www-live.goesr.woc.noaa.gov Open in urlscan Pro
137.75.88.9  Public Scan

URL: https://www-live.goesr.woc.noaa.gov/
Submission Tags: falconsandbox
Submission: On November 06 via api from US — Scanned from US

Form analysis 2 forms found in the DOM

GET https://search.usa.gov/search

<form id="mobile-searchForm" method="get" action="https://search.usa.gov/search">
  <!-- from legacy site -->
  <input type="hidden" name="affiliate" value="goes-r">
  <div class="ssdSearch">
    <div class="input-group custom-search-form">
      <input type="text" name="query" id="mobile-query-field" class="form-control" title="search terms" aria-label="search terms">
      <span class="input-group-btn">
        <button name="activate search" class="btn btn-primary" type="submit" onclick="document.forms.item('mobile-searchForm').submit()" ;="" title="submit search" aria-label="submit search">
          <span class="icon-search"></span>
        </button>
      </span>
    </div><!-- /input-group -->
  </div>
</form>

GET https://search.usa.gov/search

<form id="searchForm" method="get" action="https://search.usa.gov/search">
  <!-- from legacy site -->
  <input type="hidden" name="affiliate" value="goes-r">
  <div class="ssdSearch">
    <div class="input-group custom-search-form">
      <input type="text" name="query" id="query-field" class="form-control" title="search terms" aria-label="search terms">
      <span class="input-group-btn">
        <button name="activate search" class="btn btn-primary" type="submit" onclick="document.forms.item('searchForm').submit()" ;="" title="submit search" aria-label="submit search">
          <span class="icon-search"></span>
        </button>
      </span>
    </div><!-- /input-group -->
  </div>
</form>

Text Content

Toggle navigation menu
 * Home
   
 * Mission
   * Overview
   * News
   * Spacecraft and Instruments
     * Spacecraft
     * Launch Vehicle
     * Instruments
     * ABI
     * •ABI Improvements
     * CCOR
     * EXIS
     * GLM
     * MAG
     * SEISS
     * SUVI
   * Ground System
     * Overview
     * Functions
     * Facilities and Antennas
   * Systems Engineering
   * GOES History
   * Unique Payload Services
   
   
 * Multimedia
     
   * Images
       
     * Data and imagery
       * GOES-16
       * GOES-17
       * GOES-18
       * GOES-19
     * Spacecraft and Instruments
         
       * Spacecraft
       * ABI
       * CCOR
       * EXIS
       * GLM
       * MAG
       * SEISS
       * SUVI
     * Ground System
     * Launch Activities
       * GOES-R
       * GOES-S
       * GOES-T
       * GOES-U
     * Events and Conferences
   * Videos
     * Data and imagery
       * GOES-16
       * GOES-17
       * GOES-18
       * Proving
         Ground
     * Earth from Orbit
     * Launches
     * Mission
     * Spacecraft Development
     * Space Weather
     * For Kids
   * Print
   * Games, Apps and Models
   * Infographics
   * Logos
   
   
 * User Info
   * Overview
   * Conferences/Events
   * User Systems
     * Overview
     * GOES Rebroadcast
     * HRIT/EMWIN
     * HRIT/EMWIN Receivers
     
   * Proving Ground
     * Overview
     * Cooperative Institutes
     * Demonstrations
     * Partners
     
   * Research
   * Training
   * Data Products
     * Overview
       
       
     * Sample Data
     * Product Validation Schedules
     * Science Applications
       Fact Sheets
     * Algorithm Working Group
     
   * GOES-16 Transition to Operations
   * GOES-17 Transition to Operations
   * GOES-18 Transition to Operations
   * GOES-19 Transition to Operations
   * GOES-17 ABI Performance
   * ABI Scan Mode Info
   
   
   
 * Resources
   * Acronyms
   * Documents
   * Education
   * FAQs
   * Related Links
   * Scientific Publications
   * Fact Sheets
   * Merchandise
   
   
 * Organization
   * Program Team
   * Org Chart
   * Contact Us
   







GEOSTATIONARY OPERATIONAL ENVIRONMENTAL SATELLITES—R SERIES
A COLLABORATIVE NOAA & NASA PROGRAM



More Information NOAA Coverage Live Stream GOES Blog

LIVE LAUNCH COVERAGE

NOTE: the following links in general carry mixed agency content until launch
day/time.

 * NOAA Satellites Twitter
 * NASA TV Live Stream
 * NASA GOES-T Blog
 * NOAA NESDIS Launch/Mission Info

RELATED CONTENT

The GOES-T launch window on January 8, 2022 is open XX:YY – AA:BB EDT.

 * Basic Launch Info
   
 * Mission NEWS/STATUS
 * GOES-T Road To Launch IMAGES
 * GOES-T Road To Launch VIDEO
 * GOES-T Launch Vehicle




EARTH FROM ORBIT

This new video series features significant weather events and environmental
hazards, as seen by NOAA satellites.

View Videos



NOAA RELEASES INITIAL IMAGERY FROM THE GOES-19 LIGHTNING MAPPER

The GOES-19 GLM is now continuously observing lightning over the Western
Hemisphere.

Feature Story



GOES-R/GEOXO QUARTERLY NEWSLETTER

ISSUE 46, 2ND AND 3RD QUARTER 2024

The latest GOES-R/GeoXO quarterly newsletter is now
available.

Download All Newsletters



NOAA DEBUTS FIRST IMAGERY FROM GOES-19

On Sept. 18, 2024, NOAA shared the first images of the Western Hemisphere from
its GOES-19 satellite.

Feature Story



GOES-U REACHES GEOSTATIONARY ORBIT,
NOW DESIGNATED GOES-19

On July 7, 2024, GOES-U executed its final engine burn, placing the satellite in
geostationary orbit 22,236 miles above Earth.

News Release



GOES-U HEADS TO ORBIT
FOR HISTORIC MISSION

GOES-U launched on June 25, 2024,
at 5:26 p.m. EDT

News Release



GOES-U ARRIVES AT KENNEDY SPACE CENTER

The satellite is in Florida to begin final preparations for its upcoming launch.

Feature Story GOES-U Launch Page



GOES-U ROAD TO LAUNCH

The satellite is entering the final stage of preparations before liftoff.

Feature Story GOES-U Launch Page



EARTH FROM ORBIT

This new video series features significant weather events and environmental
hazards, as seen by NOAA satellites.

View Videos



NOAA RELEASES INITIAL IMAGERY FROM THE GOES-19 LIGHTNING MAPPER

The GOES-19 GLM is now continuously observing lightning over the Western
Hemisphere.

Feature Story

PrevNext
1
2
3
4
5
6
7
8


HIGHLIGHTS :

Mission Overview

Spacecraft

Earth NOW from GOES

Launches

Operations

News&Events




IMAGES:


2 / 10


 * GOES-U Media Day at Astrotech
 * GOES-U in Clean Room at Astrotech
 * NOAA Shares First Imagery from GOES-19 SUVI Instrument
 * NOAA Releases Initial Imagery from the GOES-19 Lightning Mapper
 * NOAA Shares First Data from GOES-19 EXIS Instrument
 * First GOES-19 16-channel Image
 * First GOES-19 GeoColor Full Disk Image
 * GOES-19 GMAG First Public Data
 * GOES-19 SEISS First Public Data
 * GOES-U Ready for Launch
 * GOES-U Launches
 * GOES-U Launch
 * GOES-U Booster Landing
 * GOES-U Rollout for Launch
 * GOES-U Vertical on Launch Pad
 * GOES-U Roll to Launch Pad
 * Transporting GOES-U to Launch Complex 39A
 * GOES-U Departs Astrotech
 * GOES-U Encapsulated in Rocket Fairing
 * Media View GOES-U Ahead of Launch
 * GOES-U Media Day at Astrotech
 * GOES-U in Clean Room at Astrotech
 * NOAA Shares First Imagery from GOES-19 SUVI Instrument
 * NOAA Releases Initial Imagery from the GOES-19 Lightning Mapper



Spacecraft:
1 2 3 4

Home Contact Us FOIA Privacy Disclaimer Accessibility FAQs Survey USA.gov
Information Quality Site Map



Previous Highlight Panel Close Panel Next Highlight Panel


MISSION OVERVIEW

Description | More Details | Video


WHAT IS THE GOES-R SERIES?

NOAA's latest generation of geostationary weather satellites

The Geostationary Operational Environmental Satellite (GOES) – R Series is the
nation’s most advanced fleet of geostationary weather satellites. The GOES-R
Series significantly improves the detection and observation of environmental
phenomena that directly affect public safety, protection of property and our
nation’s economic health and prosperity.

The satellites provide advanced imaging with increased spatial resolution and
faster coverage for more accurate forecasts, real-time mapping of lightning
activity, and improved monitoring of solar activity and space weather.

The GOES-R Series is a four-satellite program (GOES-R/S/T/U) that will extend
the availability of the operational GOES satellite system through 2036.

WHY THE GOES-R SERIES?

 * Improved hurricane track and intensity forecasts
 * Increased thunderstorm and tornado warning lead time
 * Earlier warning of ground lightning strike hazards
 * Better detection of heavy rainfall and flash flooding risks
 * Improved transportation safety and aviation route planning
 * Improved detection of low cloud/fog
 * Improved air quality warnings and alerts
 * Better fire detection and intensity estimation
 * Improved solar flare warnings for communications and navigation disruptions
 * More accurate monitoring of energetic particles responsible for radiation
   hazards to humans and spacecraft
 * Better monitoring of space weather to improve geomagnetic storm forecasting

BEYOND ENVIRONMENTAL SENSING

Remote environmental sensing is only part of the GOES-R Series mission. The
satellites also provide unique capabilities to relay data directly to users to
meet critical needs

DATA COLLECTION SYSTEM (DCS)

DCS is a satellite relay system used to collect information from Earth-based
data collection platforms that transmit in-situ environmental sensor data from
more than 20,000 platforms across the hemisphere.

GOES REBROADCAST (GRB)

GOES Rebroadcast provides the primary relay of full resolution, calibrated,
near-real-time direct broadcast space relay of Level 1b data from each
instrument and Level 2 data from the Geostationary Lightning Mapper (GLM). GRB
replaces the GOES VARiable (GVAR) service

HIGH RATE INFORMATION TRANSMISSION/EMERGENCY MANAGERS WEATHER INFORMATION
NETWORK (HRIT/EMWIN)

The Emergency Managers Weather Information Network (EMWIN) is a direct service
that provides users with weather forecasts, warnings, graphics and other
information directly from the National Weather Service (NWS) in near real-time.
The HRIT service is a new high data rate (400 Kpbs) version of the previous LRIT
(Low Rate Information Transmission), broadcasting GOES-R Series satellite
imagery and selected products to remotely-located user terminals.

SEARCH AND RESCUE SATELLITE AIDED TRACKING (SARSAT)

The SARSAT system detects and locates mariners, aviators and other recreational
users in distress. The GOES-R Series continues the legacy function of the SARSAT
system on board NOAA’s GOES satellites. This system uses a network of satellites
to quickly detect and locate signals from emergency beacons onboard aircraft,
vessels and from handheld personal locator beacons. The GOES-R Series SARSAT
transponder operates with a lower uplink power than the current system (32 bBm),
enabling GOES-R Series satellites to detect weaker beacon signals.


