docs-test.ultralytics.com
Open in
urlscan Pro
2606:50c0:8003::153
Public Scan
URL:
https://docs-test.ultralytics.com/
Submission: On January 18 via api from US — Scanned from US
Submission: On January 18 via api from US — Scanned from US
Form analysis
2 forms found in the DOM<form class="md-header__option" data-md-component="palette">
<input aria-label="Switch to light mode" class="md-option" data-md-color-accent="indigo" data-md-color-media="(prefers-color-scheme)" data-md-color-primary="indigo" data-md-color-scheme="default" id="__palette_0" name="__palette" type="radio">
<label class="md-header__button md-icon" for="__palette_1" title="Switch to light mode">
<svg viewBox="0 0 24 24" xmlns="http://www.w3.org/2000/svg">
<path d="m14.3 16-.7-2h-3.2l-.7 2H7.8L11 7h2l3.2 9h-1.9M20 8.69V4h-4.69L12 .69 8.69 4H4v4.69L.69 12 4 15.31V20h4.69L12 23.31 15.31 20H20v-4.69L23.31 12 20 8.69m-9.15 3.96h2.3L12 9l-1.15 3.65Z"></path>
</svg>
</label>
<input aria-label="Switch to system preference" class="md-option" data-md-color-accent="indigo" data-md-color-media="(prefers-color-scheme: dark)" data-md-color-primary="black" data-md-color-scheme="slate" id="__palette_1" name="__palette"
type="radio">
<label class="md-header__button md-icon" for="__palette_2" hidden="" title="Switch to system preference">
<svg viewBox="0 0 24 24" xmlns="http://www.w3.org/2000/svg">
<path
d="M12 18c-.89 0-1.74-.2-2.5-.55C11.56 16.5 13 14.42 13 12c0-2.42-1.44-4.5-3.5-5.45C10.26 6.2 11.11 6 12 6a6 6 0 0 1 6 6 6 6 0 0 1-6 6m8-9.31V4h-4.69L12 .69 8.69 4H4v4.69L.69 12 4 15.31V20h4.69L12 23.31 15.31 20H20v-4.69L23.31 12 20 8.69Z">
</path>
</svg>
</label>
<input aria-label="Switch to dark mode" class="md-option" data-md-color-accent="indigo" data-md-color-media="(prefers-color-scheme: light)" data-md-color-primary="indigo" data-md-color-scheme="default" id="__palette_2" name="__palette"
type="radio">
<label class="md-header__button md-icon" for="__palette_0" hidden="" title="Switch to dark mode">
<svg viewBox="0 0 24 24" xmlns="http://www.w3.org/2000/svg">
<path d="M12 8a4 4 0 0 0-4 4 4 4 0 0 0 4 4 4 4 0 0 0 4-4 4 4 0 0 0-4-4m0 10a6 6 0 0 1-6-6 6 6 0 0 1 6-6 6 6 0 0 1 6 6 6 6 0 0 1-6 6m8-9.31V4h-4.69L12 .69 8.69 4H4v4.69L.69 12 4 15.31V20h4.69L12 23.31 15.31 20H20v-4.69L23.31 12 20 8.69Z"></path>
</svg>
</label>
</form>
Name: search —
<form class="md-search__form" name="search">
<input aria-label="Search" autocapitalize="off" autocomplete="off" autocorrect="off" class="md-search__input" data-md-component="search-query" name="query" placeholder="Search" required="" spellcheck="false" type="text">
<label class="md-search__icon md-icon" for="__search">
<svg viewBox="0 0 24 24" xmlns="http://www.w3.org/2000/svg">
<path d="M9.5 3A6.5 6.5 0 0 1 16 9.5c0 1.61-.59 3.09-1.56 4.23l.27.27h.79l5 5-1.5 1.5-5-5v-.79l-.27-.27A6.516 6.516 0 0 1 9.5 16 6.5 6.5 0 0 1 3 9.5 6.5 6.5 0 0 1 9.5 3m0 2C7 5 5 7 5 9.5S7 14 9.5 14 14 12 14 9.5 12 5 9.5 5Z"></path>
</svg>
<svg viewBox="0 0 24 24" xmlns="http://www.w3.org/2000/svg">
<path d="M20 11v2H8l5.5 5.5-1.42 1.42L4.16 12l7.92-7.92L13.5 5.5 8 11h12Z"></path>
</svg>
</label>
<nav aria-label="Search" class="md-search__options">
<a aria-label="Share" class="md-search__icon md-icon" data-clipboard="" data-clipboard-text="javascript:void(0)" data-md-component="search-share" href="https://docs-test.ultralytics.com/?q=" tabindex="-1" title="Share">
<svg viewBox="0 0 24 24" xmlns="http://www.w3.org/2000/svg"><path d="M18 16.08c-.76 0-1.44.3-1.96.77L8.91 12.7c.05-.23.09-.46.09-.7 0-.24-.04-.47-.09-.7l7.05-4.11c.54.5 1.25.81 2.04.81a3 3 0 0 0 3-3 3 3 0 0 0-3-3 3 3 0 0 0-3 3c0 .24.04.47.09.7L8.04 9.81C7.5 9.31 6.79 9 6 9a3 3 0 0 0-3 3 3 3 0 0 0 3 3c.79 0 1.5-.31 2.04-.81l7.12 4.15c-.05.21-.08.43-.08.66 0 1.61 1.31 2.91 2.92 2.91 1.61 0 2.92-1.3 2.92-2.91A2.92 2.92 0 0 0 18 16.08Z"></path></svg>
</a>
<button aria-label="Clear" class="md-search__icon md-icon" tabindex="-1" title="Clear" type="reset">
<svg viewBox="0 0 24 24" xmlns="http://www.w3.org/2000/svg">
<path d="M19 6.41 17.59 5 12 10.59 6.41 5 5 6.41 10.59 12 5 17.59 6.41 19 12 13.41 17.59 19 19 17.59 13.41 12 19 6.41Z"></path>
