www.science.org Open in urlscan Pro
104.18.34.21  Public Scan

Submitted URL: https://doi.org/10.1126/science.1261689
Effective URL: https://www.science.org/doi/10.1126/science.1261689
Submission: On October 06 via api from US — Scanned from DE

Form analysis 10 forms found in the DOM

Name: defaultQuickSearchGET /action/doSearch

<form action="/action/doSearch" name="defaultQuickSearch" method="get">
  <fieldset>
    <legend class="sr-only">Quick Search anywhere</legend>
    <div class="input-group option-0   animation-underline"><label for="AllField9ea9b667-c3ce-40d1-870b-f7e001bbac010" class="sr-only">Enter Search Term</label><input type="search" id="AllField9ea9b667-c3ce-40d1-870b-f7e001bbac010" name="AllField"
        autocomplete="off" placeholder="Enter Search Term" data-auto-complete-max-words="7" data-auto-complete-max-chars="32" data-contributors-conf="3" data-topics-conf="3" data-publication-titles-conf="3" data-history-items-conf="3" value=""
        class="quick-search__input form-control autocomplete"></div>
  </fieldset>
</form>

Name: publicationQuickSearchGET /action/doSearch

<form action="/action/doSearch" name="publicationQuickSearch" method="get">
  <fieldset>
    <legend class="sr-only">Quick Search in Journals</legend>
    <div class="input-group option-1 option-journal  animation-underline"><label for="AllField9ea9b667-c3ce-40d1-870b-f7e001bbac011" class="sr-only">Enter Search Term</label><input type="search" id="AllField9ea9b667-c3ce-40d1-870b-f7e001bbac011"
        name="AllField" autocomplete="off" placeholder="Enter Search Term" data-auto-complete-max-words="7" data-auto-complete-max-chars="32" data-contributors-conf="3" data-topics-conf="3" data-publication-titles-conf="3" data-history-items-conf="3"
        value="" class="quick-search__input form-control autocomplete"><input type="hidden" name="SeriesKey" value="science"></div>
  </fieldset>
</form>

Name: publicationQuickSearchGET /action/doSearch

<form action="/action/doSearch" name="publicationQuickSearch" method="get">
  <fieldset>
    <legend class="sr-only">Quick Search in Journals</legend>
    <div class="input-group option-2 option-journal  animation-underline"><label for="AllField9ea9b667-c3ce-40d1-870b-f7e001bbac012" class="sr-only">Enter Search Term</label><input type="search" id="AllField9ea9b667-c3ce-40d1-870b-f7e001bbac012"
        name="AllField" autocomplete="off" placeholder="Enter Search Term" data-auto-complete-max-words="7" data-auto-complete-max-chars="32" data-contributors-conf="3" data-topics-conf="3" data-publication-titles-conf="3" data-history-items-conf="3"
        value="" class="quick-search__input form-control autocomplete"><input type="hidden" name="SeriesKey" value="sciadv"></div>
  </fieldset>
</form>

Name: publicationQuickSearchGET /action/doSearch

<form action="/action/doSearch" name="publicationQuickSearch" method="get">
  <fieldset>
    <legend class="sr-only">Quick Search in Journals</legend>
    <div class="input-group option-3 option-journal  animation-underline"><label for="AllField9ea9b667-c3ce-40d1-870b-f7e001bbac013" class="sr-only">Enter Search Term</label><input type="search" id="AllField9ea9b667-c3ce-40d1-870b-f7e001bbac013"
        name="AllField" autocomplete="off" placeholder="Enter Search Term" data-auto-complete-max-words="7" data-auto-complete-max-chars="32" data-contributors-conf="3" data-topics-conf="3" data-publication-titles-conf="3" data-history-items-conf="3"
        value="" class="quick-search__input form-control autocomplete"><input type="hidden" name="SeriesKey" value="sciimmunol"></div>
  </fieldset>
</form>

Name: publicationQuickSearchGET /action/doSearch

<form action="/action/doSearch" name="publicationQuickSearch" method="get">
  <fieldset>
    <legend class="sr-only">Quick Search in Journals</legend>
    <div class="input-group option-4 option-journal  animation-underline"><label for="AllField9ea9b667-c3ce-40d1-870b-f7e001bbac014" class="sr-only">Enter Search Term</label><input type="search" id="AllField9ea9b667-c3ce-40d1-870b-f7e001bbac014"
        name="AllField" autocomplete="off" placeholder="Enter Search Term" data-auto-complete-max-words="7" data-auto-complete-max-chars="32" data-contributors-conf="3" data-topics-conf="3" data-publication-titles-conf="3" data-history-items-conf="3"
        value="" class="quick-search__input form-control autocomplete"><input type="hidden" name="SeriesKey" value="scirobotics"></div>
  </fieldset>
</form>

Name: publicationQuickSearchGET /action/doSearch

<form action="/action/doSearch" name="publicationQuickSearch" method="get">
  <fieldset>
    <legend class="sr-only">Quick Search in Journals</legend>
    <div class="input-group option-5 option-journal  animation-underline"><label for="AllField9ea9b667-c3ce-40d1-870b-f7e001bbac015" class="sr-only">Enter Search Term</label><input type="search" id="AllField9ea9b667-c3ce-40d1-870b-f7e001bbac015"
        name="AllField" autocomplete="off" placeholder="Enter Search Term" data-auto-complete-max-words="7" data-auto-complete-max-chars="32" data-contributors-conf="3" data-topics-conf="3" data-publication-titles-conf="3" data-history-items-conf="3"
        value="" class="quick-search__input form-control autocomplete"><input type="hidden" name="SeriesKey" value="signaling"></div>
  </fieldset>
</form>

Name: publicationQuickSearchGET /action/doSearch

<form action="/action/doSearch" name="publicationQuickSearch" method="get">
  <fieldset>
    <legend class="sr-only">Quick Search in Journals</legend>
    <div class="input-group option-6 option-journal  animation-underline"><label for="AllField9ea9b667-c3ce-40d1-870b-f7e001bbac016" class="sr-only">Enter Search Term</label><input type="search" id="AllField9ea9b667-c3ce-40d1-870b-f7e001bbac016"
        name="AllField" autocomplete="off" placeholder="Enter Search Term" data-auto-complete-max-words="7" data-auto-complete-max-chars="32" data-contributors-conf="3" data-topics-conf="3" data-publication-titles-conf="3" data-history-items-conf="3"
        value="" class="quick-search__input form-control autocomplete"><input type="hidden" name="SeriesKey" value="stm"></div>
  </fieldset>
</form>

Name: defaultQuickSearchGET /action/doSearch

<form action="/action/doSearch" name="defaultQuickSearch" method="get" id="quick-search-from-e7029926-2304-4dc3-a2d3-f6c677f7bbc70" role="search">
  <fieldset>
    <legend class="sr-only">Quick Search anywhere</legend>
    <div class="input-group option-0  align-items-center  animation-underline animation-underline--primary"><label for="AllFielde7029926-2304-4dc3-a2d3-f6c677f7bbc70" class="sr-only">Enter Search Term</label><input type="search"
        id="AllFielde7029926-2304-4dc3-a2d3-f6c677f7bbc70" name="AllField" autocomplete="off" placeholder="Enter Search Term" data-auto-complete-max-words="7" data-auto-complete-max-chars="32" data-contributors-conf="3" data-topics-conf="3"
        data-publication-titles-conf="3" data-history-items-conf="3" value="" class="quick-search__input form-control autocomplete">
      <div class="input-group-append"><button type="submit" title="Search" class="btn quick-search__btn p-0"><i class="icon-search align-middle"></i></button></div>
    </div>
  </fieldset>
</form>