MORE DETAILS

 * Mission Overview Page
 * Launch and Orbit
 * FAQs
 * GOES History
 * Download GOES-R Series Brochure
 * Multimedia


WHAT IS GOES-R


Previous Highlight Panel Close Panel Next Highlight Panel


GOES-R SPACECRAFT

Description | More Details | Video
VIEWS: 1 2 3 4 5

The GOES-R series spacecraft bus is three-axis stabilized and designed for 10
years of on-orbit operation preceded by up to five years of on-orbit storage.
The spacecraft carries three classifications of instruments: nadir-pointing,
solar-pointing, and in-situ. Visit the Spacecraft page of this site for more
information.

Explore the GOES-R Series spacecraft: Use the quick view buttons above to swap
the views of the spacecraft, launch the spacecraft 3d model using the button
below, watch the video below and use the Spacecraft & Instruments links below.




SPACECRAFT SPECIFICATIONS

 * 6.1 m x 5.6 m x 3.9 m (20.0 ft x 18.4 ft x 12.8 ft)
 * 2,857 kg (6,299 lbs) dry mass
 * 5,192 kg (11,446 lbs) at launch (fueled)


MORE DETAIL:
SPACECRAFT & INSTRUMENTS

 * Spacecraft page
 * Instruments overview
 * Advanced Baseline Imager (ABI)
 * Extreme Ultraviolet and X-ray Irradiance Sensors (EXIS)
 * Geostationary Lightning Mapper (GLM)
 * Magnetometer (MAG)
 * Space Environment In-Situ Suite (SEISS)
 * Solar Ultraviolet Imager (SUVI)


GOES-R "BEAUTY PASS" VIDEO

A fly by in space of GOES-R. Note: there is no audio, therefore no closed
captions.


Previous Highlight Panel Close Panel Next Highlight Panel


EARTH FROM GOES

Description | More Details

The most recent images of Earth's western hemisphere from the GOES
constellation.

GOES East: Full Disk GeoColor CONUS US NE US SE More
GOES West: Full Disk GeoColor PACUS US NW US SW More

ABOUT THE VIEWS

Environmental satellites provide data in several different formats. The most
commonly used channels on weather satellites are the visible, infrared, and
water vapor.

Visible satellite images, which look like black and white photographs, are
derived from the satellite’s signals. Clouds usually appear white, while land
and water surfaces appear in shades of gray or black. The visible channel
reflects solar radiation. Clouds, the Earth's atmosphere, and the Earth's
surface all absorb and reflect incoming solar radiation. Since visible imagery
is produced by reflected sunlight (radiation), it is only available during
daylight.

In the infrared (IR) channel, the satellite senses energy as heat. The Earth’s
surface absorbs about half of the incoming solar energy. Clouds and the
atmosphere absorb a much smaller amount. The Earth’s surface, clouds, and the
atmosphere then re-emit part of this absorbed solar energy as heat. The infrared
channel senses this re-emitted radiation. Infrared imagery is useful for
determining cloud features both at day and night.

Water vapor imagery is used to analyze the presence and movement of water vapor
moisture in the upper and middle levels of the atmosphere. The wavelength
spectrum used to detect water vapor is in the 6.7 to 7.3 micrometer wavelength
range. The darker regions in water vapor imagery are areas where very little
water vapor exists in the middle and upper troposphere, and the lighter regions
are very moist. Water vapor imagery is a very valuable tool for weather analysis
and prediction because water vapor imagery shows moisture in the atmosphere, not
just cloud patterns. This allows meteorologists to observe large-scale
circulation patterns even when clouds are not present.

NOAA WEATHER CONSTELLATION

The National Oceanic and Atmospheric Administration (NOAA) maintains two primary
constellations of environmental satellites: geostationary and polar-orbiting.
These satellites are part of NOAA's integrated observing system, which includes
satellites, radar, surface automated weather stations, weather balloons,
sounders, buoys, instrumented aircraft and other sensors, along with the data
management infrastructure needed for this system.

GEOSTATIONARY SATELLITES

Geostationary satellites orbit 35,800 km (22,300 miles) above Earth's equator at
speeds equal to Earth's rotation, which means they maintain their positions and
provide continuous coverage. Information from geostationary satellites is used
for short-term (1 day) weather forecasting and severe storm warning and
tracking.

POLAR-ORBITING SATELLITES

Polar-orbiting satellites make regular orbits around the Earth’s poles from
about 833 km (517 miles) above the Earth’s surface. The Earth constantly rotates
counterclockwise underneath the path of the satellite, making for a different
view with each orbit. Information from polar-orbiting satellites is used for
mid-range (3-7 day) forecasts and advanced warnings of severe weather.

GOES VIEW OF EARTH

GOES satellites continually view the continental United States, Pacific and
Atlantic Oceans, Central and South America, and Southern Canada. To fully cover
Alaska, Hawaii, the entire continental United States and the Pacific and
Atlantic Oceans (for tropical storms), NOAA operates two GOES satellites
simultaneously: GOES East and GOES West. GOES East is located at 75.2° W and
provides most of the U.S. weather information. GOES West is located at 137.2°W
over the Pacific Ocean. In addition to two operational satellites, NOAA also
maintains an on-orbit spare.

CONSTANT IMPROVEMENT

Since 1975, GOES have provided continuous imagery and data on atmospheric
conditions and solar activity (space weather). They have even aided in search
and rescue of people in distress. GOES data products have led to more accurate
and timely weather forecasts and better understanding of long-term climate
conditions. NASA builds and launches the satellites and NOAA operates them.

GOES-R SERIES LAUNCHES

GOES-R launched on November 19, 2016, and was followed by GOES-S on March 1,
2018. GOES-T launched on March 1, 2022, and GOES-U is planned for launch on June
25, 2024.


MORE DETAILS

 * NOAA Satellite Missions
 * Two Orbits, One Mission
 * GOES History


Previous Highlight Panel Close Panel Next Highlight Panel


LAUNCH AND ORBIT

Description | More Details | Video

GOES-U, the final satellite in the GOES-R Series, launched on June 25, 2024.
GOES-U launch aboard a Falcon Heavy rocket from Launch Complex 39A, at NASA’s
Kennedy Space Center in Florida. GOES-U reached geostationary orbit on July 7,
2024, and was renamed GOES-19. After completing on-orbit checkout of its
instruments, systems, and data products, NOAA plans to put GOES-19 into
operations as GOES East, replacing GOES-16, in April 2025.

GOES-T, the third satellite in the GOES-R Series, launched on March 1, 2022.
GOES-T lifted off from Space Launch Complex 41 at Cape Canaveral Space Force
Station, Florida, aboard an Atlas V 541 rocket. GOES-T reached geostationary
orbit on March 14, 2022, and was renamed GOES-18. GOES-18 replaced GOES-17 as
the operational GOES West satellite at 137.0 degrees west longitude on January
4, 2023.

GOES-S launched on March 1, 2018 and was renamed GOES-17 when it reached
geostationary orbit on March 12, 2018. GOES-17 joined its sister satellite,
GOES-16, in orbit.

The first satellite in the series, GOES-R, launched on November 19, 2016, and
became GOES-16 when it reached geostationary orbit. GOES-16 replaced GOES-13 as
NOAA’s operational GOES East satellite at 75.2 degrees west longitude on
December 18, 2017. GOES-17 served as GOES West from February 12, 2019 until it
was replaced by GOES-18 on January 4, 2023. GOES-17 is now the on-orbit standby
for the operational constellation.

GOES satellites are placed into a geosynchronous orbit that keeps them over a
specific location on the earth. By maintaining a position hovering over a fixed
point on Earth's surface, GOES are able to constantly monitor atmospheric
conditions in a particular portion of the Earth's atmosphere. Note that
non-geosynchronous orbits (for example polar orbits) move over an ever-rotating
earth underneath them, therefore seeing a constantly changing view, which has
advantages for other types of missions.


MORE DETAILS

 * GOES-U launch webpage
 * GOES-U mission overview video
 * GOES-U fact sheet
 * GOES-U Falcon Heavy launch vehicle diagram
 * Launch photos
 * Launch videos
 * More on the launch vehicle
 * GOES schedule
   


GOES-R LAUNCH SEQUENCE AND DEPLOYMENTS


Previous Highlight Panel Close Panel Next Highlight Panel


OPERATIONS

GOES-16 | GOES-17 | GOES-18


GOES-16

GOES-16 became operational as NOAA’s GOES East on December 18, 2017, replacing
GOES-13. From its operational location of 75.2 degrees west longitude, GOES-16
is keeping watch over most of North America, including the continental United
States and Mexico, as well as Central and South America, the Caribbean, and the
Atlantic Ocean to the west coast of Africa.

Learn more about GOES-16’s transition to operations.

View GOES-16 operational imagery via the GOES East Image Viewer.


GOES-18

GOES-18 replaced GOES-17 as NOAA’s operational GOES West on January 4, 2023.
From its operational location of 137.0 degrees west longitude, GOES West is in
position to watch over the western contiguous United States, Alaska, Hawaii,
Mexico, Central America, and the Pacific Ocean to New Zealand.

Learn more about GOES-18’s transition to operations

View GOES-18 operational imagery via the GOES West Image Viewer


GOES-17

GOES-17 served as NOAA’s operational GOES West satellite from February 12, 2019,
through January 4, 2023. GOES-17 was moved to 104.7 degrees west longitude
between GOES East and GOES West and now serves as a backup for the operational
constellation.

Learn more about GOES-17’s transition to operations.

Learn more about cooling system issue and GOES-17 ABI performance.


Previous Highlight Panel Close Panel Next Highlight Panel


NEWS & EVENTS

News | Events | Calendar


RECENT NEWS

News Page
   


   OCTOBER


 * OCTOBER 29, 2024: NOAA SHARES FIRST IMAGERY FROM GOES-19 SUVI INSTRUMENT
   
   GOES-19 imagery of the Oct. 3, 2024, solar flare shown in six extreme
   ultraviolet channels. The clearest depiction of the flare is in the 131 Å
   channel (top center).
   
   On Oct. 29, 2024, NOAA shared the first imagery from the GOES-19 Solar
   Ultraviolet Imager (SUVI). The GOES-19 SUVI, which launched on June 25, 2024,
   began observing the sun on Sept. 24, 2024. On Oct. 3, 2024, the GOES-19 SUVI
   captured an X9 solar flare, the most powerful flare so far in the current
   solar cycle. The sun’s 11-year activity cycle has entered the solar maximum
   period, meaning phenomena such as solar flares and coronal mass ejections are
   occurring more frequently than during other parts of the solar cycle. SUVI
   monitors the sun in the extreme ultraviolet portion of the electromagnetic
   spectrum to watch for hazardous space weather that could affect Earth.

