test.pypi.org
Open in
urlscan Pro
2a04:4e42:400::319
Public Scan
Submitted URL: https://testpypi.python.org/pypi/kernel_tuner
Effective URL: https://test.pypi.org/project/kernel_tuner/
Submission Tags: falconsandbox
Submission: On March 15 via api from US — Scanned from DE
Effective URL: https://test.pypi.org/project/kernel_tuner/
Submission Tags: falconsandbox
Submission: On March 15 via api from US — Scanned from DE
Form analysis
3 forms found in the DOM/search/
<form class="search-form search-form--primary" action="/search/" role="search">
<label for="search" class="sr-only">PyPI durchsuchen</label>
<input id="search" class="search-form__search" type="text" name="q" placeholder="Projekte suchen" value="" autocomplete="off" autocapitalize="off" spellcheck="false" data-controller="search-focus"
data-action="keydown@window->search-focus#focusSearchField" data-search-focus-target="searchField">
<button type="submit" class="search-form__button">
<i class="fa fa-search" aria-hidden="true"></i>
<span class="sr-only">Suche</span>
</button>
</form>
/search/
<form class="search-form search-form--fullwidth" action="/search/" role="search">
<label for="mobile-search" class="sr-only">PyPI durchsuchen</label>
<input id="mobile-search" class="search-form__search" type="text" name="q" placeholder="Projekte suchen" value="" autocomplete="off" autocapitalize="off" spellcheck="false">
<button type="submit" class="search-form__button">
<i class="fa fa-search" aria-hidden="true"></i>
<span class="sr-only">Suche</span>
</button>
</form>
/locale/
<form action="/locale/">
<ul>
<li>
<button name="locale_id" value="en" type="submit"> English </button>
</li>
<li>
<button name="locale_id" value="es" type="submit"> español </button>
</li>
<li>
<button name="locale_id" value="fr" type="submit"> français </button>
</li>
<li>
<button name="locale_id" value="ja" type="submit"> 日本語 </button>
</li>
<li>
<button name="locale_id" value="pt_BR" type="submit"> português (Brasil) </button>
</li>
<li>
<button name="locale_id" value="uk" type="submit"> українська </button>
</li>
<li>
<button name="locale_id" value="el" type="submit"> Ελληνικά </button>
</li>
<li>
<button class="language-switcher__selected" name="locale_id" value="de" type="submit"> Deutsch </button>
</li>
<li>
<button name="locale_id" value="zh_Hans" type="submit"> 中文 (简体) </button>
</li>
<li>
<button name="locale_id" value="zh_Hant" type="submit"> 中文 (繁體) </button>
</li>
<li>
<button name="locale_id" value="ru" type="submit"> русский </button>
</li>
<li>
<button name="locale_id" value="he" type="submit"> עברית </button>
</li>
<li>
<button name="locale_id" value="eo" type="submit"> esperanto </button>
</li>
</ul>
</form>
Text Content
Zum Hauptinhalt springen Zur mobilen Version wechseln Warnung Sie verwenden TestPyPI - eine separate Instanz des Python-Paketindex, mit der Sie Verteilungstools und -prozesse ausprobieren können, ohne den realen Index zu beeinflussen. Warnung Einige Funktionen sind möglicherweise ohne JavaScript nicht nutzbar. Bitte versuchen Sie es mit aktiviertem JavaScript, falls Probleme auftreten. PyPI durchsuchen Suche * Hilfe * Sponsoren * Einloggen * Registrieren Menü * Hilfe * Sponsoren * Einloggen * Registrieren PyPI durchsuchen Suche KERNEL_TUNER 0.1.1 pip install -i https://test.pypi.org/simple/ kernel_tuner PIP Anweisungen kopieren Neueste Version Veröffentlicht am: 2. März 2017 A simple CUDA/OpenCL kernel tuner in Python NAVIGATION * Projekt-Beschreibung * Veröffentlichungs-Historie * Dateien zum Herunterladen PROJEKT-LINKS * Homepage STATISTIKEN Besuchen Sie Libraries.io oder benutzen Sie unseren öffentlichen Datensatz auf Google BigQuery, um Statistiken für dieses Projekt zu sehen META Lizenz: Apache Software License (Apache 2.0) Autor: Ben van Werkhoven Schlagwörter auto-tuning, gpu, computing, pycuda, cuda, pyopencl, opencl BETREUER benvanwerkhoven KATEGORIEN * Development Status * 4 - Beta * Environment * Console * Intended Audience * Developers * Education * Science/Research * License * OSI Approved :: Apache Software License * Natural Language * English * Operating System * POSIX :: Linux * Programming Language * Python :: 2.7 * Python :: 3.5 * Topic * Scientific/Engineering * Software Development * System :: Distributed Computing Capital One is a Maintaining sponsor of the Python Software Foundation. PSF Sponsor · Served ethically * Projekt-Beschreibung * Projekt-Details * Veröffentlichungs-Historie * Dateien zum Herunterladen PROJEKT-BESCHREIBUNG The goal of this project is to provide a - as simple as possible - tool for tuning CUDA and OpenCL kernels. This implies that any CUDA or OpenCL kernel can be tuned without requiring extensive changes to the original kernel code. A very common problem in GPU programming is that some combination of thread block dimensions and other kernel parameters, like tiling or unrolling factors, results in dramatically better performance than other kernel configurations. The goal of auto-tuning is to automate the process of finding the best performing configuration for a given device. This kernel tuner aims that you can directly use the tuned kernel without introducing any new dependencies. The tuned kernels can afterwards be used independently of the programming environment, whether that is using C/C++/Java/Fortran or Python doesn’t matter. The kernel_tuner module currently only contains main one function which is called tune_kernel to which you pass at least the kernel name, a string containing the kernel code, the problem size, a list of kernel function arguments, and a dictionary of tunable parameters. There are also a lot of optional parameters, for a complete list see the full documentation of tune_kernel. DOCUMENTATION The full documentation is available here. INSTALLATION install from PyPi, install with: pip install kernel_tuner To install from the source (and get the examples): clone the repository git clone git@github.com:benvanwerkhoven/kernel_tuner.git change into the top-level directory cd kernel_tuner install using pip install . DEPENDENCIES Python Python 2.7 or Python 3.5 PyCuda and/or PyOpenCL (https://mathema.tician.de/software/) * To tune CUDA kernels pip install pycuda * To tune OpenCL kernels pip install pyopencl EXAMPLE USAGE The following shows a simple example for tuning a CUDA kernel: kernel_string = """ __global__ void vector_add(float *c, float *a, float *b, int n) { int i = blockIdx.x * block_size_x + threadIdx.x; if (i<n) { c[i] = a[i] + b[i]; } } """ size = 10000000 problem_size = (size, 1) a = numpy.random.randn(size).astype(numpy.float32) b = numpy.random.randn(size).astype(numpy.float32) c = numpy.zeros_like(b) n = numpy.int32(size) args = [c, a, b, n] tune_params = dict() tune_params["block_size_x"] = [128+64*i for i in range(15)] tune_kernel("vector_add", kernel_string, problem_size, args, tune_params) The exact same Python code can be used to tune an OpenCL kernel: kernel_string = """ __kernel void vector_add(__global float *c, __global float *a, __global float *b, int n) { int i = get_global_id(0); if (i<n) { c[i] = a[i] + b[i]; } } """ Or even just a C function, see the example here. You can find these and many - more extensive - example codes, in the examples directory. See the full documentation for several highly detailed tutorial-style explanations of example kernels and the scripts to tune them. TUNING HOST AND KERNEL CODE It is also possible to tune for combinations of tunable parameters in both host and kernel code. This allows for a number of powerfull things, such as tuning the number of streams for a kernel that uses CUDA Streams or OpenCL Command Queues to overlap transfers between host and device with kernel execution. This can be done in combination with tuning the parameters inside the kernel code. See the convolution_streams example code and the documentation for a detailed explanation of the kernel tuner Python script. CORRECTNESS VERIFICATION Optionally, you can let the kernel tuner verify the output of every kernel it compiles and benchmarks, by passing an answer list. This list matches the list of arguments to the kernel, but