm.2017.01.003

 736.  Thomason A, Griffiths N and Sanchez V. (2016). Context Trees. ACM
       Transactions on Information Systems. 35:2. (1-37). Online publication
       date: 30-Apr-2017.
       
       https://doi.org/10.1145/2978578

 737.  Jiang D, Tong Y and Song Y. (2016). Cross-Lingual Topic Discovery From
       Multilingual Search Engine Query Log. ACM Transactions on Information
       Systems. 35:2. (1-28). Online publication date: 30-Apr-2017.
       
       https://doi.org/10.1145/2956235

 738.  Jin J, Geng Q, Zhao Q and Zhang L. Integrating the Trend of Research
       Interest for Reviewer Assignment. Proceedings of the 26th International
       Conference on World Wide Web Companion. (1233-1241).
       
       https://doi.org/10.1145/3041021.3053053

 739.  Bahrainian S, Mele I and Crestani F. Modeling discrete dynamic topics.
       Proceedings of the Symposium on Applied Computing. (858-865).
       
       https://doi.org/10.1145/3019612.3019673

 740.  Huang J. (2017). Using Topic and Subjectivity Analysis for Overlapped
       Co-clustering Documents 2017 IEEE Third International Conference on
       Multimedia Big Data (BigMM). 10.1109/BigMM.2017.26. 978-1-5090-6549-3.
       (105-108).
       
       http://ieeexplore.ieee.org/document/7966727/

 741.  Lu Y and Zheng M. (2017). Web Topic Analysis of the Two-child Policy in
       China. Procedia Computer Science. 107:C. (97-102). Online publication
       date: 1-Apr-2017.
       
       https://doi.org/10.1016/j.procs.2017.03.063

 742.  Li W and Vasconcelos N. (2017). Complex Activity Recognition Via
       Attribute Dynamics. International Journal of Computer Vision. 122:2.
       (334-370). Online publication date: 1-Apr-2017.
       
       https://doi.org/10.1007/s11263-016-0918-1

 743.  Rekatsinas T, Ghosh S, Mekaru S, Nsoesie E, Brownstein J, Getoor L and
       Ramakrishnan N. (2017). Forecasting rare disease outbreaks from open
       source indicators. Statistical Analysis and Data Mining: The ASA Data
       Science Journal. 10.1002/sam.11337. 10:2. (136-150). Online publication
       date: 1-Apr-2017.
       
       https://onlinelibrary.wiley.com/doi/10.1002/sam.11337

 744.  Singh J, Zerr S and Siersdorfer S. Structure-Aware Visualization of Text
       Corpora. Proceedings of the 2017 Conference on Conference Human
       Information Interaction and Retrieval. (107-116).
       
       https://doi.org/10.1145/3020165.3020182

 745.  Sun L, Wang X, Wang Z, Zhao H and Zhu W. (2017). Social-Aware Video
       Recommendation for Online Social Groups. IEEE Transactions on Multimedia.
       19:3. (609-618). Online publication date: 1-Mar-2017.
       
       https://doi.org/10.1109/TMM.2016.2635589

 746.  Xia F, Wang W, Bekele T and Liu H. Big Scholarly Data: A Survey. IEEE
       Transactions on Big Data. 10.1109/TBDATA.2016.2641460. 3:1. (18-35).
       
       https://ieeexplore.ieee.org/document/7809016/

 747.  Katsurai M. (2017). Bursty research topic detection from scholarly data
       using dynamic Co-word networks: A preliminary investigation 2017 IEEE 2nd
       International Conference on Big Data Analysis (ICBDA).
       10.1109/ICBDA.2017.8078788. 978-1-5090-3618-9. (115-119).
       
       http://ieeexplore.ieee.org/document/8078788/

 748.  Huang J, Peng M, Wang H, Cao J, Gao W and Zhang X. (2017). A
       probabilistic method for emerging topic tracking in Microblog stream.
       World Wide Web. 20:2. (325-350). Online publication date: 1-Mar-2017.
       
       https://doi.org/10.1007/s11280-016-0390-4

 749.  Adu-Manu K, Tapparello C, Heinzelman W, Katsriku F and Abdulai J. (2017).
       Water Quality Monitoring Using Wireless Sensor Networks. ACM Transactions
       on Sensor Networks. 13:1. (1-41). Online publication date: 28-Feb-2017.
       
       https://doi.org/10.1145/3005719

 750.  Cheong S and Si Y. (2016). Accelerating the Kamada-Kawai Algorithm for
       Boundary Detection in a Mobile Ad Hoc Network. ACM Transactions on Sensor
       Networks. 13:1. (1-29). Online publication date: 28-Feb-2017.
       
       https://doi.org/10.1145/3005718

 751.  Midi D, Sultana S and Bertino E. (2016). A System for Response and
       Prevention of Security Incidents in Wireless Sensor Networks. ACM
       Transactions on Sensor Networks. 13:1. (1-38). Online publication date:
       28-Feb-2017.
       
       https://doi.org/10.1145/2996195

 752.  Guo W, Liang L and Deng T. (2016). Topic mining for call centers based on
       A‐LDA and distributed computing. Concurrency and Computation: Practice
       and Experience. 10.1002/cpe.3776. 29:3. Online publication date:
       10-Feb-2017.
       
       https://onlinelibrary.wiley.com/doi/10.1002/cpe.3776

 753.  Park Y, Ha J, Kim H and Ko J. (2016). Enabling Sensor Network to
       Smartphone Interaction Using Software Radios. ACM Transactions on Sensor
       Networks. 13:1. (1-26). Online publication date: 9-Feb-2017.
       
       https://doi.org/10.1145/3002177

 754.  Lin H, Zhu H, Zuo Y, Zhu C, Wu J and Xiong H. Collaborative company
       profiling. Proceedings of the Thirty-First AAAI Conference on Artificial
       Intelligence. (1417-1423).
       
       /doi/10.5555/3298239.3298446

 755.  Gao L, Wu J, Zhou C and Hu Y. Collaborative dynamic sparse topic
       regression with user profile evolution for item recommendation.
       Proceedings of the Thirty-First AAAI Conference on Artificial
       Intelligence. (1316-1322).
       
       /doi/10.5555/3298239.3298432

 756.  Duckworth P, Alomari M, Charles J, Hogg D and Cohn A. Latent dirichlet
       allocation for unsupervised activity analysis on an autonomous mobile
       robot. Proceedings of the Thirty-First AAAI Conference on Artificial
       Intelligence. (3819-3826).
       
       /doi/10.5555/3298023.3298123

 757.  Liang S, Ren Z, Yilmaz E and Kanoulas E. Collaborative user clustering
       for short text streams. Proceedings of the Thirty-First AAAI Conference
       on Artificial Intelligence. (3504-3510).
       
       /doi/10.5555/3298023.3298077

 758.  Liu H, Xu J, Zheng K, Liu C, Du L and Wu X. Semantic-aware Query
       Processing for Activity Trajectories. Proceedings of the Tenth ACM
       International Conference on Web Search and Data Mining. (283-292).
       
       https://doi.org/10.1145/3018661.3018678

 759.  Nikolenko S, Koltcov S and Koltsova O. (2017). Topic modelling for
       qualitative studies. Journal of Information Science. 43:1. (88-102).
       Online publication date: 1-Feb-2017.
       
       https://doi.org/10.1177/0165551515617393

 760.  Li W, Joo J, Qi H and Zhu S. (2017). Joint Image-Text News Topic
       Detection and Tracking by Multimodal Topic And-Or Graph. IEEE
       Transactions on Multimedia. 19:2. (367-381). Online publication date:
       1-Feb-2017.
       
       https://doi.org/10.1109/TMM.2016.2616279

 761.  Zhang Y, Jatowt A and Tanaka K. (2016). Causal Relationship Detection in
       Archival Collections of Product Reviews for Understanding Technology
       Evolution. ACM Transactions on Information Systems. 35:1. (1-41). Online
       publication date: 31-Jan-2017.
       
       https://doi.org/10.1145/2937752

 762.  Morsy S and Karypis G. (2016). Accounting for Language Changes Over Time
       in Document Similarity Search. ACM Transactions on Information Systems.
       35:1. (1-26). Online publication date: 31-Jan-2017.
       
       https://doi.org/10.1145/2934671

 763.  Perrone V, Jenkins P, Spanò D and Teh Y. (2017). Poisson random fields
       for dynamic feature models. The Journal of Machine Learning Research.
       18:1. (4626-4670). Online publication date: 1-Jan-2017.
       
       /doi/10.5555/3122009.3208008

 764.  Ogawa Y, Kobayashi T, Hahn K and Jang S. (2017). Press Coverage of
       Historical and Territorial Issues between Japan and Korea:. Kodo
       Keiryogaku (The Japanese Journal of Behaviormetrics). 10.2333/jbhmk.44.1.
       44:1. (1-15).
       
       https://www.jstage.jst.go.jp/article/jbhmk/44/1/44_1/_article/-char/ja/

 765.  XUE J and EGUCHI K. (2017). Video Data Modeling Using Sequential
       Correspondence Hierarchical Dirichlet Processes. IEICE Transactions on
       Information and Systems. 10.1587/transinf.2016MUP0007. E100.D:1. (33-41).
       
       https://www.jstage.jst.go.jp/article/transinf/E100.D/1/E100.D_2016MUP0007/_article

 766.  Uetsuji K, Yanagimoto H and Yoshioka M. (2017). Analysis for Short Term
       User Behavior with Topic Model. IEEJ Transactions on Electronics,
       Information and Systems. 10.1541/ieejeiss.137.974. 137:7. (974-979).
       
       https://www.jstage.jst.go.jp/article/ieejeiss/137/7/137_974/_article/-char/ja/

 767.  Xun G, Jia X, Gopalakrishnan V and Zhang A. (2017). A Survey on Context
       Learning. IEEE Transactions on Knowledge and Data Engineering. 29:1.
       (38-56). Online publication date: 1-Jan-2017.
       
       https://doi.org/10.1109/TKDE.2016.2614508

 768.  Jiang H, Wu H and Wang M. (2017). Causes of death in the United States,
       1999 to 2014 2017 IEEE EMBS International Conference on Biomedical &
       Health Informatics (BHI). 10.1109/BHI.2017.7897234. 978-1-5090-4179-4.
       (177-180).
       
       http://ieeexplore.ieee.org/document/7897234/

 769.  He Y, Wang C and Jiang C. Mining Coherent Topics With Pre-Learned
       Interest Knowledge in Twitter. IEEE Access. 10.1109/ACCESS.2017.2696558.
       5. (10515-10525).
       
       http://ieeexplore.ieee.org/document/7941989/

 770.  Greene D and Cross J. (2017). Exploring the Political Agenda of the
       European Parliament Using a Dynamic Topic Modeling Approach. Political
       Analysis. 10.1017/pan.2016.7. 25:1. (77-94). Online publication date:
       1-Jan-2017.
       
       https://www.cambridge.org/core/product/identifier/S1047198716000073/type/journal_article

 771.  Kowalski R. (2017). Patients’ written reviews as a resource for public
       healthcare management in England. Procedia Computer Science.
       10.1016/j.procs.2017.08.275. 113. (545-550).
       
       https://linkinghub.elsevier.com/retrieve/pii/S1877050917316848

 772.  Wang P, Zhang P, Zhou C, Li Z and Yang H. (2017). Hierarchical evolving
       Dirichlet processes for modeling nonlinear evolutionary traces in
       temporal data. Data Mining and Knowledge Discovery. 31:1. (32-64). Online
       publication date: 1-Jan-2017.
       
       https://doi.org/10.1007/s10618-016-0454-1

 773.  He L, Du Y and Ye Y. (2017). Tracking Topic Trends for Short Texts.
       Knowledge Graph and Semantic Computing. Language, Knowledge, and
       Intelligence. 10.1007/978-981-10-7359-5_12. (117-128).
       
       http://link.springer.com/10.1007/978-981-10-7359-5_12

 774.  Akhtar N. (2017). Hierarchical Summarization of News Tweets with
       Twitter-LDA. Applications of Soft Computing for the Web.
       10.1007/978-981-10-7098-3_6. (83-98).
       
       http://link.springer.com/10.1007/978-981-10-7098-3_6

 775.  Linton M, Teo E, Bommes E, Chen C and Härdle W. (2017). Dynamic Topic
       Modelling for Cryptocurrency Community Forums. Applied Quantitative
       Finance. 10.1007/978-3-662-54486-0_18. (355-372).
       
       http://link.springer.com/10.1007/978-3-662-54486-0_18

 776.  Brüggermann D, Hermey Y, Orth C, Schneider D, Selzer S and Spanakis G.
       (2017). Towards a Topic Discovery and Tracking System with Application to
       News Items. Future and Emerging Trends in Language Technology. Machine
       Learning and Big Data. 10.1007/978-3-319-69365-1_15. (183-197).
       
       http://link.springer.com/10.1007/978-3-319-69365-1_15

 777.  Zhang J, Wang J and Li L. (2017). Context-Aware Topic Modeling for
       Content Tracking in Social Media. Web and Big Data.
       10.1007/978-3-319-63579-8_49. (650-658).
       
       http://link.springer.com/10.1007/978-3-319-63579-8_49

 778.  Recchia G, Jones E, Nulty P, Regan J and de Bolla P. (2017). Tracing
       Shifting Conceptual Vocabularies Through Time. Knowledge Engineering and
       Knowledge Management. 10.1007/978-3-319-58694-6_2. (19-28).
       
       http://link.springer.com/10.1007/978-3-319-58694-6_2

 779.  Fang A, Macdonald C, Ounis I, Habel P and Yang X. (2017). Exploring
       Time-Sensitive Variational Bayesian Inference LDA for Social Media Data.
       Advances in Information Retrieval. 10.1007/978-3-319-56608-5_20.
       (252-265).
       
       http://link.springer.com/10.1007/978-3-319-56608-5_20

 780.  Lei M, Ge J, Li Z, Li C, Zhou Y, Zhou X and Luo B. (2017). Automatically
       Classify Chinese Judgment Documents Utilizing Machine Learning
       Algorithms. Database Systems for Advanced Applications.
       10.1007/978-3-319-55705-2_1. (3-17).
       
       http://link.springer.com/10.1007/978-3-319-55705-2_1

 781.  Wang H and Zhai C. (2017). Generative Models for Sentiment Analysis and
       Opinion Mining. A Practical Guide to Sentiment Analysis.
       10.1007/978-3-319-55394-8_6. (107-134).
       
       http://link.springer.com/10.1007/978-3-319-55394-8_6

 782.  John A, Di Caro L and Boella G. (2017). Text Segmentation with Topic
       Modeling and Entity Coherence. Proceedings of the 16th International
       Conference on Hybrid Intelligent Systems (HIS 2016).
       10.1007/978-3-319-52941-7_18. (175-185).
       
       http://link.springer.com/10.1007/978-3-319-52941-7_18

 783.  Liebeskind C, Dagan I and Schler J. (2016). Semiautomatic Construction of
       Cross-Period Thesaurus. Journal on Computing and Cultural Heritage . 9:4.
       (1-26). Online publication date: 19-Dec-2016.
       
       https://doi.org/10.1145/2994151

 784.  Schein A, Zhou M and Wallach H. Poisson-gamma dynamical systems.
       Proceedings of the 30th International Conference on Neural Information
       Processing Systems. (5012-5020).
       
       /doi/10.5555/3157382.3157657

 785.  Yurochkin M and Nguyen X. Geometric Dirichlet means algorithm for topic
       inference. Proceedings of the 30th International Conference on Neural
       Information Processing Systems. (2513-2521).
       
       /doi/10.5555/3157096.3157377

 786.  Yeh J, Tan Y and Lee C. (2016). Topic detection and tracking for
       conversational content by using conceptual dynamic latent Dirichlet
       allocation. Neurocomputing. 216:C. (310-318). Online publication date:
       5-Dec-2016.
       
       https://doi.org/10.1016/j.neucom.2016.08.017

 787.  Liu L, Tang L, Dong W, Yao S and Zhou W. (2016). An overview of topic
       modeling and its current applications in bioinformatics. SpringerPlus.
       10.1186/s40064-016-3252-8. 5:1. Online publication date: 1-Dec-2016.
       
       http://springerplus.springeropen.com/articles/10.1186/s40064-016-3252-8

 788.  Andrei V and Arandjelović O. (2016). Complex temporal topic evolution
       modelling using the Kullback-Leibler divergence and the Bhattacharyya
       distance. EURASIP Journal on Bioinformatics and Systems Biology.
       10.1186/s13637-016-0050-0. 2016:1. Online publication date: 1-Dec-2016.
       
       https://bsb-eurasipjournals.springeropen.com/articles/10.1186/s13637-016-0050-0

 789.  Wang S, Ding Y, Zhao W, Huang Y, Perkins R, Zou W and Chen J. (2016).
       Text mining for identifying topics in the literatures about adolescent
       substance use and depression. BMC Public Health.
       10.1186/s12889-016-2932-1. 16:1. Online publication date: 1-Dec-2016.
       
       http://www.biomedcentral.com/1471-2458/16/279

 790.  Wang H and Yeung D. (2016). Towards Bayesian Deep Learning. IEEE
       Transactions on Knowledge and Data Engineering. 28:12. (3395-3408).
       Online publication date: 1-Dec-2016.
       
       https://doi.org/10.1109/TKDE.2016.2606428

 791.  Doulamis N, Doulamis A, Kokkinos P and Varvarigos E. Event Detection in
       Twitter Microblogging. IEEE Transactions on Cybernetics.
       10.1109/TCYB.2015.2489841. 46:12. (2810-2824).
       
       http://ieeexplore.ieee.org/document/7314900/

 792.  Xiaodi Zhu , Yang S and Moazeni S. (2016). Firm risk identification
       through topic analysis of textual financial disclosures 2016 IEEE
       Symposium Series on Computational Intelligence (SSCI).
       10.1109/SSCI.2016.7850005. 978-1-5090-4240-1. (1-8).
       
       http://ieeexplore.ieee.org/document/7850005/

 793.  Same A. (2016). Dynamic Factor Mixture of Experts for Functional Time
       Series Modeling 2016 15th IEEE International Conference on Machine
       Learning and Applications (ICMLA). 10.1109/ICMLA.2016.0013.
       978-1-5090-6167-9. (19-25).
       
       http://ieeexplore.ieee.org/document/7838117/

 794.  Emoto M. (2016). Method for Extraction of Purchase Behavior and Product
       Character Using Dynamic Topic Model 2016 IEEE 16th International
       Conference on Data Mining Workshops (ICDMW). 10.1109/ICDMW.2016.0114.
       978-1-5090-5910-2. (778-782).
       
       http://ieeexplore.ieee.org/document/7836745/

 795.  Zonoozi A, Ho Q, Krishnaswamy S and Cong G. (2016). ConTrack: A Scalable
       Method for Tracking Multiple Concepts in Large Scale Multidimensional
       Data 2016 IEEE 16th International Conference on Data Mining (ICDM).
       10.1109/ICDM.2016.0087. 978-1-5090-5473-2. (759-768).
       
       http://ieeexplore.ieee.org/document/7837900/

 796.  Ding W, Zhang Y, Chen C and Hu X. (2016). Semi-supervised
       Dirichlet-Hawkes process with applications of topic detection and
       tracking in Twitter 2016 IEEE International Conference on Big Data (Big
       Data). 10.1109/BigData.2016.7840680. 978-1-4673-9005-7. (869-874).
       
       http://ieeexplore.ieee.org/document/7840680/

 797.  Song X, Rui Y and Hu X. (2016). Pairwise topic model and its application
       to topic transition and evolution 2016 IEEE International Conference on
       Big Data (Big Data). 10.1109/BigData.2016.7840592. 978-1-4673-9005-7.
       (86-95).
       
       http://ieeexplore.ieee.org/document/7840592/

 798.  Liu Z, Zheng Q, Wang F and Qian B. (2016). Nonparametric models for
       characterizing the topical communities in social network. Neurocomputing.
       10.1016/j.neucom.2016.07.053. 216. (439-450). Online publication date:
       1-Dec-2016.
       
       https://linkinghub.elsevier.com/retrieve/pii/S0925231216308256

 799.  Mortenson M and Vidgen R. (2016). A computational literature review of
       the technology acceptance model. International Journal of Information
       Management: The Journal for Information Professionals. 36:6. (1248-1259).
       Online publication date: 1-Dec-2016.
       
       https://doi.org/10.1016/j.ijinfomgt.2016.07.007

 800.  Kawata S and Fujiwara Y. (2016). Constructing of network from topics and
       their temporal change in the Nikkei newspaper articles. Evolutionary and
       Institutional Economics Review. 10.1007/s40844-016-0061-2. 13:2.
       (423-436). Online publication date: 1-Dec-2016.
       
       http://link.springer.com/10.1007/s40844-016-0061-2

 801.  Sánchez‐Franco M, Navarro‐García A and Rondán‐Cataluña F. (2016). Online
       Customer Service Reviews in Urban Hotels: A Data Mining Approach.
       Psychology & Marketing. 10.1002/mar.20955. 33:12. (1174-1186). Online
       publication date: 1-Dec-2016.
       
       https://onlinelibrary.wiley.com/doi/10.1002/mar.20955

 802.  Büschken J and Allenby G. (2016). Sentence-Based Text Analysis for
       Customer Reviews. Marketing Science. 35:6. (953-975). Online publication
       date: 1-Nov-2016.
       
       https://doi.org/10.1287/mksc.2016.0993

 803.  Liu S, Yin J, Wang X, Cui W, Cao K and Pei J. Online Visual Analytics of
       Text Streams. IEEE Transactions on Visualization and Computer Graphics.
       10.1109/TVCG.2015.2509990. 22:11. (2451-2466).
       
       http://ieeexplore.ieee.org/document/7360233/

 804.  Zhang J and Chow C. (2016). CRATS. IEEE Transactions on Knowledge and
       Data Engineering. 28:11. (2895-2909). Online publication date:
       1-Nov-2016.
       
       https://doi.org/10.1109/TKDE.2016.2594772

 805.  Lim K, Buntine W, Chen C and Du L. (2016). Nonparametric Bayesian topic
       modelling with the hierarchical Pitman-Yor processes. International
       Journal of Approximate Reasoning. 78:C. (172-191). Online publication
       date: 1-Nov-2016.
       
       https://doi.org/10.1016/j.ijar.2016.07.007

 806.  Lin F, Xiahou J and Xu Z. (2016). TCM clinic records data mining
       approaches based on weighted-LDA and multi-relationship LDA model.
       Multimedia Tools and Applications. 75:22. (14203-14232). Online
       publication date: 1-Nov-2016.
       
       https://doi.org/10.1007/s11042-016-3363-9

 807.  Yao L, Zhang Y, Wei B, Li L, Wu F, Zhang P and Bian Y. (2016). Concept
       over time. Expert Systems with Applications: An International Journal.
       60:C. (27-38). Online publication date: 30-Oct-2016.
       
       https://doi.org/10.1016/j.eswa.2016.04.014

 808.  Ren Z, Inel O, Aroyo L and de Rijke M. Time-aware Multi-Viewpoint
       Summarization of Multilingual Social Text Streams. Proceedings of the
       25th ACM International on Conference on Information and Knowledge
       Management. (387-396).
       
       https://doi.org/10.1145/2983323.2983710

 809.  Hua T, Zhang X, Wang W, Lu C and Ramakrishnan N. Automatical Storyline
       Generation with Help from Twitter. Proceedings of the 25th ACM
       International on Conference on Information and Knowledge Management.
       (2383-2388).
       
       https://doi.org/10.1145/2983323.2983698

 810.  Nie Y, Jia Y, Li S, Zhu X, Li A and Zhou B. (2016). Identifying users
       across social networks based on dynamic core interests. Neurocomputing.
       210:C. (107-115). Online publication date: 19-Oct-2016.
       
       https://doi.org/10.1016/j.neucom.2015.10.147

 811.  Bahrainian S and Crestani F. Cued Retrieval of Personal Memories of
       Social Interactions. Proceedings of the first Workshop on Lifelogging
       Tools and Applications. (3-12).
       
       https://doi.org/10.1145/2983576.2983577

 812.  Lee M, Liu Z, Huang R and Tong W. (2016). Application of dynamic topic
       models to toxicogenomics data. BMC Bioinformatics.
       10.1186/s12859-016-1225-0. 17:S13. Online publication date: 1-Oct-2016.
       
       http://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-016-1225-0

 813.  Qian S, Zhang T and Xu C. Multi-modal Multi-view Topic-opinion Mining for
       Social Event Analysis. Proceedings of the 24th ACM international
       conference on Multimedia. (2-11).
       
       https://doi.org/10.1145/2964284.2964294

 814.  Tanaka S, Jatowt A and Tanaka K. (2016). Supporting News Article
       Understanding by Detecting Subject-Background Event Relations 2016
       IEEE/WIC/ACM International Conference on Web Intelligence (WI).
       10.1109/WI.2016.0044. 978-1-5090-4470-2. (256-263).
       
       http://ieeexplore.ieee.org/document/7817061/

 815.  Inuzuka K, Hayashi T and Takagi T. (2016). Recommendation System Based on
       Prediction of User Preference Changes 2016 IEEE/WIC/ACM International
       Conference on Web Intelligence (WI). 10.1109/WI.2016.0036.
       978-1-5090-4470-2. (192-199).
       