   


 * OCTOBER 17, 2024: NOAA RELEASES INITIAL IMAGERY FROM THE GOES-19 LIGHTNING
   MAPPER
   
   
   NOAA Releases Initial Imagery from the GOES-19 Lightning Mapper
   
   On Oct. 17, 2024, NOAA shared initial imagery from the GOES-19 lightning
   Mapper. The GOES-19 Geostationary Lightning Mapper (GLM) instrument, launched
   on June 25, 2024, is now continuously observing lightning over the Western
   Hemisphere. Recently, the GOES-19 GLM detected and monitored lightning
   activity in two extremely hazardous hurricanes – Helene and Milton. Lightning
   activity in the outer rainbands and eyewalls of these hurricanes was
   associated with rapid intensification. Frequent lightning outside the
   Hurricane Milton’s core was associated with intense rain bands that produced
   widespread flash flooding and tornadoes across Florida on Oct. 9, 2024.
   GOES-19 is currently undergoing post-launch testing, which includes
   validation and calibration of its instruments, systems and data to prepare it
   for operations. NOAA plans for GOES-19 to replace GOES-16 as GOES East in
   April 2025

   


 * OCTOBER 3, 2024: GOES-R/GEOXO NEWSLETTER, APRIL – SEPTEMBER 2024
   
   
   2024 Lightning Science Meeting attendees
   
   The GOES-R/GeoXO quarterly newsletter for April – September 2024 is now
   available. We successfully launched the final satellite in the GOES-R Series!
   Congratulations to the team for achieving this milestone! After reaching
   geostationary orbit on July 7, GOES-U was renamed GOES-19. Post-launch
   testing is underway, and I look forward to GOES-19 becoming GOES East next
   April. GOES-19 hosts a new space weather instrument, CCOR-1, on behalf of
   NOAA’s Space Weather Follow-On Program, which will observe the solar corona
   and provide critical data for space weather forecasting. There has also been
   a lot of progress on GeoXO. We selected vendors to build the spacecraft and
   the ACX, OCX and LMX instruments and are on track to complete the Mission
   Definition Review in late 2024.

   

   


   SEPTEMBER


 * SEPTEMBER 24, 2024: NOAA SHARES FIRST DATA FROM GOES-19 EXIS INSTRUMENT
   
   
   First data from the GOES-19 EXIS. Image credit: NOAA/NASA
   
   The Extreme Ultraviolet and X-ray Irradiance Sensors (EXIS) onboard NOAA’s
   GOES-19 satellite are powered on, performing well and observing the sun. On
   Sept. 14 2024, EXIS observed an X-class “extreme” solar flare that erupted
   from an active region of the sun that had just rotated into Earth’s view.
   Solar flares are huge eruptions of energy on the sun and often produce clouds
   of plasma traveling more than a million miles per hour. When these plasma
   clouds reach Earth, they can cause radio communications blackouts,
   disruptions to electric power grids, errors in GPS navigation, and hazards to
   satellites and astronauts. This particular flare resulted in aurorae visible
   as far south as Texas. EXIS, with its multiple sensors, can observe and
   quantify the light from solar flares and help determine in real-time whether
   a flare will affect us on Earth. EXIS data will provide NOAA’s Space Weather
   Prediction Center with early indications of impending space weather storms so
   forecasters can issue alerts, watches and warnings.

   


 * SEPTEMBER 18, 2024: NOAA DEBUTS FIRST IMAGERY FROM GOES-19
   
   
   
   On Sept. 18, 2024, NOAA shared the first images of the Western Hemisphere
   from its GOES-19 satellite. The satellite’s Advanced Baseline Imager (ABI)
   instrument recently observed a number of weather events, environmental
   phenomena, and striking views of Earth. Wildfires in the Midwest and the
   Amazon blanketed nearby areas with smoke. Storms flared up over the Southeast
   and a low-pressure system over Canada brought severe weather. Tropical Storm
   Francine formed in the Gulf of Mexico and quickly developed into a hurricane,
   making landfall in Louisiana. GOES-19 also captured mesmerizing von Kármán
   vortices around Guadalupe island, cloud streets over Virginia, and cumulus
   clouds over the Midwest. GOES-19 is currently undergoing post-launch testing,
   which includes validation and calibration of its instruments, systems and
   data to prepare it for operations. NOAA plans for GOES-19 to replace GOES-16
   as GOES-East in April 2025.

   


 * SEPTEMBER 13, 2024: EARTH FROM ORBIT: HURRICANE FRANCINE SLAMS NORTHERN GULF
   COAST
   
   
   
   On Sept. 11, 2024, NOAA satellites monitored Hurricane Francine as it made
   landfall in Louisiana as a Category 2 hurricane. Francine developed into a
   tropical storm in the Gulf of Mexico on Sept. 9, as the historical peak of
   Atlantic hurricane season approached. The storm brought flash flooding and
   caused widespread power outages in Louisiana, Mississippi and Alabama.
   GOES-16 (GOES-East) watched in near real-time as Francine developed into a
   tropical storm and intensified into a hurricane. The satellite provided a
   detailed look of the storm and monitored cloud top cooling and lightning
   activity within the hurricane.

   


 * SEPTEMBER 4, 2024: NOAA SHARES FIRST DATA FROM GOES-19 SEISS INSTRUMENT
   
   
   
   The Space Environment In-Situ Suite (SEISS) instrument onboard NOAA's GOES-19
   satellite on June 25, 2024, is now sending radiation data back to Earth. Data
   collected from SEISS over the three-day time period from August 23–25, 2024,
   show a number of radiation belt disturbances. The radiation belts are regions
   of space around Earth filled with energetic electrons and protons that can
   damage or interfere with satellite electronics. The GOES-19 SEISS
   Magnetospheric Particle Sensor - High Energy observed several large dropouts
   followed by rapid increases in the radiation belt electron and proton fluxes
   during these disturbances. Following the rapid increases, MPS-HI observed
   periodic "drift echoes" (short duration flux enhancements), most clearly in
   the three lowest-energy proton channels (96 keV, 138 keV, and 193 keV
   traces), as these enhanced fluxes repeatedly drifted around the Earth and
   passed by the GOES-19 satellite. Once GOES-19 assumes its operational role as
   NOAA’s GOES-East satellite, the Space Weather Prediction Center will use
   GOES-19’s SEISS data to issue solar radiation storm and radiation belt
   alerts.

   

   


   AUGUST


 * AUGUST 22, 2024: EARTH FROM ORBIT: HURRICANE ERNESTO
   
   
   
   On Aug. 14, 2024, NOAA satellites watched Tropical Storm Ernesto intensify
   into a hurricane. The storm brought strong winds and flooding to the Virgin
   Islands and Puerto Rico before moving northward. As it traveled northward
   over the Atlantic Ocean toward Bermuda, Ernesto intensified into a Category 2
   hurricane. On Aug. 17, Hurricane Ernesto made landfall in Bermuda as a
   Category 1 hurricane. Hurricane Ernesto also caused dangerous swells and rip
   currents along the U.S. East Coast. GOES-16 monitored the storm as it
   developed and intensified in near real-time, helping forecasters determine
   what areas would be impacted. Infrared imagery from GOES-16 indicated what
   areas of the hurricane were the most intense. The GOES-16 Geostationary
   Lightning Mapper also captured lightning activity within the storm.

   


 * AUGUST 15, 2024 : EARTH FROM ORBIT: A LOOK BACK AT HURRICANE DEBBY
   
   
   
   In early August 2024, NOAA satellites tracked Debby, a storm that impacted
   Florida’s Big Bend region near Steinhatchee before moving up the East Coast,
   causing widespread flooding and damaging winds as far north as New York state
   with numerous destructive tornadoes along its path. NOAA’s GOES-16 satellite
   monitored and tracked the storm in near real-time as it developed and moved
   northward. GOES-16 imagery revealed details such as cloud top cooling, winds
   and lightning activity, which help estimate a storm’s intensity.

   


 * AUGUST 13, 2024 : NOAA SHARES FIRST DATA FROM GOES-19 MAGNETOMETER
   
   
   First data from the GOES-19 GMAG.
   
   The Goddard Magnetometer (GMAG) instrument, launched onboard NOAA’s GOES-19
   satellite on June 25, 2024, is now transmitting magnetic field measurements
   down to Earth. On July 23, 2024, the GOES-19 GMAG captured a space weather
   phenomenon known as electromagnetic ion cyclotron waves. These waves play a
   significant role in controlling the levels of dangerous energetic particles
   that can cause damage to satellites and harm astronauts. GMAG space weather
   products can help to improve forecasts of the likelihood of elevated levels
   of dangerous energetic particles.


 * AUGUST 1, 2024 : EARTH FROM ORBIT: NOAA SATELLITE MONITOR WILDFIRES
   
   
   
   Roughly 100 wildfires are raging out of control across the western United
   States and hundreds more are burning in Canada, destroying homes, forcing
   evacuations, and affecting air quality. NOAA satellites have been closely
   monitoring these blazes, including California’s Park Fire, which is currently
   the largest active wildfire in the U.S. The Park Fire, which started on July
   24, 2024, is believed to have been ignited by arson. A suspect has been
   arrested, accused of pushing a burning car into a gully, sparking the blaze.
   As of Aug. 1, the fire has consumed 392,480 acres across Butte, Plumas,
   Shasta, and Tehama counties. Fueled by very dry grass and brush, and driven
   by strong winds, the fire is only 18% contained.

   


   JULY


 * JULY 19, 2024 : EARTH FROM ORBIT: SEVERE THUNDERSTORMS RACE THROUGH THE
   MIDWEST
   
   
   
   At the end of a humid day in the Midwest, GOES East watched as a derecho
   ripped through the region on July 15. The storm system developed and moved
   east across Iowa before reaching Illinois, Indiana and southwest Michigan.
   The Chicago National Weather Service office confirmed the derecho spawned at
   least 19 tornadoes in the Chicagoland area. GOES East saw the storms grow in
   size and intensity over Iowa. The Advanced Baseline Imager onboard GOES East
   captured infrared imagery revealing the structure of the storm and where it
   was the most intense. The Geostationary Lightning Mapper on GOES East also
   measured lightning within the storm system.


 * JULY 11, 2024 : EARTH FROM ORBIT: HURRICANE BERYL KICKS OFF 2024 ATLANTIC
   HURRICANE SEASON
   
   Hurricane Beryl Kicks Off 2024 Atlantic Hurricane Season. Photo credit:
   NOAA/NASA/CIRA
   
   Hurricane Beryl, the first hurricane of the 2024 Atlantic hurricane season,
   rapidly strengthened to a Category 5 storm unusually early in the year. This
   explosive strengthening was fueled in part by exceptionally warm ocean
   temperatures. Beryl first formed as a tropical depression on June 28, 2024,
   with winds of 35 mph; within the first 24 hours, the storm rapidly
   intensified into a hurricane with winds of 75 mph. This was the farthest east
   that a hurricane has formed in the month of June. In the following 24 hours,
   Beryl underwent another instance of rapid intensification becoming an
   extremely dangerous Category 4 hurricane. At that point Beryl became the
   first Category 4 hurricane to form in the month of June. On July 2, 2024,
   Beryl became the earliest Category 5 hurricane observed in the Atlantic on
   record and only the second Category 5 hurricane to occur in July.