POST /action/submitComment

<form id="eletterForm" action="/action/submitComment" method="POST"><input type="hidden" name="doi" value="10.1126/science.1261689">
  <div class="modal-body">
    <div class="compose-wrapper mb-2x">
      <h5 class="text-deep-gray text-md letter-spacing-default mb-1x">Compose eLetter</h5>
      <div class="form-group"><label for="eletterTitle">Title:</label><input type="text" id="eletterTitle" name="title" placeholder="eg. Re. this article..." required="required" class="form-control">
        <div class="invalid-feedback">Title is required</div>
      </div>
      <div class="form-group"><label for="eletterComment">Contents:</label><textarea id="eletterComment" rows="8" name="comment" class="form-control tinyMCEInput"></textarea></div>
    </div>
    <div class="contribs-wrapper mb-2x">
      <h5 class="text-deep-gray text-md letter-spacing-default mb-1x">Contributors</h5>
      <div class="contribs-forms-wrapper">
        <div id="#contribForm1" class="eletter-contrib-form bg-very-light-gray pt-1_5x px-1x">
          <div class="d-none justify-content-end eletter-contrib-form__remove-wrapper"><button class="eletter-contrib-form__remove btn btn-with-icon--outline-secondary btn-with-icon--sm border-darker-gray mb-1"><span
                class="text-uppercase text-xxs">remove contributor</span><i class="icon-close"></i></button></div>
          <div class="form-group"><label for="contribFirstName1">First name:</label><input type="text" id="contribFirstName1" name="firstName" placeholder="eg. John" class="form-control eletter-contrib-form__input"></div>
          <div class="form-group"><label for="contribLastName1">Last name:</label><input type="text" id="contribLastName1" name="lastName" placeholder="eg. Doe" class="form-control eletter-contrib-form__input"></div>
          <div class="form-group"><label for="contribEmail1">Email:</label><input type="email" id="contribEmail1" name="email" placeholder="eg. example@gmail.com" class="form-control eletter-contrib-form__input"></div>
          <div class="form-group"><label for="contribRole1">Role/occupation:</label><input type="text" id="contribRole1" name="role" placeholder="eg. Orthopedic Surgeon" class="form-control eletter-contrib-form__input"></div>
          <div class="form-group pb-1_5x"><label for="contribAffiliation1">affiliation:</label><input type="text" id="contribAffiliation1" name="affiliation" placeholder="eg. Royal Free Hospital" class="form-control eletter-contrib-form__input">
          </div>
        </div>
      </div>
      <div class="d-flex justify-content-end"><button id="eletterAddContrib" type="button" class="btn btn-outline-primary text-xs px-2_5x py-2 font-weight-500">add another contributor</button></div>
    </div>
    <div class="statement-wrapper mb-2x">
      <h5 class="text-deep-gray text-md letter-spacing-default mb-1x">Statement of Competing Interests</h5>
      <div class="form-group mb-1x">
        <div class="d-flex"><label class="text-uppercase mr-1x">Competing interests?</label>
          <div>
            <div class="custom-control custom-radio mb-2"><input id="statementRadioYes" name="competingInterests" type="radio" value="yes" checked="checked" class="custom-control-input"><label for="statementRadioYes"
                class="custom-control-label">YES</label></div>
            <div class="custom-control custom-radio"><input id="statementRadioNo" name="competingInterests" type="radio" value="no" class="custom-control-input"><label for="statementRadioNo" class="custom-control-label">NO</label></div>
          </div>
        </div>
      </div>
      <div class="form-group disclosures-textarea-group"><label for="eletterDisclosures">Please describe the competing interests</label><textarea id="eletterDisclosures" rows="8" name="disclosures" required="required" tabindex="-1"
          class="form-control tinyMCEInput"></textarea></div>
    </div>
    <div class="captcha-wrapper mb-2x">
      <div class="g-recaptcha " data-sitekey="6Lc4HR8TAAAAAPFSxfchztMruqn2dTwPIQ9vaX9b" data-expired-callback="eletterCaptchaExpired" data-callback="eletterCaptchaFilled"></div>
    </div>
  </div>
  <div class="modal-footer border-gray"><button type="button" data-dismiss="modal" class="btn btn-outline-secondary btn-outline-secondary--text-darker-gray text-xs text-xs px-2_5x py-2 font-weight-500">CANCEL</button><button id="eletterFormSubmit"
      type="submit" class="btn btn-primary text-xs px-2_5x py-2 font-weight-500">SUBMIT</button></div>
</form>

Name: frmCitmgrPOST /action/downloadCitation

<form action="/action/downloadCitation" name="frmCitmgr" class="citation-form" method="post" target="_self"><input type="hidden" name="doi" value="10.1126/science.1261689"><input type="hidden" name="downloadFileName" value="csp_347_"><input
    type="hidden" name="include" value="abs">
  <fieldset class="format-select">
    <div class="select-container">
      <select id="slct_format" name="format" class="js__slcInclude" style="
                    padding: 7px;
                    color: #595959;
                    border: 1px solid #7f7f7f;
                ">
        <option value="" selected="selected">Please select one from the list</option>
        <option value="ris">RIS (ProCite, Reference Manager)</option>
        <option value="endnote">EndNote</option>
        <option value="bibtex">BibTex</option>
        <option value="medlars">Medlars</option>
        <option value="refworks">RefWorks</option>
      </select>
    </div>
    <label class="label-direct" for="direct">
      <input id="direct" type="checkbox" name="direct" value="" checked="checked" style="
                    margin-top: 5px;
                    margin-right: 7px;
                ">
      <span class="round-check"><span class="check"></span></span> Direct import </label>
  </fieldset>
  <footer class="form-footer">
    <input onclick="onCitMgrSubmit()" class="btn btn-outline-dark btn-sm collapsed text-no-transform" type="submit" name="submit" value="EXPORT CITATION">
  </footer>
</form>

Text Content

Advertisement

 * 
 * news
 * careers
 * commentary
 * Journals


 * 
 * 
 * Log in
 * Become A Member

science
science advances
science immunology
science robotics
science signaling
science translational medicine
science partner journals
Quick Search anywhere
Enter Search Term
Quick Search in Journals
Enter Search Term
Quick Search in Journals
Enter Search Term
Quick Search in Journals
Enter Search Term
Quick Search in Journals
Enter Search Term
Quick Search in Journals
Enter Search Term
Quick Search in Journals
Enter Search Term
Searching:
Anywhere
AnywhereScienceScience AdvancesScience ImmunologyScience RoboticsScience
SignalingScience Translational Medicine
Advanced Search Search

TRENDING TERMS:

 * cancer
 * climate
 * artificial intelligence
 * postdoc
 * aging

Log In
Become A Member
Quick Search anywhere
Enter Search Term


science.org
 * news
 * careers
 * commentary
 * Journals
 * science
   * Current Issue
   * First release papers
   * Archive
   * About
     * About Science
     * Mission & Scope
     * Editors & Advisory Boards
     * Editorial Policies
     * Information for Authors
     * Information for Reviewers
     * Journal Metrics
     * Staff
     * Contact Us
     * TOC Alerts and RSS Feeds
 * science advances
 * science immunology
 * science robotics
 * science signaling
 * science translational medicine
 * science partner journals

 * Custom publishing
 * collections
 * videos
 * podcasts
 * blogs
 * visualizations
 * prizes and awards

 * authors & reviewers
 * librarians
 * advertisers
 * about
 * help

 * 
 * 
 * 
 * 
 * 
 * 

 * Terms of Service
 * Privacy Policy
 * Accessibility

 * Current Issue
 * First release papers
 * Archive
 * About
   About Science Mission & Scope Editors & Advisory Boards Editorial Policies
   Information for Authors Information for Reviewers Journal Metrics Staff
   Contact Us TOC Alerts and RSS Feeds

 * Submit manuscript
 * More
    * Current Issue
    * First release papers
    * Archive
    * About
      About ScienceMission & ScopeEditors & Advisory BoardsEditorial
      PoliciesInformation for AuthorsInformation for ReviewersJournal
      MetricsStaffContact UsTOC Alerts and RSS Feeds
    * Submit manuscript

GET OUR E-ALERTS

HomeScienceVol. 347, No. 6228Materials that couple sensing, actuation,
computation, and communication
Back To Vol. 347, No. 6228
No access
Review
Share on
 * 
 * 
 * 
 * 
 * 
 * 
   


MATERIALS THAT COUPLE SENSING, ACTUATION, COMPUTATION, AND COMMUNICATION

M. A. McEvoy and N. Correll ncorrell@colorado.eduAuthors Info & Affiliations
Science
20 Mar 2015
Vol 347, Issue 6228
DOI: 10.1126/science.1261689