       http://ieeexplore.ieee.org/document/7817053/

 816.  Romsaiyud W. (2016). Expectation-maximization algorithm for topic
       modeling on big data streams 2016 IEEE 7th Annual Ubiquitous Computing,
       Electronics & Mobile Communication Conference (UEMCON).
       10.1109/UEMCON.2016.7777818. 978-1-5090-1496-5. (1-7).
       
       http://ieeexplore.ieee.org/document/7777818/

 817.  Beykikhoshk A, Phung D, Arandjelovic O and Venkatesh S. (2016). Analysing
       the History of Autism Spectrum Disorder Using Topic Models 2016 IEEE
       International Conference on Data Science and Advanced Analytics (DSAA).
       10.1109/DSAA.2016.65. 978-1-5090-5206-6. (762-771).
       
       http://ieeexplore.ieee.org/document/7796964/

 818.  Breen P, Kelly J, Heckman T and Quinn S. (2016). Mining Pre-Exposure
       Prophylaxis Trends in Social Media 2016 IEEE International Conference on
       Data Science and Advanced Analytics (DSAA). 10.1109/DSAA.2016.29.
       978-1-5090-5206-6. (214-221).
       
       http://ieeexplore.ieee.org/document/7796907/

 819.  Jing Li , Qin Y and Huang R. (2016). A user-oriented semi-supervised
       probabilistic topic model 2016 2nd IEEE International Conference on
       Computer and Communications (ICCC). 10.1109/CompComm.2016.7924706.
       978-1-4673-9026-2. (262-268).
       
       http://ieeexplore.ieee.org/document/7924706/

 820.  Chen T, Thomas S and Hassan A. (2016). A survey on the use of topic
       models when mining software repositories. Empirical Software Engineering.
       21:5. (1843-1919). Online publication date: 1-Oct-2016.
       
       https://doi.org/10.1007/s10664-015-9402-8

 821.  Dang Q, Gao F and Zhou Y. (2016). Early detection method for emerging
       topics based on dynamic bayesian networks in micro-blogging networks.
       Expert Systems with Applications: An International Journal. 57:C.
       (285-295). Online publication date: 15-Sep-2016.
       
       https://doi.org/10.1016/j.eswa.2016.03.050

 822.  Luo X, Xuan J, Lu J and Zhang G. (2016). Measuring the Semantic
       Uncertainty of News Events for Evolution Potential Estimation. ACM
       Transactions on Information Systems. 34:4. (1-25). Online publication
       date: 14-Sep-2016.
       
       https://doi.org/10.1145/2903719

 823.  Dehghani M, Azarbonyad H, Kamps J and Marx M. On Horizontal and Vertical
       Separation in Hierarchical Text Classification. Proceedings of the 2016
       ACM International Conference on the Theory of Information Retrieval.
       (185-194).
       
       https://doi.org/10.1145/2970398.2970408

 824.  Jameel S, Liao Y, Lam W, Schockaert S and Xie X. Exploring Urban
       Lifestyles Using a Nonparametric Temporal Graphical Model. Proceedings of
       the 2016 ACM International Conference on the Theory of Information
       Retrieval. (251-260).
       
       https://doi.org/10.1145/2970398.2970401

 825.  Bexheti A, Niforatos E, Bahrainian S, Langheinrich M and Crestani F.
       Measuring the effect of cued recall on work meetings. Proceedings of the
       2016 ACM International Joint Conference on Pervasive and Ubiquitous
       Computing: Adjunct. (1020-1026).
       
       https://doi.org/10.1145/2968219.2968563

 826.  Nakashio Y, Hara T, Mori J and Sakata I. (2016). Detecting structural
       changes in the nanocarbon domain based on the time distribution of text
       information of academic papers 2016 Portland International Conference on
       Management of Engineering and Technology (PICMET).
       10.1109/PICMET.2016.7806689. . (694-700).
       
       http://ieeexplore.ieee.org/document/7806689/

 827.  Jones B and Chung W. (2016). Topic modeling of small sequential
       documents: Proposed experiments for detecting terror attacks 2016 IEEE
       Conference on Intelligence and Security Informatics (ISI).
       10.1109/ISI.2016.7745497. 978-1-5090-3865-7. (310-312).
       
       http://ieeexplore.ieee.org/document/7745497/

 828.  Bai J, Li L and Zeng D. (2016). Activating topic models from a cognitive
       perspective 2016 IEEE Conference on Intelligence and Security Informatics
       (ISI). 10.1109/ISI.2016.7745443. 978-1-5090-3865-7. (55-60).
       
       http://ieeexplore.ieee.org/document/7745443/

 829.  Duckworth P, Alomari M, Gatsoulis Y, Hogg D and Cohn A. Unsupervised
       activity recognition using latent semantic analysis on a mobile robot.
       Proceedings of the Twenty-second European Conference on Artificial
       Intelligence. (1062-1070).
       
       https://doi.org/10.3233/978-1-61499-672-9-1062

 830.  Kalyanam J, Velupillai S, Conway M and Lanckriet G. From event detection
       to storytelling on microblogs. Proceedings of the 2016 IEEE/ACM
       International Conference on Advances in Social Networks Analysis and
       Mining. (437-442).
       
       /doi/10.5555/3192424.3192505

 831.  Amoualian H, Clausel M, Gaussier E and Amini M. Streaming-LDA.
       Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
       Discovery and Data Mining. (695-704).
       
       https://doi.org/10.1145/2939672.2939781

 832.  Mukherjee S, Günnemann S and Weikum G. Continuous Experience-aware
       Language Model. Proceedings of the 22nd ACM SIGKDD International
       Conference on Knowledge Discovery and Data Mining. (1075-1084).
       
       https://doi.org/10.1145/2939672.2939780

 833.  Liang S, Yilmaz E and Kanoulas E. Dynamic Clustering of Streaming Short
       Documents. Proceedings of the 22nd ACM SIGKDD International Conference on
       Knowledge Discovery and Data Mining. (995-1004).
       
       https://doi.org/10.1145/2939672.2939748

 834.  Zhu C, Zhu H, Xiong H, Ding P and Xie F. Recruitment Market Trend
       Analysis with Sequential Latent Variable Models. Proceedings of the 22nd
       ACM SIGKDD International Conference on Knowledge Discovery and Data
       Mining. (383-392).
       
       https://doi.org/10.1145/2939672.2939689

 835.  Yu R, Qiu H, Wen Z, Lin C and Liu Y. (2016). A Survey on Social Media
       Anomaly Detection. ACM SIGKDD Explorations Newsletter. 18:1. (1-14).
       Online publication date: 1-Aug-2016.
       
       https://doi.org/10.1145/2980765.2980767

 836.  Xie W, Zhu F, Jiang J, Lim E and Wang K. (2016). TopicSketch: Real-Time
       Bursty Topic Detection from Twitter. IEEE Transactions on Knowledge and
       Data Engineering. 28:8. (2216-2229). Online publication date: 1-Aug-2016.
       
       https://doi.org/10.1109/TKDE.2016.2556661

 837.  Andrei V and Arandjelovic O. (2016). Identification of promising research
       directions using machine learning aided medical literature analysis 2016
       38th Annual International Conference of the IEEE Engineering in Medicine
       and Biology Society (EMBC). 10.1109/EMBC.2016.7591231. 978-1-4577-0220-4.
       (2471-2474).
       
       http://ieeexplore.ieee.org/document/7591231/

 838.  Zhang L, Wang X, Bu Z, Cao J and Wu Z. (2016). Online Public Opinion
       System: Design and Applications 2016 International Conference on Advanced
       Cloud and Big Data (CBD). 10.1109/CBD.2016.023. 978-1-5090-3677-6.
       (75-80).
       
       http://ieeexplore.ieee.org/document/7815189/

 839.  Kalyanam J, Velupillai S, Conway M and Lanckriet G. (2016). From event
       detection to storytelling on microblogs 2016 IEEE/ACM International
       Conference on Advances in Social Networks Analysis and Mining (ASONAM).
       10.1109/ASONAM.2016.7752271. 978-1-5090-2846-7. (437-442).
       
       http://ieeexplore.ieee.org/document/7752271/

 840.  Jiang X and Zhang J. (2016). A text visualization method for cross-domain
       research topic mining. Journal of Visualization. 19:3. (561-576). Online
       publication date: 1-Aug-2016.
       
       https://doi.org/10.1007/s12650-015-0323-9

 841.  Zuo Y, Zhao J and Xu K. (2016). Word network topic model. Knowledge and
       Information Systems. 48:2. (379-398). Online publication date:
       1-Aug-2016.
       
       https://doi.org/10.1007/s10115-015-0882-z

 842.  Evans J and Aceves P. (2016). Machine Translation: Mining Text for Social
       Theory. Annual Review of Sociology. 10.1146/annurev-soc-081715-074206.
       42:1. (21-50). Online publication date: 30-Jul-2016.
       
       https://www.annualreviews.org/doi/10.1146/annurev-soc-081715-074206

 843.  Chang Y, Tang J, Yin D, Yamada M and Liu Y. Timeline summarization from
       social media with life cycle models. Proceedings of the Twenty-Fifth
       International Joint Conference on Artificial Intelligence. (3698-3704).
       
       /doi/10.5555/3061053.3061136

 844.  Yang M, Mei J, Xu F, Tu W and Lu Z. Discovering Author Interest Evolution
       in Topic Modeling. Proceedings of the 39th International ACM SIGIR
       conference on Research and Development in Information Retrieval.
       (801-804).
       
       https://doi.org/10.1145/2911451.2914723

 845.  Sidana S, Mishra S, Amer-Yahia S, Clausel M and Amini M. Health
       Monitoring on Social Media over Time. Proceedings of the 39th
       International ACM SIGIR conference on Research and Development in
       Information Retrieval. (849-852).
       
       https://doi.org/10.1145/2911451.2914697

 846.  Zhao Y, Liang S, Ren Z, Ma J, Yilmaz E and de Rijke M. Explainable User
       Clustering in Short Text Streams. Proceedings of the 39th International
       ACM SIGIR conference on Research and Development in Information
       Retrieval. (155-164).
       
       https://doi.org/10.1145/2911451.2911522

 847.  Yang M, Xu F and Chow K. Interest Profiling for Security Monitoring and
       Forensic Investigation. Proceedings, Part II, of the 21st Australasian
       Conference on Information Security and Privacy - Volume 9723. (457-464).
       
       https://doi.org/10.1007/978-3-319-40367-0_30

 848.  Roberts M, Stewart B and Airoldi E. (2016). A Model of Text for
       Experimentation in the Social Sciences. Journal of the American
       Statistical Association. 10.1080/01621459.2016.1141684. 111:515.
       (988-1003). Online publication date: 2-Jul-2016.
       
       https://www.tandfonline.com/doi/full/10.1080/01621459.2016.1141684

 849.  Zhu J, Wang K, Wu Y, Hu Z and Wang H. Mining User-Aware Rare Sequential
       Topic Patterns in Document Streams. IEEE Transactions on Knowledge and
       Data Engineering. 10.1109/TKDE.2016.2541149. 28:7. (1790-1804).
       
       http://ieeexplore.ieee.org/document/7431989/

 850.  Fan C, Zhao T, Wu Y and Gong N. (2016). Research on Classifying Web
       Information with Latent Semantic Based on Modified LDA Model 2016
       International Conference on Networking and Network Applications (NaNA).
       10.1109/NaNA.2016.25. 978-1-4673-9803-9. (415-418).
       
       http://ieeexplore.ieee.org/document/7564180/

 851.  Shirota Y, Hashimoto T and Chakraborty B. (2016). Visualization for
       University Brand Image Clustering by Simple Topic Model 2016 5th IIAI
       International Congress on Advanced Applied Informatics (IIAI-AAI).
       10.1109/IIAI-AAI.2016.33. 978-1-4673-8985-3. (474-477).
       
       http://ieeexplore.ieee.org/document/7557656/

 852.  Shirota Y, Hashimoto T and Chakraborty B. (2016). Deductive Reasoning for
       Joint Distribution Probability in Simple Topic Model 2016 5th IIAI
       International Congress on Advanced Applied Informatics (IIAI-AAI).
       10.1109/IIAI-AAI.2016.31. 978-1-4673-8985-3. (622-625).
       
       http://ieeexplore.ieee.org/document/7557687/

 853.  Luyi Zou and William Wei Song . (2016). LDA-TM: A two-step approach to
       Twitter topic data clustering 2016 IEEE International Conference on Cloud
       Computing and Big Data Analysis (ICCCBDA). 10.1109/ICCCBDA.2016.7529581.
       978-1-5090-2594-7. (342-347).
       
       http://ieeexplore.ieee.org/document/7529581/

 854.  Li Y, Liu C, Zhao M, Li R, Xiao H, Wang K and Zhang J. (2016).
       Multi-Topic Tracking Model for dynamic social network. Physica A:
       Statistical Mechanics and its Applications. 10.1016/j.physa.2016.02.038.
       454. (51-65). Online publication date: 1-Jul-2016.
       
       https://linkinghub.elsevier.com/retrieve/pii/S0378437116002041

 855.  Paltoglou G. (2016). Sentiment-based event detection in Twitter. Journal
       of the Association for Information Science and Technology. 67:7.
       (1576-1587). Online publication date: 1-Jul-2016.
       
       https://doi.org/10.1002/asi.23465

 856.  Nishioka C and Scherp A. Profiling vs. Time vs. Content. Proceedings of
       the 16th ACM/IEEE-CS on Joint Conference on Digital Libraries. (171-180).
       
       https://doi.org/10.1145/2910896.2910898

 857.  Chen J, Li K, Zhu J and Chen W. (2016). WarpLDA. Proceedings of the VLDB
       Endowment. 9:10. (744-755). Online publication date: 1-Jun-2016.
       
       https://doi.org/10.14778/2977797.2977801

 858.  Gao Z, Fan Y, Wu C, Tan W, Zhang J, Ni Y, Bai B and Chen S. (2016).
       SeCo-LDA: Mining Service Co-occurrence Topics for Recommendation 2016
       IEEE International Conference on Web Services (ICWS).
       10.1109/ICWS.2016.13. 978-1-5090-2675-3. (25-32).
       
       http://ieeexplore.ieee.org/document/7557981/

 859.  Kun Yuan , Junjie Wu and Zhonghua Zhao . (2016). Burst prediction from
       Weibo: A crowd-sensing and tweet-centric method 2016 13th International
       Conference on Service Systems and Service Management (ICSSSM).
       10.1109/ICSSSM.2016.7538627. 978-1-5090-2842-9. (1-6).
       
       http://ieeexplore.ieee.org/document/7538627/

 860.  Hao Lin , Bo Sun , Wu J and Xiong H. (2016). Topic Detection from Short
       Text: A Term-based Consensus Clustering method 2016 13th International
       Conference on Service Systems and Service Management (ICSSSM).
       10.1109/ICSSSM.2016.7538624. 978-1-5090-2842-9. (1-6).
       
       http://ieeexplore.ieee.org/document/7538624/

 861.  Ma T, Qu D, Ma R, Feng W and Li K. (2016). Online Topic Evolution
       Modeling Based on Hierarchical Dirichlet Process 2016 IEEE First
       International Conference on Data Science in Cyberspace (DSC).
       10.1109/DSC.2016.60. 978-1-5090-1192-6. (400-405).
       
       http://ieeexplore.ieee.org/document/7866158/

 862.  Speier W, Ong M and Arnold C. (2016). Using phrases and document metadata
       to improve topic modeling of clinical reports. Journal of Biomedical
       Informatics. 61:C. (260-266). Online publication date: 1-Jun-2016.
       
       https://doi.org/10.1016/j.jbi.2016.04.005

 863.  Kim E and Kim M. (2016). Topic-tracking-based dynamic user modeling with
       TV recommendation applications. Applied Intelligence. 44:4. (771-792).
       Online publication date: 1-Jun-2016.
       
       https://doi.org/10.1007/s10489-015-0720-8

 864.  Zhu C, Zhu H, Ge Y, Chen E, Liu Q, Xu T and Xiong H. (2016). Tracking the
       evolution of social emotions with topic models. Knowledge and Information
       Systems. 47:3. (517-544). Online publication date: 1-Jun-2016.
       
       https://doi.org/10.1007/s10115-015-0865-0

 865.  Xi Y, Li B and Tang Y. (2016). Topic Model Based New Event Detection
       Within Topics. Journal of Advanced Computational Intelligence and
       Intelligent Informatics. 10.20965/jaciii.2016.p0467. 20:3. (467-476).
       Online publication date: 19-May-2016.
       
       https://www.fujipress.jp/jaciii/jc/jacii002000030467

 866.  Griffin W, Li X and El-Deredy W. (2016). Using Bayesian Nonparametric
       Hidden Semi-Markov Models to Disentangle Affect Processes during Marital
       Interaction. PLOS ONE. 10.1371/journal.pone.0155706. 11:5. (e0155706).
       
       http://dx.plos.org/10.1371/journal.pone.0155706

 867.  Bouakkaz M, Loudcher S and Ouinten Y. (2016). OLAP textual aggregation
       approach using the Google similarity distance. International Journal of
       Business Intelligence and Data Mining. 11:1. (31-48). Online publication
       date: 1-May-2016.
       
       https://doi.org/10.1504/IJBIDM.2016.076425

 868.  Sun X, Liu X, Li B, Duan Y, Yang H and Hu J. (2016). Exploring topic
       models in software engineering data analysis: A survey 2016 17th
       IEEE/ACIS International Conference on Software Engineering, Artificial
       Intelligence, Networking and Parallel/Distributed Computing (SNPD).
       10.1109/SNPD.2016.7515925. 978-1-5090-2239-7. (357-362).
       
       http://ieeexplore.ieee.org/document/7515925/

 869.  Zhou G and Chen G. (2016). Hierarchical Latent Semantic Mapping for
       automated topic generation 2016 17th IEEE/ACIS International Conference
       on Software Engineering, Artificial Intelligence, Networking and
       Parallel/Distributed Computing (SNPD). 10.1109/SNPD.2016.7515878.
       978-1-5090-2239-7. (57-63).
       
       http://ieeexplore.ieee.org/document/7515878/

 870.  Rahimi M, Zahedi M and Mashayekhi H. (2016). A two level probabilistic
       topic model 2016 24th Iranian Conference on Electrical Engineering
       (ICEE). 10.1109/IranianCEE.2016.7585499. 978-1-4673-8789-7. (108-112).
       
       http://ieeexplore.ieee.org/document/7585499/

 871.  Jensen S, Liu X, Yu Y and Milojevic S. (2016). Generation of topic
       evolution trees from heterogeneous bibliographic networks. Journal of
       Informetrics. 10.1016/j.joi.2016.04.002. 10:2. (606-621). Online
       publication date: 1-May-2016.
       
       https://linkinghub.elsevier.com/retrieve/pii/S1751157715302145

 872.  Ma B, Zhang N, Liu G, Li L and Yuan H. (2016). Semantic search for public
       opinions on urban affairs. Information Processing and Management: an
       International Journal. 52:3. (430-445). Online publication date:
       1-May-2016.
       
       https://doi.org/10.1016/j.ipm.2015.10.004

 873.  Chen L, Tozammel Hossain K, Butler P, Ramakrishnan N and Prakash B.
       (2016). Syndromic surveillance of Flu on Twitter using weakly supervised
       temporal topic models. Data Mining and Knowledge Discovery. 30:3.
       (681-710). Online publication date: 1-May-2016.
       
       https://doi.org/10.1007/s10618-015-0434-x

 874.  Takeishi N, Yairi T, Nishimura N, Nakajima Y and Takata N. Dynamic
       Grouped Mixture Models for Intermittent Multivariate Sensor Data.
       Proceedings, Part II, of the 20th Pacific-Asia Conference on Advances in
       Knowledge Discovery and Data Mining - Volume 9652. (221-232).
       
       https://doi.org/10.1007/978-3-319-31750-2_18

 875.  Bhadury A, Chen J, Zhu J and Liu S. Scaling up Dynamic Topic Models.
       Proceedings of the 25th International Conference on World Wide Web.
       (381-390).
       
       https://doi.org/10.1145/2872427.2883046

 876.  Zhang Y, Jatowt A and Tanaka K. Detecting Evolution of Concepts based on
       Cause-Effect Relationships in Online Reviews. Proceedings of the 25th
       International Conference on World Wide Web. (649-660).
       
       https://doi.org/10.1145/2872427.2883013

 877.  Kaushik K. Analyzing the effect of brand building activities on brand
       image using topic modeling techniques. Proceedings of the 31st Annual ACM
       Symposium on Applied Computing. (1189-1190).
       
       https://doi.org/10.1145/2851613.2852010

 878.  Choi Y, Oh J and Park J. (2016). A Novel Approach to Managing the Dynamic
       Nature of Semantic Relatedness. Journal of Database Management. 27:2.
       (1-26). Online publication date: 1-Apr-2016.
       
       https://doi.org/10.4018/JDM.2016040101

 879.  Wang X, Zhu P, Liu T and Xu K. (2016). BioTopic. International Journal of
       Data Mining and Bioinformatics. 14:4. (373-386). Online publication date:
       1-Apr-2016.
       
       https://doi.org/10.1504/IJDMB.2016.075822

 880.  Calderon F and Chen Y. (2016). Influence Value: Quantifying Topic
       Influence on Social Media 2016 IEEE Second International Conference on
       Multimedia Big Data (BigMM). 10.1109/BigMM.2016.59. 978-1-5090-2179-6.
       (49-55).
       
       http://ieeexplore.ieee.org/document/7544995/

 881.  Song J, Huang Y, Qi X, Li Y, Li F, Fu K and Huang T. (2016). Discovering
       hierarchical topic evolution in time-stamped documents. Journal of the
       Association for Information Science and Technology. 67:4. (915-927).
       Online publication date: 1-Apr-2016.
       
       https://doi.org/10.1002/asi.23439

 882.  di Sciascio C, Sabol V and Veas E. Rank As You Go. Proceedings of the
       21st International Conference on Intelligent User Interfaces. (118-129).
       
       https://doi.org/10.1145/2856767.2856797

 883.  Rossetti M, Stella F and Zanker M. (2015). Analyzing user reviews in
       tourism with topic models. Information Technology & Tourism.
       10.1007/s40558-015-0035-y. 16:1. (5-21). Online publication date:
       1-Mar-2016.
       
       http://link.springer.com/10.1007/s40558-015-0035-y

 884.  Dang E, Luk R and Allan J. (2016). A context-dependent relevance model.
       Journal of the Association for Information Science and Technology. 67:3.
       (582-593). Online publication date: 1-Mar-2016.
       
       https://doi.org/10.1002/asi.23419

 885.  Wang B and Klabjan D. Temporal topic analysis with endogenous and
       exogenous processes. Proceedings of the Thirtieth AAAI Conference on
       Artificial Intelligence. (3045-3051).
       
       /doi/10.5555/3016100.3016328

 886.  Chen P, Zhang N, Poon L and Chen Z. Progressive EM for latent tree models
       and hierarchical topic detection. Proceedings of the Thirtieth AAAI
       Conference on Artificial Intelligence. (1498-1504).
       
