www.antuit.ai Open in urlscan Pro
2606:2c40::c73c:671e  Public Scan

Submitted URL: https://www.antuit.ai/e3t/Ctc/5B*113/cvnlZ04/VXgkf_1Z2bdmW6bDB5m3ql082W2VV8NG4L2Pz7N2_Qd4y3q3npV1-WJV7Cg-MpW3587l-5pbq...
Effective URL: https://www.antuit.ai/blog/driving-size-optimization-precision?utm_campaign=Email&utm_medium=email&_hsmi=215809129&_hs...
Submission: On June 08 via api from US — Scanned from DE

Form analysis 3 forms found in the DOM

/hs-search-results

<form action="/hs-search-results">
  <input type="text" class="hs-search-field__input" name="term" autocomplete="off" aria-label="Search" placeholder="Search">
  <input type="hidden" name="type" value="SITE_PAGE">
  <input type="hidden" name="type" value="BLOG_POST">
  <input type="hidden" name="type" value="LISTING_PAGE">
  <button aria-label="Search"><span id="hs_cos_wrapper_module_93480244_" class="hs_cos_wrapper hs_cos_wrapper_widget hs_cos_wrapper_type_icon" style="" data-hs-cos-general-type="widget" data-hs-cos-type="icon"><svg version="1.0"
        xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" aria-hidden="true">
        <g id="search1_layer">
          <path
            d="M505 442.7L405.3 343c-4.5-4.5-10.6-7-17-7H372c27.6-35.3 44-79.7 44-128C416 93.1 322.9 0 208 0S0 93.1 0 208s93.1 208 208 208c48.3 0 92.7-16.4 128-44v16.3c0 6.4 2.5 12.5 7 17l99.7 99.7c9.4 9.4 24.6 9.4 33.9 0l28.3-28.3c9.4-9.4 9.4-24.6.1-34zM208 336c-70.7 0-128-57.2-128-128 0-70.7 57.2-128 128-128 70.7 0 128 57.2 128 128 0 70.7-57.2 128-128 128z">
          </path>
        </g>
      </svg></span></button>
</form>

POST https://forms.hsforms.com/submissions/v3/public/submit/formsnext/multipart/4153407/bdfe25aa-8716-4e0e-aaea-ed57996ec5c9