 * JULY 7, 2024 : GOES-U REACHES GEOSTATIONARY ORBIT, NOW DESIGNATED GOES-19
   
   GOES-U Reaches Geostationary Orbit, Now Designated GOES-19 Photo credit: NOAA
   
   On July 7, 2024, GOES-U executed its final engine burn, placing the satellite
   in geostationary orbit 22,236 miles above Earth. Upon reaching this
   milestone, GOES-U was renamed GOES-19. GOES satellites are designated with a
   letter prior to launch and a number once they achieve geostationary orbit.
   NOAA’s GOES-U satellite launched on June 25, 2024, lifting off from NASA’s
   Kennedy Space Center in Florida. The satellite launched aboard a SpaceX
   Falcon Heavy rocket from Space Launch Complex 39A. The launch was managed by
   NASA’s Launch Services Program, based at Kennedy Space Center.


   JUNE


 * JUNE 25, 2024: NOAA’S GOES-U HEADS TO ORBIT FOR HISTORIC MISSION
   
   Liftoff of NOAA's GOES-U satellite from NASA’s Kennedy Space Center on June
   25, 2024. Photo credit: NASA/Liz Wilk
   
   GOES-U, the latest of NOAA’s four advanced geostationary satellites, soared
   into orbit on a SpaceX Falcon Heavy rocket at 5:26 p.m. EDT from NASA’s
   Kennedy Space Center in Florida. At 10:18 p.m., mission managers confirmed
   the spacecraft’s solar arrays successfully deployed, and the spacecraft was
   operating on its own power. GOES-U will take about two weeks to reach its
   geostationary orbit. Once there, the satellite will be renamed GOES-19. On
   board GOES-U is a suite of seven instruments for collecting advanced imagery
   and atmospheric measurements, providing real-time mapping of lightning
   activity, and detecting approaching space weather hazards. Also on board for
   the first time is the compact coronagraph that will observe the sun’s
   outermost layer, called the corona, for large explosions of plasma that could
   produce geomagnetic solar storms.


 * JUNE 20, 2024: NASA COMPLETES FLIGHT READINESS REVIEW FOR GOES-U MISSION
   
   Crews transport NOAA’s GOES-U satellite from the Astrotech Space Operations
   facility to the SpaceX hangar at Launch Complex 39A at NASA’s Kennedy Space
   Center in Florida on Friday, June 14, 2024. Photo credit: NASA/Ben Smegelsky
   
   NASA, NOAA, SpaceX, and GOES-U mission managers met on June 20 to conduct a
   Flight Readiness Review at NASA’S Kennedy Space Center in Florida. During the
   review, teams provided an update on the mission status and certified the
   readiness to proceed with final launch preparation activities.


 * JUNE 18, 2024: FROM GOES TO GEOXO: PAST HIGHLIGHTS TO FUTURE HORIZONS
   
   
   
   For nearly 50 years, NOAA and NASA have partnered to develop NOAA’s
   geostationary satellites as part of the most sophisticated weather-observing,
   environmental monitoring, and space weather monitoring satellite system in
   the world. When NOAA’s GOES-U satellite is launched, it will be the fourth
   and final satellite in the GOES-R Series, and a bridge to a new age of
   advanced satellite technology – GeoXO. A new video, “From GOES to GeoXO: Past
   Highlights to Future Horizons,” offers a retrospective of the GOES legacy and
   a look to the future with GeoXO.


 * JUNE 15, 2024: GOES-U TRANSPORTED TO LAUNCH COMPLEX 39A
   
   
   Crews transport NOAA’s GOES-U from the Astrotech Space Operations facility to
   the SpaceX hangar at Launch Complex 39A at NASA’s Kennedy Space Center in
   Florida beginning on Friday, June 14, 2024, with the operation finishing
   early Saturday, June 15, 2024. Photo credit: NASA/Ben Smegelsky
   
   On June 15, 2024, GOES-U, encapsulated in its protective payload fairing,
   arrived at NASA Kennedy and SpaceX’s hangar at the spaceport’s Launch Complex
   39A. Crews began transporting the satellite from the Astrotech Space
   Operations Facility in Titusville, Florida, on June 14, with the operation
   finishing early on June 15. The next mission milestone includes connecting
   the encapsulated GOES-U to the SpaceX Falcon Heavy rocket that will launch it
   into space, ahead of rolling the stack out to the launch pad.


 * JUNE 13, 2024: GOES-U ENCAPSULATED IN ROCKET FAIRING
   
   
   Technicians prepare NOAA’s GOES-U for encapsulation inside payload fairing
   halves on Thursday, June 13, 2024, at the Astrotech Space Operations facility
   in Titusville near NASA’s Kennedy Space Center in Florida. Photo credit:
   NASA/Ben Smegelsky
   
   On June 13, 2024, technicians encapsulated the 20-foot-tall GOES-U satellite
   inside two payload fairing halves in preparation for connecting it to the
   Falcon Heavy rocket that will launch the satellite into space. During the
   ascent phase of the launch, the fairing halves will protect GOES-U from
   aerodynamic pressure and heating. Once GOES-U no longer requires this
   protection, approximately four minutes after liftoff, the halves will be
   jettisoned and return to Earth, where SpaceX crews will recover them for use
   on future missions.


 * JUNE 6, 2024: PRELAUNCH MEDIA VIEWING OF NOAA'S GOES-U SATELLITE
   
   
   Members of the news media had an opportunity for an up-close look at NOAA's
   GOES-U satellite on June 6, 2024, inside the Astrotech Space Operations
   Facility in Titusville, near NASA’s Kennedy Space Center in Florida. Photo
   credit: NASA/Kim Shiflett
   
   On June 6, 2024, NASA and NOAA hosted a media availability to view and
   photograph the GOES-U satellite at the Astrotech Space Operations payload
   processing facility in Titusville, Florida. Subject matter experts from NASA,
   NOAA, Lockheed Martin, and L3Harris Technologies provided a mission overview
   and answered questions about the satellite’s capabilities to assist
   meteorologists with predicting, observing, and tracking hazardous weather
   events on Earth and in space. The opportunity provided media with a last look
   at the final weather-observing and environmental monitoring satellite in
   NOAA’s GOES-R Series before technicians prepare it for launch aboard a SpaceX
   Falcon Heavy rocket. View photos and video of media day.


 * JUNE 4, 2024: GOES-U ART CHALLENGE SELECTIONS ANNOUNCED
   
   
   
   Last month, we challenged kids to draw how they imagine lightning looks
   either within the clouds or striking the ground, from above the sky or from
   their window. The GOES-U satellite will help scientists “see” lightning and
   predict where it will strike, helping meteorologists forecast the path of
   hurricanes, how strong severe thunderstorms can become, and when tornadoes
   will form. Thank you to everyone who participated! We chose 23 selections to
   feature.

   


   MAY


 * MAY 21, 2024: EARTH FROM ORBIT: OCEAN COLOR OBSERVATIONS
   
   
   
   Earth-observing satellites can see many different things, from changing
   seasons, weather patterns, and land features. From their unique view,
   satellites can also observe the deep swirling hues and colors of the ocean.
   With data from NASA’s PACE mission now available, NOAA and NASA are
   collaborating to develop applications for monitoring various indicators of
   ecosystem health. NOAA is also preparing for a more advanced Ocean Color
   instrument (OCX) to be flown on the future GeoXO mission. Having an ocean
   color instrument on a geostationary satellite such as GeoXO will allow
   continuous monitoring of a specific area. Additionally, its higher resolution
   imagery will improve observations of water clarity, chlorophyll
   concentrations, and help distinguish different types of phytoplankton. GeoXO
   will begin operating in the early 2030s, taking over after the GOES-R series
   reaches the end of its operational lifetime.


 * MAY 1, 2024: GOES-U ART CHALLENGE
   
   
   
   Have you ever watched a lightning storm from your window at home? Did you
   know that scientists can use weather satellites to watch lightning from
   above, too? On June 25, 2024, NOAA will be launching its latest weather
   satellite called GOES-U (GOES is short for Geostationary Operational
   Environmental Satellite). GOES-U will be the fourth and final satellite in
   the GOES-R group of satellites that keep an eye on Earth’s weather from
   space. GOES-U will also help scientists “see” lightning and predict where it
   will strike.
   
   Challenge: Draw how you imagine lightning to look, either within the clouds
   or striking the ground, from above the sky or from your window. Use any
   materials you would like – crayons, markers, pencils, pens, aluminum foil,
   paint, yarn, or anything else you find. The sky's the limit!
   
   The art challenge is open through May 31, 2024. Selected art submissions will
   appear online and in social media the first week of June. Visit our art
   challenge webpage for instructions for submitting your art.


   APRIL


 * APRIL 19, 2024: EARTH FROM ORBIT: CELEBRATING EARTH DAY WITH NOAA SATELLITES
   
   
   
   Throughout history, humans have wondered what Earth looked like from above.
   The advent of satellites changed our perspective dramatically, though early
   imagery was often blurry and lacked detail. Today, thanks to decades of
   technological advancements and innovation, the quality and resolution of
   satellite imagery has significantly improved. Satellites from NOAA and other
   organizations around the world capture vital information that help us stay
   safe, while also sharing the beauty of our planet from afar. For us, every
   day is Earth Day!


 * APRIL 12, 2024: EARTH FROM ORBIT: NOAA SATELLITES VIEW TOTAL SOLAR ECLIPSE
   
   
   
   On April 8, 2024, the moon moved directly between the Earth and sun,
   completely blocking the sun’s light and causing a total solar eclipse. During
   this event, the moon’s shadow passed over parts of Mexico, the United States,
   and Canada, and millions of people were treated to a celestial show where the
   sky darkened as if it were dawn or dusk throughout its path of totality. NOAA
   satellites play a crucial role in observing solar eclipses and their effects.
   GOES-16 and GOES-18 watched the moon’s shadow pass over the Earth. The
   satellites also captured the effects of the eclipse shadow on surface
   weather, including the drop in land and air surface temperature, and
   dissipation of clouds. Although solar eclipses happen all over the Earth
   about twice a year, the next total solar eclipse is not predicted to occur in
   the United States until March 30, 2033, where it will be seen from
   northwestern Alaska. Another will occur across parts of Canada, Montana, and
   the Dakotas on Aug. 23, 2044. However, it won’t be until Aug. 12, 2045, when
   one will cross the contiguous United States from California to Florida.


 * APRIL 11, 2024: FIRST QUARTER 2024 GOES-R/GEOXO NEWSLETTER
   
   
   
   The GOES-R/GeoXO quarterly newsletter for January – March 2024 is now
   available. Excitement is building for the GOES-U launch, now scheduled for
   June 25, 2024. SpaceX has repaired the liquid oxygen leak found during
   testing of the center core booster and launch preparations are back on track.
   The team is preparing for satellite fueling and encapsulation in the rocket
   fairing, conducting mission tests and rehearsals, and preparing for the
   remaining pre-launch reviews. Meanwhile, we are also working hard on GeoXO.
   The team conducted a successful kickoff meeting for the Sounder and work
   continues on the Imager. Evaluation boards are busy reviewing proposals for
   the spacecraft and the OCX, LMX, and ACX instruments. We plan to award the
   remaining GeoXO contracts by fall.