       /doi/10.5555/3016100.3016108

 887.  Qian S, Zhang T, Xu C and Shao J. Multi-Modal Event Topic Model for
       Social Event Analysis. IEEE Transactions on Multimedia.
       10.1109/TMM.2015.2510329. 18:2. (233-246).
       
       http://ieeexplore.ieee.org/document/7360932/

 888.  Jeong Y, Sang-Hun Lee and Gweon G. Discovery of research interests of
       authors over time using a topic model. Proceedings of the 2016
       International Conference on Big Data and Smart Computing (BigComp).
       (24-31).
       
       https://doi.org/10.1109/BIGCOMP.2016.7425797

 889.  Roe G, Gladstone C and Morrissey R. (2016). Discourses and Disciplines in
       the Enlightenment: Topic Modeling the French Encyclopédie. Frontiers in
       Digital Humanities. 10.3389/fdigh.2015.00008. 2.
       
       http://journal.frontiersin.org/Article/10.3389/fdigh.2015.00008/abstract

 890.  Hua T, Zhao L, Chen F, Lu C and Ramakrishnan N. (2016). How events
       unfold. SIGSPATIAL Special. 7:3. (19-25). Online publication date:
       11-Jan-2016.
       
       https://doi.org/10.1145/2876480.2876485

 891.  Liu P, Jameel S, Wu K and Meng H. Learning Track Representation and
       Trends for Conference Analytics. Proceedings of the 2016 49th Hawaii
       International Conference on System Sciences (HICSS). (1671-1680).
       
       https://doi.org/10.1109/HICSS.2016.211

 892.  Jacobi C, van Atteveldt W and Welbers K. (2015). Quantitative analysis of
       large amounts of journalistic texts using topic modelling. Digital
       Journalism. 10.1080/21670811.2015.1093271. 4:1. (89-106). Online
       publication date: 2-Jan-2016.
       
       http://www.tandfonline.com/doi/full/10.1080/21670811.2015.1093271

 893.  Günther E and Quandt T. (2015). Word Counts and Topic Models. Digital
       Journalism. 10.1080/21670811.2015.1093270. 4:1. (75-88). Online
       publication date: 2-Jan-2016.
       
       http://www.tandfonline.com/doi/full/10.1080/21670811.2015.1093270

 894.  Cao N and Cui W. (2016). Visualizing Document Content. Introduction to
       Text Visualization. 10.2991/978-94-6239-186-4_5. (57-102).
       
       http://link.springer.com/10.2991/978-94-6239-186-4_5

 895.  Shirota Y, Hashimoto T and Chakraborty B. (2016). Visual Materials to
       Teach Gibbs Sampler. International Journal of Knowledge Engineering.
       10.18178/ijke.2016.2.2.059. 2:2. (92-95).
       
       http://www.ijke.org/show-42-101-1.html

 896.  HATAKEYAMA Y, OGAWA T, IKEDA H and HASEYAMA M. (2016). A Most
       Resource-Consuming Disease Estimation Method from Electronic Claim Data
       Based on Labeled LDA. IEICE Transactions on Information and Systems.
       10.1587/transinf.2015EDL8128. E99.D:3. (763-768).
       
       https://www.jstage.jst.go.jp/article/transinf/E99.D/3/E99.D_2015EDL8128/_article

 897.  Shimizu T and Okadome T. (2016). Dyamic Stacked Topic Model. Transactions
       of the Japanese Society for Artificial Intelligence. 10.1527/tjsai.M-F92.
       31:2. (M-F92_1-8).
       
       https://www.jstage.jst.go.jp/article/tjsai/31/2/31_M-F92_1/_article/-char/ja/

 898.  Fu X, Li J, Yang K, Cui L and Yang L. (2016). Dynamic Online HDP model
       for discovering evolutionary topics from Chinese social texts.
       Neurocomputing. 171:C. (412-424). Online publication date: 1-Jan-2016.
       
       https://doi.org/10.1016/j.neucom.2015.06.047

 899.  Parra D, Trattner C, Gómez D, Hurtado M, Wen X and Lin Y. (2016). Twitter
       in academic events. Computer Communications. 73:PB. (301-314). Online
       publication date: 1-Jan-2016.
       
       https://doi.org/10.1016/j.comcom.2015.07.001

 900.  Kannan S, Karuppusamy S, Nedunchezhian A, Venkateshan P, Wang P, Bojja N
       and Kejariwal A. (2016). Big Data Analytics for Social Media. Big Data.
       10.1016/B978-0-12-805394-2.00003-9. (63-94).
       
       https://linkinghub.elsevier.com/retrieve/pii/B9780128053942000039

 901.  Kusajima S and Sumi Y. (2016). Twitter Bot for Activation of Online
       Discussion and Promotion of Understanding by Providing Related Articles.
       Collaboration Technologies and Social Computing.
       10.1007/978-981-10-2618-8_1. (1-16).
       
       http://link.springer.com/10.1007/978-981-10-2618-8_1

 902.  Todor A, Lukasiewicz W, Athan T and Paschke A. (2016). Enriching Topic
       Models with DBpedia. On the Move to Meaningful Internet Systems: OTM 2016
       Conferences. 10.1007/978-3-319-48472-3_46. (735-751).
       
       http://link.springer.com/10.1007/978-3-319-48472-3_46

 903.  Hu Y, Xu X and Li L. (2016). Analyzing Topic-Sentiment and Topic
       Evolution over Time from Social Media. Knowledge Science, Engineering and
       Management. 10.1007/978-3-319-47650-6_8. (97-109).
       
       http://link.springer.com/10.1007/978-3-319-47650-6_8

 904.  Dam H and Ghose A. (2016). Analyzing Topics and Trends in the PRIMA
       Literature. PRIMA 2016: Princiles and Practice of Multi-Agent Systems.
       10.1007/978-3-319-44832-9_13. (216-229).
       
       http://link.springer.com/10.1007/978-3-319-44832-9_13

 905.  Dehghani M, Azarbonyad H, Kamps J and Marx M. (2016). Two-Way
       Parsimonious Classification Models for Evolving Hierarchies. Experimental
       IR Meets Multilinguality, Multimodality, and Interaction.
       10.1007/978-3-319-44564-9_6. (69-82).
       
       http://link.springer.com/10.1007/978-3-319-44564-9_6

 906.  Gruetze T, Krestel R and Naumann F. (2016). Topic Shifts in
       StackOverflow: Ask it Like Socrates. Natural Language Processing and
       Information Systems. 10.1007/978-3-319-41754-7_18. (213-221).
       
       http://link.springer.com/10.1007/978-3-319-41754-7_18

 907.  Amami M, Pasi G, Stella F and Faiz R. (2016). An LDA-Based Approach to
       Scientific Paper Recommendation. Natural Language Processing and
       Information Systems. 10.1007/978-3-319-41754-7_17. (200-210).
       
       http://link.springer.com/10.1007/978-3-319-41754-7_17

 908.  Peng M, Xie Q, Huang J, Zhu J, Ouyang S, Huang J and Tian G. (2016).
       Sparse Topical Coding with Sparse Groups. Web-Age Information Management.
       10.1007/978-3-319-39937-9_32. (415-426).
       
       http://link.springer.com/10.1007/978-3-319-39937-9_32

 909.  Hedeler C, Kempf A and Steinberg J. (2016). Subject Indexing for Author
       Name Disambiguation: Opportunities and Challenges. Analysis of Large and
       Complex Data. 10.1007/978-3-319-25226-1_55. (639-649).
       
       https://link.springer.com/10.1007/978-3-319-25226-1_55

 910.  Spiliopoulou M, Ntoutsi E and Zimmermann M. (2016). Opinion Stream
       Mining. Encyclopedia of Machine Learning and Data Mining.
       10.1007/978-1-4899-7502-7_905-1. (1-10).
       
       https://link.springer.com/10.1007/978-1-4899-7502-7_905-1

 911.  Yamamoto S, Wakabayashi K, Kando N and Satoh T. BUTE. Proceedings of the
       17th International Conference on Information Integration and Web-based
       Applications & Services. (1-9).
       
       https://doi.org/10.1145/2837185.2837198

 912.  Nishioka C, Scherp A and Dellschaft K. Comparing Tweet Classifications by
       Authors' Hashtags, Machine Learning, and Human Annotators. Proceedings of
       the 2015 IEEE / WIC / ACM International Conference on Web Intelligence
       and Intelligent Agent Technology (WI-IAT) - Volume 01. (67-74).
       
       https://doi.org/10.1109/WI-IAT.2015.69

 913.  Morton B and Kim Y. (2015). Acoustic Features for Recognizing Musical
       Artist Influence 2015 IEEE 14th International Conference on Machine
       Learning and Applications (ICMLA). 10.1109/ICMLA.2015.136.
       978-1-5090-0287-0. (1117-1122).
       
       http://ieeexplore.ieee.org/document/7424469/

 914.  Laitonjam N, Padmanabhan V, Pujari A and Lal R. (2015). Topic Modelling
       for Songs 2015 International Conference on Information Technology (ICIT).
       10.1109/ICIT.2015.47. 978-1-5090-0487-4. (130-135).
       
       http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7437603

 915.  Pivovarov R, Perotte A, Grave E, Angiolillo J, Wiggins C and Elhadad N.
       (2015). Learning probabilistic phenotypes from heterogeneous EHR data.
       Journal of Biomedical Informatics. 58:C. (156-165). Online publication
       date: 1-Dec-2015.
       
       https://doi.org/10.1016/j.jbi.2015.10.001

 916.  Kharratzadeh M, Renard B and Coates M. (2015). Bayesian topic model
       approaches to online and time-dependent clustering. Digital Signal
       Processing. 47:C. (25-35). Online publication date: 1-Dec-2015.
       
       https://doi.org/10.1016/j.dsp.2015.03.010

 917.  Madani A, Boussaid O and Zegour D. (2015). Real-time trending topics
       detection and description from Twitter content. Social Network Analysis
       and Mining. 10.1007/s13278-015-0298-5. 5:1. Online publication date:
       1-Dec-2015.
       
       http://link.springer.com/10.1007/s13278-015-0298-5

 918.  Chen Y, Peng Y, Liang J, Saravia E, Calderon F, Chang C, Chuang Y, Chen T
       and Kwan E. (2015). Concept-based event identification from social
       streams using evolving social graph sequences. Social Network Analysis
       and Mining. 10.1007/s13278-015-0269-x. 5:1. Online publication date:
       1-Dec-2015.
       
       http://link.springer.com/10.1007/s13278-015-0269-x

 919.  An L, Lin X, Yu C and Zhang X. (2015). Measuring and visualizing the
       contributions of Chinese and American LIS research institutions to
       emerging themes and salient themes. Scientometrics. 105:3. (1605-1634).
       Online publication date: 1-Dec-2015.
       
       https://doi.org/10.1007/s11192-015-1640-4

 920.  Clarke A and Steele R. (2015). Smartphone-based public health information
       systems. Journal of the Association for Information Science and
       Technology. 66:12. (2596-2608). Online publication date: 1-Dec-2015.
       
       https://doi.org/10.1002/asi.23356

 921.  Li D, Tang J, Ding Y, Shuai X, Chambers T, Sun G, Luo Z and Zhang J.
       (2015). Topic-level opinion influence model TOIM. Journal of the
       Association for Information Science and Technology. 66:12. (2657-2673).
       Online publication date: 1-Dec-2015.
       
       https://doi.org/10.1002/asi.23350

 922.  Hu B, Dong X, Zhang C, Bowman T, Ding Y, Milojević S, Ni C, Yan E and
       Larivière V. (2015). A lead-lag analysis of the topic evolution patterns
       for preprints and publications. Journal of the Association for
       Information Science and Technology. 66:12. (2643-2656). Online
       publication date: 1-Dec-2015.
       
       https://doi.org/10.1002/asi.23347

 923.  Chen Y, Zhang H, Wu J, Wang X, Liu R and Lin M. Modeling Emerging,
       Evolving and Fading Topics Using Dynamic Soft Orthogonal NMF with Sparse
       Representation. Proceedings of the 2015 IEEE International Conference on
       Data Mining (ICDM). (61-70).
       
       https://doi.org/10.1109/ICDM.2015.96

 924.  Liu Y, Ester M, Hu B and Cheung D. Spatio-Temporal Topic Models for
       Check-in Data. Proceedings of the 2015 IEEE International Conference on
       Data Mining (ICDM). (889-894).
       
       https://doi.org/10.1109/ICDM.2015.45

 925.  Wang J, Tong W, Yu H, Li M, Ma X, Cai H, Hanratty T and Han J. Mining
       Multi-aspect Reflection of News Events in Twitter. Proceedings of the
       2015 IEEE International Conference on Data Mining (ICDM). (429-438).
       
       https://doi.org/10.1109/ICDM.2015.112

 926.  Gao C, Wang B, He P, Zhu J, Zhou Y and Lyu M. PAID. Proceedings of the
       2015 IEEE 26th International Symposium on Software Reliability
       Engineering (ISSRE). (35-45).
       
       https://doi.org/10.1109/ISSRE.2015.7381797

 927.  Scanlon J and Gerber M. Forecasting Violent Extremist Cyber Recruitment.
       IEEE Transactions on Information Forensics and Security.
       10.1109/TIFS.2015.2464775. 10:11. (2461-2470).
       
       http://ieeexplore.ieee.org/document/7180349/

 928.  Chan K, Xinxin Zhan and Jiali Wang . (2015). Facial expression
       recognition by correlated Topic Models and Bayes modeling 2015
       International Conference on Image and Vision Computing New Zealand
       (IVCNZ). 10.1109/IVCNZ.2015.7761546. 978-1-5090-0357-0. (1-5).
       
       http://ieeexplore.ieee.org/document/7761546/

 929.  MITRA S, MITRA R, MAITY S, RIEDL M, BIEMANN C, GOYAL P and MUKHERJEE A.
       (2015). An automatic approach to identify word sense changes in text
       media across timescales. Natural Language Engineering.
       10.1017/S135132491500011X. 21:5. (773-798). Online publication date:
       1-Nov-2015.
       
       https://www.cambridge.org/core/product/identifier/S135132491500011X/type/journal_article

 930.  Jatowt A, Au Yeung C and Tanaka K. (2015). Generic method for detecting
       focus time of documents. Information Processing and Management: an
       International Journal. 51:6. (851-868). Online publication date:
       1-Nov-2015.
       
       https://doi.org/10.1016/j.ipm.2015.05.001

 931.  Zhao L, Chen F, Lu C and Ramakrishnan N. Dynamic theme tracking in
       Twitter. Proceedings of the 2015 IEEE International Conference on Big
       Data (Big Data). (561-570).
       
       https://doi.org/10.1109/BigData.2015.7363800

 932.  Yu R, He X and Liu Y. (2015). GLAD. ACM Transactions on Knowledge
       Discovery from Data. 10:2. (1-22). Online publication date: 26-Oct-2015.
       
       https://doi.org/10.1145/2811268

 933.  Wang J, Li L, Tan F, Zhu Y, Feng W and Xia C. (2015). Detecting Hotspot
       Information Using Multi-Attribute Based Topic Model. PLOS ONE.
       10.1371/journal.pone.0140539. 10:10. (e0140539).
       
       https://dx.plos.org/10.1371/journal.pone.0140539

 934.  Schnober C and Gurevych I. Combining Topic Models for Corpus Exploration.
       Proceedings of the 2015 Workshop on Topic Models: Post-Processing and
       Applications. (11-20).
       
       https://doi.org/10.1145/2809936.2809939

 935.  Park S, Lee W and Moon I. Supervised Dynamic Topic Models for Associative
       Topic Extraction with A Numerical Time Series. Proceedings of the 2015
       Workshop on Topic Models: Post-Processing and Applications. (49-54).
       
       https://doi.org/10.1145/2809936.2809938

 936.  Wang P, Zhang P, Zhou C, Li Z and Li G. Modeling Infinite Topics on
       Social Behavior Data with Spatio-temporal Dependence. Proceedings of the
       24th ACM International on Conference on Information and Knowledge
       Management. (1919-1922).
       
       https://doi.org/10.1145/2806416.2806635

 937.  Jiang Z, Liu X and Gao L. Chronological Citation Recommendation with
       Information-Need Shifting. Proceedings of the 24th ACM International on
       Conference on Information and Knowledge Management. (1291-1300).
       
       https://doi.org/10.1145/2806416.2806567

 938.  Peng M, Zhu J, Li X, Huang J, Wang H and Zhang Y. Central Topic Model for
       Event-oriented Topics Mining in Microblog Stream. Proceedings of the 24th
       ACM International on Conference on Information and Knowledge Management.
       (1611-1620).
       
       https://doi.org/10.1145/2806416.2806561

 939.  Jo Y, Loghmanpour N and Rosé C. Time Series Analysis of Nursing Notes for
       Mortality Prediction via a State Transition Topic Model. Proceedings of
       the 24th ACM International on Conference on Information and Knowledge
       Management. (1171-1180).
       
       https://doi.org/10.1145/2806416.2806541

 940.  Kenter T, Wevers M, Huijnen P and de Rijke M. Ad Hoc Monitoring of
       Vocabulary Shifts over Time. Proceedings of the 24th ACM International on
       Conference on Information and Knowledge Management. (1191-1200).
       
       https://doi.org/10.1145/2806416.2806474

 941.  Große-Bölting G, Nishioka C and Scherp A. A Comparison of Different
       Strategies for Automated Semantic Document Annotation. Proceedings of the
       8th International Conference on Knowledge Capture. (1-8).
       
       https://doi.org/10.1145/2815833.2815838

 942.  Haoling Dong , Siliang Tang , Si Li , Fei Wu and Yueting Zhuang . (2015).
       HTMVS: Visualizing hierarchical topics and their evolution 2015 IEEE
       Conference on Visual Analytics Science and Technology (VAST).
       10.1109/VAST.2015.7347675. 978-1-4673-9783-4. (195-196).
       
       http://ieeexplore.ieee.org/document/7347675/

 943.  Chen Q, Hu L, Xu J, Liu W and Cao L. (2015). Document similarity analysis
       via involving both explicit and implicit semantic couplings 2015 IEEE
       International Conference on Data Science and Advanced Analytics (DSAA).
       10.1109/DSAA.2015.7344832. 978-1-4673-8272-4. (1-10).
       
       http://ieeexplore.ieee.org/document/7344832/

 944.  Kou N, U L, Yang Y and Gong Z. (2015). Travel topic analysis.
       Geoinformatica. 19:4. (693-721). Online publication date: 1-Oct-2015.
       
       https://doi.org/10.1007/s10707-015-0226-x

 945.  Hecking T, Chounta I and Hoppe H. Analysis of User Roles and the
       Emergence of Themes in Discussion Forums. Proceedings of the 2015 Second
       European Network Intelligence Conference. (114-121).
       
       https://doi.org/10.1109/ENIC.2015.24

 946.  Huang Z. An investigation of emotion changes from speech. Proceedings of
       the 2015 International Conference on Affective Computing and Intelligent
       Interaction (ACII). (733-736).
       
       https://doi.org/10.1109/ACII.2015.7344650

 947.  Rule A, Cointet J and Bearman P. (2015). Lexical shifts, substantive
       changes, and continuity in State of the Union discourse, 1790–2014.
       Proceedings of the National Academy of Sciences. 10.1073/pnas.1512221112.
       112:35. (10837-10844). Online publication date: 1-Sep-2015.
       
       https://pnas.org/doi/full/10.1073/pnas.1512221112

 948.  Park S, Lee W and Moon I. (2015). Associative topic models with numerical
       time series. Information Processing and Management: an International
       Journal. 51:5. (737-755). Online publication date: 1-Sep-2015.
       
       https://doi.org/10.1016/j.ipm.2015.06.007

 949.  Huang G, He J, Zhang Y, Zhou W, Liu H, Zhang P, Ding Z, You Y and Cao J.
       (2015). Mining streams of short text for analysis of world-wide event
       evolutions. World Wide Web. 18:5. (1201-1217). Online publication date:
       1-Sep-2015.
       
       https://doi.org/10.1007/s11280-014-0293-1

 950.  Ju B, Qian Y, Ye M, Ni R, Zhu C and Deng Z. (2015). Using Dynamic
       Multi-Task Non-Negative Matrix Factorization to Detect the Evolution of
       User Preferences in Collaborative Filtering. PLOS ONE.
       10.1371/journal.pone.0135090. 10:8. (e0135090).
       
       https://dx.plos.org/10.1371/journal.pone.0135090

 951.  Wang Q, Zhu H, Hu W, Shen Z and Yao Y. Discerning Tactical Patterns for
       Professional Soccer Teams. Proceedings of the 21th ACM SIGKDD
       International Conference on Knowledge Discovery and Data Mining.
       (2197-2206).
       
       https://doi.org/10.1145/2783258.2788577

 952.  Du N, Farajtabar M, Ahmed A, Smola A and Song L. Dirichlet-Hawkes
       Processes with Applications to Clustering Continuous-Time Document
       Streams. Proceedings of the 21th ACM SIGKDD International Conference on
       Knowledge Discovery and Data Mining. (219-228).
       
       https://doi.org/10.1145/2783258.2783411

 953.  Kalyanam J, Mantrach A, Saez-Trumper D, Vahabi H and Lanckriet G.
       Leveraging Social Context for Modeling Topic Evolution. Proceedings of
       the 21th ACM SIGKDD International Conference on Knowledge Discovery and
       Data Mining. (517-526).
       
       https://doi.org/10.1145/2783258.2783319

 954.  Zhang H, Kim G and Xing E. Dynamic Topic Modeling for Monitoring Market
       Competition from Online Text and Image Data. Proceedings of the 21th ACM
       SIGKDD International Conference on Knowledge Discovery and Data Mining.
       (1425-1434).
       
       https://doi.org/10.1145/2783258.2783293

 955.  Caballero Barajas K and Akella R. Dynamically Modeling Patient's Health
       State from Electronic Medical Records. Proceedings of the 21th ACM SIGKDD
       International Conference on Knowledge Discovery and Data Mining. (69-78).
       
       https://doi.org/10.1145/2783258.2783289

 956.  Talmon R, Mallat S, Zaveri H and Coifman R. Manifold Learning for Latent
       Variable Inference in Dynamical Systems. IEEE Transactions on Signal
       Processing. 10.1109/TSP.2015.2432731. 63:15. (3843-3856).
       
       http://ieeexplore.ieee.org/document/7105924/

 957.  Guan Z, Yang S, Sun H, Srivatsa M and Yan X. Fine-Grained Knowledge
       Sharing in Collaborative Environments. IEEE Transactions on Knowledge and
       Data Engineering. 10.1109/TKDE.2015.2411283. 27:8. (2163-2174).
       
       http://ieeexplore.ieee.org/document/7056511/

 958.  Zhang Y, Chen H, Zhang G, Zhu D and Lu J. (2015). Multiple science
       data-oriented Technology Roadmapping method 2015 Portland International
       Conference on Management of Engineering and Technology (PICMET).
       10.1109/PICMET.2015.7273099. 978-1-8908-4331-1. (2278-2287).
       
       http://ieeexplore.ieee.org/document/7273099/

 959.  Tran H and Takasu A. (2015). Partitioning algorithms for improving
       efficiency of topic modeling parallelization 2015 IEEE Pacific Rim
       Conference on Communications, Computers and Signal Processing (PACRIM).
       10.1109/PACRIM.2015.7334854. 978-1-4673-7788-1. (315-320).
       
       http://ieeexplore.ieee.org/document/7334854/

 960.  Djuric P and Yu K. (2015). On generative models for sequential formation
       of clusters 2015 23rd European Signal Processing Conference (EUSIPCO).
       10.1109/EUSIPCO.2015.7362892. 978-0-9928-6263-3. (2786-2790).
       
       http://ieeexplore.ieee.org/document/7362892/

 961.  Liu X. Modeling users' dynamic preference for personalized
       recommendation. Proceedings of the 24th International Conference on
       Artificial Intelligence. (1785-1791).
       