contains the expected output of the kernel. Input arguments are replaced with None. answer = [a+b, None, None] # the order matches the arguments (in args) to the kernel tune_kernel("vector_add", kernel_string, problem_size, args, tune_params, answer=answer) CONTRIBUTION GUIDE The kernel tuner follows the Google Python style guide, with Sphinxdoc docstrings for module public functions. If you want to contribute to the project please fork it, create a branch including your addition, and create a pull request. The tests use relative imports and can be run directly after making changes to the code. To run all tests use nosetests in the main directory. To run the examples after code changes, you need to run pip install --upgrade . in the main directory. Documentation is generated by typing make html in the doc directory, the contents of doc/build/html/ should then be copied to sphinxdoc directory of the gh-pages branch. Before creating a pull request please ensure the following: * You have written unit tests to test your additions and all unit tests pass * The examples still work and produce the same (or better) results * The code is compatible with both Python 2.7 and Python 3.5 * An entry about the change or addition is created in CHANGELOG.md Contributing authors so far: * Ben van Werkhoven * Berend Weel RELATED WORK You may also like CLTune by Cedric Nugteren. CLTune is a C++ library for kernel tuning and supports various advanced features like machine learning to optimize the time spent on tuning kernels. PROJEKT-DETAILS PROJEKT-LINKS * Homepage STATISTIKEN Besuchen Sie Libraries.io oder benutzen Sie unseren öffentlichen Datensatz auf Google BigQuery, um Statistiken für dieses Projekt zu sehen META Lizenz: Apache Software License (Apache 2.0) Autor: Ben van Werkhoven Schlagwörter auto-tuning, gpu, computing, pycuda, cuda, pyopencl, opencl BETREUER benvanwerkhoven KATEGORIEN * Development Status * 4 - Beta * Environment * Console * Intended Audience * Developers * Education * Science/Research * License * OSI Approved :: Apache Software License * Natural Language * English * Operating System * POSIX :: Linux * Programming Language * Python :: 2.7 * Python :: 3.5 * Topic * Scientific/Engineering * Software Development * System :: Distributed Computing VERÖFFENTLICHUNGS-HISTORIE VERÖFFENTLICHUNGS-BENACHRICHTIGUNGEN | RSS FEED Diese Version 0.1.1 2. März 2017 0.1.0 2. Nov. 2016 DATEIEN ZUM HERUNTERLADEN Laden Sie die Datei für Ihre Plattform herunter. Wenn Sie nicht sicher sind, was Sie auswählen sollen, lesen Sie Installation von Paketen. SOURCE DISTRIBUTION kernel_tuner-0.1.1.tar.gz (26.0 kB view hashes) Uploaded 2. März 2017 source Schließen HASH-CODES FÜR KERNEL_TUNER-0.1.1.TAR.GZ Hash-Codes für kernel_tuner-0.1.1.tar.gz Algorithmus Hashwert SHA256 8a627d2c4905c4d435adff1a1651317488c19835efb81778a69556c4e72f0471 Kopieren MD5 b7c36f82dd23d149c15a887fd5a397eb Kopieren BLAKE2b-256 ea268f040e3d239322d963bf826642af5bbd0bf44d018ffc4066696af2ffe0cb Kopieren Schließen HILFE * Installieren von Paketen * Hochladen von Paketen * Bedienungsanleitung * Project name retention * Häufige Fragen ÜBER PYPI * PyPI bei Twitter * Infrastruktur Übersicht * Statistiken * Logos & trademarks * Unsere Sponsoren MITWIRKEN BEI PYPI * Fehler und Rückmeldungen * Mitwirken auf GitHub * PyPI übersetzen * Sponsor PyPI * Entwicklungs-Anerkennungen PYPI VERWENDEN * Verhaltensrichtlinien * Sicherheitsproblem melden * Datenschutz * Nutzungsbedingungen * Acceptable Use Policy -------------------------------------------------------------------------------- Entwickelt und gepflegt von der Python-Community, für die Python-Community. Spenden Sie noch heute! "PyPI", "Python Package Index", and the blocks logos are registered trademarks of the Python Software Foundation. © 2023 Python Software Foundation Sitemap Zur Desktop-Version wechseln * English * español * français * 日本語 * português (Brasil) * українська * Ελληνικά * Deutsch * 中文 (简体) * 中文 (繁體) * русский * עברית * esperanto Supported by Python Software Foundation PSF Sponsor