<form novalidate="" accept-charset="UTF-8" action="https://forms.hsforms.com/submissions/v3/public/submit/formsnext/multipart/4153407/bdfe25aa-8716-4e0e-aaea-ed57996ec5c9" enctype="multipart/form-data"
  id="hsForm_bdfe25aa-8716-4e0e-aaea-ed57996ec5c9_1" method="POST"
  class="hs-form stacked hs-form-private hsForm_bdfe25aa-8716-4e0e-aaea-ed57996ec5c9 hs-form-bdfe25aa-8716-4e0e-aaea-ed57996ec5c9 hs-form-bdfe25aa-8716-4e0e-aaea-ed57996ec5c9_b7f50d9a-946f-417f-a328-c86e1ee4d658"
  data-form-id="bdfe25aa-8716-4e0e-aaea-ed57996ec5c9" data-portal-id="4153407" target="target_iframe_bdfe25aa-8716-4e0e-aaea-ed57996ec5c9_1" data-reactid=".hbspt-forms-0">
  <div class="hs_email hs-email hs-fieldtype-text field hs-form-field" data-reactid=".hbspt-forms-0.1:$0"><label id="label-email-bdfe25aa-8716-4e0e-aaea-ed57996ec5c9_1" class="" placeholder="Enter your Email"
      for="email-bdfe25aa-8716-4e0e-aaea-ed57996ec5c9_1" data-reactid=".hbspt-forms-0.1:$0.0"><span data-reactid=".hbspt-forms-0.1:$0.0.0">Email</span><span class="hs-form-required" data-reactid=".hbspt-forms-0.1:$0.0.1">*</span></label>
    <legend class="hs-field-desc" style="display:none;" data-reactid=".hbspt-forms-0.1:$0.1"></legend>
    <div class="input" data-reactid=".hbspt-forms-0.1:$0.$email"><input id="email-bdfe25aa-8716-4e0e-aaea-ed57996ec5c9_1" class="hs-input" type="email" name="email" required="" placeholder="Email *" value="" autocomplete="email"
        data-reactid=".hbspt-forms-0.1:$0.$email.0" inputmode="email"></div>
  </div>
  <div class="hs_blog_blog_5859321258_subscription hs-blog_blog_5859321258_subscription hs-fieldtype-radio field hs-form-field" style="display:none;" data-reactid=".hbspt-forms-0.1:$1"><label
      id="label-blog_blog_5859321258_subscription-bdfe25aa-8716-4e0e-aaea-ed57996ec5c9_1" class="" placeholder="Enter your Notification Frequency" for="blog_blog_5859321258_subscription-bdfe25aa-8716-4e0e-aaea-ed57996ec5c9_1"
      data-reactid=".hbspt-forms-0.1:$1.0"><span data-reactid=".hbspt-forms-0.1:$1.0.0">Notification Frequency</span></label>
    <legend class="hs-field-desc" style="display:none;" data-reactid=".hbspt-forms-0.1:$1.1"></legend>
    <div class="input" data-reactid=".hbspt-forms-0.1:$1.$blog_blog_5859321258_subscription"><input name="blog_blog_5859321258_subscription" class="hs-input" type="hidden" value="daily"
        data-reactid=".hbspt-forms-0.1:$1.$blog_blog_5859321258_subscription.0" placeholder="Notification Frequency"></div>
  </div>
  <div class="hs_lifecyclestage hs-lifecyclestage hs-fieldtype-radio field hs-form-field" style="display:none;" data-reactid=".hbspt-forms-0.1:$2"><label id="label-lifecyclestage-bdfe25aa-8716-4e0e-aaea-ed57996ec5c9_1" class=""
      placeholder="Enter your Lifecycle Stage" for="lifecyclestage-bdfe25aa-8716-4e0e-aaea-ed57996ec5c9_1" data-reactid=".hbspt-forms-0.1:$2.0"><span data-reactid=".hbspt-forms-0.1:$2.0.0">Lifecycle Stage</span></label>
    <legend class="hs-field-desc" style="display:none;" data-reactid=".hbspt-forms-0.1:$2.1"></legend>
    <div class="input" data-reactid=".hbspt-forms-0.1:$2.$lifecyclestage"><input name="lifecyclestage" class="hs-input" type="hidden" value="subscriber" data-reactid=".hbspt-forms-0.1:$2.$lifecyclestage.0" placeholder="Lifecycle Stage"></div>
  </div><noscript data-reactid=".hbspt-forms-0.2"></noscript>
  <div class="hs_submit hs-submit" data-reactid=".hbspt-forms-0.5">