       /doi/10.5555/2832415.2832497

 962.  Perera K and Karunarathne D. (2015). KeyGraph and WordNet hypernyms for
       topic detection 2015 12th International Joint Conference on Computer
       Science and Software Engineering (JCSSE). 10.1109/JCSSE.2015.7219814.
       978-1-4799-1966-6. (303-308).
       
       http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7219814

 963.  Greene D and Cross J. Unveiling the Political Agenda of the European
       Parliament Plenary. Proceedings of the ACM Web Science Conference.
       (1-10).
       
       https://doi.org/10.1145/2786451.2786464

 964.  Huang C and Wu C. Effects of Word Assignment in LDA for News Topic
       Discovery. Proceedings of the 2015 IEEE International Congress on Big
       Data. (374-380).
       
       https://doi.org/10.1109/BigDataCongress.2015.62

 965.  Liu S, Wang X, Song Y and Guo B. Evolutionary Bayesian Rose Trees. IEEE
       Transactions on Knowledge and Data Engineering.
       10.1109/TKDE.2014.2373384. 27:6. (1533-1546).
       
       http://ieeexplore.ieee.org/document/6964811/

 966.  Jiangchao Yao , Ya Zhang , Zhe Xu , Jun Sun , Jun Zhou and Xiao Gu .
       (2015). Joint Latent Dirichlet Allocation for non-iid social tags 2015
       IEEE International Conference on Multimedia and Expo (ICME).
       10.1109/ICME.2015.7177490. 978-1-4799-7082-7. (1-6).
       
       http://ieeexplore.ieee.org/document/7177490/

 967.  Gunhee Kim , Seungwhan Moon and Sigal L. (2015). Ranking and retrieval of
       image sequences from multiple paragraph queries 2015 IEEE Conference on
       Computer Vision and Pattern Recognition (CVPR).
       10.1109/CVPR.2015.7298810. 978-1-4673-6964-0. (1993-2001).
       
       http://ieeexplore.ieee.org/document/7298810/

 968.  Rana S, Gupta S, Phung D and Venkatesh S. (2015). A predictive framework
       for modeling healthcare data with evolving clinical interventions.
       Statistical Analysis and Data Mining. 8:3. (162-182). Online publication
       date: 1-Jun-2015.
       
       https://doi.org/10.1002/sam.11262

 969.  Gad S, Javed W, Ghani S, Elmqvist N, Ewing T, Hampton K and Ramakrishnan
       N. ThemeDelta: Dynamic Segmentations over Temporal Topic Models. IEEE
       Transactions on Visualization and Computer Graphics.
       10.1109/TVCG.2014.2388208. 21:5. (672-685).
       
       http://ieeexplore.ieee.org/document/7001093/

 970.  Zhong Y, Fan Y, Huang K, Tan W and Zhang J. Time-Aware Service
       Recommendation for Mashup Creation. IEEE Transactions on Services
       Computing. 10.1109/TSC.2014.2381496. 8:3. (356-368).
       
       http://ieeexplore.ieee.org/document/6985668/

 971.  Bin Li , Xingquan Zhu , Ruijiang Li and Chengqi Zhang . Rating Knowledge
       Sharing in Cross-Domain Collaborative Filtering. IEEE Transactions on
       Cybernetics. 10.1109/TCYB.2014.2343982. 45:5. (1068-1082).
       
       https://ieeexplore.ieee.org/document/6876146

 972.  Rahimi M, Zahedi M and Mashayekhi H. (2015). Incorporating local word
       relationships into probabilistic topic models 2015 7th Conference on
       Information and Knowledge Technology (IKT). 10.1109/IKT.2015.7288758.
       978-1-4673-7483-5. (1-4).
       
       http://ieeexplore.ieee.org/document/7288758/

 973.  Venugopalan S and Rai V. (2015). Topic based classification and pattern
       identification in patents. Technological Forecasting and Social Change.
       10.1016/j.techfore.2014.10.006. 94. (236-250). Online publication date:
       1-May-2015.
       
       https://linkinghub.elsevier.com/retrieve/pii/S0040162514002923

 974.  Xu Z. (2016). Doctoral Dissertations in Chinese Interpreting Studies.
       FORUM. Revue internationale d’interprétation et de traduction /
       International Journal of Interpretation and TranslationFORUM / Revue
       internationale d’interprétation et de traduction / International Journal
       of Interpretation and TranslationFORUM. 10.1075/forum.13.1.07xuz. 13:1.
       (131-165). Online publication date: 1-Apr-2015.
       
       http://www.jbe-platform.com/content/journals/10.1075/forum.13.1.07xuz

 975.  Gao C, Xu H, Hu J and Zhou Y. AR-Tracker. Proceedings of the 2015 IEEE
       Symposium on Service-Oriented System Engineering. (284-290).
       
       https://doi.org/10.1109/SOSE.2015.13

 976.  Hao Z, Xiaotao D, Lei Y, Jie Z, Hwang I and Youm S. Contextual User
       Interest Modeling Approaches for Personalized Services on Multiple
       Devices. Proceedings of the 2015 IEEE 29th International Conference on
       Advanced Information Networking and Applications Workshops. (123-130).
       
       https://doi.org/10.1109/WAINA.2015.126

 977.  Yin H, Cui B, Chen L, Hu Z and Zhou X. (2015). Dynamic User Modeling in
       Social Media Systems. ACM Transactions on Information Systems. 33:3.
       (1-44). Online publication date: 23-Mar-2015.
       
       https://doi.org/10.1145/2699670

 978.  Hu J, Sun X, Lo D and Li B. (2015). Modeling the evolution of development
       topics using Dynamic Topic Models 2015 IEEE 22nd International Conference
       on Software Analysis, Evolution and Reengineering (SANER).
       10.1109/SANER.2015.7081810. 978-1-4799-8469-5. (3-12).
       
       http://ieeexplore.ieee.org/document/7081810/

 979.  Chen F and Neill D. (2015). Human Rights Event Detection from
       Heterogeneous Social Media Graphs. Big Data. 10.1089/big.2014.0072. 3:1.
       (34-40). Online publication date: 1-Mar-2015.
       
       http://www.liebertpub.com/doi/10.1089/big.2014.0072

 980.  Piepenbrink A and Nurmammadov E. (2015). Topics in the literature of
       transition economies and emerging markets. Scientometrics. 102:3.
       (2107-2130). Online publication date: 1-Mar-2015.
       
       https://doi.org/10.1007/s11192-014-1513-2

 981.  Jiang Z. Chronological Scientific Information Recommendation via
       Supervised Dynamic Topic Modeling. Proceedings of the Eighth ACM
       International Conference on Web Search and Data Mining. (453-458).
       
       https://doi.org/10.1145/2684822.2697036

 982.  Foti N and Williamson S. A Survey of Non-Exchangeable Priors for Bayesian
       Nonparametric Models. IEEE Transactions on Pattern Analysis and Machine
       Intelligence. 10.1109/TPAMI.2013.224. 37:2. (359-371).
       
       http://ieeexplore.ieee.org/document/6654119/

 983.  Sheikh I, Illina I and Fohr D. (2015). Recognition of OOV proper names in
       diachronic audio news 2015 6th International Conference on Information
       Systems and Economic Intelligence (SIIE). 10.1109/ISEI.2015.7358721.
       978-1-4799-8934-8. (31-37).
       
       http://ieeexplore.ieee.org/document/7358721/

 984.  Lu H. (2015). Detecting short-term cyclical topic dynamics in the
       user-generated content and news. Decision Support Systems. 70:C. (1-14).
       Online publication date: 1-Feb-2015.
       
       https://doi.org/10.1016/j.dss.2014.11.006

 985.  Cohen Priva U and Austerweil J. (2015). Analyzing the history of
       Cognition using Topic Models. Cognition. 10.1016/j.cognition.2014.11.006.
       135. (4-9). Online publication date: 1-Feb-2015.
       
       https://linkinghub.elsevier.com/retrieve/pii/S0010027714002261

 986.  Li X, Ouyang J, Lu Y, Zhou X and Tian T. (2014). Group topic model:
       organizing topics into groups. Information Retrieval Journal.
       10.1007/s10791-014-9244-9. 18:1. (1-25). Online publication date:
       1-Feb-2015.
       
       http://link.springer.com/10.1007/s10791-014-9244-9

 987.  Heinrich K. Welcome to the Party. Recent Advances in Intelligent
       Technologies and Information Systems. 10.4018/978-1-4666-6639-9.ch004.
       (63-82).
       
       http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-4666-6639-9.ch004

 988.  XU J, LIU J and ARAKI K. (2015). A Hybrid Topic Model for Multi-Document
       Summarization. IEICE Transactions on Information and Systems.
       10.1587/transinf.2014EDP7229. E98.D:5. (1089-1094).
       
       https://www.jstage.jst.go.jp/article/transinf/E98.D/5/E98.D_2014EDP7229/_article

 989.  Sasaki K, Yoshikawa T and Furuhashi T. (2015). Time Series Mixture Model
       Considering Dependence to Multiple Topics. Transactions of the Japanese
       Society for Artificial Intelligence. 10.1527/tjsai.30.466. 30:2.
       (466-472).
       
       https://www.jstage.jst.go.jp/article/tjsai/30/2/30_30_466/_article/-char/ja/

 990.  Govindaraju V, Nwogu I and Setlur S. (2015). Document Informatics for
       Scientific Learning and Accelerated Discovery. Big Data Analytics.
       10.1016/B978-0-444-63492-4.00001-0. (3-28).
       
       https://linkinghub.elsevier.com/retrieve/pii/B9780444634924000010

 991.  Wu C, Liu C and Su P. (2015). Sentence extraction with topic modeling for
       question---answer pair generation. Soft Computing - A Fusion of
       Foundations, Methodologies and Applications. 19:1. (39-46). Online
       publication date: 1-Jan-2015.
       
       https://doi.org/10.1007/s00500-014-1386-6

 992.  Chien J. (2015). Topic Modeling for Speech and Language Processing.
       Modern Methodology and Applications in Spatial-Temporal Modeling.
       10.1007/978-4-431-55339-7_4. (87-111).
       
       http://link.springer.com/10.1007/978-4-431-55339-7_4

 993.  Pépin L, Blanchard J, Guillet F, Kuntz P and Suignard P. (2015). Visual
       Analysis of Topics in Twitter Based on Co-evolution of Terms. Data
       Science, Learning by Latent Structures, and Knowledge Discovery.
       10.1007/978-3-662-44983-7_15. (169-178).
       
       https://link.springer.com/10.1007/978-3-662-44983-7_15

 994.  Utsuro T, Inoue Y, Imada T, Yoshioka M and Kando N. (2015). Detecting
       Bursty Topics of Correlated News and Twitter for Government Services.
       Social Media for Government Services. 10.1007/978-3-319-27237-5_7.
       (135-149).
       
       http://link.springer.com/10.1007/978-3-319-27237-5_7

 995.  Tutubalina E and Nikolenko S. (2015). Inferring Sentiment-Based Priors in
       Topic Models. Advances in Artificial Intelligence and Its Applications.
       10.1007/978-3-319-27101-9_7. (92-104).
       
       http://link.springer.com/10.1007/978-3-319-27101-9_7

 996.  Shamanta D, Naim S, Saraf P, Ramakrishnan N and Hossain M. (2015).
       Concurrent Inference of Topic Models and Distributed Vector
       Representations. Machine Learning and Knowledge Discovery in Databases.
       10.1007/978-3-319-23525-7_27. (441-457).
       
       http://link.springer.com/10.1007/978-3-319-23525-7_27

 997.  Bart E, Price B and Hanley J. (2015). Temporally Coherent Role-Topic
       Models (TCRTM): Deinterlacing Overlapping Activity Patterns. Machine
       Learning and Knowledge Discovery in Databases.
       10.1007/978-3-319-23525-7_24. (390-405).
       
       http://link.springer.com/10.1007/978-3-319-23525-7_24

 998.  Zhu J, Li X, Peng M, Huang J, Qian T, Huang J, Liu J, Hong R and Liu P.
       (2015). Coherent Topic Hierarchy: A Strategy for Topic Evolutionary
       Analysis on Microblog Feeds. Web-Age Information Management.
       10.1007/978-3-319-21042-1_6. (70-82).
       
       https://link.springer.com/10.1007/978-3-319-21042-1_6

 999.  Smith A, Malik S and Shneiderman B. (2015). Visual Analysis of Topical
       Evolution in Unstructured Text: Design and Evaluation of TopicFlow.
       Applications of Social Media and Social Network Analysis.
       10.1007/978-3-319-19003-7_9. (159-175).
       
       https://link.springer.com/10.1007/978-3-319-19003-7_9

 1000. Hou L, Li J, Li X and Su Y. (2015). Measuring the Influence from
       User-Generated Content to News via Cross-dependence Topic Modeling.
       Database Systems for Advanced Applications. 10.1007/978-3-319-18120-2_8.
       (125-141).
       
       https://link.springer.com/10.1007/978-3-319-18120-2_8

 1001. Beykikhoshk A, Arandjelović O, Venkatesh S and Phung D. (2015).
       Hierarchical Dirichlet Process for Tracking Complex Topical Structure
       Evolution and Its Application to Autism Research Literature. Advances in
       Knowledge Discovery and Data Mining. 10.1007/978-3-319-18038-0_43.
       (550-562).
       
       https://link.springer.com/10.1007/978-3-319-18038-0_43

 1002. Wang P, Zhou C, Zhang P, Feng W, Guo L and Fang B. (2015). Evolving
       Chinese Restaurant Processes for Modeling Evolutionary Traces in Temporal
       Data. Advances in Knowledge Discovery and Data Mining.
       10.1007/978-3-319-18032-8_7. (79-91).
       
       https://link.springer.com/10.1007/978-3-319-18032-8_7

 1003. Kim Y, Velcin J, Bonnevay S and Rizoiu M. (2015). Temporal Multinomial
       Mixture for Instance-Oriented Evolutionary Clustering. Advances in
       Information Retrieval. 10.1007/978-3-319-16354-3_66. (593-604).
       
       http://link.springer.com/10.1007/978-3-319-16354-3_66

 1004. Rossetti M, Stella F, Cao L and Zanker M. (2015). Analysing User Reviews
       in Tourism with Topic Models. Information and Communication Technologies
       in Tourism 2015. 10.1007/978-3-319-14343-9_4. (47-58).
       
       https://link.springer.com/10.1007/978-3-319-14343-9_4

 1005. Gliwa B, Zygmunt A and Bober P. (2015). Analysis of Content of Posts and
       Comments in Evolving Social Groups. Advances in ICT for Business,
       Industry and Public Sector. 10.1007/978-3-319-11328-9_3. (35-55).
       
       https://link.springer.com/10.1007/978-3-319-11328-9_3

 1006. Mao Q, Feng B and Pan S. A Bayesian Nonparametric Topic Model for User
       Interest Modeling. Proceedings of the 2014 IEEE 17th International
       Conference on Computational Science and Engineering. (527-534).
       
       https://doi.org/10.1109/CSE.2014.122

 1007. Dermouche M, Velcin J, Khouas L and Loudcher S. A Joint Model for
       Topic-Sentiment Evolution over Time. Proceedings of the 2014 IEEE
       International Conference on Data Mining. (773-778).
       
       https://doi.org/10.1109/ICDM.2014.82

 1008. Liu G, Fu Y, Xu T, Xiong H and Chen G. Discovering Temporal Retweeting
       Patterns for Social Media Marketing Campaigns. Proceedings of the 2014
       IEEE International Conference on Data Mining. (905-910).
       
       https://doi.org/10.1109/ICDM.2014.48

 1009. Chen L, Hossain K, Butler P, Ramakrishnan N and Prakash B. Flu Gone
       Viral. Proceedings of the 2014 IEEE International Conference on Data
       Mining. (755-760).
       
       https://doi.org/10.1109/ICDM.2014.137

 1010. Zhu C, Zhu H, Ge Y, Chen E and Liu Q. Tracking the Evolution of Social
       Emotions. Proceedings of the 2014 IEEE International Conference on Data
       Mining. (697-706).
       
       https://doi.org/10.1109/ICDM.2014.121

 1011. Liu G, Xu X, Zhu Y and Li L. An Improved Latent Dirichlet Allocation
       Model for Hot Topic Extraction. Proceedings of the 2014 IEEE Fourth
       International Conference on Big Data and Cloud Computing. (470-476).
       
       https://doi.org/10.1109/BDCloud.2014.55

 1012. Sun Y, Tang J, Han J, Chen C and Gupta M. Co-Evolution of Multi-Typed
       Objects in Dynamic Star Networks. IEEE Transactions on Knowledge and Data
       Engineering. 10.1109/TKDE.2013.103. 26:12. (2942-2955).
       
       http://ieeexplore.ieee.org/document/6547141/

 1013. Sasaki K, Yoshikawa T and Furuhashi T. (2014). Twitter-TTM: An efficient
       online topic modeling for Twitter considering dynamics of user interests
       and topic trends 2014 Joint 7th International Conference on Soft
       Computing and Intelligent Systems (SCIS) and 15th International Symposium
       on Advanced Intelligent Systems (ISIS). 10.1109/SCIS-ISIS.2014.7044512.
       978-1-4799-5955-6. (440-445).
       
       http://ieeexplore.ieee.org/document/7044512/

 1014. Hashimoto T, Chakraborty B, Aramvith S, Kuboyama T and Shirota Y. (2014).
       Affected people's needs detection after the East Japan Great Earthquake
       &#x2014; Time series analysis using LDA 2014 Asia-Pacific Signal and
       Information Processing Association Annual Summit and Conference (APSIPA).
       10.1109/APSIPA.2014.7041714. 978-6-1636-1823-8. (1-6).
       
       http://ieeexplore.ieee.org/document/7041714/

 1015. Qi X, Huang Y, Chen Z, Liu X, Tian J, Huang T and Wang H. (2015).
       Burst-LDA: A new topic model for detecting bursty topics from stream
       text. Journal of Electronics (China). 10.1007/s11767-014-4074-x. 31:6.
       (565-575). Online publication date: 1-Dec-2014.
       
       http://link.springer.com/10.1007/s11767-014-4074-x

 1016. Huang D and Mu D. Topic Detection in Twitter Based on Label Propagation
       Model. Proceedings of the 2014 13th International Symposium on
       Distributed Computing and Applications to Business, Engineering and
       Science. (97-101).
       
       https://doi.org/10.1109/DCABES.2014.23

 1017. Huai B, Chen E, Zhu H, Xiong H, Bao T, Liu Q and Tian J. (2014). Toward
       Personalized Context Recognition for Mobile Users. ACM Transactions on
       Knowledge Discovery from Data. 9:2. (1-29). Online publication date:
       17-Nov-2014.
       
       https://doi.org/10.1145/2629504

 1018. Jiang Z, Liu X and Gao L. Dynamic Topic/Citation Influence Modeling for
       Chronological Citation Recommendation. Proceedings of the 5th
       International Workshop on Web-scale Knowledge Representation Retrieval &
       Reasoning. (15-18).
       
       https://doi.org/10.1145/2663792.2663795

 1019. Derntl M, Günnemann N, Tillmann A, Klamma R and Jarke M. Building and
       Exploring Dynamic Topic Models on the Web. Proceedings of the 23rd ACM
       International Conference on Conference on Information and Knowledge
       Management. (2012-2014).
       
       https://doi.org/10.1145/2661829.2661833

 1020. Zhang J, Wang C, Wang J and Yu J. (2014). Inferring continuous dynamic
       social influence and personal preference for temporal behavior
       prediction. Proceedings of the VLDB Endowment. 8:3. (269-280). Online
       publication date: 1-Nov-2014.
       
       https://doi.org/10.14778/2735508.2735516

 1021. Xu Z, Zhang Y and Cao L. Social Image Analysis From a Non-IID
       Perspective. IEEE Transactions on Multimedia. 10.1109/TMM.2014.2342658.
       16:7. (1986-1998).
       
       http://ieeexplore.ieee.org/document/6863689/

 1022. Bulut A. TopicMachine: Conversion Prediction in Search Advertising Using
       Latent Topic Models. IEEE Transactions on Knowledge and Data Engineering.
       10.1109/TKDE.2014.2313868. 26:11. (2846-2858).
       
       http://ieeexplore.ieee.org/document/6778798/

 1023. Tavakol M and Brefeld U. Factored MDPs for detecting topics of user
       sessions. Proceedings of the 8th ACM Conference on Recommender systems.
       (33-40).
       
       https://doi.org/10.1145/2645710.2645739

 1024. Wu Q, Zhang C, Hong Q and Chen L. (2014). Topic evolution based on LDA
       and HMM and its application in stem cell research. Journal of Information
       Science. 40:5. (611-620). Online publication date: 1-Oct-2014.
       
       https://doi.org/10.1177/0165551514540565

 1025. Duan D, Li Y, Li R, Zhang R, Gu X and Wen K. LIMTopic: A Framework of
       Incorporating Link Based Importance into Topic Modeling. IEEE
       Transactions on Knowledge and Data Engineering.
       10.1109/TKDE.2013.2297912. 26:10. (2493-2506).
       
       http://ieeexplore.ieee.org/document/6702464/

 1026. Park S, Choi D, Lee W, Jung D, Kim M and Moon I. (2014). Disease-medicine
       topic model for prescription record mining 2014 IEEE International
       Conference on Systems, Man and Cybernetics - SMC.
       10.1109/SMC.2014.6973889. 978-1-4799-3840-7. (86-93).
       
       http://ieeexplore.ieee.org/document/6973889/

 1027. Buchler M, Franzini G, Franzini E and Moritz M. (2014). Scaling
       historical text re-use 2014 IEEE International Conference on Big Data
       (Big Data). 10.1109/BigData.2014.7004449. 978-1-4799-5666-1. (23-31).
       
       http://ieeexplore.ieee.org/document/7004449/

 1028. Wang B, Liu S, Ding K, Liu Z and Xu J. (2014). Identifying technological
       topics and institution-topic distribution probability for patent
       competitive intelligence analysis. Scientometrics. 101:1. (685-704).
       Online publication date: 1-Oct-2014.
       
       https://doi.org/10.1007/s11192-014-1342-3

 1029. Shirai M, Yanagisawa T and Miura T. (2013). Context-Based Query Using
       Dependency Structures Based on Latent Topic Model. Journal on Data
       Semantics. 10.1007/s13740-013-0031-3. 3:3. (157-168). Online publication
       date: 1-Sep-2014.
       
       http://link.springer.com/10.1007/s13740-013-0031-3

 1030. Yau C, Porter A, Newman N and Suominen A. (2014). Clustering scientific
       documents with topic modeling. Scientometrics. 100:3. (767-786). Online
       publication date: 1-Sep-2014.
       
       https://doi.org/10.1007/s11192-014-1321-8

 1031. Liu L, Tang L, Li H and Yao S. The Framework of Infrared Video Mining
       Based on Topic Model. Proceedings of the 2014 Sixth International
       Conference on Intelligent Human-Machine Systems and Cybernetics - Volume
       02. (354-359).
       
       https://doi.org/10.1109/IHMSC.2014.187

 1032. Ghassemi M, Naumann T, Doshi-Velez F, Brimmer N, Joshi R, Rumshisky A and
       Szolovits P. Unfolding physiological state. Proceedings of the 20th ACM
       SIGKDD international conference on Knowledge discovery and data mining.
       (75-84).
       
       https://doi.org/10.1145/2623330.2623742

 1033. Günnemann S, Günnemann N and Faloutsos C. Detecting anomalies in dynamic
       rating data. Proceedings of the 20th ACM SIGKDD international conference
       on Knowledge discovery and data mining. (841-850).
       
       https://doi.org/10.1145/2623330.2623721

 1034. Yu R, He X and Liu Y. GLAD. Proceedings of the 20th ACM SIGKDD
       international conference on Knowledge discovery and data mining.
       (372-381).
       
       https://doi.org/10.1145/2623330.2623719

 1035. Hu D, Hall R and Attenberg J. Style in the long tail. Proceedings of the
       20th ACM SIGKDD international conference on Knowledge discovery and data
       mining. (1640-1649).
       
       https://doi.org/10.1145/2623330.2623338

 1036. Hansmann T and Niemeyer P. Big Data - Characterizing an Emerging Research
       Field Using Topic Models. Proceedings of the 2014 IEEE/WIC/ACM
       International Joint Conferences on Web Intelligence (WI) and Intelligent
       Agent Technologies (IAT) - Volume 01. (43-51).
       
       https://doi.org/10.1109/WI-IAT.2014.15

 1037. Ren Z, Peetz M, Liang S, van Dolen W and de Rijke M. Hierarchical
       multi-label classification of social text streams. Proceedings of the
       37th international ACM SIGIR conference on Research & development in
       information retrieval. (213-222).
       
       https://doi.org/10.1145/2600428.2609595

 1038. Hu X, Zheng D, Sun W and Li S. (2014). Topic model-based micro-blog user
       interest analysis 2014 International Conference on Audio, Language and
       Image Processing (ICALIP). 10.1109/ICALIP.2014.7009833.
       978-1-4799-3903-9. (443-448).
       
       http://ieeexplore.ieee.org/document/7009833/

 1039. Xian H and Madhavan K. (2014). Anatomy of Scholarly Collaboration in
       Engineering Education: A Big‐Data Bibliometric Analysis. Journal of
       Engineering Education. 10.1002/jee.20052. 103:3. (486-514). Online
       publication date: 1-Jul-2014.
       
       https://onlinelibrary.wiley.com/doi/10.1002/jee.20052

 1040. Inouye D, Ravikumar P and Dhillon I. Admixture of Poisson MRFs.
       Proceedings of the 31st International Conference on International
       Conference on Machine Learning - Volume 32. (I-683-I-691).
       
       /doi/10.5555/3044805.3044883

 1041. Yin H, Cui B, Chen L, Hu Z and Huang Z. A temporal context-aware model
       for user behavior modeling in social media systems. Proceedings of the
       2014 ACM SIGMOD International Conference on Management of Data.
       (1543-1554).
       
       https://doi.org/10.1145/2588555.2593685

 1042. Aggarwal C. (2014). Mining text and social streams. ACM SIGKDD
       Explorations Newsletter. 15:2. (9-19). Online publication date:
       16-Jun-2014.
       
       https://doi.org/10.1145/2641190.2641194

 1043. Marchand-Maillet S and Hofreiter B. (2014). Big Data Management and
       Analysis for Business Informatics - A Survey. Enterprise Modelling and
       Information Systems Architectures. 10.1007/s40786-014-0007-2. 9:1.
       (90-105). Online publication date: 1-Jun-2014.
       
       https://www.springerprofessional.de/doi/10.1007/s40786-014-0007-2

 1044. M. A. Basher A and Fung B. (2014). Analyzing topics and authors in chat
       logs for crime investigation. Knowledge and Information Systems. 39:2.
       (351-381). Online publication date: 1-May-2014.
       
       https://doi.org/10.1007/s10115-013-0617-y

 1045. Vaca C, Mantrach A, Jaimes A and Saerens M. A time-based collective
       factorization for topic discovery and monitoring in news. Proceedings of
       the 23rd international conference on World wide web. (527-538).
       
       https://doi.org/10.1145/2566486.2568041

 1046. Tsolmon B and Lee K. Extracting Social Events Based on Timeline and User
       Reliability Analysis on Twitter. Proceedings of the 15th International
       Conference on Computational Linguistics and Intelligent Text Processing -
       Volume 8404. (213-223).
       
       https://doi.org/10.1007/978-3-642-54903-8_18

 1047. Liu S, Liu L and Cheng R. (2014). Combining parametric and nonparametric
       topic model to discover microblog event 2014 International Conference on
       Information Science, Electronics and Electrical Engineering (ISEEE).
       10.1109/InfoSEEE.2014.6946176. 978-1-4799-3197-2. (1527-1531).
       
       http://ieeexplore.ieee.org/document/6946176/

 1048. Zhang Z, Yu L, Fang K, You Z, Liu C, Liu H and Yan X. (2014).
       Website-oriented recommendation based on heat spreading and tag-aware
       collaborative filtering. Physica A: Statistical Mechanics and its
       Applications. 10.1016/j.physa.2013.12.030. 399. (82-88). Online
       publication date: 1-Apr-2014.
       
       https://linkinghub.elsevier.com/retrieve/pii/S0378437113011540

 1049. Hu Z, Wang H and Zhu J. The discovery of user related rare sequential
       patterns of topics in the internet document stream. Proceedings of the
       29th Annual ACM Symposium on Applied Computing. (137-138).
       
       https://doi.org/10.1145/2554850.2555075

 1050. Deng K, Geng Z and Liu J. (2013). Association pattern discovery via theme
       dictionary models. Journal of the Royal Statistical Society: Series B
       (Statistical Methodology). 10.1111/rssb.12032. 76:2. (319-347). Online
       publication date: 1-Mar-2014.
       
       http://doi.wiley.com/10.1111/rssb.12032

 1051. Thomas S, Adams B, Hassan A and Blostein D. (2014). Studying software
       evolution using topic models. Science of Computer Programming. 80:PB.
       (457-479). Online publication date: 1-Feb-2014.
       