PREVIOUS ARTICLE

A mitochondrial UPR-mediated metabolic checkpoint regulates hematopoietic stem
cell aging
Previous

3,290393


METRICS


TOTAL DOWNLOADS3,290

 * Last 6 Months685
 * Last 12 Months1,456


TOTAL CITATIONS393

 * Last 6 Months3
 * Last 12 Months39

View all metrics
CHECK ACCESS
 * Contents
    * Adding autonomy to materials science
    * Structured Abstract
    * Abstract
    * References and Notes
    * eLetters (0)

 *  * Information & Authors
    * Metrics & Citations
    * Check Access
    * References
    * Media
    * Tables
    * Share


ADDING AUTONOMY TO MATERIALS SCIENCE

Shape-memory alloys can alter their shape in response to a change in
temperature. This can be thought of as a simple autonomous response, albeit one
that is fully programmed at the time of fabrication. It is now possible to build
materials or combinations of materials that can sense and respond to their local
environment, in ways that might also include simple computations and
communication. McEvoy and Correll review recent developments in the creation of
autonomous materials. They look at how individual abilities are added to a
material and the current limitations in the further development of “robotic
materials.”
Science, this issue 10.1126/science.1261689


STRUCTURED ABSTRACT


BACKGROUND

The tight integration of sensing, actuation, and computation that biological
systems exhibit to achieve shape and appearance changes (like the cuttlefish and
birds in flight), adaptive load support (like the banyan tree), or tactile
sensing at very high dynamic range (such as the human skin) has long served as
inspiration for engineered systems. Artificial materials with such capabilities
could enable airplane wings and vehicles with the ability to adapt their
aerodynamic profile or camouflage in the environment, bridges and other civil
structures that could detect and repair damages, or robotic skin and prosthetics
with the ability to sense touch and subtle textures. The vision for such
materials has been articulated repeatedly in science and fiction (“programmable
matter”) and periodically has undergone a renaissance with the advent of new
enabling technology such as fast digital electronics in the 1970s and
microelectromechanical systems in the 1990s.


ADVANCES

Recent advances in manufacturing, combined with the miniaturization of
electronics that has culminated in providing the power of a desktop computer of
the 1990s on the head of a pin, is enabling a new class of “robotic” materials
that transcend classical composite materials in functionality. Whereas
state-of-the-art composites are increasingly integrating sensors and actuators
at high densities, the availability of cheap and small microprocessors will
allow these materials to function autonomously. Yet, this vision requires the
tight integration of material science, computer science, and other related
disciplines to make fundamental advances in distributed algorithms and
manufacturing processes. Advances are currently being made in individual
disciplines rather than system integration, which has become increasingly
possible in recent years. For example, the composite materials community has
made tremendous advances in composites that integrate sensing for nondestructive
evaluation, and actuation (for example, for shape-changing airfoils), as well as
their manufacturing. At the same time, computer science has created an entire
field concerned with distributed algorithms to collect, process, and act upon
vast collections of information in the field of sensor networks. Similarly,
manufacturing has been revolutionized by advances in three-dimensional (3D)
printing, as well as entirely new methods for creating complex structures from
unfolding or stretching of patterned 2D composites. Finally, robotics and
controls have made advances in controlling robots with multiple actuators,
continuum dynamics, and large numbers of distributed sensors. Only a few systems
have taken advantage of these advances, however, to create materials that
tightly integrate sensing, actuation, computation, and communication in a way
that allows them to be mass-produced cheaply and easily.


OUTLOOK

Robotic materials can enable smart composites that autonomously change their
shape, stiffness, or physical appearance in a fully programmable way, extending
the functionality of classical “smart materials.” If mass-produced economically
and available as a commodity, robotic materials have the potential to add
unprecedented functionality to everyday objects and surfaces, enabling a vast
array of applications ranging from more efficient aircraft and vehicles, to
sensorial robotics and prosthetics, to everyday objects like clothing and
furniture. Realizing this vision requires not only a new level of
interdisciplinary collaboration between the engineering disciplines and the
sciences, but also a new model of interdisciplinary education that captures both
the disciplinary breadth of robotic materials and the depth of individual
disciplines.
(Top) Biological systems that tightly integrate sensing, actuation, computation,
and communication and (bottom) the engineering applications that could be
enabled by materials that take advantage of similar principles.
(From left) The cuttlefish (camouflage), an eagle’s wings (shape change), the
banyan tree (adaptive load support), and human skin (tactile sensing).
CREDITS: CUTTLEFISH: N. HOBGOOD/WIKIMEDIA COMMONS; BALD EAGLE ALASKA: C.
CHAPMAN/WIKIMEDIA COMMONS; BANYAN TREE: W. KNIGHT/WIKIMEDIA COMMONS; HUMAN SKIN:
A. MCEVOY; MEN IN CAMOUFLAGE HUNTING GEAR: H. RYAN/U.S. FISH AND WILDLIFE
SERVICE; 21ST CENTURY AEROSPACE VEHICLE: NASA; SYDNEY HARBOUR BRIDGE: I.
BROWN/WIKIMEDIA COMMONS; CYBERHAND: PRENSILIA S.R.L/ PRENSILIA.COM
Open in viewer


ABSTRACT

Tightly integrating sensing, actuation, and computation into composites could
enable a new generation of truly smart material systems that can change their
appearance and shape autonomously. Applications for such materials include
airfoils that change their aerodynamic profile, vehicles with camouflage
abilities, bridges that detect and repair damage, or robotic skins and
prosthetics with a realistic sense of touch. Although integrating sensors and
actuators into composites is becoming increasingly common, the opportunities
afforded by embedded computation have only been marginally explored. Here, the
key challenge is the gap between the continuous physics of materials and the
discrete mathematics of computation. Bridging this gap requires a fundamental
understanding of the constituents of such robotic materials and the distributed
algorithms and controls that make these structures smart.



GET FULL ACCESS TO THIS ARTICLE

View all available purchase options and get full access to this article.

CHECK ACCESS
ALREADY A SUBSCRIBER OR AAAS MEMBER? Sign in as an individual or via your
institution