    <div class="hs-field-desc" style="display:none;" data-reactid=".hbspt-forms-0.5.0"></div>
    <div class="actions" data-reactid=".hbspt-forms-0.5.1"><input type="submit" value="Subscribe" class="hs-button primary large" data-reactid=".hbspt-forms-0.5.1.0" placeholder=""></div>
  </div><noscript data-reactid=".hbspt-forms-0.6"></noscript><input name="hs_context" type="hidden"
    value="{&quot;rumScriptExecuteTime&quot;:1483.0999999046326,&quot;rumServiceResponseTime&quot;:1727.3000001907349,&quot;rumFormRenderTime&quot;:1.9000000953674316,&quot;rumTotalRenderTime&quot;:1729.9000000953674,&quot;rumTotalRequestTime&quot;:242.7000002861023,&quot;embedAtTimestamp&quot;:&quot;1654704766211&quot;,&quot;formDefinitionUpdatedAt&quot;:&quot;1578332357241&quot;,&quot;pageUrl&quot;:&quot;https://www.antuit.ai/blog/driving-size-optimization-precision?utm_campaign=Email&amp;utm_medium=email&amp;_hsmi=215809129&amp;_hsenc=p2ANqtz--DJvpp2TLLDJ0UY_zk6HGqSYNJWVN7XfYR0IBisv3FdbmcO0Ir7FwiY5O0ijAddhMJwLrA96Uvdg3ibsZjUwrDLhGjKQ&amp;utm_content=215809129&amp;utm_source=hs_email&quot;,&quot;pageTitle&quot;:&quot;Driving Size Optimization Precision&quot;,&quot;source&quot;:&quot;FormsNext-static-5.502&quot;,&quot;sourceName&quot;:&quot;FormsNext&quot;,&quot;sourceVersion&quot;:&quot;5.502&quot;,&quot;sourceVersionMajor&quot;:&quot;5&quot;,&quot;sourceVersionMinor&quot;:&quot;502&quot;,&quot;timestamp&quot;:1654704766215,&quot;userAgent&quot;:&quot;Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/102.0.5005.61 Safari/537.36&quot;,&quot;originalEmbedContext&quot;:{&quot;portalId&quot;:&quot;4153407&quot;,&quot;formId&quot;:&quot;bdfe25aa-8716-4e0e-aaea-ed57996ec5c9&quot;,&quot;formInstanceId&quot;:&quot;1&quot;,&quot;pageId&quot;:&quot;49897799787&quot;,&quot;region&quot;:&quot;na1&quot;,&quot;pageName&quot;:&quot;Driving Size Optimization Precision&quot;,&quot;contentType&quot;:&quot;blog-post&quot;,&quot;formsBaseUrl&quot;:&quot;/_hcms/forms/&quot;,&quot;inlineMessage&quot;:true,&quot;target&quot;:&quot;#hs_form_target_module_152845875640548_blog_subscribe_1&quot;,&quot;formData&quot;:{&quot;cssClass&quot;:&quot;hs-form stacked&quot;}},&quot;canonicalUrl&quot;:&quot;https://www.antuit.ai/blog/driving-size-optimization-precision&quot;,&quot;pageId&quot;:&quot;49897799787&quot;,&quot;pageName&quot;:&quot;Driving Size Optimization Precision&quot;,&quot;formInstanceId&quot;:&quot;1&quot;,&quot;urlParams&quot;:{&quot;utm_campaign&quot;:&quot;Email&quot;,&quot;utm_medium&quot;:&quot;email&quot;,&quot;_hsmi&quot;:&quot;215809129&quot;,&quot;_hsenc&quot;:&quot;p2ANqtz--DJvpp2TLLDJ0UY_zk6HGqSYNJWVN7XfYR0IBisv3FdbmcO0Ir7FwiY5O0ijAddhMJwLrA96Uvdg3ibsZjUwrDLhGjKQ&quot;,&quot;utm_content&quot;:&quot;215809129&quot;,&quot;utm_source&quot;:&quot;hs_email&quot;},&quot;renderedFieldsIds&quot;:[&quot;email&quot;],&quot;formTarget&quot;:&quot;#hs_form_target_module_152845875640548_blog_subscribe_1&quot;,&quot;correlationId&quot;:&quot;ddcdcdfb-a1ff-43ad-86aa-2995df16c63e&quot;,&quot;contentType&quot;:&quot;blog-post&quot;,&quot;hutk&quot;:&quot;e339a8b18e1540115c6a0ce63689c1f6&quot;,&quot;captchaStatus&quot;:&quot;NOT_APPLICABLE&quot;,&quot;isHostedOnHubspot&quot;:true}"
    data-reactid=".hbspt-forms-0.7" placeholder="Email*Notification FrequencyLifecycle Stage"><iframe name="target_iframe_bdfe25aa-8716-4e0e-aaea-ed57996ec5c9_1" style="display:none;" data-reactid=".hbspt-forms-0.8"></iframe>
</form>