</svg>
</button>
</nav>
<div class="md-search__suggest" data-md-component="search-suggest"></div>
</form>
Text Content
Skip to content Ultralytics YOLOv8 Turns One! 🎉 A Year of Breakthroughs and Innovations ➜ Ultralytics YOLOv8 Docs Home Type to start searching ultralytics/ultralytics * v8.1.0 * 18.4k * 3.7k * Home * Quickstart * Modes * Tasks * Models * Datasets * NEW 🚀 Explorer * Guides * Integrations * HUB * Reference * Help Ultralytics YOLOv8 Docs ultralytics/ultralytics * v8.1.0 * 18.4k * 3.7k * Home Home * Quickstart * Modes Modes * Train * Val * Predict * Export * Track * Benchmark * Tasks Tasks * Detect * Segment * Classify * Pose * OBB * Models Models * Datasets Datasets * Guides Guides * NEW 🚀 Explorer NEW 🚀 Explorer * Languages Languages * 🇬🇧 English * 🇨🇳 简体中文 * 🇰🇷 한국어 * 🇯🇵 日本語 * 🇷🇺 Русский * 🇩🇪 Deutsch * 🇫🇷 Français * 🇪🇸 Español * 🇵🇹 Português * 🇮🇳 हिन्दी * 🇸🇦 العربية * Quickstart Quickstart * Quickstart * Usage Usage * CLI * Python * Callbacks * Configuration * Advanced Customization * Modes Modes * Train * Val * Predict * Export * Track * Benchmark * Tasks Tasks * Detect * Segment * Classify * Pose * OBB * Models Models * YOLOv3 * YOLOv4 * YOLOv5 * YOLOv6 * YOLOv7 * YOLOv8 * SAM (Segment Anything Model) * MobileSAM (Mobile Segment Anything Model) * FastSAM (Fast Segment Anything Model) * YOLO-NAS (Neural Architecture Search) * RT-DETR (Realtime Detection Transformer) * Datasets Datasets * NEW 🚀 Explorer NEW 🚀 Explorer * Explorer API * Explorer Dashboard * VOC Exploration Example * Detection Detection * Argoverse * COCO * COCO8 * GlobalWheat2020 * Objects365 * OpenImagesV7 * SKU-110K * VisDrone * VOC * xView * Segmentation Segmentation * COCO * COCO8-seg * Pose Pose * COCO * COCO8-pose * Tiger-pose * Classification Classification * Caltech 101 * Caltech 256 * CIFAR-10 * CIFAR-100 * Fashion-MNIST * ImageNet * ImageNet-10 * Imagenette * Imagewoof * MNIST * Oriented Bounding Boxes (OBB) Oriented Bounding Boxes (OBB) * DOTAv2 * DOTA8 * Multi-Object Tracking Multi-Object Tracking * NEW 🚀 Explorer NEW 🚀 Explorer * Explorer API * Explorer Dashboard Demo * VOC Exploration Example * Guides Guides * YOLO Common Issues * YOLO Performance Metrics * YOLO Thread-Safe Inference * Model Deployment Options * K-Fold Cross Validation * Hyperparameter Tuning * SAHI Tiled Inference * AzureML Quickstart * Conda Quickstart * Docker Quickstart * Raspberry Pi * Triton Inference Server * Isolating Segmentation Objects * Real-World Projects Real-World Projects * Object Counting * Object Cropping * Object Blurring * Workouts Monitoring * Objects Counting in Regions * Security Alarm System * Heatmaps * Instance Segmentation with Object Tracking * VisionEye Mapping * Speed Estimation * Distance Calculation * YOLOv5 YOLOv5 * Quickstart * Environments * Tutorials * Integrations Integrations * Comet ML * OpenVINO * Ray Tune * Roboflow * MLflow * ClearML * DVC * Weights & Biases * Neural Magic * TensorBoard * Amazon SageMaker * HUB HUB * Quickstart * Datasets * Projects * Models * Integrations * Ultralytics HUB App Ultralytics HUB App * iOS * Android * Inference API * Reference Reference * cfg cfg * __init__ * data data * annotator * augment * base * build * converter * dataset * explorer * loaders * split_dota * utils * engine engine * exporter * model * predictor * results * trainer * tuner * validator * hub hub * __init__ * auth * session * utils * models models * fastsam * nas * rtdetr * sam * utils * yolo * nn nn * autobackend * modules * tasks * solutions solutions * ai_gym * distance_calculation * heatmap * object_counter * speed_estimation * trackers trackers * basetrack * bot_sort * byte_tracker * track * utils * utils utils * __init__ * autobatch * benchmarks * callbacks * checks * dist * downloads * errors * files * instance * loss * metrics * ops * patches * plotting * tal * torch_utils * triton * tuner * Help Help * Frequently Asked Questions (FAQ) * Contributing Guide * Continuous Integration (CI) Guide * Contributor License Agreement (CLA) * Minimum Reproducible Example (MRE) Guide * Code of Conduct * Environmental, Health and Safety (EHS) Policy * Security