ijsrm.net Open in urlscan Pro
162.241.123.153  Public Scan

URL: https://ijsrm.net/index.php/ijsrm/article/view/5280
Submission: On October 30 via api from US — Scanned from DE

Form analysis 1 forms found in the DOM

GET https://ijsrm.net/index.php/ijsrm/search/search

<form class=" mb-0" action="https://ijsrm.net/index.php/ijsrm/search/search" method="get" role="search" aria-label="Article Search">
  <input type="hidden" name="csrfToken" value="b18404a00ce981aab2d0b35c4aee6ff2">
  <div class="text-gray-600 flex border-2 border-primary border-opacity-50">
    <input class="bg-transparent text-black dark:text-white h-8 px-5 text-sm focus:outline-none w-48" type="search" name="query" value="" placeholder="Search" aria-label="Search Query">
    <button type="submit" class="me-4">
      <svg class="text-black dark:text-white h-4 w-4 fill-current" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" version="1.1" id="Capa_1" x="0px" y="0px" viewBox="0 0 56.966 56.966"
        style="enable-background:new 0 0 56.966 56.966;" xml:space="preserve" width="512px" height="512px">
        <path
          d="M55.146,51.887L41.588,37.786c3.486-4.144,5.396-9.358,5.396-14.786c0-12.682-10.318-23-23-23s-23,10.318-23,23  s10.318,23,23,23c4.761,0,9.298-1.436,13.177-4.162l13.661,14.208c0.571,0.593,1.339,0.92,2.162,0.92  c0.779,0,1.518-0.297,2.079-0.837C56.255,54.982,56.293,53.08,55.146,51.887z M23.984,6c9.374,0,17,7.626,17,17s-7.626,17-17,17  s-17-7.626-17-17S14.61,6,23.984,6z">
        </path>
      </svg>
    </button>
  </div>
</form>

Text Content

 * Home
 * About
   * About the Journal
   * Editorial Team
   * Review Process
   * Open access
   * Digital Archiving Policy
   * Right and License
   * Reviewer Guideline
 * Submissions
 * Current Issue
 * Archives
 * Announcements
 * Contact

 * Login
 * Register


 * Login
 * Register

Skip to main content Skip to main navigation menu Skip to site footer
 * Home
 * About
   * About the Journal
   * Editorial Team
   * Review Process
   * Open access
   * Digital Archiving Policy
   * Right and License
   * Reviewer Guideline
 * Submissions
 * Current Issue
 * Archives
 * Announcements
 * Contact

ISSN : 2321-3418
 1. Home /
 2. Archives /
 3. Vol. 12 No. 04 (2024) /
 4. Mathematics and Statistics


PERFORMANCE OF RANDOM OVERSAMPLING, RANDOM UNDERSAMPLING, AND SMOTE-NC METHODS
IN HANDLING IMBALANCED CLASS IN CLASSIFICATION MODELS

https://doi.org/10.18535/ijsrm/v12i04.m03



AUTHORS

 * Andika Putri Ratnasari Universitas Negeri Yogyakarta, Faculty of Mathematics
   and Natural Sciences, Colombo Road, Yogyakarta, , Indonesia

Share

 * Abstract
 * How to Cite
 * Metrics
 * References
 * License

One common challenge in classification modeling is the existence of imbalanced
classes within the data. If the analysis continues with imbalanced classes, it
is probable that the result will demonstrate inadequate performance when
forecasting new data. Various approaches exist to rectify this class imbalance
issue, such as random oversampling, random undersampling, and the Synthetic
Minority Over-sampling Technique for Nominal and Continuous (SMOTE-NC). Each of
these methods encompasses distinct techniques aimed at achieving balanced class
distribution within the dataset. Comparison of classification performance on
imbalanced classes handled by these three methods has never been carried out in
previous research. Therefore, this study undertakes an evaluation of
classification models (specifically Gradient Boosting, Random Forest, and
Extremely Randomized Trees) in the context of imbalanced class data. The results
of this research show that the random undersampling method used to balance the
class distribution has the best performance on two classification models (Random
Forest and Gradient Boosted Tree).

Performance of Random Oversampling, Random Undersampling, and SMOTE-NC Methods
in Handling Imbalanced Class in Classification Models. (2024). International
Journal of Scientific Research and Management (IJSRM), 12(04), 494-501.
https://doi.org/10.18535/ijsrm/v12i04.m03
More Citation Formats
 * ACM
 * ACS
 * APA
 * ABNT
 * Chicago
 * Harvard
 * IEEE
 * MLA
 * Turabian
 * Vancouver
 * AMA

Download Citation
 * Endnote/Zotero/Mendeley (RIS)
 * BibTeX


DOWNLOADS



G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to
Statistical Learning with Application in R. New York: Springer, 2013. doi:
10.2174/0929867003374372.

A. Natekin and A. Knoll, “Gradient boosting machines, a tutorial,” Front.
Neurorobot., vol. 7, 2013, doi: 10.3389/fnbot.2013.00021.