REFERENCES AND NOTES

1
Stevens M., Merilaita S., Animal camouflage: Current issues and new
perspectives. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 423–427 (2009).
10.1098/rstb.2008.0217
Crossref
PubMed
ISI
Google Scholar
2
Shalaev V. M., Cai W., Chettiar U. K., Yuan H. K., Sarychev A. K., Drachev V.
P., Kildishev A. V., Negative index of refraction in optical metamaterials. Opt.
Lett. 30, 3356–3358 (2005). 10.1364/OL.30.003356
Crossref
PubMed
ISI
Google Scholar
3
Leonhardt U., Metamaterials: Towards invisibility in the visible. Nat. Mater. 8,
537–538 (2009). 10.1038/nmat2472
Crossref
PubMed
ISI
Google Scholar
4
Morin S. A., Shepherd R. F., Kwok S. W., Stokes A. A., Nemiroski A., Whitesides
G. M., Camouflage and display for soft machines. Science 337, 828–832 (2012).
10.1126/science.1222149
Crossref
PubMed
ISI
Google Scholar
5
Thill C., Etches J., Bond I., Potter K., Weaver P., Morphing skins. Aeronaut. J.
112, 117 (2008).
Crossref
ISI
Google Scholar
6
Barbarino S., Bilgen O., Ajaj R. M., Friswell M. I., Inman D. J., A review of
morphing aircraft. J. Intell. Mater. Syst. Struct. 22, 823–877 (2011).
10.1177/1045389X11414084
Crossref
ISI
Google Scholar
7
Vasista S., Tong L., Wong K., Realization of morphing wings: A multidisciplinary
challenge. J. Aircr. 49, 11–28 (2012). 10.2514/1.C031060
Crossref
ISI
Google Scholar
8
Weisshaar T. A., Morphing aircraft systems: Historical perspectives and future
challenges. J. Aircr. 50, 337–353 (2013). 10.2514/1.C031456
Crossref
ISI
Google Scholar
9
D. Adams, Health Monitoring of Structural Materials and Components: Methods with
Applications (Wiley, 2007).
Google Scholar
10
Blaiszik B., Kramer S. L. B., Olugebefola S. C., Moore J. S., Sottos N. R.,
White S. R., Self-healing polymers and composites. Annu. Rev. Mater. Res. 40,
179–211 (2010). 10.1146/annurev-matsci-070909-104532
Crossref
ISI
Google Scholar
11
Dahiya R. S., Metta G., Valle M., Sandini G., Tactile sensing—from humans to
humanoids, IEEE Trans. Robotics 26, 1 (2010). 10.1109/TRO.2009.2033627
Crossref
ISI
Google Scholar
12
N. Farrow, N. Sivagnanadasan, N. Correll, Gesture based distributed user
interaction system for a reconfigurable self-organizing smart wall. Proceedings
of the 8th International Conference on Tangible, Embedded and Embodied
Interaction (Association for Computing Machinery, New York, 2014), pp. 245–246.
10.1145/2540930.2540967
Crossref
Google Scholar
13
Profita H., Farrow N., Correll N., Flutter: An exploration of an assistive
garment using distributed sensing, computation and actuation. Proceedings of the
9th International Conference on Tangible, Embedded and Embodied Interaction
(Association for Computing Machinery, New York, USA, 2015), pp. 359–362.
10.1145/2677199.2680586
Crossref
Google Scholar
14
M. A. McEvoy, N. Correll, Shape change through programmable stiffness,
International Symposium on Experimental Robotics (ISER), Marrakech, Morocco,
2014.
Google Scholar
15
D. Hughes, N. Correll, A soft, amorphous skin that can sense and localize
texture, IEEE International Conference on Robotics and Automation (ICRA), Hong
Kong, 2014. 10.1109/ICRA.2014.6907101
Crossref
Google Scholar
16
Berlin A. A., Gabriel K. J., Distributed MEMS: New challenges for computation.
IEEE Comput. Science Eng. 4, 12–16 (1997). 10.1109/99.590851
Crossref
ISI
Google Scholar
17
Goldstein S. C., Campbell J. D., Mowry T. C., Programmable matter. Computer 38,
99–101 (2005). 10.1109/MC.2005.198
Crossref
ISI
Google Scholar
18
Abelson H., Weiss R., Allen D., Coore D., Hanson C., Homsy G., Knight T. F.,
Nagpal R., Rauch E., Sussman G. J., Amorphous computing. Commun. ACM 43, 74–82
(2000). 10.1145/332833.332842
Crossref
ISI
Google Scholar
19
W. Butera, Text display and graphics control on a paintable computer,
self-adaptive and self-organizing systems. First International Conference on
Self-Adaptive and Self-Organizing Systems. SASO’07 (IEEE, New York, 2007), pp.
45–54. 10.1109/SASO.2007.60
Crossref
Google Scholar
20
Basu S., Gerchman Y., Collins C. H., Arnold F. H., Weiss R., A synthetic
multicellular system for programmed pattern formation. Nature 434, 1130–1134
(2005). 10.1038/nature03461
Crossref
PubMed
ISI
Google Scholar
21
Yim M., Shen W.-, Salemi B., Rus D., Moll M., Lipson H., Klavins E., Chirikjian
G., Modular self-reconfigurable robot systems. IEEE Robotics & Automation
Magazine 14, 43–52 (2007). 10.1109/MRA.2007.339623
Crossref
ISI
Google Scholar
22
C.-H. Yu, F.-X. Willems, D. Ingber, R. Nagpal, Self-organization of
environmentally-adaptive shapes on a modular robot. IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (IEEE, New York, 2007), pp.
2353–2360. 10.1109/IROS.2007.4399491
Crossref
Google Scholar
23
P. Levis et al., in TinyOS: An Operating System for Sensor Networks, Ambient
Intelligence (Springer, Berlin, 2005), pp. 115–148. 10.1007/3-540-27139-2_7
Crossref
Google Scholar
24
H. Ishii, B. Ullmer, Tangible bits: Towards seamless interfaces between people,
bits and atoms. Proceedings of the ACM SIGCHI Conference on Human Factors in
Computing Systems (Association of Computing Machinery, New York, 1997), pp.
234–241. 10.1145/258549.258715
Crossref
Google Scholar
25
Ishii H., Lakatos D., Bonanni L., Labrune J.-B., Radical atoms: Beyond tangible
bits, toward transformable materials. Interaction 19, 38 (2012).
10.1145/2065327.2065337
Crossref
Google Scholar
26
J. Lifton, D. Seetharam, M. Broxton, J. Paradiso, Pushpin Computing System
Overview: A Platform for Distributed, Embedded, Ubiquitous Sensor Networks,
Pervasive Computing (Springer, 2002), pp. 139–151. 10.1007/3-540-45866-2_12
Crossref
Google Scholar
27
J. Ou et al., jamSheets: Thin interfaces with tunable stiffness enabled by layer
jamming. Proceedings of the 8th International Conference on Tangible, Embedded
and Embodied Interaction (Association of Computing Machinery, New York, 2014),
pp. 65–72. 10.1145/2540930.2540971
Crossref
Google Scholar
28
D. Leithinger, S. Follmer, A. Olwal, H. Ishii, Physical telepresence: Shape
capture and display for embodied, computer-mediated remote collaboration.
Proceedings of the 27th annual ACM symposium on User Interface Software and
Technology (Association of Computing Machinery, New York, 2014), pp. 461–470.
10.1145/2642918.2647377
Crossref
Google Scholar
29
R. Niiyama, L. Yao, H. Ishii, Weight and volume changing device with liquid
metal transfer. Proceedings of the 8th International Conference on Tangible,
Embedded and Embodied Interaction (Association of Computing Machinery, New York,
2014), pp. 49–52. 10.1145/2540930.2540953
Crossref
Google Scholar
30
Gibson R. F., A review of recent research on mechanics of multifunctional
composite materials and structures. Compos. Struct. 92, 2793–2810 (2010).
10.1016/j.compstruct.2010.05.003
Crossref
ISI
Google Scholar
31
J. M. Kahn, R. H. Katz, K. S. Pister, Next century challenges: Mobile networking
for “Smart Dust.”Proceedings of the 5th annual ACM/IEEE International Conference
on Mobile computing and Networking (Association of Computing Machinery, New
York, 1999), pp. 271–278. 10.1145/313451.313558
Crossref
Google Scholar
32
R. M. Walser, Electromagnetic metamaterials. Proc. SPIE 4467, Complex Mediums
II: Beyond Linear Isotropic Dielectrics (San Diego, CA, 2001), pp. 1–15 (2001).
10.1117/12.432921
Crossref
Google Scholar
33
Franceschini N., Pichon J.-M., Blanes C., Brady J., From insect vision to robot
vision. Philos. Trans. R. Soc. Lond. B Biol. Sci. 337, 283–294 (1992).
10.1098/rstb.1992.0106