       /doi/10.5555/2748144.2748399

 1052. Dehong Gao , Wenjie Li , Xiaoyan Cai , Renxian Zhang and You Ouyang .
       (2014). Sequential Summarization. IEEE/ACM Transactions on Audio, Speech
       and Language Processing. 22:2. (293-302). Online publication date:
       1-Feb-2014.
       
       https://doi.org/10.1109/TASL.2013.2282191

 1053. Oh K, Lee W, Lim C and Choi H. (2014). Personalized news recommendation
       using classified keywords to capture user preference 2014 16th
       International Conference on Advanced Communication Technology (ICACT).
       10.1109/ICACT.2014.6779166. 978-89-968650-3-2. (1283-1287).
       
       http://ieeexplore.ieee.org/document/6779166/

 1054. Jeong Y, Lee W and Choi H. (2014). Topic grouping by spectral clustering
       2014 16th International Conference on Advanced Communication Technology
       (ICACT). 10.1109/ICACT.2014.6779044. 978-89-968650-3-2. (657-661).
       
       http://ieeexplore.ieee.org/document/6779044/

 1055. Blei D. (2014). Build, Compute, Critique, Repeat: Data Analysis with
       Latent Variable Models. Annual Review of Statistics and Its Application.
       10.1146/annurev-statistics-022513-115657. 1:1. (203-232). Online
       publication date: 3-Jan-2014.
       
       https://www.annualreviews.org/doi/10.1146/annurev-statistics-022513-115657

 1056. Qin X, Greene D and Cunningham P. A latent space analysis of editor
       lifecycles in Wikipedia. Proceedings of the 5th and 1st International
       Conference on Big Data Analytics in the Social and Ubiquitous Context -
       5th International Workshop on Modeling Social Media, 5th International
       Workshop on Mining Ubiquitous and Social Environments and First
       International Workshop on Machine Learning for Urban Sensor Data.
       (46-69).
       
       /doi/10.5555/3120818.3120821

 1057. Bouchard G, Clinchant S and Darling W. (2014). Hot Topic Sensing, Text
       Analysis, and Summarization. Handbook of Research on Advanced ICT
       Integration for Governance and Policy Modeling.
       10.4018/978-1-4666-6236-0.ch012. (216-247).
       
       http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-4666-6236-0.ch012

 1058. Armano G and Giuliani A. Novel Text Summarization Techniques for
       Contextual Advertising. Innovative Document Summarization Techniques.
       10.4018/978-1-4666-5019-0.ch008. (185-204).
       
       http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-4666-5019-0.ch008

 1059. Emonet R, Varadarajan J and Odobez J. (2014). Temporal Analysis of Motif
       Mixtures Using Dirichlet Processes. IEEE Transactions on Pattern Analysis
       and Machine Intelligence. 36:1. (140-156). Online publication date:
       1-Jan-2014.
       
       https://doi.org/10.1109/TPAMI.2013.100

 1060. Fukazawa Y and Ota J. (2014). Companion context dependent topic modeling
       2014 Seventh International Conference on Mobile Computing and Ubiquitous
       Networking (ICMU). 10.1109/ICMU.2014.6799079. 978-1-4799-2231-4.
       (105-110).
       
       http://ieeexplore.ieee.org/document/6799079/

 1061. Wang J, Liu X, Wang J and Zhao W. (2014). News Topic Evolution Tracking
       by Incorporating Temporal Information. Natural Language Processing and
       Chinese Computing. 10.1007/978-3-662-45924-9_43. (465-472).
       
       https://link.springer.com/10.1007/978-3-662-45924-9_43

 1062. Cai G, Peng L and Wang Y. (2014). Topic Detection and Evolution Analysis
       on Microblog. Progress in Pattern Recognition, Image Analysis, Computer
       Vision, and Applications. 10.1007/978-3-662-44980-6_8. (67-77).
       
       http://link.springer.com/10.1007/978-3-662-44980-6_8

 1063. Chen C, Zheng X, Zhou C and Chen D. (2014). Making Recommendations on
       Microblogs through Topic Modeling. Web Information Systems Engineering –
       WISE 2013 Workshops. 10.1007/978-3-642-54370-8_21. (252-265).
       
       https://link.springer.com/10.1007/978-3-642-54370-8_21

 1064. Xu S, Shi Q, Qiao X, Zhu L, Jung H, Lee S and Choi S. (2014).
       Author-Topic over Time (AToT): A Dynamic Users’ Interest Model. Mobile,
       Ubiquitous, and Intelligent Computing. 10.1007/978-3-642-40675-1_37.
       (239-245).
       
       https://link.springer.com/10.1007/978-3-642-40675-1_37

 1065. Büchler M, Burns P, Müller M, Franzini E and Franzini G. (2014). Towards
       a Historical Text Re-use Detection. Text Mining.
       10.1007/978-3-319-12655-5_11. (221-238).
       
       https://link.springer.com/10.1007/978-3-319-12655-5_11

 1066. Gadelshin I, Antonova A and Ilvovsky D. (2014). Detection of
       Domain-Specific Trends in Text Collections. Analysis of Images, Social
       Networks and Texts. 10.1007/978-3-319-12580-0_7. (78-84).
       
       https://link.springer.com/10.1007/978-3-319-12580-0_7

 1067. Zhou N, Zhang X and Wang S. (2014). Theme-Aware Social Strength Inference
       from Spatiotemporal Data. Web-Age Information Management.
       10.1007/978-3-319-08010-9_56. (498-509).
       
       http://link.springer.com/10.1007/978-3-319-08010-9_56

 1068. Saga R, Kobayashi H, Miyamoto T and Tsuji H. (2014). Measurement
       Evaluation of Keyword Extraction Based on Topic Coverage. HCI
       International 2014 - Posters’ Extended Abstracts.
       10.1007/978-3-319-07857-1_40. (224-227).
       
       http://link.springer.com/10.1007/978-3-319-07857-1_40

 1069. Kim G, Park S and Jang D. (2014). Technology Analysis from Patent Data
       Using Latent Dirichlet Allocation. Soft Computing in Big Data Processing.
       10.1007/978-3-319-05527-5_8. (71-80).
       
       https://link.springer.com/10.1007/978-3-319-05527-5_8

 1070. Huang K, Yao J, Fan Y, Tan W, Nepal S, Ni Y and Chen S. Mirror, Mirror,
       on the Web, Which Is the Most Reputable Service of Them All?. Proceedings
       of the 11th International Conference on Service-Oriented Computing -
       Volume 8274. (343-357).
       
       https://doi.org/10.1007/978-3-642-45005-1_24

 1071. He Y, Lin C, Gao W and Wong K. (2014). Dynamic joint sentiment-topic
       model. ACM Transactions on Intelligent Systems and Technology. 5:1.
       (1-21). Online publication date: 1-Dec-2013.
       
       https://doi.org/10.1145/2542182.2542188

 1072. Shanzeng Qiao and Aili Han . (2013). A way to construct evolution model
       of scientific papers based on the seed document and OLDA models 2013
       International Conference on Mechatronic Sciences, Electric Engineering
       and Computer (MEC). 10.1109/MEC.2013.6885187. 978-1-4799-2565-0.
       (900-903).
       
       http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6885187

 1073. Xie W, Zhu F, Jiang J, Lim E and Wang K. (2013). TopicSketch: Real-Time
       Bursty Topic Detection from Twitter 2013 IEEE International Conference on
       Data Mining (ICDM). 10.1109/ICDM.2013.86. 978-0-7695-5108-1. (837-846).
       
       http://ieeexplore.ieee.org/document/6729568/

 1074. Dai B and Lauw H. (2013). Modeling Preferences with Availability
       Constraints 2013 IEEE International Conference on Data Mining (ICDM).
       10.1109/ICDM.2013.41. 978-0-7695-5108-1. (101-110).
       
       http://ieeexplore.ieee.org/document/6729494/

 1075. Mehdi R, Mohamed Q and Mustapha A. Encoding Local Correspondence in Topic
       Models. Proceedings of the 2013 IEEE 25th International Conference on
       Tools with Artificial Intelligence. (602-609).
       
       https://doi.org/10.1109/ICTAI.2013.95

 1076. de Waal A and Mouton F. (2013). Topic modelling in the information
       warfare domain 2013 International Conference on Adaptive Science and
       Technology (ICAST). 10.1109/ICASTech.2013.6707492. 978-1-4799-3067-8.
       (1-7).
       
       http://ieeexplore.ieee.org/document/6707492/

 1077. Günnemann N, Derntl M, Klamma R and Jarke M. (2013). An Interactive
       System for Visual Analytics of Dynamic Topic Models. Datenbank-Spektrum.
       10.1007/s13222-013-0134-x. 13:3. (213-223). Online publication date:
       1-Nov-2013.
       
       http://link.springer.com/10.1007/s13222-013-0134-x

 1078. Mirylenka D and Passerini A. Navigating the topical structure of academic
       search results via the Wikipedia category network. Proceedings of the
       22nd ACM international conference on Information & Knowledge Management.
       (891-896).
       
       https://doi.org/10.1145/2505515.2505621

 1079. Tsai C, Kundu G and Roth D. Concept-based analysis of scientific
       literature. Proceedings of the 22nd ACM international conference on
       Information & Knowledge Management. (1733-1738).
       
       https://doi.org/10.1145/2505515.2505613

 1080. Kim H, Castellanos M, Hsu M, Zhai C, Rietz T and Diermeier D. Mining
       causal topics in text data. Proceedings of the 22nd ACM international
       conference on Information & Knowledge Management. (885-890).
       
       https://doi.org/10.1145/2505515.2505612

 1081. Yang T and Lee D. On handling textual errors in latent document modeling.
       Proceedings of the 22nd ACM international conference on Information &
       Knowledge Management. (2089-2098).
       
       https://doi.org/10.1145/2505515.2505555

 1082. Qin L and Zhu X. Functional dirichlet process. Proceedings of the 22nd
       ACM international conference on Information & Knowledge Management.
       (1331-1340).
       
       https://doi.org/10.1145/2505515.2505537

 1083. Emms M. Dynamic EM in Neologism Evolution. Proceedings of the 14th
       International Conference on Intelligent Data Engineering and Automated
       Learning --- IDEAL 2013 - Volume 8206. (286-293).
       
       https://doi.org/10.1007/978-3-642-41278-3_35

 1084. Cao L and Tang X. Prevailing Trends Detection of Public Opinions Based on
       Tianya Forum. Proceedings of the 14th International Conference on
       Intelligent Data Engineering and Automated Learning --- IDEAL 2013 -
       Volume 8206. (186-193).
       
       https://doi.org/10.1007/978-3-642-41278-3_23

 1085. Steinmacher I, Silva M, Côgo F, Chaves A and Gerosa M. Tópicos de
       pesquisa e rede de coautoria no Simpósio Brasileiro de Sistemas
       Colaborativos. Proceedings of the X Brazilian Symposium in Collaborative
       Systems. (88-95).
       
       /doi/10.5555/2542508.2542524

 1086. Aiello L, Petkos G, Martin C, Corney D, Papadopoulos S, Skraba R, Goker
       A, Kompatsiaris I and Jaimes A. (2013). Sensing Trending Topics in
       Twitter. IEEE Transactions on Multimedia. 15:6. (1268-1282). Online
       publication date: 1-Oct-2013.
       
       https://doi.org/10.1109/TMM.2013.2265080

 1087. Guerra J, Sosnovsky S and Brusilovsky P. When One Textbook Is Not Enough.
       Proceedings of the 8th European Conference on Scaling up Learning for
       Sustained Impact - Volume 8095. (125-138).
       
       https://doi.org/10.1007/978-3-642-40814-4_11

 1088. Tavenard R, Emonet R and Odobez J. (2013). Time-sensitive topic models
       for action recognition in videos 2013 20th IEEE International Conference
       on Image Processing (ICIP). 10.1109/ICIP.2013.6738615. 978-1-4799-2341-0.
       (2988-2992).
       
       http://ieeexplore.ieee.org/document/6738615/

 1089. Christidis K and Mentzas G. (2013). A topic-based recommender system for
       electronic marketplace platforms. Expert Systems with Applications: An
       International Journal. 40:11. (4370-4379). Online publication date:
       1-Sep-2013.
       
       https://doi.org/10.1016/j.eswa.2013.01.014

 1090. Malik S, Smith A, Hawes T, Papadatos P, Li J, Dunne C and Shneiderman B.
       TopicFlow. Proceedings of the 2013 IEEE/ACM International Conference on
       Advances in Social Networks Analysis and Mining. (720-726).
       
       https://doi.org/10.1145/2492517.2492639

 1091. Chakrabort T, Sikdar S, Tammana V, Ganguly N and Mukherjee A. Computer
       science fields as ground-truth communities. Proceedings of the 2013
       IEEE/ACM International Conference on Advances in Social Networks Analysis
       and Mining. (426-433).
       
       https://doi.org/10.1145/2492517.2492536

 1092. Rajagopal D, Olsher D, Cambria E and Kwok K. Commonsense-based topic
       modeling. Proceedings of the Second International Workshop on Issues of
       Sentiment Discovery and Opinion Mining. (1-8).
       
       https://doi.org/10.1145/2502069.2502075

 1093. Fu B, Lin J, Li L, Faloutsos C, Hong J and Sadeh N. Why people hate your
       app. Proceedings of the 19th ACM SIGKDD international conference on
       Knowledge discovery and data mining. (1276-1284).
       
       https://doi.org/10.1145/2487575.2488202

 1094. Wang X, Zhai C and Roth D. Understanding evolution of research themes.
       Proceedings of the 19th ACM SIGKDD international conference on Knowledge
       discovery and data mining. (1115-1123).
       
       https://doi.org/10.1145/2487575.2487698

 1095. Wang X, Liu S, Song Y and Guo B. Mining evolutionary multi-branch trees
       from text streams. Proceedings of the 19th ACM SIGKDD international
       conference on Knowledge discovery and data mining. (722-730).
       
       https://doi.org/10.1145/2487575.2487603

 1096. El-Arini K, Xu M, Fox E and Guestrin C. Representing documents through
       their readers. Proceedings of the 19th ACM SIGKDD international
       conference on Knowledge discovery and data mining. (14-22).
       
       https://doi.org/10.1145/2487575.2487596

 1097. Zhou Z and Li F. (2013). A Topic Study of Microblog Based on Specific
       Events. Applied Mechanics and Materials.
       10.4028/www.scientific.net/AMM.347-350.2625. 347-350. (2625-2630).
       
       https://www.scientific.net/AMM.347-350.2625

 1098. Chen Y, Amiri H, Li Z and Chua T. Emerging topic detection for
       organizations from microblogs. Proceedings of the 36th international ACM
       SIGIR conference on Research and development in information retrieval.
       (43-52).
       
       https://doi.org/10.1145/2484028.2484057

 1099. Ren Z, Liang S, Meij E and de Rijke M. Personalized time-aware tweets
       summarization. Proceedings of the 36th international ACM SIGIR conference
       on Research and development in information retrieval. (513-522).
       
       https://doi.org/10.1145/2484028.2484052

 1100. Tamura K, Yoshikawa T and Furuhashi T. A study on document retrieval
       system based on visualization to manage OCR documents. Proceedings of the
       15th international conference on Human-Computer Interaction: interaction
       modalities and techniques - Volume Part IV. (740-749).
       
       https://doi.org/10.1007/978-3-642-39330-3_80

 1101. Lade P, Balasubramanian V, Venkateswara H and Panchanathan S. (2013).
       Detection of changes in human affect dimensions using an Adaptive
       Temporal Topic model 2013 IEEE International Conference on Multimedia and
       Expo (ICME). 10.1109/ICME.2013.6607627. 978-1-4799-0015-2. (1-6).
       
       http://ieeexplore.ieee.org/document/6607627/

 1102. Bordogna G and Pasi G. (2013). A fuzzy approach to the conceptual
       identification of ememes on the blogosphere 2013 IEEE International
       Conference on Fuzzy Systems (FUZZ-IEEE). 10.1109/FUZZ-IEEE.2013.6622390.
       978-1-4799-0022-0. (1-8).
       
       http://ieeexplore.ieee.org/document/6622390/

 1103. Chuang J, Gupta S, Manning C and Heer J. Topic model diagnostics.
       Proceedings of the 30th International Conference on International
       Conference on Machine Learning - Volume 28. (III-612-III-620).
       
       /doi/10.5555/3042817.3043005

 1104. Gopal S and Yang Y. Distributed training of large-scale logistic models.
       Proceedings of the 30th International Conference on International
       Conference on Machine Learning - Volume 28. (II-289-II-297).
       
       /doi/10.5555/3042817.3042926

 1105. Yang S and Zha H. Mixture of mutually exciting processes for viral
       diffusion. Proceedings of the 30th International Conference on
       International Conference on Machine Learning - Volume 28. (II-1-II-9).
       
       /doi/10.5555/3042817.3042894

 1106. Zhang A, Zhu J and Zhang B. Sparse online topic models. Proceedings of
       the 22nd international conference on World Wide Web. (1489-1500).
       
       https://doi.org/10.1145/2488388.2488518

 1107. Wen T, Lee H, Su P and Lee L. (2013). Interactive spoken content
       retrieval by extended query model and continuous state space Markov
       Decision Process ICASSP 2013 - 2013 IEEE International Conference on
       Acoustics, Speech and Signal Processing (ICASSP).
       10.1109/ICASSP.2013.6639326. 978-1-4799-0356-6. (8510-8514).
       
       http://ieeexplore.ieee.org/document/6639326/

 1108. Varadarajan J, Emonet R and Odobez J. (2012). A Sequential Topic Model
       for Mining Recurrent Activities from Long Term Video Logs. International
       Journal of Computer Vision. 10.1007/s11263-012-0596-6. 103:1. (100-126).
       Online publication date: 1-May-2013.
       
       http://link.springer.com/10.1007/s11263-012-0596-6

 1109. Yin H, Cui B, Huang Y, Lu H and Yao J. A unified model for stable and
       temporal topic detection from social media data. Proceedings of the 2013
       IEEE International Conference on Data Engineering (ICDE 2013). (661-672).
       
       https://doi.org/10.1109/ICDE.2013.6544864

 1110. Jameel S and Lam W. An n-gram topic model for time-stamped documents.
       Proceedings of the 35th European conference on Advances in Information
       Retrieval. (292-304).
       
       https://doi.org/10.1007/978-3-642-36973-5_25

 1111. Pan S, Zhou M, Song Y, Qian W, Wang F and Liu S. Optimizing temporal
       topic segmentation for intelligent text visualization. Proceedings of the
       2013 international conference on Intelligent user interfaces. (339-350).
       
       https://doi.org/10.1145/2449396.2449441

 1112. Wang E, Salazar E, Dunson D and Carin L. Spatio-Temporal Modeling of
       Legislation and Votes. Bayesian Analysis. 10.1214/13-BA810. 8:1.
       
       https://projecteuclid.org/journals/bayesian-analysis/volume-8/issue-1/Spatio-Temporal-Modeling-of-Legislation-and-Votes/10.1214/13-BA810.full

 1113. Liu S and Chen C. (2013). The differences between latent topics in
       abstracts and citation contexts of citing papers. Journal of the American
       Society for Information Science and Technology. 10.1002/asi.22771. 64:3.
       (627-639). Online publication date: 1-Mar-2013.
       
       https://onlinelibrary.wiley.com/doi/10.1002/asi.22771

 1114. Introne J and Drescher M. Analyzing the flow of knowledge in computer
       mediated teams. Proceedings of the 2013 conference on Computer supported
       cooperative work. (341-356).
       
       https://doi.org/10.1145/2441776.2441816

 1115. Radinsky K, Diaz F, Dumais S, Shokouhi M, Dong A and Chang Y. Temporal
       web dynamics and its application to information retrieval. Proceedings of
       the sixth ACM international conference on Web search and data mining.
       (781-782).
       
       https://doi.org/10.1145/2433396.2433500

 1116. Zhao L, Shang L, Gao Y, Yang Y and Jia X. (2013). Video Behavior Analysis
       Using Topic Models and Rough Sets [Applications Notes]. IEEE
       Computational Intelligence Magazine. 8:1. (56-67). Online publication
       date: 1-Feb-2013.
       
       https://doi.org/10.1109/MCI.2012.2228597

 1117. Wang Q, Xu J, Li H and Craswell N. (2013). Regularized Latent Semantic
       Indexing. ACM Transactions on Information Systems. 31:1. (1-44). Online
       publication date: 1-Jan-2013.
       
       https://doi.org/10.1145/2414782.2414787

 1118. Bodrunova S, Koltsov S, Koltsova O, Nikolenko S and Shimorina A. (2013).
       Interval Semi-supervised LDA: Classifying Needles in a Haystack. Advances
       in Artificial Intelligence and Its Applications.
       10.1007/978-3-642-45114-0_21. (265-274).
       
       http://link.springer.com/10.1007/978-3-642-45114-0_21

 1119. Gao Y, Xu Y, Li Y and Liu B. (2013). A Two-Stage Approach for Generating
       Topic Models. Advances in Knowledge Discovery and Data Mining.
       10.1007/978-3-642-37456-2_19. (221-232).
       
       http://link.springer.com/10.1007/978-3-642-37456-2_19

 1120. Gohr A, Spiliopoulou M and Hinneburg A. (2013). Visually Summarizing
       Semantic Evolution in Document Streams with Topic Table. Knowledge
       Discovery, Knowledge Engineering and Knowledge Management.
       10.1007/978-3-642-29764-9_9. (136-150).
       
       http://link.springer.com/10.1007/978-3-642-29764-9_9

 1121. Kelaiaia A and Merouani H. (2013). Clustering with Probabilistic Topic
       Models on Arabic Texts. Modeling Approaches and Algorithms for Advanced
       Computer Applications. 10.1007/978-3-319-00560-7_11. (65-74).
       
       https://link.springer.com/10.1007/978-3-319-00560-7_11

 1122. Gad S, Ramakrishnan N, Hampton K and Kavanaugh A. Bridging the Divide in
       Democratic Engagement. Proceedings of the 2012 International Conference
       on Social Informatics. (165-176).
       
       https://doi.org/10.1109/SocialInformatics.2012.44

 1123. Duan D, Li Y, Li R, Zhang R and Wen A. RankTopic. Proceedings of the 2012
       IEEE 12th International Conference on Data Mining. (211-220).
       
       https://doi.org/10.1109/ICDM.2012.12

 1124. Kim H, Sun Y, Hockenmaier J and Han J. ETM. Proceedings of the 2012 IEEE
       12th International Conference on Data Mining. (349-358).
       
       https://doi.org/10.1109/ICDM.2012.107

 1125. Ahluwalia A, Huang A, Bandari R and Roychowdhury V. An automated
       multiscale map of conversations. Proceedings of the 4th international
       conference on Social Informatics. (15-28).
       
       https://doi.org/10.1007/978-3-642-35386-4_2

 1126. Rao Y and Li Q. Term Weighting Schemes for Emerging Event Detection.
       Proceedings of the The 2012 IEEE/WIC/ACM International Joint Conferences
       on Web Intelligence and Intelligent Agent Technology - Volume 01.
       (105-112).
       
       /doi/10.5555/2457524.2457670

 1127. Kundu S and Chaudhury S. A Ubiquitous Image Tagging System Using User
       Context. Proceedings of the The 2012 IEEE/WIC/ACM International Joint
       Conferences on Web Intelligence and Intelligent Agent Technology - Volume
       01. (367-371).
       