POST https://forms.hsforms.com/submissions/v3/public/submit/formsnext/multipart/4153407/93072635-b6cd-4507-9894-eb18726334f1

<form novalidate="" accept-charset="UTF-8" action="https://forms.hsforms.com/submissions/v3/public/submit/formsnext/multipart/4153407/93072635-b6cd-4507-9894-eb18726334f1" enctype="multipart/form-data"
  id="hsForm_93072635-b6cd-4507-9894-eb18726334f1_4588" method="POST"
  class="hs-form stacked hs-custom-form hs-form-private hsForm_93072635-b6cd-4507-9894-eb18726334f1 hs-form-93072635-b6cd-4507-9894-eb18726334f1 hs-form-93072635-b6cd-4507-9894-eb18726334f1_147cae99-b639-4829-8bf3-3755ff02ee7d"
  data-form-id="93072635-b6cd-4507-9894-eb18726334f1" data-portal-id="4153407" target="target_iframe_93072635-b6cd-4507-9894-eb18726334f1_4588" data-reactid=".hbspt-forms-1">
  <div class="hs_email hs-email hs-fieldtype-text field hs-form-field" data-reactid=".hbspt-forms-1.1:$0"><label id="label-email-93072635-b6cd-4507-9894-eb18726334f1_4588" class="" placeholder="Enter your "
      for="email-93072635-b6cd-4507-9894-eb18726334f1_4588" data-reactid=".hbspt-forms-1.1:$0.0"><span data-reactid=".hbspt-forms-1.1:$0.0.0"></span></label>
    <legend class="hs-field-desc" style="display:none;" data-reactid=".hbspt-forms-1.1:$0.1"></legend>
    <div class="input" data-reactid=".hbspt-forms-1.1:$0.$email"><input id="email-93072635-b6cd-4507-9894-eb18726334f1_4588" class="hs-input" type="email" name="email" required="" placeholder="Type your email address*" value="" autocomplete="email"
        data-reactid=".hbspt-forms-1.1:$0.$email.0" inputmode="email"></div>
  </div><noscript data-reactid=".hbspt-forms-1.2"></noscript>
  <div class="hs_submit hs-submit" data-reactid=".hbspt-forms-1.5">
    <div class="hs-field-desc" style="display:none;" data-reactid=".hbspt-forms-1.5.0"></div>
    <div class="actions" data-reactid=".hbspt-forms-1.5.1"><input type="submit" value="-" class="hs-button primary large" data-reactid=".hbspt-forms-1.5.1.0"></div>
  </div><noscript data-reactid=".hbspt-forms-1.6"></noscript><input name="hs_context" type="hidden"
    value="{&quot;rumScriptExecuteTime&quot;:1483.0999999046326,&quot;rumServiceResponseTime&quot;:1773.9000000953674,&quot;rumFormRenderTime&quot;:6.900000095367432,&quot;rumTotalRenderTime&quot;:1780.9000000953674,&quot;rumTotalRequestTime&quot;:286.59999990463257,&quot;lang&quot;:&quot;en&quot;,&quot;embedAtTimestamp&quot;:&quot;1654704766233&quot;,&quot;formDefinitionUpdatedAt&quot;:&quot;1603199639391&quot;,&quot;pageUrl&quot;:&quot;https://www.antuit.ai/blog/driving-size-optimization-precision?utm_campaign=Email&amp;utm_medium=email&amp;_hsmi=215809129&amp;_hsenc=p2ANqtz--DJvpp2TLLDJ0UY_zk6HGqSYNJWVN7XfYR0IBisv3FdbmcO0Ir7FwiY5O0ijAddhMJwLrA96Uvdg3ibsZjUwrDLhGjKQ&amp;utm_content=215809129&amp;utm_source=hs_email&quot;,&quot;pageTitle&quot;:&quot;Driving Size Optimization Precision&quot;,&quot;source&quot;:&quot;FormsNext-static-5.502&quot;,&quot;sourceName&quot;:&quot;FormsNext&quot;,&quot;sourceVersion&quot;:&quot;5.502&quot;,&quot;sourceVersionMajor&quot;:&quot;5&quot;,&quot;sourceVersionMinor&quot;:&quot;502&quot;,&quot;timestamp&quot;:1654704766241,&quot;userAgent&quot;:&quot;Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/102.0.5005.61 Safari/537.36&quot;,&quot;originalEmbedContext&quot;:{&quot;portalId&quot;:&quot;4153407&quot;,&quot;formId&quot;:&quot;93072635-b6cd-4507-9894-eb18726334f1&quot;,&quot;formInstanceId&quot;:&quot;4588&quot;,&quot;pageId&quot;:&quot;49897799787&quot;,&quot;region&quot;:&quot;na1&quot;,&quot;pageName&quot;:&quot;Driving Size Optimization Precision&quot;,&quot;inlineMessage&quot;:true,&quot;rawInlineMessage&quot;:&quot;Thanks for submitting the form.&quot;,&quot;hsFormKey&quot;:&quot;f4648d5216b145d5ee08b78b5f71da86&quot;,&quot;target&quot;:&quot;#hs_form_target_form_480575933&quot;,&quot;contentType&quot;:&quot;blog-post&quot;,&quot;formsBaseUrl&quot;:&quot;/_hcms/forms/&quot;,&quot;formData&quot;:{&quot;cssClass&quot;:&quot;hs-form stacked hs-custom-form&quot;}},&quot;canonicalUrl&quot;:&quot;https://www.antuit.ai/blog/driving-size-optimization-precision&quot;,&quot;pageId&quot;:&quot;49897799787&quot;,&quot;pageName&quot;:&quot;Driving Size Optimization Precision&quot;,&quot;formInstanceId&quot;:&quot;4588&quot;,&quot;urlParams&quot;:{&quot;utm_campaign&quot;:&quot;Email&quot;,&quot;utm_medium&quot;:&quot;email&quot;,&quot;_hsmi&quot;:&quot;215809129&quot;,&quot;_hsenc&quot;:&quot;p2ANqtz--DJvpp2TLLDJ0UY_zk6HGqSYNJWVN7XfYR0IBisv3FdbmcO0Ir7FwiY5O0ijAddhMJwLrA96Uvdg3ibsZjUwrDLhGjKQ&quot;,&quot;utm_content&quot;:&quot;215809129&quot;,&quot;utm_source&quot;:&quot;hs_email&quot;},&quot;renderedFieldsIds&quot;:[&quot;email&quot;],&quot;rawInlineMessage&quot;:&quot;Thanks for submitting the form.&quot;,&quot;hsFormKey&quot;:&quot;f4648d5216b145d5ee08b78b5f71da86&quot;,&quot;formTarget&quot;:&quot;#hs_form_target_form_480575933&quot;,&quot;correlationId&quot;:&quot;62ec1183-0e55-49e1-a70a-2b2ac0ffe17a&quot;,&quot;contentType&quot;:&quot;blog-post&quot;,&quot;hutk&quot;:&quot;e339a8b18e1540115c6a0ce63689c1f6&quot;,&quot;captchaStatus&quot;:&quot;NOT_APPLICABLE&quot;,&quot;isHostedOnHubspot&quot;:true}"
    data-reactid=".hbspt-forms-1.7"><iframe name="target_iframe_93072635-b6cd-4507-9894-eb18726334f1_4588" style="display:none;" data-reactid=".hbspt-forms-1.8"></iframe>
</form>