   MARCH


 * MARCH 26, 2024: EARTH FROM ORBIT: NOAA SATELLITES DETECT SEVERE SOLAR STORM
   
   
   
   On March 23–24, 2024, NOAA’s GOES-16 and GOES-18 satellites, and others
   operated by international partners, observed numerous flares erupt from the
   sun, including a powerful X-class solar flare. Additionally, a surge of
   extremely hot plasma, known as a coronal mass ejection (CME), raced toward
   Earth, resulting in geomagnetic storms and auroras. The EXIS instruments
   onboard both GOES-16 and GOES-18 detected the flare. The satellites’ SUVI
   instruments viewed the flare and the initiation of the CME. Solar activity is
   expected to increase as Solar Cycle 25 reaches its peak, which is expected
   this year. NOAA and partner satellites will continue to watch for increased
   solar activity.


 * MARCH 26, 2024: GOES-U MISSION OVERVIEW VIDEO
   
   
   
   NOAA is preparing for a milestone satellite launch in 2024. GOES-U will be
   the fourth and final satellite in NOAA’s latest generation of geostationary
   operational environmental satellites called the GOES-R Series—the nation’s
   most advanced weather-observing and environmental monitoring satellite
   system. Like the three other GOES-R Series satellites already in orbit,
   GOES-U will provide near real-time, high-resolution imagery that will deliver
   critical information for weather forecasts, severe weather prediction,
   lightning detection, and space weather forecasts. GOES U will also carry
   something new when it launches – a critical space weather instrument called
   the Compact Coronagraph-1, or CCOR-1. Being able to monitor the sun’s corona
   helps scientists detect and characterize coronal mass ejections that can
   spark geomagnetic storms here on Earth– the costliest type of space weather
   events that can cause widespread damage to power grids, satellites, and
   communication and navigation systems.


 * MARCH 26, 2024: NASA, SPACEX TARGET NEW LAUNCH DATE FOR NOAA WEATHER
   SATELLITE
   
   
   
   NASA and SpaceX now are targeting Tuesday, June 25, for the launch of GOES-U,
   the fourth and final satellite in National Oceanic and Atmospheric
   Administration’s (NOAA) Geostationary Operational Environmental Satellites
   (GOES) – R Series. The new launch date allowed time for teams to fully repair
   and test the Falcon Heavy core booster after a liquid oxygen leak was
   identified during routine new booster testing in February. NASA and SpaceX
   teams have resumed preparation of the GOES-U launch. GOES-U will launch on a
   SpaceX Falcon Heavy rocket from Launch Complex 39A at the agency’s Kennedy
   Space Center in Florida.


 * MARCH 7, 2024: EARTH FROM ORBIT: FIRES RAGE ACROSS TEXAS PANHANDLE
   
   
   
   Since late February, NOAA satellites have been tracking wildfires that spread
   through the Texas Panhandle. The largest wildfire in the state’s history
   broke out on Feb. 26 and quickly spread, fueled by dry, windy conditions. By
   Mar. 4, the blaze, known as the Smokehouse Creek fire, had become one of the
   largest fires in U.S. history. GOES-16 (GOES East) observed these fires in
   near-real time. This geostationary satellite keeps constant watch over the
   same geographic area over time, and helps to locate fires, detect changes in
   a fire’s behavior, and predict its direction. By combining data from multiple
   channels on its Advanced Baseline Imager (ABI) instrument, both a fire’s hot
   spot and associated smoke plume can be visualized.


 * MARCH 1, 2024: CELEBRATING WOMEN IN GEO
   
   
   
   In honor of Women’s History Month, a new web feature turns the spotlight on
   women in NOAA’s Office of Geostationary Earth Orbit Observations. Celebrating
   Women in GEO tells the stories of women who are driving innovation and who
   have been instrumental within its geostationary satellite programs. These
   remarkable individuals exemplify the spirit of innovation, dedication, and
   leadership, and are helping to shape the future of how we monitor our
   constantly changing world. Ultimately, the work these women do helps
   safeguard lives, protect communities, and preserve our planet’s vital natural
   resources. Their contributions are also inspiring future generations to
   pursue careers in science, technology, engineering, and mathematics (STEM).


 * MARCH 1, 2024: EARTH FROM ORBIT: GREAT LAKES ICE REACHES HISTORIC LOW
   
   
   
   As we leave meteorological winter behind, NOAA satellites have been
   monitoring the extent of ice coverage in the Great Lakes. The Great Lakes
   typically see peak ice coverage in late February to early March. Ice plays an
   important role in the ecosystems, economy, and coastal resilience of the
   Great Lakes. In 2024, ice coverage reached a historic low. A number of
   factors have contributed to the historic low this year, such as a strong El
   Niño and well above-average temperatures this winter. NOAA satellites have
   observed little ice on the Great Lakes this year.

   


   FEBRUARY


 * FEBRUARY 27, 2024: LAUNCH OF GOES-U SATELLITE DELAYED
   
   
   
   NASA and SpaceX are now targeting no earlier than May 2024 for the launch of
   NOAA's GOES-U satellite. The new date allows for additional testing and
   preparation of a new Falcon Heavy center core booster after a liquid oxygen
   leak was discovered during routine new booster testing. GOES-U is the fourth
   and final satellite in the GOES-R Series of advanced geostationary
   satellites.


 * FEBRUARY 8, 2024: EARTH FROM ORBIT: GOES-U ARRIVES AT KENNEDY SPACE CENTER
   
   
   
   The latest video in the Earth from Orbit series highlights GOES-U’s arrival
   at Kennedy Space Center last month. After being packed in a high-tech
   shipping container that acts as a mobile clean room, GOES-U caught a ride
   aboard a C-5 Super Galaxy aircraft from Buckley Space Force Base in Colorado
   to NASA’s Kennedy Space Center in Florida. After landing, the satellite was
   taken to Astrotech Space Operations, where it was removed from its shipping
   container, inspected, and placed onto a test stand. GOES-U will now undergo
   final preparations for a spring 2024 launch from Kennedy Space Center, where
   it will launch aboard a SpaceX Falcon Heavy rocket.

   


   JANUARY


 * JANUARY 23, 2024: GOES-U ARRIVES AT KENNEDY SPACE CENTER
   
   
   The satellite is in Florida to begin final preparations for its upcoming
   launch.
   
   NOAA’s GOES-U, the fourth and final satellite in the GOES-R Series of
   advanced weather-observing and environmental monitoring satellites, arrived
   at NASA’s Kennedy Space Center in Florida on Jan. 23, 2024, to begin final
   preparations for its upcoming launch. Shipping a satellite is no small feat.
   GOES-U is the size of a small school bus and weighs over 6,000 pounds! The
   spacecraft team at Lockheed Martin in Littleton, Colorado, where GOES-U was
   built, packed the satellite in a high-tech shipping container that protected
   its sensitive instruments and acted as a mobile clean room during transport.
   GOES-U was then driven to Buckley Space Force Base in Aurora, Colorado, and
   loaded on the C-5M Super Galaxy cargo transport that carried it to Florida.
   GOES-U safely landed at the NASA Launch and Landing Facility airstrip at
   Kennedy Space Center and was transported to the Astrotech Space Operations
   spacecraft processing facility in nearby Titusville, where it will go through
   a series of electrical tests to confirm it is working properly and mechanical
   configurations to prepare it for launch. GOES-U is scheduled to launch no
   earlier than April 30, 2024.


 * JANUARY 17, 2024: GOES-U: ROAD TO LAUNCH
   
   
   
   NOAA’s GOES-U, the fourth and final satellite in the Geostationary
   Operational Environmental Satellites (GOES) – R Series, the Western
   Hemisphere’s most advanced weather-observing and environmental monitoring
   system, is entering the final stage of preparations before liftoff. NASA and
   SpaceX are targeting no earlier than April 30 for the launch of GOES-U on a
   Falcon Heavy rocket. The GOES-U team has spent years building the instruments
   and spacecraft, integrating all the satellite’s components, and conducting
   rigorous testing to ensure it can withstand the harsh launch conditions and
   successfully take up residence 22,236 miles above Earth. Before that happens,
   the spacecraft must complete several final milestones. Learn more about
   GOES-U’s road to launch.


 * JANUARY 11, 2024: FOURTH QUARTER 2023 GOES-R/GEOXO NEWSLETTER
   
   
   The GOES-R Program and L3Harris celebrated the GOES-R ground system
   development contract close-out
   
   The GOES-R/GeoXO quarterly newsletter for October – December 2023 is now
   available. Happy New Year! It’s a very exciting time for the GEO Program! We
   are gearing up to launch the last of the GOES-R Series satellites. GOES-U
   will soon ship to Kennedy Space Center and begin final preparations for its
   planned launch in April. GeoXO also had a successful quarter. The final
   development RFP, for the ACX instrument, was released in October. Evaluation
   boards are busy reviewing proposals for the spacecraft and the OCX, LMX, and
   ACX instruments. GOES-16 and GOES-18 continue to provide critical data to
   keep us informed of and safe from severe weather and environmental hazards.
   The program is looking forward to more GEO successes in 2024!


 * JANUARY 4, 2024: EARTH FROM ORBIT: 2023 SATELLITE IMAGERY: A YEAR IN REVIEW
   
   
   
   NOAA satellites see our planet from a unique and captivating perspective.
   Every year, they capture the beauty and wrath of Mother Nature unfolding
   beneath them—devastating hurricanes, raging wildfires, erupting volcanoes—as
   well as the changing seasons, ocean color, nighttime lights, and more. The
   view of NOAA satellites isn’t just limited to Earth; they also capture images
   of our moon and the sun as we navigate our cosmic journey. As we head into
   the new year, take a look back at some satellite imagery highlights from
   2023.


   


   DECEMBER


 * DECEMBER 8, 2023: EARTH FROM ORBIT: ATMOSPHERIC RIVERS DRENCH THE PACIFIC
   NORTHWEST
   
   
   
   NOAA satellites monitored a series of storms from an atmospheric river that
   impacted the Pacific Northwest in early December 2023. On Dec. 4, the storms
   brought record-breaking rainfall, flooding, and significant snowfall to some
   areas. Atmospheric rivers are long, narrow belts of moisture that move
   through the atmosphere. GOES-18 (GOES West) tracked the band of moisture as
   it moved over the Pacific Ocean and into the Pacific Northwest in near
   real-time. NOAA satellites provide critical data for forecasting atmospheric
   weather river events and monitoring the weather conditions they bring.

   

   


   NOVEMBER


 * NOVEMBER 28, 2023: EARTH FROM ORBIT: 2023 ATLANTIC HURRICANE SEASON WRAPS UP
   
   
   
   NOAA satellites constantly monitor the ocean for tropical activity. As the
   2023 Atlantic hurricane season comes to a close, we’re looking back at this
   above-normal season. This season was very active in terms of the number of
   named storms, ranking fourth for most named storms in a year. The Atlantic
   basin saw 20 named storms in 2023. Seven of these were hurricanes and three
   intensified to major hurricanes (Category 3 or higher on the Saffir-Simpson
   Hurricane Wind Scale). An average season has 14 named storms, seven
   hurricanes and three major hurricanes. Although the season runs from June 1
   to Nov. 30, tropical and subtropical cyclone formation can occur at any time
   and NOAA satellites will be keeping watch.