       /doi/10.5555/2457524.2457616

 1128. Rao Y and Li Q. (2012). Term Weighting Schemes for Emerging Event
       Detection 2012 IEEE/WIC/ACM International Joint Conferences on Web
       Intelligence (WI) and Intelligent Agent Technologies (IAT).
       10.1109/WI-IAT.2012.66. 978-1-4673-6057-9. (105-112).
       
       http://ieeexplore.ieee.org/document/6511872/

 1129. Kundu S and Chaudhury S. (2012). A Ubiquitous Image Tagging System Using
       User Context 2012 IEEE/WIC/ACM International Joint Conferences on Web
       Intelligence (WI) and Intelligent Agent Technologies (IAT).
       10.1109/WI-IAT.2012.249. 978-1-4673-6057-9. (367-371).
       
       http://ieeexplore.ieee.org/document/6511910/

 1130. Zhang R, Tran T and Mao Y. (2012). Real-time helpfulness prediction based
       on voter opinions. Concurrency and Computation: Practice & Experience.
       24:17. (2167-2178). Online publication date: 1-Dec-2012.
       
       https://doi.org/10.1002/cpe.1785

 1131. Christidis K and Mentzas G. A Topic-Based Recommender System for
       Electronic Marketplace Platforms. Proceedings of the 2012 IEEE 24th
       International Conference on Tools with Artificial Intelligence - Volume
       01. (381-388).
       
       https://doi.org/10.1109/ICTAI.2012.59

 1132. Kim H, Zhai C, Rietz T, Diermeier D, Hsu M, Castellanos M and Ceja Limon
       C. InCaToMi. Proceedings of the 21st ACM international conference on
       Information and knowledge management. (2689-2691).
       
       https://doi.org/10.1145/2396761.2398727

 1133. Masada T and Takasu A. Extraction of topic evolutions from references in
       scientific articles and its GPU acceleration. Proceedings of the 21st ACM
       international conference on Information and knowledge management.
       (1522-1526).
       
       https://doi.org/10.1145/2396761.2398465

 1134. Tang X and Yang C. TUT. Proceedings of the 21st ACM international
       conference on Information and knowledge management. (972-981).
       
       https://doi.org/10.1145/2396761.2396884

 1135. Ma Z, Sun A, Yuan Q and Cong G. Topic-driven reader comments
       summarization. Proceedings of the 21st ACM international conference on
       Information and knowledge management. (265-274).
       
       https://doi.org/10.1145/2396761.2396798

 1136. Xie Y, Cheng Y, Honbo D, Zhang K, Agrawal A, Choudhary A, Gao Y and Gou
       J. Probabilistic macro behavioral targeting. Proceedings of the 2012
       workshop on Data-driven user behavioral modelling and mining from social
       media. (7-10).
       
       https://doi.org/10.1145/2390131.2390135

 1137. Arora S, Ge R and Moitra A. Learning Topic Models -- Going beyond SVD.
       Proceedings of the 2012 IEEE 53rd Annual Symposium on Foundations of
       Computer Science. (1-10).
       
       https://doi.org/10.1109/FOCS.2012.49

 1138. He Y, Lin C and Cano A. Online Sentiment and Topic Dynamics Tracking over
       the Streaming Data. Proceedings of the 2012 ASE/IEEE International
       Conference on Social Computing and 2012 ASE/IEEE International Conference
       on Privacy, Security, Risk and Trust. (258-266).
       
       https://doi.org/10.1109/SocialCom-PASSAT.2012.14

 1139. Bauer S, Noulas A, Seaghdha D, Clark S and Mascolo C. Talking Places.
       Proceedings of the 2012 ASE/IEEE International Conference on Social
       Computing and 2012 ASE/IEEE International Conference on Privacy,
       Security, Risk and Trust. (348-357).
       
       https://doi.org/10.1109/SocialCom-PASSAT.2012.107

 1140. SCHONHARDT‐BAILEY C, YAGER E and LAHLOU S. (2012). Yes, Ronald Reagan's
       Rhetoric Was Unique—But Statistically, How Unique? . Presidential Studies
       Quarterly. 10.1111/j.1741-5705.2012.03990.x. 42:3. (482-513). Online
       publication date: 1-Sep-2012.
       
       https://onlinelibrary.wiley.com/doi/10.1111/j.1741-5705.2012.03990.x

 1141. Sundaram H, Xie L, De Choudhury M, Lin Y and Natsev A. Multimedia
       Semantics: Interactions Between Content and Community. Proceedings of the
       IEEE. 10.1109/JPROC.2012.2191529. 100:9. (2737-2758).
       
       http://ieeexplore.ieee.org/document/6210346/

 1142. Ji H, Deng H and Han J. Uncertainty Reduction for Knowledge Discovery and
       Information Extraction on the World Wide Web. Proceedings of the IEEE.
       10.1109/JPROC.2012.2190489. 100:9. (2658-2674).
       
       http://ieeexplore.ieee.org/document/6212297/

 1143. Lauschke C and Ntoutsi E. Monitoring User Evolution in Twitter.
       Proceedings of the 2012 International Conference on Advances in Social
       Networks Analysis and Mining (ASONAM 2012). (972-977).
       
       https://doi.org/10.1109/ASONAM.2012.171

 1144. Li T, Kveton B, Wu Y and Kashyap A. Incorporating metadata into dynamic
       topic analysis. Proceedings of the Ninth UAI Conference on Bayesian
       Modeling Applications Workshop - Volume 962. (34-43).
       
       /doi/10.5555/3023465.3023470

 1145. Xie Y, Honbo D, Choudhary A, Zhang K, Cheng Y and Agrawal A. VOXSUP.
       Proceedings of the 18th ACM SIGKDD international conference on Knowledge
       discovery and data mining. (1556-1559).
       
       https://doi.org/10.1145/2339530.2339779

 1146. Matsubara Y, Sakurai Y, Faloutsos C, Iwata T and Yoshikawa M. Fast mining
       and forecasting of complex time-stamped events. Proceedings of the 18th
       ACM SIGKDD international conference on Knowledge discovery and data
       mining. (271-279).
       
       https://doi.org/10.1145/2339530.2339577

 1147. Wang Y, Agichtein E and Benzi M. TM-LDA. Proceedings of the 18th ACM
       SIGKDD international conference on Knowledge discovery and data mining.
       (123-131).
       
       https://doi.org/10.1145/2339530.2339552

 1148. Sato I, Kurihara K and Nakagawa H. Practical collapsed variational bayes
       inference for hierarchical dirichlet process. Proceedings of the 18th ACM
       SIGKDD international conference on Knowledge discovery and data mining.
       (105-113).
       
       https://doi.org/10.1145/2339530.2339550

 1149. Gillenwater J, Kulesza A and Taskar B. Discovering diverse and salient
       threads in document collections. Proceedings of the 2012 Joint Conference
       on Empirical Methods in Natural Language Processing and Computational
       Natural Language Learning. (710-720).
       
       /doi/10.5555/2390948.2391026

 1150. Du L, Buntine W and Jin H. Modelling sequential text with an adaptive
       topic model. Proceedings of the 2012 Joint Conference on Empirical
       Methods in Natural Language Processing and Computational Natural Language
       Learning. (535-545).
       
       /doi/10.5555/2390948.2391010

 1151. Wang X, Sun L, Wang Z and Meng D. Group Recommendation Using External
       Followee for Social TV. Proceedings of the 2012 IEEE International
       Conference on Multimedia and Expo. (37-42).
       
       https://doi.org/10.1109/ICME.2012.122

 1152. Mihalcea R and Nastase V. Word epoch disambiguation. Proceedings of the
       50th Annual Meeting of the Association for Computational Linguistics:
       Short Papers - Volume 2. (259-263).
       
       /doi/10.5555/2390665.2390727

 1153. Diao Q, Jiang J, Zhu F and Lim E. Finding bursty topics from microblogs.
       Proceedings of the 50th Annual Meeting of the Association for
       Computational Linguistics: Long Papers - Volume 1. (536-544).
       
       /doi/10.5555/2390524.2390599

 1154. Guo J, Sun H and Zhu C. (2012). Category Level Object Discovery Using
       Dynamic Topic Model. Applied Mechanics and Materials.
       10.4028/www.scientific.net/AMM.190-191.944. 190-191. (944-948).
       
       https://www.scientific.net/AMM.190-191.944

 1155. Xu T, Zhang Z, Yu P and Long B. (2012). Generative Models for
       Evolutionary Clustering. ACM Transactions on Knowledge Discovery from
       Data. 6:2. (1-27). Online publication date: 1-Jul-2012.
       
       https://doi.org/10.1145/2297456.2297459

 1156. Alamdari S and Mehrabian A. On a DAG partitioning problem. Proceedings of
       the 9th international conference on Algorithms and Models for the Web
       Graph. (17-28).
       
       https://doi.org/10.1007/978-3-642-30541-2_2

 1157. Farrahi K and Gatica-Perez D. Extracting Mobile Behavioral Patterns with
       the Distant N-Gram Topic Model. Proceedings of the 2012 16th Annual
       International Symposium on Wearable Computers (ISWC). (1-8).
       
       https://doi.org/10.1109/ISWC.2012.20

 1158. Du L, Buntine W, Jin H and Chen C. (2011). Sequential latent
       Dirichlet allocation. Knowledge and Information Systems.
       10.1007/s10115-011-0425-1. 31:3. (475-503). Online publication date:
       1-Jun-2012.
       
       http://link.springer.com/10.1007/s10115-011-0425-1

 1159. Jeong Y and Choi H. Sequential entity group topic model for getting topic
       flows of entity groups within one document. Proceedings of the 16th
       Pacific-Asia conference on Advances in Knowledge Discovery and Data
       Mining - Volume Part I. (366-378).
       
       https://doi.org/10.1007/978-3-642-30217-6_31

 1160. Zheng M, Wu C, Liu Y, Liao X and Chen G. (2012). Topic sentiment trend
       model: Modeling facets and sentiment dynamics 2012 IEEE International
       Conference on Computer Science and Automation Engineering (CSAE).
       10.1109/CSAE.2012.6273036. 978-1-4673-0089-6. (651-657).
       
       http://ieeexplore.ieee.org/document/6273036/

 1161. Tuzhilin A. (2012). Customer relationship management and Web mining. Data
       Mining and Knowledge Discovery. 24:3. (584-612). Online publication date:
       1-May-2012.
       
       https://doi.org/10.1007/s10618-012-0256-z

 1162. Blei D. (2012). Probabilistic topic models. Communications of the ACM.
       55:4. (77-84). Online publication date: 1-Apr-2012.
       
       https://doi.org/10.1145/2133806.2133826

 1163. Zimmermann M, Ntoutsi I, Siddiqui Z, Spiliopoulou M and Kriegel H.
       Discovering global and local bursts in a stream of news. Proceedings of
       the 27th Annual ACM Symposium on Applied Computing. (807-812).
       
       https://doi.org/10.1145/2245276.2245433

 1164. Yao J, Cui B, Huang Y and Zhou Y. (2012). Bursty event detection from
       collaborative tags. World Wide Web. 15:2. (171-195). Online publication
       date: 1-Mar-2012.
       
       https://doi.org/10.1007/s11280-011-0136-2

 1165. Saha A and Sindhwani V. Learning evolving and emerging topics in social
       media. Proceedings of the fifth ACM international conference on Web
       search and data mining. (693-702).
       
       https://doi.org/10.1145/2124295.2124376

 1166. Iwata T, Yamada T, Sakurai Y and Ueda N. (2012). Sequential Modeling of
       Topic Dynamics with Multiple Timescales. ACM Transactions on Knowledge
       Discovery from Data. 5:4. (1-27). Online publication date: 1-Feb-2012.
       
       https://doi.org/10.1145/2086737.2086739

 1167. Dakka W, Gravano L and Ipeirotis P. (2012). Answering General
       Time-Sensitive Queries. IEEE Transactions on Knowledge and Data
       Engineering. 24:2. (220-235). Online publication date: 1-Feb-2012.
       
       https://doi.org/10.1109/TKDE.2010.187

 1168. Daud A. (2012). Using time topic modeling for semantics-based dynamic
       research interest finding. Knowledge-Based Systems. 26. (154-163). Online
       publication date: 1-Feb-2012.
       
       https://doi.org/10.1016/j.knosys.2011.07.015

 1169. Forestier M, Stavrianou A, Velcin J and Zighed D. (2012). Roles in social
       networks. Web Intelligence and Agent Systems. 10:1. (117-133). Online
       publication date: 1-Jan-2012.
       
       /doi/10.5555/2589921.2589932

 1170. Lin Y, Sundaram H, De Choudhury M and Kelliher A. (2012). Discovering
       multirelational structure in social media streams. ACM Transactions on
       Multimedia Computing, Communications, and Applications. 8:1. (1-28).
       Online publication date: 1-Jan-2012.
       
       https://doi.org/10.1145/2071396.2071400

 1171. Wang X, Jin X, Chen M, Zhang K and Shen D. (2012). Topic Mining over
       Asynchronous Text Sequences. IEEE Transactions on Knowledge and Data
       Engineering. 24:1. (156-169). Online publication date: 1-Jan-2012.
       
       https://doi.org/10.1109/TKDE.2010.229

 1172. Jen-Tzung Chien and Chuang-Hua Chueh . (2012). Topic-Based Hierarchical
       Segmentation. IEEE Transactions on Audio, Speech, and Language
       Processing. 20:1. (55-66). Online publication date: 1-Jan-2012.
       
       https://doi.org/10.1109/TASL.2011.2143405

 1173. Xu J, Lu Q, Liu Z and Chai J. (2012). Topic Sequence Kernel. Information
       Retrieval Technology. 10.1007/978-3-642-35341-3_41. (457-466).
       
       http://link.springer.com/10.1007/978-3-642-35341-3_41

 1174. Takahashi Y, Utsuro T, Yoshioka M, Kando N, Fukuhara T, Nakagawa H and
       Kiyota Y. (2012). Applying a Burst Model to Detect Bursty Topics in a
       Topic Model. Advances in Natural Language Processing.
       10.1007/978-3-642-33983-7_24. (239-249).
       
       http://link.springer.com/10.1007/978-3-642-33983-7_24

 1175. Pussep A, Schief M, Schmidt B, Friedrichs F and Buxmann P. (2012). Topics
       in Software Industry Transformation Research: A Topic Analysis of Major
       IS Conferences. Software Business. 10.1007/978-3-642-30746-1_11.
       (128-140).
       
       http://link.springer.com/10.1007/978-3-642-30746-1_11

 1176. Crain S, Zhou K, Yang S and Zha H. (2012). Dimensionality Reduction and
       Topic Modeling: From Latent Semantic Indexing to Latent Dirichlet
       Allocation and Beyond. Mining Text Data. 10.1007/978-1-4614-3223-4_5.
       (129-161).
       
       https://link.springer.com/10.1007/978-1-4614-3223-4_5

 1177. Khoshneshin M, Street W and Srinivasan P. Bayesian Embedding of
       Co-occurrence Data for Query-Based Visualization. Proceedings of the 2011
       10th International Conference on Machine Learning and Applications and
       Workshops - Volume 01. (74-79).
       
       https://doi.org/10.1109/ICMLA.2011.42

 1178. Yin Z, Cao L, Han J, Zhai C and Huang T. LPTA. Proceedings of the 2011
       IEEE 11th International Conference on Data Mining. (904-913).
       
       https://doi.org/10.1109/ICDM.2011.96

 1179. Gao Z, Song Y, Liu S, Wang H, Wei H, Chen Y and Cui W. Tracking and
       Connecting Topics via Incremental Hierarchical Dirichlet Processes.
       Proceedings of the 2011 IEEE 11th International Conference on Data
       Mining. (1056-1061).
       
       https://doi.org/10.1109/ICDM.2011.148

 1180. Lin C, Mei Q, Han J, Jiang Y and Danilevsky M. The Joint Inference of
       Topic Diffusion and Evolution in Social Communities. Proceedings of the
       2011 IEEE 11th International Conference on Data Mining. (378-387).
       
       https://doi.org/10.1109/ICDM.2011.144

 1181. Cao N, Gotz D, Sun J, Lin Y and Qu H. SolarMap. Proceedings of the 2011
       IEEE 11th International Conference on Data Mining. (101-110).
       
       https://doi.org/10.1109/ICDM.2011.135

 1182. Cui W, Liu S, Tan L, Shi C, Song Y, Gao Z, Qu H and Tong X. (2011).
       TextFlow. IEEE Transactions on Visualization and Computer Graphics.
       17:12. (2412-2421). Online publication date: 1-Dec-2011.
       
       https://doi.org/10.1109/TVCG.2011.239

 1183. Ungar L, Leibholz S and Chaski C. (2011). IntentFinder: A system for
       discovering significant information implicit in large, heterogeneous
       document collections and computationally mapping social networks and
       command nodes 2011 IEEE International Conference on Technologies for
       Homeland Security (HST). 10.1109/THS.2011.6107874. 978-1-4577-1376-7.
       (219-223).
       
       http://ieeexplore.ieee.org/document/6107874/

 1184. Kumar A, Lease M and Baldridge J. Supervised language modeling for
       temporal resolution of texts. Proceedings of the 20th ACM international
       conference on Information and knowledge management. (2069-2072).
       
       https://doi.org/10.1145/2063576.2063892

 1185. Au Yeung C and Jatowt A. Studying how the past is remembered. Proceedings
       of the 20th ACM international conference on Information and knowledge
       management. (1231-1240).
       
       https://doi.org/10.1145/2063576.2063755

 1186. Ren Z, Ma J, Wang S and Liu Y. Summarizing web forum threads based on a
       latent topic propagation process. Proceedings of the 20th ACM
       international conference on Information and knowledge management.
       (879-884).
       
       https://doi.org/10.1145/2063576.2063703

 1187. Guo J, Cheng X, Xu G and Zhu X. Intent-aware query similarity.
       Proceedings of the 20th ACM international conference on Information and
       knowledge management. (259-268).
       
       https://doi.org/10.1145/2063576.2063619

 1188. Kim D, Motoyama M, Voelker G and Saul L. Topic modeling of freelance job
       postings to monitor web service abuse. Proceedings of the 4th ACM
       workshop on Security and artificial intelligence. (11-20).
       
       https://doi.org/10.1145/2046684.2046687

 1189. Lin Y, Candan K, Sundaram H and Xie L. (2011). SCENT. ACM Transactions on
       Multimedia Computing, Communications, and Applications. 7S:1. (1-22).
       Online publication date: 1-Oct-2011.
       
       https://doi.org/10.1145/2037676.2037686

 1190. Zhao S, Zhou M, Zhang X, Yuan Q, Zheng W and Fu R. (2011). Who is Doing
       What and When. ACM Transactions on Intelligent Systems and Technology.
       3:1. (1-23). Online publication date: 1-Oct-2011.
       
       https://doi.org/10.1145/2036264.2036269

 1191. Dou W, Wang X, Chang R and Ribarsky W. (2011). ParallelTopics: A
       probabilistic approach to exploring document collections 2011 IEEE
       Conference on Visual Analytics Science and Technology (VAST).
       10.1109/VAST.2011.6102461. 978-1-4673-0014-8. (231-240).
       
       http://ieeexplore.ieee.org/document/6102461/

 1192. Seyfi M. (2011). Mining discriminative items in multiple data streams
       with hierarchical counters approach 2011 Fourth International Workshop on
       Advanced Computational Intelligence (IWACI). 10.1109/IWACI.2011.6159996.
       978-1-61284-375-9. (172-176).
       
       http://ieeexplore.ieee.org/document/6159996/

 1193. Shang L, Chan K and Pan G. DTTM. Proceedings of the 7th international
       conference on Advances in visual computing - Volume Part I. (596-606).
       
       /doi/10.5555/2045110.2045175

 1194. Zhao Q, Qin Z and Wan T. What is the basic semantic unit of Chinese
       language? a computational approach based on topic models. Proceedings of
       the 12th biennial conference on The mathematics of language. (143-157).
       
       /doi/10.5555/2050185.2050194

 1195. Ren Z, Ma J, Wang G, Cui C and Han X. Dynamically Modeling Semantic
       Dependencies in Web Forum Threads. Proceedings of the 2011 IEEE/WIC/ACM
       International Conferences on Web Intelligence and Intelligent Agent
       Technology - Volume 01. (348-351).
       
       https://doi.org/10.1109/WI-IAT.2011.36

 1196. Deng H, Han J, Zhao B, Yu Y and Lin C. Probabilistic topic models with
       biased propagation on heterogeneous information networks. Proceedings of
       the 17th ACM SIGKDD international conference on Knowledge discovery and
       data mining. (1271-1279).
       
       https://doi.org/10.1145/2020408.2020600

 1197. Hong L, Dom B, Gurumurthy S and Tsioutsiouliklis K. A time-dependent
       topic model for multiple text streams. Proceedings of the 17th ACM SIGKDD
       international conference on Knowledge discovery and data mining.
       (832-840).
       
       https://doi.org/10.1145/2020408.2020551

 1198. Hong L, Yin D, Guo J and Davison B. Tracking trends. Proceedings of the
       17th ACM SIGKDD international conference on Knowledge discovery and data
       mining. (484-492).
       
       https://doi.org/10.1145/2020408.2020485

 1199. El-Arini K and Guestrin C. Beyond keyword search. Proceedings of the 17th
       ACM SIGKDD international conference on Knowledge discovery and data
       mining. (439-447).
       
       https://doi.org/10.1145/2020408.2020479

 1200. Ahmed A, Low Y, Aly M, Josifovski V and Smola A. Scalable distributed
       inference of dynamic user interests for behavioral targeting. Proceedings
       of the 17th ACM SIGKDD international conference on Knowledge discovery
       and data mining. (114-122).
       
       https://doi.org/10.1145/2020408.2020433

 1201. Li R, Li B, Jin C, Xue X and Zhu X. Tracking user-preference varying
       speed in collaborative filtering. Proceedings of the Twenty-Fifth AAAI
       Conference on Artificial Intelligence. (133-138).
       
       /doi/10.5555/2900423.2900444

 1202. Kuang W, Luo N and Sun Z. (2011). Resource recommendation based on topic
       model for educational system 2011 6th IEEE Joint International
       Information Technology and Artificial Intelligence Conference (ITAIC).
       10.1109/ITAIC.2011.6030352. 978-1-4244-8622-9. (370-374).
       
       http://ieeexplore.ieee.org/document/6030352/

 1203. Wu Q, Deng X, Zhang C and Jiang C. (2011). LDA-based model for topic
       evolution mining on text Education (ICCSE 2011).
       10.1109/ICCSE.2011.6028792. 978-1-4244-9717-1. (946-949).
       
       http://ieeexplore.ieee.org/document/6028792/

 1204. Yogatama D, Heilman M, O'Connor B, Dyer C, Routledge B and Smith N.
       Predicting a scientific community's response to an article. Proceedings
       of the Conference on Empirical Methods in Natural Language Processing.
       (594-604).
       
       /doi/10.5555/2145432.2145501

 1205. Mimno D and Blei D. Bayesian checking for topic models. Proceedings of
       the Conference on Empirical Methods in Natural Language Processing.
       (227-237).
       
       /doi/10.5555/2145432.2145459

 1206. Shan H and Banerjee A. (2011). Mixed-membership naive Bayes models. Data
       Mining and Knowledge Discovery. 23:1. (1-62). Online publication date:
       1-Jul-2011.
       
       https://doi.org/10.1007/s10618-010-0198-2

 1207. Johri N, Ramage D, McFarland D and Jurafsky D. A study of academic
       collaboration in computational linguistics with latent mixtures of
       authors. Proceedings of the 5th ACL-HLT Workshop on Language Technology
       for Cultural Heritage, Social Sciences, and Humanities. (124-132).
       
       /doi/10.5555/2107636.2107652

 1208. Medini S. Scalable Automatic Concept Mining from Execution Traces.
       Proceedings of the 2011 IEEE 19th International Conference on Program
       Comprehension. (238-241).
       
       https://doi.org/10.1109/ICPC.2011.44

 1209. Emonet R, Varadarajan J and Odobez J. Extracting and locating temporal
       motifs in video scenes using a hierarchical non parametric Bayesian
       model. Proceedings of the 2011 IEEE Conference on Computer Vision and
       Pattern Recognition. (3233-3240).
       
       https://doi.org/10.1109/CVPR.2011.5995572

 1210. Lau J, Grieser K, Newman D and Baldwin T. Automatic labelling of topic
       models. Proceedings of the 49th Annual Meeting of the Association for
       Computational Linguistics: Human Language Technologies - Volume 1.
       (1536-1545).
       
       /doi/10.5555/2002472.2002658

 1211. Chaudhuri S and Raj B. A comparison of latent variable models for
       conversation analysis. Proceedings of the SIGDIAL 2011 Conference.
       (30-38).
       
       /doi/10.5555/2132890.2132895

 1212. Wang E, Silva J, Willett R and Carin L. (2011). Dynamic relational topic
       model for social network analysis with noisy links 2011 IEEE Statistical
       Signal Processing Workshop (SSP). 10.1109/SSP.2011.5967741.
       978-1-4577-0569-4. (497-500).
       
       http://ieeexplore.ieee.org/document/5967741/

 1213. Takasu A, Shibata Y and Oguri K. Steering time-dependent estimation of
       posteriors with hyperparameter indexing in bayesian topic models.
       Proceedings of the 15th Pacific-Asia conference on Advances in knowledge
       discovery and data mining - Volume Part I. (435-447).
       
       /doi/10.5555/2017863.2017906

 1214. Thomas S, Adams B, Hassan A and Blostein D. Modeling the evolution of
       topics in source code histories. Proceedings of the 8th Working
       Conference on Mining Software Repositories. (173-182).
       
       https://doi.org/10.1145/1985441.1985467

 1215. Mao X, Fu J, Chen W, You Q, Fang S and Peng Q. (2011). Structural
       visualization of sequential DNA data. Journal of Zhejiang University
       SCIENCE C. 10.1631/jzus.C1000091. 12:4. (263-272). Online publication
       date: 1-Apr-2011.
       
       http://www.springerlink.com/index/10.1631/jzus.C1000091

 1216. Liu P, Wang J, She M and Liu H. (2011). Human action recognition based on
       3D SIFT and LDA model 2011 IEEE Workshop On Robotic Intelligence In
       Informationally Structured Space - Part Of 17273 - 2011 Ssci.
       10.1109/RIISS.2011.5945790. 978-1-4244-9885-7. (12-17).
       
       http://ieeexplore.ieee.org/document/5945790/

 1217. Tang X and Yang C. Following the social media. Proceedings of the 4th
       international conference on Social computing, behavioral-cultural
       modeling and prediction. (292-300).
       