Crossref
ISI
Google Scholar
34
Pfeifer R., Iida F., Morphological computation: Connecting body, brain and
environment. Japanese Scientific Monthly 58, 48 (2005).
10.1007/978-3-642-00616-6_5
Crossref
Google Scholar
35
Sheng X., Hu Y.-H., Maximum likelihood multiple-source localization using
acoustic energy measurements with wireless sensor networks. IEEE Trans. Signal
Processing 53, 44–53 (2005). 10.1109/TSP.2004.838930
Crossref
ISI
Google Scholar
36
Ghasemi-Nejhad M. N., Russ R., Pourjalali S., Manufacturing and testing of
active composite panels with embedded piezoelectric sensors and actuators. J.
Intell. Mater. Syst. Struct. 16, 319–333 (2005). 10.1177/1045389X05050103
Crossref
ISI
Google Scholar
37
Jang S., Jo H., Cho S., Mechitov K., Rice J. A., Sim S.-H., Jung H.-J., Yun
C.-B., Spencer B. F. J., Agha G., Structural health monitoring of a cable-stayed
bridge using smart sensor technology: Deployment and evaluation. Smart
Structures and Systems 6, 439–459 (2010). 10.12989/sss.2010.6.5_6.439
Crossref
ISI
Google Scholar
38
Ihn J.-B., Chang F.-K., Detection and monitoring of hidden fatigue crack growth
using a built-in piezoelectric sensor/actuator network: I. Diagnostics. Smart
Mater. Struct. 13, 609–620 (2004). 10.1088/0964-1726/13/3/020
Crossref
ISI
Google Scholar
39
Zhao X., Gao H., Zhang G., Ayhan B., Yan F., Kwan C., Rose J. L., Active health
monitoring of an aircraft wing with embedded piezoelectric sensor/actuator
network: I. Defect detection, localization and growth monitoring. Smart Mater.
Struct. 16, 1208–1217 (2007). 10.1088/0964-1726/16/4/032
Crossref
ISI
Google Scholar
40
Zhao X., Qian T., Mei G., Kwan C., Zane R., Walsh C., Paing T., Popovic Z.,
Active health monitoring of an aircraft wing with an embedded piezoelectric
sensor/actuator network: II. Wireless approaches. Smart Mater. Struct. 16,
1218–1225 (2007). 10.1088/0964-1726/16/4/033
Crossref
ISI
Google Scholar
41
Someya T., Kato Y., Sekitani T., Iba S., Noguchi Y., Murase Y., Kawaguchi H.,
Sakurai T., Conformable, flexible, large-area networks of pressure and thermal
sensors with organic transistor active matrixes. Proc. Natl. Acad. Sci. U.S.A.
102, 12321–12325 (2005). 10.1073/pnas.0502392102
Crossref
PubMed
ISI
Google Scholar
42
M. A. McEvoy, N. Correll, Thermoplastic variable stiffness composites with
embedded, networked sensing, actuation, and control. J. Composite Mater. (2014).
10.1177/0021998314525982
Crossref
Google Scholar
43
Park Y.-L., Majidi C., Kramer R., Bérard P., Wood R. J., Hyperelastic pressure
sensing with a liquid-embedded elastomer. J. Micromech. Microeng. 20, 125029
(2010). 10.1088/0960-1317/20/12/125029
Crossref
ISI
Google Scholar
44
Tan H. Z., Slivovsky L. A., Pentland A., A sensing chair using pressure
distribution sensors. IEEE/ASME Trans. Mechatronics 6, 261 (2001).
10.1109/3516.951364
Crossref
Google Scholar
45
Zhou J., Gu Y., Fei P., Mai W., Gao Y., Yang R., Bao G., Wang Z. L., Flexible
piezotronic strain sensor. Nano Lett. 8, 3035–3040 (2008). 10.1021/nl802367t
Crossref
PubMed
ISI
Google Scholar
46
Yamada T., Hayamizu Y., Yamamoto Y., Yomogida Y., Izadi-Najafabadi A., Futaba D.
N., Hata K., A stretchable carbon nanotube strain sensor for human-motion
detection. Nat. Nanotechnol. 6, 296–301 (2011). 10.1038/nnano.2011.36
Crossref
PubMed
ISI
Google Scholar
47
Majidi C., Kramer R., Wood R., A non-differential elastomer curvature sensor for
softer-than-skin electronics. Smart Mater. Struct. 20, 105017 (2011).
10.1088/0964-1726/20/10/105017
Crossref
ISI
Google Scholar
48
Gandhi F., Kang S.-G., Beams with controllable flexural stiffness. Smart Mater.
Struct. 16, 1179–1184 (2007). 10.1088/0964-1726/16/4/028
Crossref
ISI
Google Scholar
49
Murray G., Gandhi F., Multi-layered controllable stiffness beams for morphing:
Energy, actuation force, and material strain considerations. Smart Mater.
Struct. 19, 045002 (2010). 10.1088/0964-1726/19/4/045002
Crossref
ISI
Google Scholar
50
G. McKnight, C. Henry, Variable stiffness materials for reconfigurable surface
applications, Proc. SPIE 5761 Smart Structures and Materials 2005: Active
Materials: Behavior and Mechanics (20 May 2005), pp. 119–126. 10.1117/12.601495
Crossref
Google Scholar
51
Mcknight G., Doty R., Keefe A., Herrera G., Henry C., Segmented reinforcement
variable stiffness materials for reconfigurable surfaces. J. Intell. Mater.
Syst. Struct. 21, 1783–1793 (2010). 10.1177/1045389X10386399
Crossref
ISI
Google Scholar
52
Meng Q., Hu J., A review of shape memory polymer composites and blends. Compos.,
Part A Appl. Sci. Manuf. 40, 1661–1672 (2009). 10.1016/j.compositesa.2009.08.011
Crossref
ISI
Google Scholar
53
Brown E., Rodenberg N., Amend J., Mozeika A., Steltz E., Zakin M. R., Lipson H.,
Jaeger H. M., Universal robotic gripper based on the jamming of granular
material. Proc. Natl. Acad. Sci. U.S.A. 107, 18809–18814 (2010).
10.1073/pnas.1003250107
Crossref
ISI
Google Scholar
54
Haines C. S., Lima M. D., Li N., Spinks G. M., Foroughi J., Madden J. D., Kim S.
H., Fang S., Jung de Andrade M., Göktepe F., Göktepe Ö., Mirvakili S. M., Naficy
S., Lepró X., Oh J., Kozlov M. E., Kim S. J., Xu X., Swedlove B. J., Wallace G.
G., Baughman R. H., Artificial muscles from fishing line and sewing thread.
Science 343, 868–872 (2014). 10.1126/science.1246906
Crossref
PubMed
ISI
Google Scholar
55
Nespoli A., Besseghini S., Pittaccio S., Villa E., Viscuso S., The high
potential of shape memory alloys in developing miniature mechanical devices: A
review on shape memory alloy mini-actuators. Sens. Actuators A Phys. 158,
149–160 (2010). 10.1016/j.sna.2009.12.020
Crossref
ISI
Google Scholar
56
Furst S. J., Bunget G., Seelecke S., Design and fabrication of a bat-inspired
flapping-flight platform using shape memory alloy muscles and joints. Smart
Mater. Struct. 22, 014011 (2013). 10.1088/0964-1726/22/1/014011
Crossref
ISI
Google Scholar
57
C. D. Onal, R. J. Wood, D. Rus, Towards printable robotics: Origami-inspired
planar fabrication of three-dimensional mechanisms. IEEE International
Conference on Robotics and Automation (IEEE, New York, 2011), pp. 4608–4613.
10.1109/ICRA.2011.5980139
Crossref
Google Scholar
58
G. K. Klute, J. M. Czerniecki, B. Hannaford, McKibben artificial muscles:
Pneumatic actuators with biomechanical intelligence. Proceedings of IEEE/ASME
International Conference on Advanced Intelligent Mechatronics (IEEE, New York,
1999), pp. 221–226. 10.1109/AIM.1999.803170
Crossref
Google Scholar
59
Takashima K., Rossiter J., Mukai T., McKibben artificial muscle using
shape-memory polymer. Sens. Actuators A Phys. 164, 116–124 (2010).
10.1016/j.sna.2010.09.010
Crossref
ISI
Google Scholar
60
De Volder M., Reynaerts D., Pneumatic and hydraulic microactuators: A review. J.
Micromech. Microeng. 20, 043001 (2010). 10.1088/0960-1317/20/4/043001
Crossref
ISI
Google Scholar
61
Shepherd R. F., Ilievski F., Choi W., Morin S. A., Stokes A. A., Mazzeo A. D.,
Chen X., Wang M., Whitesides G. M., Multigait soft robot. Proc. Natl. Acad. Sci.
U.S.A. 108, 20400–20403 (2011). 10.1073/pnas.1116564108
Crossref
PubMed
ISI
Google Scholar
62
N. Correll, C. D. Onal, H. Liang, E. Schoenfeld, D. Rus, Soft autonomous
materials—Using active elasticity and embedded distributed computation. 12th
International Symposium on Experimental Robotics, Springer Tracts in Advanced
Robotics (2014), vol. 79, pp. 227–240. 10.1007/978-3-642-28572-1_16
Crossref
Google Scholar
63
A. D. Marchese, K. Konrad, C. D. Onal, D. Rus, Design, curvature control, and