 * NOVEMBER 02, 2023: EARTH FROM ORBIT: HURRICANE OTIS CAUSES CATASTROPHIC
   DAMAGE
   
   
   
   On Oct. 25, 2023, NOAA satellites monitored Hurricane Otis as it hit Mexico’s
   southern Pacific coast near Acapulco as a Category 5 storm. Otis was the
   strongest hurricane in the Eastern Pacific to make landfall in the satellite
   era. The hurricane brought storm surge, flooding, mudslides, and strong winds
   to the coast and caused widespread damage and fatalities in the region. GOES
   East and GOES West watched in near real-time as Otis rapidly intensified from
   a tropical storm to a Category 5 hurricane within a 24-hour period. The
   Geostationary Lightning Mapper (GLM) measured lightning within the eyewall
   while it was rapidly intensifying. Infrared imagery showed the structure of
   the storm as it developed and intensified before making landfall.


   OCTOBER


 * OCTOBER 19, 2023: EARTH FROM ORBIT: NOAA SATELLITES VIEW ANNULAR ECLIPSE
   
   
   
   On Oct. 14, NOAA satellites caught an annular eclipse as it traversed parts
   of North, Central, and South America. A solar eclipse occurs when the moon
   crosses between the Earth and the sun, and casts a shadow. An annular solar
   eclipse occurs when the moon is farther away from Earth when they pass each
   other. In this event, the moon does not completely block out the sun and
   causes a ring of fire to appear. NOAA’s GOES satellites viewed the moon’s
   shadow as it moved across the Earth in near real-time. The Solar Ultraviolet
   Imager (SUVI) onboard GOES East also captured the eclipse. SUVI observed the
   moon crossing in front of the sun. As the April 8, 2024 total solar eclipse
   approaches, NOAA satellites will be waiting to capture the event.


 * OCTOBER 12, 2023: THIRD QUARTER 2023 GOES-R/GEOXO NEWSLETTER
   
   
   GeoXO Imager System Requirements Review/System Definition Review
   participants. Photo credit: L3Harris
   
   The GOES-R/GeoXO quarterly newsletter for July – September 2023 is now
   available. The GOES-R and GeoXO programs accomplished a lot this quarter.
   GOES-U completed environmental testing and is preparing for its Pre-Shipment
   Review at the end of October. The ground, flight, and mission operations
   teams are busy conducting rehearsals and readiness exercises to prepare for
   the April 2024 launch. We awarded the second GeoXO development contract to
   build the Sounder and released three development RFPs this quarter – for the
   Lightning Mapper and Ocean Color instruments and the spacecraft. Also, the
   GeoXO Imager had a successful System Requirements Review/System Definition
   Review and is proceeding to the preliminary design phase. And we welcomed our
   new deputy program director, Brian Hall.


 * OCTOBER 06, 2023: EARTH FROM ORBIT: HEAVY RAINS CAUSE FLOODING IN NEW YORK
   CITY
   
   
   
   The remnants of Tropical Storm Ophelia over the Atlantic Ocean combined with
   a mid-latitude system arriving from the west unleashed more than eight inches
   of rain in parts of the New York metropolitan area on Sept. 28-29, 2023. NOAA
   satellites monitored conditions as torrential rain led to flood water
   coursing through streets and into basements, schools, subways, and vehicles
   throughout the nation’s most populous city. Data from GOES and JPSS were also
   used to produce flood maps that helped to determine the impact of the storm –
   where flooding was happening, what the extent was, how long it would last,
   and what damage occurred.

   


   SEPTEMBER


 * SEPTEMBER 14, 2023: NOAA’S GOES-U COMPLETES ENVIRONMENTAL TESTING
   
   
   
   GOES-U, the fourth and final satellite in NOAA’s GOES-R Series of advanced
   geostationary satellites, recently completed rigorous testing to ensure it
   can withstand the harsh conditions of launch and maintain functionality in
   orbit 22,236 miles above Earth. The testing process spanned nearly a year and
   was conducted by Lockheed Martin and SpaceX personnel at the Lockheed Martin
   facility in Littleton, Colorado, where the satellite was built. GOES-U is on
   track for an April 2024 launch from Cape Canaveral Space Force Station in
   Florida aboard a Falcon Heavy launch vehicle.

   


   AUGUST


 * AUGUST 24, 2023: EARTH FROM ORBIT: 2023 HURRICANE ACTIVITY RAMPS UP
   
   
   
   NOAA satellites have been monitoring increased tropical activity in the
   Atlantic and Pacific, with five named storms developing in the last week. As
   NOAA satellites were monitoring Tropical Storm Hilary as it brought
   torrential rainfall, flooding, and mudslides to Southern California, a series
   of storms were forming in the Atlantic. Within the span of 18 hours, three
   tropical storms formed—Emily, Franklin, and Gert. While Emily and Gert were
   relatively short-lived and dissipated over the ocean, Franklin, which formed
   east of the Leeward Islands, made landfall in the Dominican Republic on
   August 23, bringing heavy rains to Hispaniola. By August 22, another tropical
   storm, Harold, formed in the western Gulf of Mexico, making it the fourth
   Atlantic named storm to form within 39 hours. Harold made landfall on San
   Padre Island, Texas on August 22, and was the first Atlantic storm this
   season to do so in the U.S. August 20 marked the beginning of what is
   typically the most active portion of the Atlantic hurricane season.
   Historically, more than 85 percent of all major (Category 3, 4, and 5)
   Atlantic hurricanes form after this date. As the Atlantic and Pacific
   hurricane seasons continue, NOAA satellites remain our watchful eyes in the
   sky, providing critical information for hurricane forecasting, tracking, and
   intensity estimation.


 * AUGUST 11, 2023: NOAA RELEASES UPDATED 2023 ATLANTIC HURRICANE SEASON OUTLOOK
   
   
   
   On Aug. 10, NOAA updated its 2023 Atlantic hurricane season outlook. NOAA is
   now expecting above normal activity in the Atlantic. El Niño and record sea
   surface temperatures are contributing factors. The update includes an
   increase in named storms to 14-21, with 6-11 developing into hurricanes. Of
   those, 2-5 are anticipated to be major hurricanes – Category 3 or higher. The
   2023 Atlantic hurricane season started early on Jan. 16 with an unnamed
   subtropical storm that formed southeast of Nantucket, Massachusetts. Since
   the first official day of the 2023 Atlantic hurricane season, June 1, there
   have been four named storms: Arlene, Bret, Cindy and Don. Out of the four,
   only one strengthened into a hurricane. Hurricane Don developed into a
   Category 1 hurricane on July 22 in the northern Atlantic. NOAA satellites
   provide critical data for hurricane forecasting as well as advanced
   technology to track the storms—their location, movement, and intensity. The
   satellites provide a detailed look at storm properties, specific features of
   a hurricane’s eye, wind estimates, and lightning activity. As peak hurricane
   season approaches, NOAA satellites will be watching for the development of
   these storms.

   


   JULY


 * JULY 28, 2023: EARTH FROM ORBIT: FIRES BLAZE ACROSS WESTERN U.S.
   
   
   
   As record-breaking heat continues to scorch parts of the southwestern U.S.
   and Mexico, NOAA satellites are monitoring fires in the western U.S., which
   are sending plumes of smoke into the atmosphere. As of July 26, 2023, a total
   of 39 fires have burned 201,637 acres in nine states, including Arizona, New
   Mexico, Oregon, Idaho, Colorado, California, Texas, Montana, and Washington.
   NOAA satellites are tracking the fires and their impact. GOES-18 (GOES West)
   identified hot spots as they ignited and monitored the movement of smoke from
   the fires in near real-time. GOES-18 also helped determine fire size and
   temperature.


 * JULY 21, 2023: EARTH FROM ORBIT: NOAA SATELLITES MONITOR SEVERE WEATHER AND
   SMOKE
   
   
   
   As catastrophic flooding impacted the Northeast, skies across the region and
   particularly along the central and eastern U.S. have also been affected by
   heavy smoke from wildfires burning across Canada that has continued to drift
   southward. NOAA satellites monitored conditions as the events unfolded.
   GOES-16 measured water vapor that was transported in the atmosphere, and
   monitored the storms that drenched the Northeast in near real-time. GOES-16
   and 18 tracked the intense smoke from Canadian wildfires as it moved into the
   central and eastern U.S., triggering air quality alerts. From fires to
   floods, NOAA satellites help warn us of approaching hazards.


 * JULY 13, 2023: SECOND QUARTER 2023 GOES-R/GEOXO NEWSLETTER
   
   
   Geostationary Ground Services Sustainment team celebrates the award of the
   sustainment contract. Photo credit: GOES-R
   
   The GOES-R/GeoXO quarterly newsletter for April – June 2023 is now available.
   It was, as ever, a busy quarter for us. The GOES-R ground system server
   replacement effort concluded and we awarded the follow-on ground sustainment
   contract. We continued environmental testing of the GOES-U satellite and the
   mission integration efforts with the Falcon Heavy launch vehicle. On the
   GeoXO front, work on the imager development contract began and we finished
   the remaining Phase A Studies. The departures of 30+ year GOES alumni John
   Fiorello and our longtime DPM Ed Grigsby, and the sadly too-soon passing of
   our Review Manager Jonathan Gal-Edd are reminders to value and enjoy the
   colleagues and friends we make along the way.

   


   JUNE


 * JUNE 30, 2023: EXTREME HEAT AND SEVERE WEATHER PLAGUE PARTS OF NORTH AMERICA
   
   
   
   NOAA satellites have been watching the effects of a heat dome that settled
   over Texas and parts of Mexico since early June 2023. The heat dome is
   expected to spread northward and persist through July 4 with no relief in
   sight. A heat dome is a ridge of high pressure that traps hot air. While the
   heat dome is causing record-breaking temperatures in the south, it has also
   led to severe weather. The edge of the heat dome meeting with cooler air can
   trigger severe thunderstorms, tornados, and high winds. The NOAA/NASA Suomi
   NPP and NOAA-20 satellites measured land surface temperature, revealing the
   extent of the heat dome. Data collected by the satellites is used within
   models such as the Global Forecast System to accurately predict conditions.
   Meanwhile, GOES East watched the heat dome interact with cooler air in near
   real-time as is seen with water vapor imagery. As these explosive storms
   developed along the edge of the dome and traveled eastward, GOES tracked
   their movement. GOES East also measured lightning within the storms and
   infrared imagery from the satellite revealed the intensity of the storms.


 * JUNE 21, 2023: EARTH FROM ORBIT: SUMMER SOLSTICE 2023
   
   
   
   June 21, 2023, marks the start of astronomical summer in the Northern
   Hemisphere. The summer solstice is the moment the hemisphere reaches its
   greatest tilt toward the sun. NOAA’s GOES-16 and -18 satellites constantly
   observe the same region of Earth, allowing a view of the terminator as it
   moves across the Western Hemisphere. The terminator is the edge between the
   shadows of nightfall and the sunlight of dusk and dawn. The slope of the
   terminator curve changes with the seasons. The summer solstice is the longest
   day, and shortest night, of the year in the Northern Hemisphere.