Text Content

This website stores cookies on your computer. These cookies are used to collect
information about how you interact with our website and allow us to remember
you. We use this information to improve and customize your browsing experience
and for analytics and metrics about our visitors.

Accept
 * Blog
 * Insights & Research
   
   * In the News
   * Research & Ebooks
   * Podcasts & Webinars
   * Videos
 * Events
 * Company
   
   * Careers
   * Partners
   * Media & Press Releases

Contact Us
 * Consumer Products AI
   
   * Demand Forecasting & Planning
   * Available to Promise
 * Retail AI
   
   * Assortment & Size Optimization
   * Forecasting, Allocation & Replenishment
   * Lifecycle Pricing
 * Customers
   
   * Key Clients
   * Case Studies
 * Our AI
   
   * Platform
   * Demand Modeling Studio
   * Solution Sheets
 * Who We Are
   
   * Why antuit.ai
   * Awards & Recognition
 * Blog
 * Insights & Research
   
   * In the News
   * Research & Ebooks
   * Podcasts & Webinars
   * Videos
 * Events
 * Company
   
   * Careers
   * Partners
   * Media & Press Releases
 * Contact Us





DRIVING SIZE OPTIMIZATION PRECISION

June 30, 2021 | By David Barach | Retail, Inventory Optimization
    

During the last 12 months, fashion retailers heavily invested in tightening
assortments and improving their inventory efficiency. While these investments
are needed, all the benefits come undone if a customer cannot find their size.
Worse, tightening assortments exacerbates the size stock-out problem, damages
customer satisfaction, and creates significant financial pain unless size
allocation is accurate. A 20% size misallocation drops margin dollars by 50% if
markdown pricing is uniform across all sizes. 

What is a retailer saying when they show you incredible outfits at a great
price, but you can't find your size?

They're saying, "This is fabulous, just not for you."

In my prior post, I dove into the reasons behind this financial loss, the
challenges merchants are experiencing, and the shortcomings of traditional size
optimization tools. This post will address 7 key areas on how retailers can
achieve precision size optimization given all their challenges and
constraints.  

The Foundational Forecast

Essential with any size optimization is the foundational forecast of consumer
demand. This forecast must understand the differences between regions, stores,
online, and even the fulfillment type. 

State-of-the-art forecasts serve as the backbone for optimization and planning
technologies such as allocation, fulfillment, assortment, and pricing decisions.
This approach connects operations across different decision points to accomplish
common goals.