autonomous positioning of a soft and highly compliant 2D robotic manipulator.
IEEE International Conference on Robotics and Automation (IEEE, New York, 2014).
10.1109/ICRA.2014.6907161
Crossref
Google Scholar
64
R. K. Katzschmann, A. D. Marchese, D. Rus, Hydraulic autonomous soft robotic
fish for 3D swimming, International Symposium on Experimental Robotics (ISER),
Marrakech, Morocco, 2014.
Google Scholar
65
Yoshida K., Kamiyama K., Kim J.-, Yokota S., An intelligent microactuator robust
against disturbance using electro-rheological fluid. Sens. Actuators A Phys.
175, 101–107 (2012). 10.1016/j.sna.2011.12.049
Crossref
ISI
Google Scholar
66
Shaikh K. A., Li S., Liu C., Development of a latchable microvalve employing a
low-melting-temperature metal alloy. J. Microelectromech. Syst. 17, 1195–1203
(2008). 10.1109/JMEMS.2008.2003055
Crossref
ISI
Google Scholar
67
Greaves G. N., Greer A. L., Lakes R. S., Rouxel T., Poisson’s ratio and modern
materials. Nat. Mater. 10, 823–837 (2011). 10.1038/nmat3134
Crossref
PubMed
ISI
Google Scholar
68
C. Henry, G. McKnight, Cellular variable stiffness materials for ultra-large
reversible deformations in reconfigurable structures. Proc. SPIE, Smart
Structures and Materials 2006: Active Materials: Behavior and Mechanics (2006),
vol. 6170, p. 12. 10.1117/12.659633
Crossref
Google Scholar
69
Suomela J., Survey of local algorithms. ACM Comput. Surv. 45, 24 (2013).
10.1145/2431211.2431223
Crossref
ISI
Google Scholar
70
M. Duckham, Decentralized Spatial Computing: Foundations of Geosensor Setworks
(Springer, Berlin, 2012).
Google Scholar
71
G. Werner-Allen, G. Tewari, A. Patel, M. Welsh, R. Nagpal, Firefly-inspired
sensor network synchronicity with realistic radio effects. Proceedings of the
3rd International Conference on Embedded networked Sensor systems (Association
of Computing Machinery, New York, 2005), pp. 142–153. 10.1145/1098918.1098934
Crossref
Google Scholar
72
J. Beal et al., in Formal and Practical Aspects of Domain-Specific Languages:
Recent Developments (IGI Global, 2012), pp. 436–501.
10.4018/978-1-4666-2092-6.ch016
Crossref
Google Scholar
73
Tilak S., Abu-Ghazaleh N. B., Heinzelman W., A taxonomy of wireless micro-sensor
network models. Mob. Comput. Commun. Rev. 6, 28–36 (2002). 10.1145/565702.565708
Crossref
Google Scholar
74
J. N. Al-Karaki, A. E. Kamal, Routing techniques in wireless sensor networks: A
survey. IEEE Wireless Commun. 11, 6 (2004). 10.1109/MWC.2004.1368893
Crossref
Google Scholar
75
P. Santi, Topology control in wireless ad hoc and sensor networks. ACM Comput.
Surv. 37, 164 (2005). 10.1145/1089733.1089736
Crossref
Google Scholar
76
C. Intanagonwiwat, D. Estrin, R. Govindan, J. Heidemann, Impact of network
density on data aggregation in wireless sensor networks. Proceedings of the 22nd
International Conference on Distributed Computing Systems (IEEE, New York,
2002), pp. 457–458. 10.1109/ICDCS.2002.1022289
Crossref
Google Scholar
77
T. He, J. A. Stankovic, C. Lu, T. Abdelzaher, SPEED: A stateless protocol for
real-time communication in sensor networks. Proceedings. 23rd International
Conference on Distributed Computing Systems (IEEE, New York, 2003), pp. 46–55.
10.1109/ICDCS.2003.1203451
Crossref
Google Scholar
78
S. Ma, H. Hosseinmardi, N. Farrow, R. Han, N. Correll, Establishing multi-cast
groups in computational robotic materials. IEEE International Conference on
Cyber, Physical and Social Computing (IEEE, New York, 2012), pp. 311–316.
10.1109/GreenCom.2012.74
Crossref
Google Scholar
79
H. Hosseinmardi, N. Correll, R. Han, Bloom Filter-Based Ad Hoc Multicast
Communication in Cyber-Physical Systems and Computational Materials, Wireless
Algorithms, Systems, and Applications (Springer, 2012), pp. 595–606.
10.1007/978-3-642-31869-6_52
Crossref
Google Scholar
80
Budelmann C., Krieg-Brückner B., From sensorial to smart materials: Intelligent
optical sensor network for embedded applications. J. Intell. Mater. Syst.
Struct. 24, 2183–2188 (2013). 10.1177/1045389X12462647
Crossref
ISI
Google Scholar
81
Lanzara G., Salowitz N., Guo Z., Chang F.-K., A spider-web-like highly
expandable sensor network for multifunctional materials. Adv. Mater. 22,
4643–4648 (2010). 10.1002/adma.201000661
Crossref
PubMed
ISI
Google Scholar
82
Salowitz N., Guo Z., Li Y.-H., Kim K., Lanzara G., Chang F.-K., Biol.-inspired
stretchable network-based intelligent composites. J. Composite Mater. 47, 97–105
(2012). 10.1177/0021998312442900
Crossref
ISI
Google Scholar
83
P. J. Skabara, N. J. Findlay, Polymer Electronics. Oxford Master Series in
Physics 22. By Mark Geoghegan and Georges Hadziioannou. (Wiley Online Library,
2014). 10.1002/anie.201310074
Crossref
Google Scholar
84
Teichler A., Perelaer J., Schubert U. S., Inkjet printing of organic
electronics–comparison of deposition techniques and state-of-the-art
developments. J. Mater. Chem. C 1, 1910 (2013). 10.1039/c2tc00255h
Crossref
Google Scholar
85
Menguc Y., Park Y.-L., Pei H., Vogt D., Aubin P. M., Winchell E., Fluke L.,
Stirling L., Wood R. J., Walsh C. J., Wearable soft sensing suit for human gait
measurement. Int. J. Robot. Res. 33, 1748–1764 (2014). 10.1177/0278364914543793
Crossref
ISI
Google Scholar
86
Islam A., Hansen H. N., Tang P. T., Sun J., Process chains for the manufacturing
of molded interconnect devices. Int. J. Adv. Manuf. Technol. 42, 831–841 (2009).
10.1007/s00170-008-1660-9
Crossref
ISI
Google Scholar
87
R. Merz, F. Prinz, K. Ramaswami, M. Terk, L. Weiss, Shape Deposition
Manufacturing (Engineering Design Research Center, Carnegie Mellon Univ.,
Pittsburgh, PA, 1994).
Google Scholar
88
Leigh S. J., Bradley R. J., Purssell C. P., Billson D. R., Hutchins D. A., A
simple, low-cost conductive composite material for 3D printing of electronic
sensors. PLOS ONE 7, e49365 (2012). 10.1371/journal.pone.0049365
Crossref
PubMed
ISI
Google Scholar
89
Ma K. Y., Chirarattananon P., Fuller S. B., Wood R. J., Controlled flight of a
biologically inspired, insect-scale robot. Science 340, 603–607 (2013).
10.1126/science.1231806
Crossref
PubMed
ISI
Google Scholar
90
Marsden J. E., Patrick G. W., Shkoller S., Multisymplectic geometry, variational
integrators, and nonlinear PDEs. Commun. Math. Phys. 199, 351–395 (1998).
10.1007/s002200050505
Crossref
ISI
Google Scholar
91
Johnson E. R., Murphey T. D., Scalable variational integrators for constrained
mechanical systems in generalized coordinates, IEEE Trans. Robotics 25, 1249
(2009). 10.1109/TRO.2009.2032955
Crossref
ISI
Google Scholar
92
Toffoli T., Margolus N., Programmable matter: Concepts and realization. Physica
D 47, 263–272 (1991). 10.1016/0167-2789(91)90296-L
Crossref
ISI
Google Scholar
93
D’Andrea R., Dullerud G. E., Distributed control design for spatially
interconnected systems, IEEE Trans. Automatic Control 48, 1478 (2003).
10.1109/TAC.2003.816954
Crossref
ISI
Google Scholar
94
Langbort C., Chandra R. S., D’Andrea R., Distributed control design for systems
interconnected over an arbitrary graph, IEEE Trans. Automatic Control 49, 1502
(2004). 10.1109/TAC.2004.834123
Crossref
ISI
Google Scholar
95
Scattolini R., Architectures for distributed and hierarchical model predictive
control–a review. J. Process Contr. 19, 723–731 (2009).
10.1016/j.jprocont.2009.02.003
Crossref
ISI
Google Scholar
96
Hofstein A., Lunetta V. N., The laboratory in science education: Foundations for
the twenty-first century. Sci. Educ. 88, 28–54 (2004). 10.1002/sce.10106
Crossref
ISI
Google Scholar
Show all references