 * JUNE 20, 2023: NOAA SATELLITES TRACKED HISTORIC LEVELS OF HARMFUL SMOKE,
   IMPACTING MILLIONS IN THE EASTERN U.S.
   
   
   GOES-16 imagery from June 6, 2023, shows a coastal low-pressure system
   steering heavy smoke across the Northeast and Mid-Atlantic United States.
   
   NOAA satellites, including GOES-16, provided critical data for air quality
   forecasters when wildfires, burning near Quebec, Canada, sent billowing
   plumes of smoke over the eastern United States. The satellite data allowed
   NOAA scientists to estimate that more than 86 million people experienced fine
   particulate pollution levels higher than the federal health standard. During
   the early-June episode, NOAA satellite observations of the smoke helped
   forecasters issue air quality alerts to protect public health. GOES data of
   fine particulate pollution are increasingly being used in nowcasting mode to
   provide warnings to the public.


 * JUNE 20, 2023: LIGHTNING DETECTION: FROM GROUND TO SKY
   
   
   GOES-16 GLM image from April 20, 2020, of the longest lightning flash on
   record, which covered a horizontal distance of 477 miles.
   
   Lightning may be stunning, but it is also a deadly, destructive force.
   Meteorologists have studied lightning for centuries, working out its behavior
   and developing ways to detect lightning strikes. Tools and techniques for
   lightning detection have come a long way since Benjamin Franklin tested his
   lightning rod, shifting our view of this powerful severe weather from the
   ground to the sky. Satellites have allowed us to detect and map lightning
   storms like never before – from space. The GOES-R Geostationary Lightning
   Mapper (GLM) is the first optical lightning detector on a satellite in
   geostationary orbit. NOAA began using the GLM in March 2017. In July 2018,
   the National Weather Service started including its data in the determination
   of operational weather forecasts.


 * JUNE 12, 2023: WEATHERSATS AUGMENTED REALITY APP
   
   
   
   Learn about the JPSS and GOES-R satellites that monitor extreme weather and
   climate change in the new WeatherSats immersive AR app. It challenges you to
   complete a series of missions, which will start with an interactive journey
   into space where you’ll see the satellites orbiting Earth and view all of
   their instruments up close. Play at home or play the app's six challenges at
   the NASA Goddard Visitor Center! Available for download to your mobile device
   from the Apple and Google app stores.


 * JUNE 8, 2023: SMOKE FROM CANADIAN WILDFIRES BLANKETS U.S.
   
   
   
   More than 400 fires are burning across Canada, blanketing regions throughout
   North America with thick smoke. NOAA satellites are monitoring the smoke as
   it drifts across the continent. Unusually hot and dry weather triggered an
   early and intense start to the wildfire season in Canada and the country is
   on track to have the worst wildfire season on record. Recently, smoke from
   fires in Ontario and Quebec moved into the eastern U.S., triggering air
   quality alerts across the region. According to NOAA’s Aerosol Watch, the
   smoke caused a historic Code Red (unhealthy) daily Air Quality alert of 2.5
   parts per million across New York, eastern Pennsylvania, and western
   Connecticut on June 6, 2023. There was even a Code Purple (very unhealthy) in
   some parts of New York City and Philadelphia. As of the morning of June 7,
   historically high fine particulate concentrations were seen further south
   into the Mid-Atlantic region, and reports from the ground stated limited
   visibility and campfire-like smells. GOES East and GOES West are tracking the
   billowing smoke and monitoring air quality in near real-time. JPSS satellites
   are collecting data to help determine the height of the smoke plume, the
   amount of smoke produced, and the direction it’s expected to move. Together,
   NOAA satellites provide critical information for detecting and tracking fires
   and alerting communities to poor air quality from smoke produced by the
   blazes.


 * JUNE 2, 2023: CAN LIGHTNING RESEARCH IMPROVE HURRICANE INTENSITY FORECASTS? A
   Q&A WITH NOAA'S DR. STEPHANIE STEVENSON
   
   
   Dr. Stephanie Stevenson
   
   Dr. Stephanie Stevenson is a meteorologist at the NOAA/National Weather
   Service National Hurricane Center (NHC) in Miami. Through her ground-breaking
   research and efforts, new applications using GOES-R Geostationary Lightning
   Mapper (GLM) data are being used as guidance for NHC forecasts as well as in
   media and decision-support briefings. With 2023’s Atlantic Hurricane Season
   officially underway, NESDIS recently interviewed Dr. Stevenson to learn more
   about her research and what it means for the future of hurricane tracking and
   forecasting.

   


   MAY


 * MAY 31, 2023: TIME-LAPSE OF SOLAR CYCLE 25 DISPLAYS INCREASING ACTIVITY ON
   THE SUN
   
   
   GOES-16 SUVI imagery alongside the progression of the number of sunspots from
   December 2019 through April 2023.
   
   Solar Cycle 25 has ramped up much faster than scientists predicted producing
   more sunspots and eruptions than experts had forecast. Tracking and
   predicting the sun’s solar cycles gives a rough idea of the frequency of
   space weather storms of all types – from radio blackouts to geomagnetic
   storms and solar radiation storms – and it’s used by many industries to gauge
   the potential impact of space weather on Earth. A new time lapse animation
   shows GOES-16 Solar Ultraviolet Imagery (SUVI) during Solar Cycle 25 from
   December 2019 through April 2023 alongside the progression of the number of
   sunspots. SUVI images the solar corona in six different extreme ultraviolet
   wavelengths. NOAA’s space weather forecasters use SUVI imagery to issue
   alerts and watches for space weather storms.


 * MAY 31, 2023: 2023 GOES VIRTUAL SCIENCE FAIR TOP PROJECTS ANNOUNCED
   
   
   2023 top GOES high school project: Verifying Flash Flood Advisory Boundary
   Locations using GOES-16 ABI Imagery: A Case Study of Tropical Storm Beta
   (2020)
   
   The Cooperative Institute of Meteorological Satellite Studies at the
   University of Wisconsin-Madison announced the winning projects for the 2023
   GOES Virtual Science Fair. During the virtual science fair, middle and high
   school students (grades 6-12) worked with GOES satellite data to investigate
   weather and natural hazards and conveyed their projects with scientific
   posters. High school submissions also required a short video where students
   explain their project, similar to a poster session at a professional
   conference. By offering authentic STEM (science, technology, engineering and
   math) engagement to a pre-college audience, this activity serves as a
   pipeline to society’s scientists of tomorrow and NOAA’s future workforce


 * MAY 25, 2023: EARTH FROM ORBIT: POPOCATÉPETL VOLCANO ERUPTS IN MEXICO
   
   
   
   Since May 15, 2023, NOAA satellites have been watching Mexico’s Popocatépetl
   Volcano exhibit activity ranging from tremors to spewing ash. Popocatépetl,
   Aztec for smoking mountain, is located 45 miles southeast of Mexico City.
   With about 25 million people living within 60 miles of Popocatépetl, it is
   considered one of the most dangerous volcanoes in the world. Geostationary
   satellites, like GOES-16 and GOES-18, are the primary tool for monitoring
   volcanic clouds. GOES-16 observed Popocatépetl’s ash plumes in near real-time
   and monitored hazardous sulfur dioxide from the volcano. JPSS satellites
   measured smoke, ash and dust from the volcano. Together, NOAA satellites help
   monitor volcanoes and the risks they pose.


 * MAY 11, 2023: EARTH FROM ORBIT: WILDFIRES RAGE IN WESTERN CANADA
   
   
   
   In early May 2023, fires ignited across western Canada due to unusually hot
   and dry weather. NOAA satellites watched as the fires raged, burning about
   one million acres. GOES-18 monitored the spread of the fires and smoke across
   the region. The ABI instrument on GOES-18 observed the formation of
   pyrocumulonimbus clouds from intense fires in Alberta. The data collected by
   NOAA satellites help responders forecast what areas will be impacted and
   manage the wildfires. As the Northern Hemisphere heats up, NOAA satellites
   will keep watch for wildfires.


 * MAY 11, 2023: NOAA AWARDS GEOSTATIONARY GROUND SYSTEM SUSTAINMENT SERVICES
   CONTRACT
   
   
   
   Today, NOAA awarded the Geostationary Ground Sustainment Services (GGSS)
   contract to L3Harris Technologies Inc. of Palm Bay, Florida. The five-year
   Indefinite Delivery/Indefinite Quantity (IDIQ) contract will provide
   sustainment services to extend the functions of the ground system that
   supports NOAA’s GOES-R Series. This contract provides for an indefinite
   quantity of supplies and services during the contract ordering period from
   May 11, 2023, through May 10, 2028. Individual supplies and service
   requirements will be defined at the task order level. The maximum value of
   this IDIQ contract is $275,169,157. The work will be performed at NOAA
   facilities located in Suitland, Maryland; College Park, Maryland; Wallops
   Island, Virginia; and Fairmont, West Virginia; and at the L3Harris facility
   in Melbourne, Florida.


 * MAY 4, 2023: EARTH FROM ORBIT: PREPARING FOR HURRICANE SEASON
   
   
   
   As spring heads toward summer, NOAA satellites are ready for this year’s
   upcoming hurricane season. NOAA satellites monitor the conditions that spawn
   hurricanes and provide early warning that a storm is forming. GOES East and
   West monitor hurricanes as they develop and track their movements in near
   real-time. GOES satellites measure the temperature of cloud tops and the
   amount of water vapor present within a system, and also provide wind
   estimates. They also monitor lightning within a storm. NOAA satellites also
   aid emergency response to landfalling hurricanes by mapping the extent,
   damage and duration of flood events. Together, NOAA satellites are prepared
   to provide vital information to forecasters and help protect life and
   property throughout the 2023 hurricane season and beyond.


 * MAY 3, 2023: GOES-U COMPLETES SOLAR ARRAY DEPLOYMENT TEST
   
   
   The GOES-U solar array fully deployed. Photo credit: Lockheed Martin
   
   GOES-U, the fourth and final satellite in NOAA’s GOES-R Series, recently
   completed a successful test deployment of its solar array to ensure it will
   function properly in space. This critical test verified that the satellite's
   large, five-panel solar array — which is folded up when the satellite is
   launched — will properly deploy when GOES-U reaches geostationary orbit.
   GOES-U’s solar array will convert energy from the sun into electricity to
   power the entire satellite, including the instruments, computers, data
   processors, sensors, and telecommunications equipment. GOES-U is scheduled to
   launch in 2024.


   APRIL


 * APRIL 28, 2023: EARTH FROM ORBIT: LARGE GEOMAGNETIC STORM HITS EARTH
   
   
   
   On April 21, 2023, NOAA satellites detected a coronal mass ejection erupting
   from the sun, which hurled plasma at two million miles per hour toward Earth.
   This eruption produced a geomagnetic storm on Earth. GOES-16’s Solar
   Ultraviolet Imager (SUVI) instrument observed the event as it occurred, while
   the DSCOVR satellite measured the solar winds the storm produced. This
   allowed NOAA to issue warnings for possible impacts from the storm.
   Geomagnetic storms can affect electrical grids, spacecraft, radio
   frequencies, GPS signals, and astronauts in space. On April 23, the particles
   reached Earth’s upper atmosphere and caused an aurora in both the Northern
   and Southern Hemispheres. This is the third severe geomagnetic storm since
   Solar Cycle 25 began in 2019. As the sun’s activity continues to ramp up,
   NOAA satellites will be watching for hazardous space weather.