Policy * Privacy Policy Table of contents * Where to Start * YOLO: A Brief History * YOLO Licenses: How is Ultralytics YOLO licensed? HOME Introducing Ultralytics YOLOv8, the latest version of TEST NEW WORDS ADDED HERE, test the latest version i'm writing a whole new paragraph here, the acclaimed real-time object detection and image segmentation model. YOLOv8 is built on cutting-edge advancements in deep learning and computer vision, offering unparalleled performance in terms of speed and accuracy. Its streamlined design makes it suitable for various applications and easily adaptable to different hardware platforms, from edge devices to cloud APIs. Explore the YOLOv8 Docs, a comprehensive resource designed to help you understand and utilize its features and capabilities. Whether you are a seasoned machine learning practitioner or new to the field, this hub aims to maximize YOLOv8's potential in your projects WHERE TO START * Install ultralytics with pip and get up and running in minutes Get Started * Predict new images and videos with YOLOv8 Predict on Images * Train a new YOLOv8 model on your own custom dataset Train a Model * Tasks YOLOv8 tasks like segment, classify, pose and track Explore Tasks * NEW 🚀 Explore datasets with advanced semantic and SQL search Explore a Dataset Watch: How to Train a YOLOv8 model on Your Custom Dataset in Google Colab. YOLO: A BRIEF HISTORY YOLO (You Only Look Once), a popular object detection and image segmentation model, was developed by Joseph Redmon and Ali Farhadi at the University of Washington. Launched in 2015, YOLO quickly gained popularity for its high speed and accuracy. * YOLOv2, released in 2016, improved the original model by incorporating batch normalization, anchor boxes, and dimension clusters. * YOLOv3, launched in 2018, further enhanced the model's performance using a more efficient backbone network, multiple anchors and spatial pyramid pooling. * YOLOv4 was released in 2020, introducing innovations like Mosaic data augmentation, a new anchor-free detection head, and a new loss function. * YOLOv5 further improved the model's performance and added new features such as hyperparameter optimization, integrated experiment tracking and automatic export to popular export formats. * YOLOv6 was open-sourced by Meituan in 2022 and is in use in many of the company's autonomous delivery robots. * YOLOv7 added additional tasks such as pose estimation on the COCO keypoints dataset. * YOLOv8 is the latest version of YOLO by Ultralytics. As a cutting-edge, state-of-the-art (SOTA) model, YOLOv8 builds on the success of previous versions, introducing new features and improvements for enhanced performance, flexibility, and efficiency. YOLOv8 supports a full range of vision AI tasks, including detection, segmentation, pose estimation, tracking, and classification. This versatility allows users to leverage YOLOv8's capabilities across diverse applications and domains. YOLO LICENSES: HOW IS ULTRALYTICS YOLO LICENSED? Ultralytics offers two licensing options to accommodate diverse use cases: * AGPL-3.0 License: This OSI-approved open-source license is ideal for students and enthusiasts, promoting open collaboration and knowledge sharing. See the LICENSE file for more details. * Enterprise License: Designed for commercial use, this license permits seamless integration of Ultralytics software and AI models into commercial goods and services, bypassing the open-source requirements of AGPL-3.0. If your scenario involves embedding our solutions into a commercial offering, reach out through Ultralytics Licensing. Our licensing strategy is designed to ensure that any improvements to our open-source projects are returned to the community. We hold the principles of open source close to our hearts ❤️, and our mission is to guarantee that our contributions can be utilized and expanded upon in ways that are beneficial to all. Created 2023-11-12, Updated 2024-01-10 Authors: AyushExel (3), glenn.jocher@ultralytics.com (3) Tweet Share COMMENTS Back to top Next Quickstart © 2024 Ultralytics Inc. All rights reserved. Made with Material for MkDocs