Solving Data Sparsity Challenges

Data sparsity is the most crucial obstacle for precise size optimization. Even
if retailers had perfect data history, data cleanliness, and data access - which
they do not - there remains the issue of the one-time, seasonal nature of
fashion items. There is no history. Worse, if a size range changes from S/M/L to
2,4,6,8,10 or if you decide to add new fringe sizes. How do you manage the
demand transference between these?

To solve these data sparsity problems, you begin by:

 * Building profiles at every level of a custom sizing hierarchy that includes
   product levels and attributes.  
 * Analyze profiles at each hierarchy level for data sufficiency, and then
   assign a weighting based on the sparsity of data at each level for the
   profile.
 * If needed, a composite size profile is created by combining the multiple
   hierarchy profiles according to weight.  

This process provides detailed level profiles where selling volumes are
sufficient, and where it isn't, profiles are inherited from higher levels.

This sparsity-weighted aggregate methodology allows the system to provide
accurate profile values for new sizes compared to what has been purchased
before. If a product is ordered in a new size, the relative demand impact of
that size is borrowed from higher-level profiles and applied to the new size
level profile.

Finally, the weighting approach provides a much better basis for sales
imputation. Understanding where data sparsity can lead to flawed sales
imputation assumptions will avoid over or under allocation of core and fringe
sizes.

Providing Coverage Minimums

There are multiple methods to achieve coverage minimums, from a very complex
calculation to a straightforward approach. We've found that the straightforward
approach is a better solution through many retailer evaluations.

By establishing a threshold value, by store, for what defines a core size and
then defining the unit coverage minimum for the core sizes, you can apply
coverage minimum responsive to store/product selling without the complexity of
detailed rules sets. 

Establishing User Control

Size Optimization will provide no benefit if users do not trust the system,
regardless of how good it is. The most critical components to building trust are
visibility and control. Therefore, applications must provide a transparent
analysis of current profiles with an easy way for users to modify profile
details if required. A solution offers the best of both worlds by encompassing a
high degree of modeling automation and profile generation alongside powerful
tools for user review and entry, if needed, of profiles.  

Omnichannel  

Omnichannel must be natively built-in with the rest of the application, not as
an additional add-on or +/- logic external to all decisions. Profiles should
reflect store and for online sales independently as size demand differs
significantly based on channel. Hence, solutions should not aggregate or
intermix channel demand so that the distinctive size profiles are preserved.

Size profiling demand should also allow for ship-from-store (SFS) aspects of
location inventory. This profiling enables any given location size profile to
represent two demand sources: native sales and online sales fulfilled from store
stock. This aspect becomes even more crucial as retailers increase their stores
for online fulfillment.

Integration

Size profiling is an integral part of the merchant ordering process; therefore,
the solution must seamlessly integrate with any order management system (OMS).
High-performance optimization allows quick API-driven size order quantities
available as users write orders. Any value system provides intelligence within
the current OMS infrastructure to enable a retailer to enjoy the advantage of
advanced analytic determination of order quantities without replacing expensive
ordering systems.

Taking that last step

Size optimization remains an unprioritized solution in many retailers'
portfolios. It’s often an afterthought, because it remains at the end of an
exhausting planning process, performed right before cutting the order. But
what's worse, putting in that last 5% to ensure all your prior work pays off? Or
skipping the last part to get it done, but then seeing all your earlier hard
work not coming to fruition?  


Prev Post Next Post


SUBSCRIBE HERE!

Email*

Notification Frequency

Lifecycle Stage


Also of Interest:
 * Assortment Planning & Optimization
 * Trade Promotion & Marketing Optimization
 * Optimize Inventory for Omnichannel

Subscribe to our Newsletter





 * Consumer Products
   * Demand Forecasting & Planning
   * Available to Promise

 * Retail
   * Assortment & Size Optimization
   * Forecasting, Allocation & Replenishment
   * Lifecycle Pricing

 * Customers
   * Key Clients
   * Case Studies

 * Our AI
   * Platform
   * Demand Modeling Studio
   * Solution Sheets

 * Who We Are
   * Why antuit.ai
   * Awards & Recognition

 * Insights & Research
   * In the News
   * Research & Ebooks
   * Podcasts & Webinars
   * Videos

 * Company
   * Careers
   * Partners
   * Media & Press Releases

 * Blog
 * Events



Copyright 2022. All Right Reserved.
 * Privacy Policy
 * Terms & Conditions