       /doi/10.5555/1964698.1964739

 1218. Ahmed A, Ho Q, Eisenstein J, Xing E, Smola A and Teo C. Unified analysis
       of streaming news. Proceedings of the 20th international conference on
       World wide web. (267-276).
       
       https://doi.org/10.1145/1963405.1963445

 1219. Jo Y, Hopcroft J and Lagoze C. The web of topics. Proceedings of the 20th
       international conference on World wide web. (257-266).
       
       https://doi.org/10.1145/1963405.1963444

 1220. Kim D and Oh A. Topic chains for understanding a news corpus. Proceedings
       of the 12th international conference on Computational linguistics and
       intelligent text processing - Volume Part II. (163-176).
       
       /doi/10.5555/1964750.1964765

 1221. Kawamae N. Trend analysis model. Proceedings of the fourth ACM
       international conference on Web search and data mining. (317-326).
       
       https://doi.org/10.1145/1935826.1935880

 1222. Han C, Yoo S and Choi J. (2011). Evaluation of Co-occurring Terms in
       Clinical Documents Using Latent Semantic Indexing. Healthcare Informatics
       Research. 10.4258/hir.2011.17.1.24. 17:1. (24).
       
       https://synapse.koreamed.org/DOIx.php?id=10.4258/hir.2011.17.1.24

 1223. RIZOIU M and VELCIN J. Topic Extraction for Ontology Learning. Ontology
       Learning and Knowledge Discovery Using the Web.
       10.4018/978-1-60960-625-1.ch003. (38-60).
       
       http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-60960-625-1.ch003

 1224. Grimmer J. (2017). An Introduction to Bayesian Inference via Variational
       Approximations. Political Analysis. 10.1093/pan/mpq027. 19:1. (32-47).
       
       https://www.cambridge.org/core/product/identifier/S1047198700012638/type/journal_article

 1225. Liao X, Wang Y, Ding L and Gu J. (2011). Extended Probabilistic Latent
       Semantic Analysis Model For Topics In Time-Stamped Images. Intelligent
       Automation & Soft Computing. 10.1080/10798587.2011.10643204. 17:7.
       (997-1007). Online publication date: 1-Jan-2011.
       
       http://autosoftjournal.net/paperShow.php?paper=10643204

 1226. Shang L, Chan K and Pan G. (2011). DTTM: A Discriminative Temporal Topic
       Model for Facial Expression Recognition. Advances in Visual Computing.
       10.1007/978-3-642-24028-7_55. (596-606).
       
       https://link.springer.com/10.1007/978-3-642-24028-7_55

 1227. Zhao Q, Qin Z and Wan T. (2011). What Is the Basic Semantic Unit of
       Chinese Language? A Computational Approach Based on Topic Models. The
       Mathematics of Language. 10.1007/978-3-642-23211-4_9. (143-157).
       
       http://link.springer.com/10.1007/978-3-642-23211-4_9

 1228. Musat C, Velcin J, Rizoiu M and Trausan-Matu S. (2011). Concept-Based
       Topic Model Improvement. Emerging Intelligent Technologies in Industry.
       10.1007/978-3-642-22732-5_12. (133-142).
       
       https://link.springer.com/10.1007/978-3-642-22732-5_12

 1229. Masada T, Takasu A, Shibata Y and Oguri K. (2011). Steering
       Time-Dependent Estimation of Posteriors with Hyperparameter Indexing in
       Bayesian Topic Models. Advances in Knowledge Discovery and Data Mining.
       10.1007/978-3-642-20841-6_36. (435-447).
       
       http://link.springer.com/10.1007/978-3-642-20841-6_36

 1230. Tang X and Yang C. (2011). Following the Social Media: Aspect Evolution
       of Online Discussion. Social Computing, Behavioral-Cultural Modeling and
       Prediction. 10.1007/978-3-642-19656-0_41. (292-300).
       
       http://link.springer.com/10.1007/978-3-642-19656-0_41

 1231. Spiliopoulou M. (2011). Evolution in Social Networks: A Survey. Social
       Network Data Analytics. 10.1007/978-1-4419-8462-3_6. (149-175).
       
       https://link.springer.com/10.1007/978-1-4419-8462-3_6

 1232. Du L, Buntine W and Jin H. Sequential Latent Dirichlet Allocation.
       Proceedings of the 2010 IEEE International Conference on Data Mining.
       (148-157).
       
       https://doi.org/10.1109/ICDM.2010.51

 1233. Wang E, Liu D, Silva J, Dunson D and Carin L. Joint analysis of
       time-evolving binary matrices and associated documents. Proceedings of
       the 23rd International Conference on Neural Information Processing
       Systems - Volume 2. (2370-2378).
       
       /doi/10.5555/2997046.2997160

 1234. Petterson J, Smola A, Caetano T, Buntine W and Narayanamurthy S. Word
       features for Latent Dirichlet Allocation. Proceedings of the 23rd
       International Conference on Neural Information Processing Systems -
       Volume 2. (1921-1929).
       
       /doi/10.5555/2997046.2997110

 1235. Anthes G. (2010). Topic models vs. unstructured data. Communications of
       the ACM. 53:12. (16-18). Online publication date: 1-Dec-2010.
       
       https://doi.org/10.1145/1859204.1859210

 1236. Watanabe S, Iwata T, Hori T, Sako A and Ariki Y. (2010). Application of
       topic tracking model to language model adaptation and meeting analysis
       2010 IEEE Spoken Language Technology Workshop (SLT 2010).
       10.1109/SLT.2010.5700882. 978-1-4244-7904-7. (378-383).
       
       http://ieeexplore.ieee.org/document/5700882/

 1237. Gang Du , Jun Guo , Weiran Xu and Zhen Yang . (2010). Maximizing the
       reliability of two-state automaton for burst feature detection in news
       streams 2010 International Conference on Progress in Informatics and
       Computing (PIC). 10.1109/PIC.2010.5687459. 978-1-4244-6788-4. (229-233).
       
       http://ieeexplore.ieee.org/document/5687459/

 1238. Lin Z, Jiang B, Pei J and Jiang D. (2010). Mining discriminative items in
       multiple data streams. World Wide Web. 13:4. (497-522). Online
       publication date: 1-Dec-2010.
       
       https://doi.org/10.1007/s11280-010-0094-0

 1239. Blei D, Carin L and Dunson D. Probabilistic Topic Models. IEEE Signal
       Processing Magazine. 10.1109/MSP.2010.938079.
       
       http://ieeexplore.ieee.org/document/5563111/

 1240. Neuhaus S and Zimmermann T. Security Trend Analysis with CVE Topic
       Models. Proceedings of the 2010 IEEE 21st International Symposium on
       Software Reliability Engineering. (111-120).
       
       https://doi.org/10.1109/ISSRE.2010.53

 1241. Eisenstein J, O'Connor B, Smith N and Xing E. A latent variable model for
       geographic lexical variation. Proceedings of the 2010 Conference on
       Empirical Methods in Natural Language Processing. (1277-1287).
       
       /doi/10.5555/1870658.1870782

 1242. Walker D, Lund W and Ringger E. Evaluating models of latent document
       semantics in the presence of OCR errors. Proceedings of the 2010
       Conference on Empirical Methods in Natural Language Processing.
       (240-250).
       
       /doi/10.5555/1870658.1870682

 1243. He Q, Chang K, Lim E and Banerjee A. (2010). Keep It Simple with Time.
       IEEE Transactions on Pattern Analysis and Machine Intelligence. 32:10.
       (1795-1808). Online publication date: 1-Oct-2010.
       
       https://doi.org/10.1109/TPAMI.2009.203

 1244. Du L, Buntine W and Jin H. (2010). A segmented topic model based on the
       two-parameter Poisson-Dirichlet process. Machine Language. 81:1. (5-19).
       Online publication date: 1-Oct-2010.
       
       https://doi.org/10.1007/s10994-010-5197-4

 1245. Wahabzada M, Xu Z and Kersting K. Topic models conditioned on relations.
       Proceedings of the 2010 European conference on Machine learning and
       knowledge discovery in databases: Part III. (402-417).
       
       /doi/10.5555/1889788.1889815

 1246. Wahabzada M, Xu Z and Kersting K. Topic models conditioned on relations.
       Proceedings of the 2010 European conference on Machine learning and
       knowledge discovery in databases: Part III. (402-417).
       
       /doi/10.5555/1888339.1888366

 1247. Wahabzada M, Xu Z and Kersting K. Topic models conditioned on relations.
       Proceedings of the 2010th European Conference on Machine Learning and
       Knowledge Discovery in Databases - Volume Part III. (402-417).
       
       https://doi.org/10.1007/978-3-642-15939-8_26

 1248. Thomas S, Adams B, Hassan A and Blostein D. Validating the Use of Topic
       Models for Software Evolution. Proceedings of the 2010 10th IEEE Working
       Conference on Source Code Analysis and Manipulation. (55-64).
       
       https://doi.org/10.1109/SCAM.2010.13

 1249. Kim G, Xing E and Torralba A. Modeling and analysis of dynamic behaviors
       of web image collections. Proceedings of the 11th European conference on
       Computer vision: Part V. (85-98).
       
       /doi/10.5555/1888150.1888158

 1250. Wang C. (2010). Discovering objects and their location in videos using
       spatial-temporal context words. Optical Engineering. 10.1117/1.3488041.
       49:9. (097003). Online publication date: 1-Sep-2010.
       
       http://opticalengineering.spiedigitallibrary.org/article.aspx?doi=10.1117/1.3488041

 1251. Kim S and Lebanon G. Local space-time smoothing for version controlled
       documents. Proceedings of the 23rd International Conference on
       Computational Linguistics: Posters. (552-560).
       
       /doi/10.5555/1944566.1944629

 1252. Han C and Choi J. Effect of Latent Semantic Indexing for Clustering
       Clinical Documents. Proceedings of the 2010 IEEE/ACIS 9th International
       Conference on Computer and Information Science. (561-566).
       
       https://doi.org/10.1109/ICIS.2010.138

 1253. Zhou B, Huang J and Cui K. (2010). A LDA-Based Approach for Interactive
       Web Mining of Topic Evolutionary Patterns 2010 International Conference
       on Internet Technology and Applications (iTAP).
       10.1109/ITAPP.2010.5566219. 978-1-4244-5142-5. (1-5).
       
       http://ieeexplore.ieee.org/document/5566219/

 1254. Daud A, Li J, Zhou L and Muhammad F. (2010). Temporal expert finding
       through generalized time topic modeling. Knowledge-Based Systems. 23:6.
       (615-625). Online publication date: 1-Aug-2010.
       
       https://doi.org/10.1016/j.knosys.2010.04.008

 1255. Zhang J, Song Y, Zhang C and Liu S. Evolutionary hierarchical dirichlet
       processes for multiple correlated time-varying corpora. Proceedings of
       the 16th ACM SIGKDD international conference on Knowledge discovery and
       data mining. (1079-1088).
       
       https://doi.org/10.1145/1835804.1835940

 1256. Sato I and Nakagawa H. Topic models with power-law using Pitman-Yor
       process. Proceedings of the 16th ACM SIGKDD international conference on
       Knowledge discovery and data mining. (673-682).
       
       https://doi.org/10.1145/1835804.1835890

 1257. Iwata T, Yamada T, Sakurai Y and Ueda N. Online multiscale dynamic topic
       models. Proceedings of the 16th ACM SIGKDD international conference on
       Knowledge discovery and data mining. (663-672).
       
       https://doi.org/10.1145/1835804.1835889

 1258. Goorha S and Ungar L. Discovery of significant emerging trends.
       Proceedings of the 16th ACM SIGKDD international conference on Knowledge
       discovery and data mining. (57-64).
       
       https://doi.org/10.1145/1835804.1835815

 1259. Sun Y, Tang J, Han J, Gupta M and Zhao B. Community evolution detection
       in dynamic heterogeneous information networks. Proceedings of the Eighth
       Workshop on Mining and Learning with Graphs. (137-146).
       
       https://doi.org/10.1145/1830252.1830270

 1260. Zhang D, Mei Q and Zhai C. Cross-lingual latent topic extraction.
       Proceedings of the 48th Annual Meeting of the Association for
       Computational Linguistics. (1128-1137).
       
       /doi/10.5555/1858681.1858796

 1261. Chang C, Zeng D and Zhao H. (2010). Related Topic Network 2010 IEEE
       International Conference on Service Operations and Logistics and
       Informatics (SOLI). 10.1109/SOLI.2010.5551555. 978-1-4244-7118-8.
       (336-341).
       
       http://ieeexplore.ieee.org/document/5551555/

 1262. Gerrish S and Blei D. A language-based approach to measuring scholarly
       impact. Proceedings of the 27th International Conference on International
       Conference on Machine Learning. (375-382).
       
       /doi/10.5555/3104322.3104371

 1263. Newman D, Noh Y, Talley E, Karimi S and Baldwin T. Evaluating topic
       models for digital libraries. Proceedings of the 10th annual joint
       conference on Digital libraries. (215-224).
       
       https://doi.org/10.1145/1816123.1816156

 1264. Raskovsky I, Slezak D, Diuk C and Cecchi G. The emergence of the modern
       concept of introspection. Proceedings of the NAACL HLT 2010 Young
       Investigators Workshop on Computational Approaches to Languages of the
       Americas. (68-75).
       
       /doi/10.5555/1868701.1868711

 1265. Kleinberg J. The flow of on-line information in global networks.
       Proceedings of the 2010 ACM SIGMOD International Conference on Management
       of data. (1-2).
       
       https://doi.org/10.1145/1807167.1807169

 1266. Masada T, Fukagawa D, Takasu A, Shibata Y and Oguri K. Modeling topical
       trends over continuous time with priors. Proceedings of the 7th
       international conference on Advances in Neural Networks - Volume Part II.
       (302-311).
       
       https://doi.org/10.1007/978-3-642-13318-3_38

 1267. Xing E, Fu W and Song L. A state-space mixed membership blockmodel for
       dynamic network tomography. The Annals of Applied Statistics.
       10.1214/09-AOAS311. 4:2.
       
       https://projecteuclid.org\journals\annals-of-applied-statistics\volume-4\issue-2\A-state-space-mixed-membership-blockmodel-for-dynamic-network-tomography\10.1214/09-AOAS311.full

 1268. Pruteanu-Malinici I, Ren L, Paisley J, Wang E and Carin L. (2010).
       Hierarchical Bayesian Modeling of Topics in Time-Stamped Documents. IEEE
       Transactions on Pattern Analysis and Machine Intelligence. 32:6.
       (996-1011). Online publication date: 1-Jun-2010.
       
       https://doi.org/10.1109/TPAMI.2009.125

 1269. Bin Zhou , Cui Kai , Yan Jia and Jing Li . (2010). Interactive mining
       topic evolutionary patterns from internet forums 2010 2nd International
       Conference on Education Technology and Computer (ICETC).
       10.1109/ICETC.2010.5530005. 978-1-4244-6367-1. (V5-76-V5-81).
       
       http://ieeexplore.ieee.org/document/5530005/

 1270. Wu H, Wang M, Feng J and Pei Y. (2010). Research Topic Evolution in
       "Bioinformatics" 2010 4th International Conference on Bioinformatics and
       Biomedical Engineering (iCBBE). 10.1109/ICBBE.2010.5516318.
       978-1-4244-4712-1. (1-4).
       
       http://ieeexplore.ieee.org/document/5516318/

 1271. Daud A, Li J, Zhou L and Muhammad F. (2010). Knowledge discovery through
       directed probabilistic topic models: a survey. Frontiers of Computer
       Science in China. 10.1007/s11704-009-0062-y. 4:2. (280-301). Online
       publication date: 1-Jun-2010.
       
       http://link.springer.com/10.1007/s11704-009-0062-y

 1272. (2010). References. Relational Data Clustering. 10.1201/EBK1420072617-b.
       (185-194). Online publication date: 19-May-2010.
       
       http://www.crcnetbase.com/doi/abs/10.1201/EBK1420072617-b

 1273. Asuncion H, Asuncion A and Taylor R. Software traceability with topic
       modeling. Proceedings of the 32nd ACM/IEEE International Conference on
       Software Engineering - Volume 1. (95-104).
       
       https://doi.org/10.1145/1806799.1806817

 1274. Kandylas V, Upham S and Ungar L. (2010). Analyzing knowledge communities
       using foreground and background clusters. ACM Transactions on Knowledge
       Discovery from Data. 4:2. (1-35). Online publication date: 1-May-2010.
       
       https://doi.org/10.1145/1754428.1754430

 1275. Kawamae N and Higashinaka R. Trend detection model. Proceedings of the
       19th international conference on World wide web. (1129-1130).
       
       https://doi.org/10.1145/1772690.1772838

 1276. Blei D, Griffiths T and Jordan M. (2010). The nested chinese restaurant
       process and bayesian nonparametric inference of topic hierarchies.
       Journal of the ACM. 57:2. (1-30). Online publication date: 1-Jan-2010.
       
       https://doi.org/10.1145/1667053.1667056

 1277. Quinn K, Monroe B, Colaresi M, Crespin M and Radev D. (2009). How to
       Analyze Political Attention with Minimal Assumptions and Costs. American
       Journal of Political Science. 10.1111/j.1540-5907.2009.00427.x. 54:1.
       (209-228). Online publication date: 1-Jan-2010.
       
       https://onlinelibrary.wiley.com/doi/10.1111/j.1540-5907.2009.00427.x

 1278. Kim G, Xing E and Torralba A. (2010). Modeling and Analysis of Dynamic
       Behaviors of Web Image Collections. Computer Vision – ECCV 2010.
       10.1007/978-3-642-15555-0_7. (85-98).
       
       http://link.springer.com/10.1007/978-3-642-15555-0_7

 1279. Shen Z, Luo P, Xiong Y, Sun J and Shen Y. Topic Modeling for Sequences of
       Temporal Activities. Proceedings of the 2009 Ninth IEEE International
       Conference on Data Mining. (980-985).
       
       https://doi.org/10.1109/ICDM.2009.83

 1280. Fan N, Cai W and Zhao Y. (2009). A Method Based on Generation Models for
       Analyzing Sentiment-Topic in Texts 2009 International Conference on
       Computational Intelligence and Software Engineering.
       10.1109/CISE.2009.5362943. 978-1-4244-4507-3. (1-5).
       
       http://ieeexplore.ieee.org/document/5362943/

 1281. Masada T, Fukagawa D, Takasu A, Hamada T, Shibata Y and Oguri K. Dynamic
       hyperparameter optimization for bayesian topical trend analysis.
       Proceedings of the 18th ACM conference on Information and knowledge
       management. (1831-1834).
       
       https://doi.org/10.1145/1645953.1646242

 1282. He Q, Chen B, Pei J, Qiu B, Mitra P and Giles L. Detecting topic
       evolution in scientific literature. Proceedings of the 18th ACM
       conference on Information and knowledge management. (957-966).
       
       https://doi.org/10.1145/1645953.1646076

 1283. Zhai H, Guo J, Wu Q, Cheng X, Sheng H and Zhang J. Query Classification
       Based on Regularized Correlated Topic Model. Proceedings of the 2009
       IEEE/WIC/ACM International Joint Conference on Web Intelligence and
       Intelligent Agent Technology - Volume 01. (552-555).
       
       https://doi.org/10.1109/WI-IAT.2009.91

 1284. Li J, Gong S and Xiang T. (2009). On-the-fly global activity prediction
       and anomaly detection 2009 IEEE 12th International Conference on Computer
       Vision Workshops, ICCV Workshops. 10.1109/ICCVW.2009.5457455.
       978-1-4244-4442-7. (1330-1337).
       
       http://ieeexplore.ieee.org/document/5457455/

 1285. Hospedales T, Gong S and Xiang T. (2009). A Markov Clustering Topic Model
       for mining behaviour in video 2009 IEEE 12th International Conference on
       Computer Vision (ICCV). 10.1109/ICCV.2009.5459342. 978-1-4244-4420-5.
       (1165-1172).
       
       http://ieeexplore.ieee.org/document/5459342/

 1286. Moon I, Kim Y, Lee H and Oh A. Temporal Issue Trend Identifications in
       Blogs. Proceedings of the 2009 International Conference on Computational
       Science and Engineering - Volume 04. (619-626).
       
       https://doi.org/10.1109/CSE.2009.343

 1287. Nguyen C, Phan X, Horiguchi S, Nguyen T and Ha Q. (2009). Web Search
       Clustering and Labeling with Hidden Topics. ACM Transactions on Asian
       Language Information Processing. 8:3. (1-40). Online publication date:
       1-Aug-2009.
       
       https://doi.org/10.1145/1568292.1568295

 1288. Guo J, Xu G, Cheng X and Li H. Named entity recognition in query.
       Proceedings of the 32nd international ACM SIGIR conference on Research
       and development in information retrieval. (267-274).
       
       https://doi.org/10.1145/1571941.1571989

 1289. Lin C, Yang J, Cai R, Wang X and Wang W. Simultaneously modeling
       semantics and structure of threaded discussions. Proceedings of the 32nd
       international ACM SIGIR conference on Research and development in
       information retrieval. (131-138).
       
       https://doi.org/10.1145/1571941.1571966

 1290. Iwata T, Watanabe S, Yamada T and Ueda N. Topic tracking model for
       analyzing consumer purchase behavior. Proceedings of the 21st
       International Joint Conference on Artificial Intelligence. (1427-1432).
       
       /doi/10.5555/1661445.1661674

 1291. Leskovec J, Backstrom L and Kleinberg J. Meme-tracking and the dynamics
       of the news cycle. Proceedings of the 15th ACM SIGKDD international
       conference on Knowledge discovery and data mining. (497-506).
       
       https://doi.org/10.1145/1557019.1557077

 1292. Qin Z, Thint M and Huang Z. Ranking Answers by Hierarchical Topic Models.
       Proceedings of the 22nd International Conference on Industrial,
       Engineering and Other Applications of Applied Intelligent Systems:
       Next-Generation Applied Intelligence. (103-112).
       
       https://doi.org/10.1007/978-3-642-02568-6_11

 1293. Liu Y, Niculescu-Mizil A and Gryc W. Topic-link LDA. Proceedings of the
       26th Annual International Conference on Machine Learning. (665-672).
       
       https://doi.org/10.1145/1553374.1553460

 1294. Fu W, Song L and Xing E. Dynamic mixed membership blockmodel for evolving
       networks. Proceedings of the 26th Annual International Conference on
       Machine Learning. (329-336).
       
       https://doi.org/10.1145/1553374.1553416

 1295. Ding Y, Li S, Zhang Z and Shen B. (2009). Hierarchical topic modeling
       with nested hierarchical Dirichlet process. Journal of Zhejiang
       University-SCIENCE A. 10.1631/jzus.A0820796. 10:6. (858-867). Online
       publication date: 1-Jun-2009.
       
       http://link.springer.com/10.1631/jzus.A0820796

 1296. Masada T, Takasu A, Hamada T, Shibata Y and Oguri K. Bag of Timestamps.
       Proceedings of the Joint International Conferences on Advances in Data
       and Web Management. (556-561).
       
       https://doi.org/10.1007/978-3-642-00672-2_51

 1297. Liu S, Merhav Y, Yee W, Goharian N and Frieder O. A sentence level
       probabilistic model for evolutionary theme pattern mining from news
       corpora. Proceedings of the 2009 ACM symposium on Applied Computing.
       (1742-1747).
       
       https://doi.org/10.1145/1529282.1529672

 1298. Wang X, Zhang K, Jin X and Shen D. Mining common topics from multiple
       asynchronous text streams. Proceedings of the Second ACM International
       Conference on Web Search and Data Mining. (192-201).
       
       https://doi.org/10.1145/1498759.1498826

 1299. Daud A, Li J, Zhou L and Muhammad F. (2009). Conference Mining via
       Generalized Topic Modeling. Machine Learning and Knowledge Discovery in
       Databases. 10.1007/978-3-642-04180-8_33. (244-259).
       
       http://link.springer.com/10.1007/978-3-642-04180-8_33

 1300. Shaparenko B and Joachims T. (2009). Identifying the Original
       Contribution of a Document via Language Modeling. Machine Learning and
       Knowledge Discovery in Databases. 10.1007/978-3-642-04174-7_23.
       (350-365).
       
       http://link.springer.com/10.1007/978-3-642-04174-7_23

 1301. Tsoi A, Hagenbuchner M, Chau R and Lee V. (2009). Unsupervised and
       Supervised Learning of Graph Domains. Innovations in Neural Information
       Paradigms and Applications. 10.1007/978-3-642-04003-0_3. (43-65).
       
       http://link.springer.com/10.1007/978-3-642-04003-0_3

 1302. Xu T, Zhang Z, Yu P and Long B. Evolutionary Clustering by Hierarchical
       Dirichlet Process with Hidden Markov State. Proceedings of the 2008
       Eighth IEEE International Conference on Data Mining. (658-667).
       
       https://doi.org/10.1109/ICDM.2008.24

 1303. Xu T, Zhang Z, Yu P and Long B. Dirichlet Process Based Evolutionary
       Clustering. Proceedings of the 2008 Eighth IEEE International Conference
       on Data Mining. (648-657).
       
       https://doi.org/10.1109/ICDM.2008.23

 1304. Song Y, Zhang L and Giles C. A Non-parametric Approach to Pair-Wise
       Dynamic Topic Correlation Detection. Proceedings of the 2008 Eighth IEEE
       International Conference on Data Mining. (1031-1036).
       
       https://doi.org/10.1109/ICDM.2008.20

 1305. AlSumait L, Barbará D and Domeniconi C. On-line LDA. Proceedings of the
       2008 Eighth IEEE International Conference on Data Mining. (3-12).
       
       https://doi.org/10.1109/ICDM.2008.140

 1306. Kashima H, Hu J, Ray B and Singh M. (2008). K-means clustering of
       proportional data using L1 distance 2008 19th International Conference on
       Pattern Recognition (ICPR). 10.1109/ICPR.2008.4760982. 978-1-4244-2174-9.
       (1-4).
       
       http://ieeexplore.ieee.org/document/4760982/

 1307. Kandylas V, Upham S and Ungar L. (2008). Finding cohesive clusters for
       analyzing knowledge communities. Knowledge and Information Systems.
       10.1007/s10115-008-0135-5. 17:3. (335-354). Online publication date:
       1-Dec-2008.
       
       http://link.springer.com/10.1007/s10115-008-0135-5

 1308. Sun C, Gao B, Cao Z and Li H. HTM. Proceedings of the Conference on
       Empirical Methods in Natural Language Processing. (514-522).
       