S. M. Lundberg et al., “From local explanations to global understanding with
explainable AI for trees,” Nat. Mach. Intell., vol. 2, no. January, pp. 56–67,
2020, http://dx.doi.org/10.1038/s42256-019-0138-9.

P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,” Mach.
Learn., vol. 63, no. 1, pp. 3–42, 2006, doi: 10.1007/s10994-006-6226-1.

R. Siringoringo, “Klasifikasi Data Tidak Seimbang Menggunakan Algoritma SMOTE
dan K-Nearest Neighbor,” J. ISD, vol. 3, no. 1, pp. 44–49, 2018.

W. Chaipanha and P. Kaewwichian, “Smote Vs. Random Undersampling for Imbalanced
Data-Car Ownership Demand Model,” Communications, vol. 24, no. 3, pp. D105–D115,
2022, doi: 10.26552/com.C.2022.3.D105-D115.

S. Kotsiantis, D. Kanellopoulos, and P. Pintelas, “Handling imbalanced datasets
: A review,” Science , vol. 30, no. 1, pp. 25–36, 2006

Q. H. Doan, S. H. Mai, Q. T. Do, and D. K. Thai, “A cluster-based data splitting
method for small sample and class imbalance problems in impact damage
classification,” Appl. Soft Comput., vol. 120, p. 108628, 2022, doi:
10.1016/j.asoc.2022.108628.

D. T. Utari, “Integration of Svm and Smote-Nc for Classification of Heart
Failure Patients,” BAREKENG J. Ilmu Mat. dan Terap., vol. 17, no. 4, pp.
2263–2272, 2023.

M. A. Ganai, M. Hu, A. K. Malik, M. Tanvir, and P. N. Suganthan, “Ensemble deep
learning: A review,” Eng. Appl. Artif. Intell., vol. 115, 2022, doi:
https://doi.org/10.1016/j.engappai.2022.105151.

L. Breiman, “Random Forests,” Mach. Learn., vol. 45, pp. 5–32, 2001.

M. Aria, C. Cuccurullo, and A. Gnasso, “A comparison among interpretative
proposals for Random Forests,” Machine Learning with Applications, vol. 6. p.
100094, 2021. doi: 10.1016/j.mlwa.2021.100094.

J. Ali, R. Khan, N. Ahmad, and I. Maqsood, “Random forests and decision trees,”
IJCSI Int. J. Comput. Sci. Issues, vol. 9, no. 5, pp. 272–278, 2012.

S. Han, H. Kim, and Y. S. Lee, “Double random forest,” Mach. Learn., vol. 109,
no. 8, pp. 1569–1586, 2020.

S. E. Suryana, B. Warsito, and S. Suparti, “Penerapan Gradient Boosting Dengan
Hyperopt Untuk Memprediksi Keberhasilan Telemarketing Bank,” J. Gaussian, vol.
10, no. 4, pp. 617–623, 2021, doi: 10.14710/j.gauss.v10i4.31335.

J. H. Friedman, “Greedy function approximation: A gradient boosting machine,”
Ann. Stat., vol. 29, no. 5, pp. 1189–1232, 2001, doi: 10.1214/aos/1013203451.

R. Kohavi and F. Provost, “Glossary of Terms Glossary of Terms,” Mach. Learn.,
vol. 30, pp. 271–274, 1998.

J. C. Obi, “A comparative study of several classification metrics and their
performances on data,” World Journal of Advanced Engineering Technology and
Sciences, vol. 8, no. 1, pp. 308–314, 2023, doi:
https://doi.org/10.30574/wjaets.2023.8.1.0054.

Copyright (c) 2024 Andika Putri Ratnasari

This work is licensed under a Creative Commons Attribution 4.0 International
License.


DIMENSION BADGE

?
CITATIONS
? Total citations
? Recent citations
n/a Field Citation Ratio
n/a Relative Citation Ratio


DOWNLOADS


DOWNLOADS

 * PDF


ISSUE

Vol. 12 No. 04 (2024)


SECTION

Mathematics and Statistics


PUBLISHED

April 29, 2024


KEYWORDS

Classification imbalanced class random oversampling random undersampling
SMOTE-NC

ABOUT US
IJSRM, the premier online destination for researchers, scholars, and innovators.
Our platform provides a global network of professionals and experts....


HEAD OFFICE
24 Kialash Vihar
Mandsaur Near R.T.O. Office Mandsaur (M.P.) 458001 India
 
 
 


QUICK MENU

 * Home
 * About Us
 * Current Issue
 * Archive
 * Open Access
 * Support & FAQs


INFORMATION FOR

 * Authors
 * Editors
 * Reviewers
 * Librarians
 * Researchers
 * Societies


JOURNAL & POLICIES

 * Publication Ethics
 * Review Policy
 * Publication Ethics
 * Licensing and Copyright
 * Open Access Policy
 * Plagiarism Policy

Copyright © 2024 International Journal of Scientific Research and Management
(IJSRM) - All Rights Reserved