 * APRIL 21, 2023: EARTH FROM ORBIT: HAPPY EARTH DAY 2023
   
   
   
   Since 1970, NOAA satellites have been monitoring Earth’s weather,
   environment, oceans, and climate. This Earth Day, we have a lot to celebrate.
   Over the past year, NOAA has added two new satellites to its Earth-observing
   fleet and contributed an instrument to a mission that will help us have a
   better understanding of Earth’s physical and biological environment. On Earth
   Day, we celebrate the critical information NOAA satellites provide to help us
   stay safe and the beautiful imagery they share of our planet. They see it
   all: hurricanes, severe thunderstorms, lightning, fires, dust storms, smoke,
   fog, volcanic eruptions, vegetation, snow and ice cover, flooding, sea and
   land surface temperature, ocean health and more. They can even track ship
   traffic and power outages. At NOAA, each day is Earth Day.


 * APRIL 11, 2023: FIRST QUARTER 2023 GOES-R/GEOXO NEWSLETTER
   
   
   GOES-U acoustics testing. Photo credit: Lockheed Martin
   
   The GOES-R/GeoXO quarterly newsletter for January – March 2023 is now
   available. 2023 is off to an exciting start! We are just a little over a year
   away from the GOES-U launch, the final launch for the GOES-R Series. GOES-U
   completed mechanical environments testing and will next undergo
   electromagnetic interference/electromagnetic compatibility testing. We held
   our first GOES-R summit since 2019 and had the opportunity to collaborate in
   person with our colleagues from across the country. The newly operational
   GOES-18 satellite monitored a deluge of atmospheric rivers affecting the West
   Coast and an increasingly active sun. On GeoXO, we took our first step into
   implementation, with the award of the development contract for the imager,
   the primary instrument on our next-generation satellite system.


   MARCH


 * MARCH 30, 2023: EARTH FROM ORBIT: VIOLENT STORMS TEAR THROUGH THE SOUTH
   
   
   
   Beginning on March 24, 2023, NOAA satellites monitored severe storms that
   caused widespread damage from Texas to the Mid-Atlantic. The storms produced
   high winds, hail, flooding, and tornadoes. High winds and 38 tornadoes were
   reported when the storms moved through Mississippi, Alabama and Tennessee.
   The town of Rolling Fork, Mississippi was struck by an EF-4 tornado that
   killed 26 people in total, injured dozens more, and damaged buildings and
   utilities. GOES-16 (GOES East) monitored the storm in near real-time as it
   barreled across the Southeast.


 * MARCH 24, 2023: EARTH FROM ORBIT: MORE HEAVY RAIN, SNOW, AND WIND HITTING
   WESTERN U.S.
   
   
   
   After tracking a series of atmospheric rivers that have drenched California
   this year, NOAA satellites monitored the latest storm to begin impact the
   state on Mar. 19, 2023. Rain and snow triggered flash flooding, caused
   numerous evacuations and left over 350,000 without power. The atmospheric
   river fueled a mid-latitude cyclone that led to the formation of a
   hurricane-like eye when two low pressure areas converged over San Francisco.
   NOAA satellites provided vital information about airborne moisture for more
   accurate weather forecasts and to predict flood risks and manage water
   resources.


 * MARCH 2, 2023: EARTH FROM ORBIT: MONUMENTAL U.S. STORM BRINGS SEVERE WINTER
   WEATHER COAST TO COAST
   
   
   
   Since mid-February 2023, winter weather has impacted the continental U.S.
   from California to Maine. In Southern California, the storm brought blizzard
   conditions to the San Bernardino and San Gabriel mountains as well as heavy
   rainfall to lower elevations. As the storm system continued eastward, snow
   and driving winds caused road closures and drifting snow across the Plains.
   Further south in Kansas and Oklahoma, tornadoes downed power lines, damaged
   property, and caused injuries. Additional tornadoes were reported in central
   and northeastern Illinois. The storm also brought heavy snow to the
   Northeast. NOAA satellites provided complementary measurements for a complete
   picture of this monumental storm and played a crucial role in tracking the
   storms across the U.S., alerting those in harm’s way.


   FEBRUARY


 * FEB. 21, 2023: EARTH FROM ORBIT: TROPICAL CYCLONE FREDDY BREAKS RECORDS
   BEFORE LASHING MADAGASCAR
   
   
   
   On Feb. 21, 2023, Tropical Cyclone Freddy made landfall on Madagascar. Freddy
   formed on Feb. 5 near Indonesia and trekked more than 4,000 miles before
   hitting Madagascar. Freddy is one of only four storms on record to cross the
   Indian Ocean from east to west. It is also the first in the Southern
   Hemisphere to undergo four separate rounds of rapid intensification. At its
   strongest, Freddy had maximum sustained winds of more than 160 miles per
   hour, equivalent to a Category 5 hurricane. NOAA satellites and those from
   our international partners monitored the storm as it traversed the Indian
   Ocean and made landfall in Madagascar.


 * FEB. 9, 2023: EARTH FROM ORBIT: NOAA SATELLITES TRACK BLAZING WILDFIRES IN
   CHILE
   
   
   
   At least 231 wildfires have been blazing through south-central Chile since
   Feb. 3, 2023. The region is experiencing a “mega drought” with a decade-long
   period of dry weather. NOAA satellites are monitoring the fires as hot and
   dry weather persists. As of Feb. 8, 231 fires have burned more than 741,315
   acres of land, making it the second worst year for acreage burned in Chile.
   GOES-16 and GOES-18 observed the movement of smoke from the fires in
   near-real time, while identifying new fires. The satellites also help
   determine a fire’s size and temperature. NOAA-20 and Suomi NPP provide
   detailed information on fire conditions. The satellites can detect smaller
   and lower-temperature fires and track wildfires in remote regions. Together,
   NOAA satellites provide critical and timely information used by fire crews,
   first responders and air traffic controllers.


 * FEB. 6, 2023: KEEP LOVE IN YOUR ORBIT WITH NESDIS-THEMED VALENTINE'S DAY
   CARDS
   
   
   
   We’re spreading the love again this Valentine's Day with a new collection of
   satellite-themed holiday cards. Circulate and celebrate with us by sharing
   these cards with your Earth-bound sweetie! The sentiment GOES a long way.
   Download the Valentines.


 * FEB. 2, 2023: EARTH FROM ORBIT: ROPE CLOUDS
   
   
   
   On Jan. 25, 2023, NOAA satellites captured an unusually long and long-lived
   rope cloud produced by a cold front over the Gulf of Mexico. A rope cloud is
   a very long, narrow, rope-like band of cumulus cloud formations. Generally
   associated with a cold front or a land-sea breeze front, rope clouds tend to
   form at the dividing line between cooler and warmer air. In this case, the
   rush of cool, dense air from the cold front pushed the warm, maritime air
   from the Gulf of Mexico upward, allowing water vapor to condense and the
   cloud to form. Satellite imagery can capture rope clouds, indicating a
   potentially changing weather pattern.


   JANUARY


 * JANUARY 25, 2023: EARTH FROM ORBIT: ATMOSPHERIC RIVERS HIT THE WEST COAST
   
   
   
   From late Dec. 2022 into Jan. 2023, a series of nine “atmospheric rivers”
   dumped a record amount of rain and mountain snow across the western U.S. and
   Canada, hitting California particularly hard. More than 32 trillion gallons
   of water rained down across the state, and the moisture also pushed into much
   of the Intermountain West. The San Francisco Bay area experienced its wettest
   three-week period in 161 years. Atmospheric rivers are long, narrow belts of
   moisture that move through the atmosphere. They can deliver tremendous
   amounts of rain, and high-elevation snow. This deluge of rain can provide
   relief for drought-stricken areas but also trigger flash flooding and
   mudslides. NOAA satellites help forecast these rivers in the sky and monitor
   the weather conditions they bring.


 * JANUARY 23, 2023: NOAA SATELLITES HELPED SAVE 397 LIVES IN 2022
   
   
   A graphic showing 3 categories of satellite-assisted rescues that took place
   in 2022: Of the 397 lives saved, 275 people were rescued at sea, 42 were
   rescued from aviation incidents and 80 were rescued from incidents on land.
   
   NOAA satellites, which are crucial in weather and climate forecasts, helped
   rescue 397 people from potentially life-threatening situations throughout the
   U.S. and its surrounding waters in 2022. NOAA’s polar-orbiting and
   geostationary satellites are part of the global Search and Rescue Satellite
   Aided Tracking system, or COSPAS-SARSAT, which uses a network of U.S. and
   international spacecraft to detect and locate distress signals sent from
   emergency beacons from aircraft, boats and handheld Personal Locator Beacons
   (PLBs) anywhere in the world. Of the 397 U.S. rescues last year, 275 were
   water rescues, 42 were from downed aircraft and 80 were on land involving
   PLBs. Florida had the most SARSAT rescues with 106, followed by Alaska with
   56 and Utah with 20.


 * JANUARY 13, 2023: FOURTH QUARTER 2022 GOES-R/GEOXO NEWSLETTER
   
   
   RGB Developers Workshop participants.
   
   The GOES-R/GeoXO quarterly newsletter for October – December 2022 is now
   available. The GOES-R and GeoXO programs achieved new heights in 2022. We
   launched GOES-T, now known as GOES-18, completed on-orbit checkout, executed
   two GOES-17 and GOES-18 data interleave periods, and handed the satellite
   over to NOAA’s Office of Satellite and Product Operations. GOES-18 became
   NOAA’s operational GOES West satellite on Jan. 4, 2023. GOES-U is progressing
   toward its planned launch next spring, completing thermal vacuum testing and
   preparing for mechanical testing. And the future of NOAA’s geostationary
   satellite observations is assured, with the approval of the GeoXO Program.


 * JANUARY 04, 2023: NOAA’S GOES-18 IS NOW GOES WEST
   
   
   
   NOAA’s operational satellite fleet has a new member. GOES-18 entered service
   as GOES West on Jan. 4, 2023. The milestone comes after a Mar. 1, 2022,
   launch and post-launch testing of the satellite’s instruments, systems, and
   data. GOES-18 replaces GOES-17 as GOES West, located 22,236 miles above the
   equator over the Pacific Ocean. GOES-17 will become an on-orbit standby. In
   its new role, GOES-18 will serve as NOAA's primary geostationary satellite
   for detecting and monitoring Pacific hurricanes, atmospheric rivers, coastal
   fog, wildfires, volcanic eruptions, and other environmental phenomena that
   affect the western contiguous United States, Alaska, Hawaii, Mexico, and
   Central America. GOES-18 joins GOES-16 (GOES East) in operational service.
   Together the two satellites watch over more than half the globe, from the
   west coast of Africa to New Zealand and from near the Arctic Circle to the
   Antarctic Circle.



MORE NEWS





UPCOMING EVENTS

Events Page
MORE EVENTS