       /doi/10.5555/1613715.1613779

 1309. Hall D, Jurafsky D and Manning C. Studying the history of ideas using
       topic models. Proceedings of the Conference on Empirical Methods in
       Natural Language Processing. (363-371).
       
       /doi/10.5555/1613715.1613763

 1310. Song X, Jermaine C, Ranka S and Gums J. A bayesian mixture model with
       linear regression mixing proportions. Proceedings of the 14th ACM SIGKDD
       international conference on Knowledge discovery and data mining.
       (659-667).
       
       https://doi.org/10.1145/1401890.1401970

 1311. Nallapati R, Ahmed A, Xing E and Cohen W. Joint latent topic models for
       text and citations. Proceedings of the 14th ACM SIGKDD international
       conference on Knowledge discovery and data mining. (542-550).
       
       https://doi.org/10.1145/1401890.1401957

 1312. Hassan A, Fader A, Crespin M, Quinn K, Monroe B, Colaresi M and Radev D.
       Tracking the dynamic evolution of participant salience in a discussion.
       Proceedings of the 22nd International Conference on Computational
       Linguistics - Volume 1. (313-320).
       
       /doi/10.5555/1599081.1599121

 1313. Simitsis A, Baid A, Sismanis Y and Reinwald B. (2008). Multidimensional
       content eXploration. Proceedings of the VLDB Endowment. 1:1. (660-671).
       Online publication date: 1-Aug-2008.
       
       https://doi.org/10.14778/1453856.1453929

 1314. Ren L, Dunson D and Carin L. The dynamic hierarchical Dirichlet process.
       Proceedings of the 25th international conference on Machine learning.
       (824-831).
       
       https://doi.org/10.1145/1390156.1390260

 1315. Uys J, du Preez N and Uys E. (2008). Leveraging unstructured information
       using topic modelling Technology. 10.1109/PICMET.2008.4599703.
       978-1-890843-17-5. (955-961).
       
       http://ieeexplore.ieee.org/document/4599703/

 1316. Bogen P, Johnston J, Karadkar U, Furuta R and Shipman F. Application of
       kalman filters to identify unexpected change in blogs. Proceedings of the
       8th ACM/IEEE-CS joint conference on Digital libraries. (305-312).
       
       https://doi.org/10.1145/1378889.1378941

 1317. Kobayashi M and Yung R. Tracking topic evolution in on-line postings.
       Proceedings of the 12th Pacific-Asia conference on Advances in knowledge
       discovery and data mining. (616-625).
       
       /doi/10.5555/1786574.1786635

 1318. Tang L, Liu H, Zhang J, Agarwal N and Salerno J. (2008). Topic taxonomy
       adaptation for group profiling. ACM Transactions on Knowledge Discovery
       from Data. 1:4. (1-28). Online publication date: 1-Jan-2008.
       
       https://doi.org/10.1145/1324172.1324173

 1319. Kobayashi M and Yung R. Tracking Topic Evolution in On-Line Postings:
       2006 IBM Innovation Jam Data. Advances in Knowledge Discovery and Data
       Mining. 10.1007/978-3-540-68125-0_57. (616-625).
       
       http://link.springer.com/10.1007/978-3-540-68125-0_57

 1320. Wang J, Xu C, Shen D, Luo G and Geng X. Understanding topic influence
       based on module network. Proceedings of the 10th international conference
       on Asian digital libraries: looking back 10 years and forging new
       frontiers. (391-399).
       
       /doi/10.5555/1780653.1780718

 1321. Wang C, Wang J, Xie X and Ma W. Mining geographic knowledge using
       location aware topic model. Proceedings of the 4th ACM workshop on
       Geographical information retrieval. (65-70).
       
       https://doi.org/10.1145/1316948.1316967

 1322. WI'07 Conference Organization. Proceedings of the IEEE/WIC/ACM
       International Conference on Web Intelligence. (xix-xx).
       
       https://doi.org/10.1109/WI.2007.114

 1323. Mao Y, Dillon J and Lebanon G. (2007). Sequential Document Visualization.
       IEEE Transactions on Visualization and Computer Graphics. 13:6.
       (1208-1215). Online publication date: 1-Nov-2007.
       
       https://doi.org/10.1109/TVCG.2007.70592

 1324. Habich D, Volk P, Lehner W, Dittmann R and Utzny C. Error-Aware
       Density-Based Clustering of Imprecise Measurement Values. Proceedings of
       the Seventh IEEE International Conference on Data Mining Workshops.
       (471-476).
       
       https://doi.org/10.1109/ICDMW.2007.39

 1325. Kandylas V, Upham S and Ungar L. Finding Cohesive Clusters for Analyzing
       Knowledge Communities. Proceedings of the 2007 Seventh IEEE International
       Conference on Data Mining. (203-212).
       
       https://doi.org/10.1109/ICDM.2007.22

 1326. Hinneburg A, Gabriel H and Gohr A. Bayesian Folding-In with Dirichlet
       Kernels for PLSI. Proceedings of the 2007 Seventh IEEE International
       Conference on Data Mining. (499-504).
       
       https://doi.org/10.1109/ICDM.2007.15

 1327. McCallum A, Wang X and Corrada-Emmanuel A. (2007). Topic and role
       discovery in social networks with experiments on enron and academic
       email. Journal of Artificial Intelligence Research. 30:1. (249-272).
       Online publication date: 1-Sep-2007.
       
       /doi/10.5555/1622637.1622644

 1328. Wang X, Pal C and McCallum A. Generalized component analysis for text
       with heterogeneous attributes. Proceedings of the 13th ACM SIGKDD
       international conference on Knowledge discovery and data mining.
       (794-803).
       
       https://doi.org/10.1145/1281192.1281277

 1329. Nallapati R, Ditmore S, Lafferty J and Ung K. Multiscale topic
       tomography. Proceedings of the 13th ACM SIGKDD international conference
       on Knowledge discovery and data mining. (520-529).
       
       https://doi.org/10.1145/1281192.1281249

 1330. Mei Q, Shen X and Zhai C. Automatic labeling of multinomial topic models.
       Proceedings of the 13th ACM SIGKDD international conference on Knowledge
       discovery and data mining. (490-499).
       
       https://doi.org/10.1145/1281192.1281246

 1331. Wang J, Xu C, Li G, Dai Z and Luo G. Understanding research field
       evolving and trend with dynamic Bayesian networks. Proceedings of the
       11th Pacific-Asia conference on Advances in knowledge discovery and data
       mining. (320-331).
       
       /doi/10.5555/1764441.1764475

 1332. Wei X, Sun J and Wang X. Dynamic mixture models for multiple time series.
       Proceedings of the 20th international joint conference on Artifical
       intelligence. (2909-2914).
       
       /doi/10.5555/1625275.1625744

 1333. Wang J, Xu C, Shen D, Luo G and Geng X. Understanding Topic Influence
       Based on Module Network. Asian Digital Libraries. Looking Back 10 Years
       and Forging New Frontiers. 10.1007/978-3-540-77094-7_50. (391-399).
       
       http://link.springer.com/10.1007/978-3-540-77094-7_50

 1334. McCallum A, Wang X and Mohanty N. Joint Group and Topic Discovery from
       Relations and Text. Statistical Network Analysis: Models, Issues, and New
       Directions. 10.1007/978-3-540-73133-7_3. (28-44).
       
       http://link.springer.com/10.1007/978-3-540-73133-7_3

 1335. Wang J, Xu C, Li G, Dai Z and Luo G. Understanding Research Field
       Evolving and Trend with Dynamic Bayesian Networks. Advances in Knowledge
       Discovery and Data Mining. 10.1007/978-3-540-71701-0_32. (320-331).
       
       http://link.springer.com/10.1007/978-3-540-71701-0_32

 1336. Wang X and McCallum A. Topics over time. Proceedings of the 12th ACM
       SIGKDD international conference on Knowledge discovery and data mining.
       (424-433).
       
       https://doi.org/10.1145/1150402.1150450

 1337. McCallum A, Wang X and Mohanty N. Joint group and topic discovery from
       relations and text. Proceedings of the 2006 conference on Statistical
       network analysis. (28-44).
       
       /doi/10.5555/1768341.1768345

 1338. Lee M and Spark A. Unsupervised Generation of Tradable Topic Indices
       Through Textual Analysis. SSRN Electronic Journal. 10.2139/ssrn.4128068.
       
       https://www.ssrn.com/abstract=4128068

 1339. Ji R and Han Q. Understanding Heterogeneity of Investor Sentiment on
       Social Media: A Structural Topic Modeling Approach. SSRN Electronic
       Journal. 10.2139/ssrn.3997740.
       
       https://www.ssrn.com/abstract=3997740

 1340. Ashwin J, Kalamara E and Saiz L. Nowcasting Euro Area GDP with News
       Sentiment: A Tale of Two Crises. SSRN Electronic Journal.
       10.2139/ssrn.3971974.
       
       https://www.ssrn.com/abstract=3971974

 1341. Ranta M, Ylinen M and Järvenpää M. Machine learning in management
       accounting research: Literature review and pathways for the future. SSRN
       Electronic Journal. 10.2139/ssrn.3822650.
       
       https://www.ssrn.com/abstract=3822650

 1342. Levy D, Mayer T and Raviv A. Academic Scholarship in Light of the 2008
       Financial Crisis: Textual Analysis of NBER Working Papers. SSRN
       Electronic Journal. 10.2139/ssrn.3543090.
       
       https://www.ssrn.com/abstract=3543090

 1343. Bo H. Socially Embedded Knowledge Network and the Making of Opinion
       Leaders: Evidence from Twitter. SSRN Electronic Journal.
       10.2139/ssrn.3493065.
       
       https://www.ssrn.com/abstract=3493065

 1344. Nay J. Natural Language Processing and Machine Learning for Law and
       Policy Texts. SSRN Electronic Journal. 10.2139/ssrn.3438276.
       
       https://www.ssrn.com/abstract=3438276

 1345. Ovadek M, Lampach N and Dyevre A. What's the Talk in Brussels? Leveraging
       Daily News Coverage to Measure Issue Attention in the European Union.
       SSRN Electronic Journal. 10.2139/ssrn.3393734.
       
       https://www.ssrn.com/abstract=3393734

 1346. Anastasopoulos L, Moldogaziev T and Scott T. Computational Text Analysis
       for Public Management Research. SSRN Electronic Journal.
       10.2139/ssrn.3269520.
       
       https://www.ssrn.com/abstract=3269520

 1347. Espinoza I, Mendoza M, Ortega P, Rivera D and Weiss F. Viscovery: Trend
       Tracking in Opinion Forums Based on Dynamic Topic Models. SSRN Electronic
       Journal. 10.2139/ssrn.3171739.
       
       https://www.ssrn.com/abstract=3171739

 1348. Mittal V and Kashyap I. An Overview of Real World Applications with
       Concept Drifting Data Streams. SSRN Electronic Journal.
       10.2139/ssrn.3170324.
       
       https://www.ssrn.com/abstract=3170324

 1349. Draca M and Schwarz C. How Polarized are Citizens? Measuring Ideology
       from the Ground-Up. SSRN Electronic Journal. 10.2139/ssrn.3154431.
       
       https://www.ssrn.com/abstract=3154431

 1350. Gentzkow M and Kelly B. Text As Data. SSRN Electronic Journal.
       10.2139/ssrn.2934001.
       
       http://www.ssrn.com/abstract=2934001

 1351. Dew R, Li Y and Ansari A. Dynamic Preference Heterogeneity. SSRN
       Electronic Journal. 10.2139/ssrn.2915632.
       
       https://www.ssrn.com/abstract=2915632

 1352. Linton M, Teo E, Bommes E and Chen C. Dynamic Topic Modelling for
       Cryptocurrency Community Forums. SSRN Electronic Journal.
       10.2139/ssrn.2875661.
       
       http://www.ssrn.com/abstract=2875661

 1353. Porter N, Verdery A and Gaddis S. Enhancing Big Data in the Social
       Sciences with Crowdsourcing: Data Augmentation Practices, Techniques, and
       Opportunities. SSRN Electronic Journal. 10.2139/ssrn.2844155.
       
       https://www.ssrn.com/abstract=2844155

 1354. Puschmann C and Scheffler T. Topic Modeling for Media and Communication
       Research: A Short Primer. SSRN Electronic Journal. 10.2139/ssrn.2836478.
       
       http://www.ssrn.com/abstract=2836478

 1355. Zhu X, Yang S and Moazeni S. Firm Risk Identification Through Topic
       Analysis of Textual Financial Disclosures. SSRN Electronic Journal.
       10.2139/ssrn.2820313.
       
       https://www.ssrn.com/abstract=2820313

 1356. Rockmore D, Fang C, Foti N, Ginsburg T and Krakauer D. The Cultural
       Evolution of National Constitutions. SSRN Electronic Journal.
       10.2139/ssrn.2739824.
       
       https://www.ssrn.com/abstract=2739824

 1357. Watts J. Language Consistency and Trading Volume: An Information Theory
       of Legitimacy. SSRN Electronic Journal. 10.2139/ssrn.2726410.
       
       http://www.ssrn.com/abstract=2726410

 1358. Algaba A, Ardia D, Bluteau K, Borms S and Boudt K. Econometrics Meets
       Sentiment: An Overview of Methodology and Applications. SSRN Electronic
       Journal. 10.2139/ssrn.2652876.
       
       https://www.ssrn.com/abstract=2652876

 1359. Tirunillai S and Tellis G. Extracting Dimensions of Consumer Satisfaction
       with Quality from Online Chatter: Strategic Brand Analysis of Big Data
       Using Latent Dirichlet Allocation. SSRN Electronic Journal.
       10.2139/ssrn.2408855.
       
       http://www.ssrn.com/abstract=2408855

 1360. Bueschken J and Allenby G. Latent Topic Modeling of Consumer Reviews:
       Linking Text Evaluations to Customer Satisfaction and Brands. SSRN
       Electronic Journal. 10.2139/ssrn.2324137.
       
       http://www.ssrn.com/abstract=2324137

 1361. Maslinsky K, Koltsov S and Koltsova O. Changes in the Topical Structure
       of Russian-Language LiveJournal: The Impact of Elections 2011. SSRN
       Electronic Journal. 10.2139/ssrn.2209802.
       
       http://www.ssrn.com/abstract=2209802

 1362. Lauderdale B and Clark T. Scaling Meaningful Political Dimensions. SSRN
       Electronic Journal. 10.2139/ssrn.2079561.
       
       http://www.ssrn.com/abstract=2079561

Show All Cited By


INDEX TERMS

 1. DYNAMIC TOPIC MODELS
    
    1. Computing methodologies
       
       1. Machine learning
          
          1. Machine learning approaches
             
             1. Factorization methods
                
                1. Canonical correlation analysis
    
    2. Mathematics of computing
       
       1. Probability and statistics
          
          1. Statistical paradigms
             
             1. Regression analysis
             
             2. Statistical graphics


RECOMMENDATIONS

 * SCALING UP DYNAMIC TOPIC MODELS
   
   WWW '16: Proceedings of the 25th International Conference on World Wide Web
   
   Dynamic topic models (DTMs) are very effective in discovering topics and
   capturing their evolution trends in time series data. To do posterior
   inference of DTMs, existing methods are all batch algorithms that scan the
   full dataset before each update of ...
   
   Read More

 * TOPIC MODELS WITH TOPIC ORDERING REGULARITIES FOR TOPIC SEGMENTATION
   
   ICDM '14: Proceedings of the 2014 IEEE International Conference on Data
   Mining
   
   Documents from the same domain usually discuss similar topics in a similar
   order. In this paper we present new ordering-based topic models that use
   generalised Mallows models to capture this regularity to constrain topic
   assignments. Specifically, these ...
   
   Read More

 * PROBABILISTIC TOPIC MODELS
   
   KDD '11 Tutorials: Proceedings of the 17th ACM SIGKDD International
   Conference Tutorials
   
   Probabilistic topic modeling provides a suite of tools for the unsupervised
   analysis of large collections of documents. Topic modeling algorithms can
   uncover the underlying themes of a collection and decompose its documents
   according to those themes. ...
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   Read More




COMMENTS


Please enable JavaScript to view thecomments powered by Disqus.


LOGIN OPTIONS

Check if you have access through your login credentials or your institution to
get full access on this article.

Sign in


FULL ACCESS

Get this Publication
 * Information
 * Contributors


 * PUBLISHED IN
   
   ICML '06: Proceedings of the 23rd international conference on Machine
   learning
   June 2006
   1154 pages
   ISBN:1595933832
   DOI:10.1145/1143844
    * Program Chairs:
    * William Cohen,
    * Andrew Moore
   
   
   
   Copyright © 2006 ACM
   
   Permission to make digital or hard copies of all or part of this work for
   personal or classroom use is granted without fee provided that copies are not
   made or distributed for profit or commercial advantage and that copies bear
   this notice and the full citation on the first page. Copyrights for
   components of this work owned by others than ACM must be honored. Abstracting
   with credit is permitted. To copy otherwise, or republish, to post on servers
   or to redistribute to lists, requires prior specific permission and/or a fee.
   Request permissions from Permissions@acm.org
   
   
   SPONSORS
   
   
   IN-COOPERATION
   
   
   PUBLISHER
   
   Association for Computing Machinery
   
   New York, NY, United States
   
   
   PUBLICATION HISTORY
   
    * Published: 25 June 2006
   
   
   PERMISSIONS
   
   Request permissions about this article.
   
   Request Permissions
   
   
   CHECK FOR UPDATES
   
   
   QUALIFIERS
   
    * Article
   
   
   CONFERENCE
   
   
   ACCEPTANCE RATES
   
   ICML '06 Paper Acceptance Rate140of548submissions,26%Overall Acceptance
   Rate140of548submissions,26%
   More
   
   
   FUNDING SOURCES


 * OTHER METRICS
   
   View Article Metrics

 * Bibliometrics
 * Citations1,362


 * ARTICLE METRICS
   
    * 1,362
      Total Citations
      View Citations
    * 9,605
      Total Downloads
   
    * Downloads (Last 12 months)803
    * Downloads (Last 6 weeks)64
   
   
   OTHER METRICS
   
   View Author Metrics


 * CITED BY
   
   View all


PDF FORMAT

View or Download as a PDF file.

PDF


EREADER

View online with eReader.

eReader


DIGITAL EDITION

View this article in digital edition.

View Digital Edition
 1.  Aitchison, J. (1982). The statistical analysis of compositional data.
     Journal of the Royal Statistical Society, Series B, 44(2):139--177.]]Google
     Scholar
 2.  Blei, D., Ng, A., and Jordan, M. (2003). Latent Dirichlet allocation.
     Journal of Machine Learning Research, 3:993--1022.]] Google ScholarDigital
     Library
 3.  Blei, D. M. and Lafferty, J. D. (2006). Correlated topic models. In Weiss,
     Y., Schölkopf, B., and Platt, J., editors, Advances in Neural Information
     Processing Systems 18. MIT Press, Cambridge, MA.]]Google Scholar
 4.  Buntine, W. and Jakulin, A. (2004). Applying discrete PCA in data analysis.
     In Proceedings of the 20th Conference on Uncertainty in Artificial
     Intelligence, pages 59--66. AUAI Press.]] Google ScholarDigital Library
 5.  Erosheva, E. (2002). Grade of membership and latent structure models with
     application to disability survey data. PhD thesis, Carnegie Mellon
     University, Department of Statistics.]]Google Scholar
 6.  Fei-Fei, L. and Perona, P. (2005). A Bayesian hierarchical model for
     learning natural scene categories. IEEE Computer Vision and Pattern
     Recognition.]]Google ScholarDigital Library
 7.  Griffiths, T. and Steyvers, M. (2004). Finding scientific topics.
     Proceedings of the National Academy of Science, 101:5228--5235.]]Google
     ScholarCross Ref
 8.  Kalman, R. (1960). A new approach to linear filtering and prediction
     problems. Transaction of the AMSE: Journal of Basic Engineering,
     82:35--45.]]Google ScholarCross Ref
 9.  McCallum, A., Corrada-Emmanuel, A., and Wang, X. (2004). The
     author-recipient-topic model for topic and role discovery in social
     networks: Experiments with Enron and academic email. Technical report,
     University of Massachusetts, Amherst.]]Google Scholar
 10. Pritchard, J., Stephens, M., and Donnelly, P. (2000). Inference of
     population structure using multilocus genotype data. Genetics,
     155:945--959.]]Google ScholarCross Ref
 11. Rosen-Zvi, M., Griffiths, T., Steyvers, M., and Smith, P. (2004). The
     author-topic model for authors and documents. In Proceedings of the 20th
     Conference on Uncertainty in Artificial Intelligence, pages 487--494. AUAI
     Press.]] Google ScholarDigital Library
 12. Sivic, J., Rusell, B., Efros, A., Zisserman, A., and Freeman, W. (2005).
     Discovering objects and their location in images. In International
     Conference on Computer Vision (ICCV 2005).]] Google ScholarDigital Library
 13. Snelson, E. and Ghahramani, Z. (2006). Sparse Gaussian processes using
     pseudo-inputs. In Weiss, Y., Schölkopf, B., and Platt, J., editors,
     Advances in Neural Information Processing Systems 18, Cambridge, MA. MIT
     Press.]]Google Scholar
 14. Wasserman, L. (2006). All of Nonparametric Statistics. Springer.]] Google
     ScholarDigital Library
 15. West, M. and Harrison, J. (1997). Bayesian Forecasting and Dynamic Models.
     Springer.]] Google ScholarDigital Library

 * Figures
 * Other

 * None
 * 




SHARE THIS PUBLICATION LINK

https://dl.acm.org/doi/10.1145/1143844.1143859

Copy Link


SHARE ON SOCIAL MEDIA


Share on
 * Twitter
 * LinkedIn
 * Reddit
 * Facebook
 * Email
   
   

 * 
 * 
 * 
 * 15References
 * 
 * 
 * 


Close Figure Viewer



Browse AllReturnChange zoom level


CAPTION


View Table of Contents
back

Close modal


NEW CITATION ALERT ADDED!

This alert has been successfully added and will be sent to:

You will be notified whenever a record that you have chosen has been cited.

To manage your alert preferences, click on the button below.

Manage my Alerts
Close modal


NEW CITATION ALERT!

Please log in to your account

Close modal


EXPORT CITATIONS

Select Citation formatBibTeXEndNoteACM Ref
 * Please download or close your previous search result export first before
   starting a new bulk export.
   Preview is not available.
   By clicking download,a status dialog will open to start the export process.
   The process may takea few minutes but once it finishes a file will be
   downloadable from your browser. You may continue to browse the DL while the
   export process is in progress.
   Download
 *  * Download citation
    * Copy citation


FOOTER




CATEGORIES

 * Journals
 * Magazines
 * Books
 * Proceedings
 * SIGs
 * Conferences
 * Collections
 * People


ABOUT

 * About ACM Digital Library
 * ACM Digital Library Board
 * Subscription Information
 * Author Guidelines
 * Using ACM Digital Library
 * All Holdings within the ACM Digital Library
 * ACM Computing Classification System
 * Digital Library Accessibility


JOIN

 * Join ACM
 * Join SIGs
 * Subscribe to Publications
 * Institutions and Libraries


CONNECT

 * Contact
 * Facebook
 * Twitter
 * Linkedin
   
 * Feedback
 * Bug Report

The ACM Digital Library is published by the Association for Computing Machinery.
Copyright © 2024 ACM, Inc.
 * Terms of Usage
 * Privacy Policy
 * Code of Ethics



Your Search Results Download Request

We are preparing your search results for download ...

We will inform you here when the file is ready.

Download now!
Your Search Results Download Request

Your file of search results citations is now ready.

Download now!
Your Search Results Download Request

Your search export query has expired. Please try again.

Close crossmark popup

✓
Thanks for sharing!
AddToAny
More…