SUBMIT A RESPONSE TO THIS ARTICLE

×

COMPOSE ELETTER

Title:
Title is required
Contents:

CONTRIBUTORS

remove contributor
First name:
Last name:
Email:
Role/occupation:
affiliation:
add another contributor

STATEMENT OF COMPETING INTERESTS

Competing interests?
YES
NO
Please describe the competing interests

CANCELSUBMIT


(0)ELETTERS

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread,
or indexed, but they are screened. eLetters should provide substantive and
scholarly commentary on the article. Embedded figures cannot be submitted, and
we discourage the use of figures within eLetters in general. If a figure is
essential, please include a link to the figure within the text of the eLetter.
Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

SHOW ALL eLETTERS


RECOMMENDED ARTICLES FROM TRENDMD

 1. Adaptive Composites
    Richard Vaia et al., Science, 2008
 2. The NASA-NCI Collaboration on Biomolecular Sensors
    Daniel S. Goldin et al., Science, 2001
 3. Electro-ribbon actuators and electro-origami robots
    Majid Taghavi et al., Science Robotics, 2018
 4. Soft wall-climbing robots
    Guoying Gu et al., Science Robotics, 2018
 5. Consecutive aquatic jump-gliding with water-reactive fuel
    R. Zufferey et al., Science Robotics, 2019


Powered by
 * Privacy policy
 * Do not sell my personal information
 * Google Analytics settings


I consent to the use of Google Analytics and related cookies across the TrendMD
network (widget, website, blog). Learn more
Yes No



INFORMATION & AUTHORS

InformationAuthors


INFORMATION

PUBLISHED IN

Science
Volume 347 | Issue 6228
20 March 2015

COPYRIGHT

Copyright © 2015, American Association for the Advancement of Science.

SUBMISSION HISTORY

Published in print: 20 March 2015

PERMISSIONS

Request permissions for this article.
Request permissions

ACKNOWLEDGMENTS

We are grateful to the Air Force Office of Scientific Research, NASA, NSF,
Defense Advanced Research Projects Agency, and Army Research Office for support
of this work.


AUTHORS

AFFILIATIONSEXPAND ALL

M. A. MCEVOY

Department of Computer Science, University of Colorado at Boulder, Boulder, CO,
USA.
View all articles by this author

N. CORRELL* NCORRELL@COLORADO.EDU

Department of Computer Science, University of Colorado at Boulder, Boulder, CO,
USA.
View all articles by this author

NOTES

*
Corresponding author. E-mail: ncorrell@colorado.edu


METRICS & CITATIONS

MetricsCitations149


METRICS

ARTICLE USAGE

Article Metrics
 * Downloads
 * Citations

No data available.
050100MayJunJulAugSepOct
3,290
393
 * Total
 * 6 Months
 * 12 Months

Total number of downloads and citations for the most recent 6 whole calendar
months.

Note: The article usage is presented with a three- to four-day delay and will
update daily once available. Due to this delay, usage data will not appear
immediately following publication.

Citation information is sourced from Crossref Cited-by service.

ALTMETRICS

See more details

Picked up by 28 news outlets
Blogged by 3
Tweeted by 45
Referenced in 1 patents
On 10 Facebook pages
Referenced in 4 Wikipedia pages
Mentioned in 5 Google+ posts
Reddited by 1
672 readers on Mendeley
1 readers on CiteULike


CITATIONS

CITE AS

 * M. A. McEvoy
 * N. Correll

,
Materials that couple sensing, actuation, computation, and
communication.Science347,1261689(2015).DOI:10.1126/science.1261689

EXPORT CITATION

Select the format you want to export the citation of this publication.

Please select one from the list RIS (ProCite, Reference Manager) EndNote BibTex
Medlars RefWorks
Direct import


CITED BY

 1.  * Nan Yang,
     * Zheng Qian,
     * Huaxian Wei,
     * Yubo Zhang,
     Flexible, Light-Interacting, B-Shaped Structures for Computations,
     Research, 6, (2023)./doi/10.34133/research.0085
     Abstract
 2.  * Takaaki Nishikawa,
     * Hisaya Yamane,
     * Naoji Matsuhisa,
     * Norihisa Miki,
     Stretchable Strain Sensor with Small but Sufficient Adhesion to Skin,
     Sensors, 23, 4, (1774), (2023).https://doi.org/10.3390/s23041774
     Crossref
 3.  * Zhongjie Huang,
     * Shaopeng Li,
     * Jiaqi Zhang,
     * Huan Pang,
     * Andrey Ivankin,
     * Yuhuang Wang,
     Localized Photoactuation of Polymer Pens for Nanolithography, Molecules,
     28, 3, (1171), (2023).https://doi.org/10.3390/molecules28031171
     Crossref
 4.  * Goffredo Giordano,
     * Saravana Prashanth Murali Babu,
     * Barbara Mazzolai,
     Soft robotics towards sustainable development goals and climate actions,
     Frontiers in Robotics and AI, 10,
     (2023).https://doi.org/10.3389/frobt.2023.1116005
     Crossref
 5.  * Linda Paternò,
     * Lucrezia Lorenzon,
     Soft robotics in wearable and implantable medical applications:
     Translational challenges and future outlooks, Frontiers in Robotics and AI,
     10, (2023).https://doi.org/10.3389/frobt.2023.1075634
     Crossref
 6.  * Merve Karabal,
     * Ramazan Yuksel,
     * Fulden Kayginok,
     * Alptekin Yildiz,
     * Hulya Cebeci,
     undefined, AIAA SCITECH 2023 Forum,
     (2023).https://doi.org/10.2514/6.2023-0318
     Crossref
 7.  * Kenneth AW Hoffmann,
     * Tony G Chen,
     * Mark R Cutkosky,
     * David Lentink,
     Bird-inspired robotics principles as a framework for developing smart
     aerospace materials, Journal of Composite Materials, 57, 4, (679-710),
     (2023).https://doi.org/10.1177/00219983231152663
     Crossref
 8.  * Sark Pangrui Xing,
     * Bart Van Dijk,
     * Pengcheng An,
     * Miguel Bruns,
     * Yaliang Chuang,
     * Stephen Jia Wang,
     undefined, Proceedings of the Seventeenth International Conference on
     Tangible, Embedded, and Embodied Interaction, (1-14),
     (2023).https://doi.org/10.1145/3569009.3572800
     Crossref
 9.  * He Zifan,
     * Lu Jiyun,
     * Cui Shengming,
     * Zuo Hongfu,
     undefined, Advanced Optical Manufacturing Technologies and Applications
     2022; and 2nd International Forum of Young Scientists on Advanced Optical
     Manufacturing (AOMTA and YSAOM 2022), (3),
     (2023).https://doi.org/10.1117/12.2653207
     Crossref
 10. * Jiahui Qiu,
     * Aihong Ji,
     * Kongjun Zhu,
     * Qinfei Han,
     * Wei Wang,
     * Qian Qi,
     * Guangming Chen,
     A Gecko-Inspired Robot with a Flexible Spine Driven by Shape Memory Alloy
     Springs, Soft Robotics, (2023).https://doi.org/10.1089/soro.2022.0080
     Crossref
 11. See more

Loading...

Citation information is sourced from Crossref Cited-by service.


MEDIA

FiguresMultimedia


FIGURES

(Top) Biological systems that tightly integrate sensing, actuation, computation,
and communication and (bottom) the engineering applications that could be
enabled by materials that take advantage of similar principles.
(From left) The cuttlefish (camouflage), an eagle’s wings (shape change), the
banyan tree (adaptive load support), and human skin (tactile sensing).
CREDITS: CUTTLEFISH: N. HOBGOOD/WIKIMEDIA COMMONS; BALD EAGLE ALASKA: C.
CHAPMAN/WIKIMEDIA COMMONS; BANYAN TREE: W. KNIGHT/WIKIMEDIA COMMONS; HUMAN SKIN:
A. MCEVOY; MEN IN CAMOUFLAGE HUNTING GEAR: H. RYAN/U.S. FISH AND WILDLIFE
SERVICE; 21ST CENTURY AEROSPACE VEHICLE: NASA; SYDNEY HARBOUR BRIDGE: I.
BROWN/WIKIMEDIA COMMONS; CYBERHAND: PRENSILIA S.R.L/ PRENSILIA.COM
GO TO FIGUREOPEN IN VIEWER


MULTIMEDIA


TABLES


SHARE


SHARE

SHARE ARTICLE LINK

https://www.science.org/doi/10.1126/science.1261689

Copy Link

Copied!

Copying failed.

SHARE ON SOCIAL MEDIA

FacebookTwitterLinkedinRedditWeChatemail


CHECK ACCESS


CHECK ACCESS


CHECK ACCESS

LOG IN TO VIEW THE FULL TEXT

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other
journals in the Science family to users who have purchased individual
subscriptions.

 * Become a AAAS Member
 * Activate your AAAS ID
 * Purchase Access to Other Journals in the Science Family
 * Account Help

Log in via OpenAthens.
via OpenAthens
Log in via Shibboleth.
via Shibboleth

MORE OPTIONS

Register for free to read this article

As a service to the community, this article is available for free. Login or
register for free to read this article.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.




REFERENCES


REFERENCES

1
Stevens M., Merilaita S., Animal camouflage: Current issues and new
perspectives. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 423–427 (2009).
10.1098/rstb.2008.0217
Crossref
PubMed
ISI
Google Scholar
2
Shalaev V. M., Cai W., Chettiar U. K., Yuan H. K., Sarychev A. K., Drachev V.
P., Kildishev A. V., Negative index of refraction in optical metamaterials. Opt.
Lett. 30, 3356–3358 (2005). 10.1364/OL.30.003356
Crossref
PubMed
ISI
Google Scholar
3
Leonhardt U., Metamaterials: Towards invisibility in the visible. Nat. Mater. 8,
537–538 (2009). 10.1038/nmat2472
Crossref
PubMed
ISI
Google Scholar
4
Morin S. A., Shepherd R. F., Kwok S. W., Stokes A. A., Nemiroski A., Whitesides
G. M., Camouflage and display for soft machines. Science 337, 828–832 (2012).
10.1126/science.1222149
Crossref
PubMed
ISI
Google Scholar
5
Thill C., Etches J., Bond I., Potter K., Weaver P., Morphing skins. Aeronaut. J.
112, 117 (2008).
Crossref
ISI
Google Scholar
6
Barbarino S., Bilgen O., Ajaj R. M., Friswell M. I., Inman D. J., A review of
morphing aircraft. J. Intell. Mater. Syst. Struct. 22, 823–877 (2011).
10.1177/1045389X11414084
Crossref
ISI
Google Scholar
7
Vasista S., Tong L., Wong K., Realization of morphing wings: A multidisciplinary
challenge. J. Aircr. 49, 11–28 (2012). 10.2514/1.C031060
Crossref
ISI
Google Scholar
8
Weisshaar T. A., Morphing aircraft systems: Historical perspectives and future
challenges. J. Aircr. 50, 337–353 (2013). 10.2514/1.C031456
Crossref
ISI
Google Scholar
9
D. Adams, Health Monitoring of Structural Materials and Components: Methods with
Applications (Wiley, 2007).
Google Scholar
10
Blaiszik B., Kramer S. L. B., Olugebefola S. C., Moore J. S., Sottos N. R.,
White S. R., Self-healing polymers and composites. Annu. Rev. Mater. Res. 40,
179–211 (2010). 10.1146/annurev-matsci-070909-104532
Crossref
ISI
Google Scholar
11
Dahiya R. S., Metta G., Valle M., Sandini G., Tactile sensing—from humans to
humanoids, IEEE Trans. Robotics 26, 1 (2010). 10.1109/TRO.2009.2033627
Crossref
ISI
Google Scholar
12
N. Farrow, N. Sivagnanadasan, N. Correll, Gesture based distributed user
interaction system for a reconfigurable self-organizing smart wall. Proceedings
of the 8th International Conference on Tangible, Embedded and Embodied
Interaction (Association for Computing Machinery, New York, 2014), pp. 245–246.
10.1145/2540930.2540967
Crossref
Google Scholar
13
Profita H., Farrow N., Correll N., Flutter: An exploration of an assistive
garment using distributed sensing, computation and actuation. Proceedings of the
9th International Conference on Tangible, Embedded and Embodied Interaction
(Association for Computing Machinery, New York, USA, 2015), pp. 359–362.
10.1145/2677199.2680586
Crossref
Google Scholar
14
M. A. McEvoy, N. Correll, Shape change through programmable stiffness,
International Symposium on Experimental Robotics (ISER), Marrakech, Morocco,
2014.
Google Scholar
15
D. Hughes, N. Correll, A soft, amorphous skin that can sense and localize
texture, IEEE International Conference on Robotics and Automation (ICRA), Hong
Kong, 2014. 10.1109/ICRA.2014.6907101
Crossref
Google Scholar
16
Berlin A. A., Gabriel K. J., Distributed MEMS: New challenges for computation.
IEEE Comput. Science Eng. 4, 12–16 (1997). 10.1109/99.590851
Crossref
ISI
Google Scholar
17
Goldstein S. C., Campbell J. D., Mowry T. C., Programmable matter. Computer 38,
99–101 (2005). 10.1109/MC.2005.198
Crossref
ISI
Google Scholar
18
Abelson H., Weiss R., Allen D., Coore D., Hanson C., Homsy G., Knight T. F.,
Nagpal R., Rauch E., Sussman G. J., Amorphous computing. Commun. ACM 43, 74–82
(2000). 10.1145/332833.332842
Crossref
ISI
Google Scholar
19
W. Butera, Text display and graphics control on a paintable computer,
self-adaptive and self-organizing systems. First International Conference on
Self-Adaptive and Self-Organizing Systems. SASO’07 (IEEE, New York, 2007), pp.
45–54. 10.1109/SASO.2007.60
Crossref
Google Scholar
20
Basu S., Gerchman Y., Collins C. H., Arnold F. H., Weiss R., A synthetic
multicellular system for programmed pattern formation. Nature 434, 1130–1134
(2005). 10.1038/nature03461
Crossref
PubMed
ISI
Google Scholar
21
Yim M., Shen W.-, Salemi B., Rus D., Moll M., Lipson H., Klavins E., Chirikjian
G., Modular self-reconfigurable robot systems. IEEE Robotics & Automation
Magazine 14, 43–52 (2007). 10.1109/MRA.2007.339623
Crossref
ISI
Google Scholar
22
C.-H. Yu, F.-X. Willems, D. Ingber, R. Nagpal, Self-organization of
environmentally-adaptive shapes on a modular robot. IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (IEEE, New York, 2007), pp.
2353–2360. 10.1109/IROS.2007.4399491
Crossref
Google Scholar
23
P. Levis et al., in TinyOS: An Operating System for Sensor Networks, Ambient
Intelligence (Springer, Berlin, 2005), pp. 115–148. 10.1007/3-540-27139-2_7
Crossref
Google Scholar
24
H. Ishii, B. Ullmer, Tangible bits: Towards seamless interfaces between people,
bits and atoms. Proceedings of the ACM SIGCHI Conference on Human Factors in
Computing Systems (Association of Computing Machinery, New York, 1997), pp.
234–241. 10.1145/258549.258715
Crossref
Google Scholar
25
Ishii H., Lakatos D., Bonanni L., Labrune J.-B., Radical atoms: Beyond tangible
bits, toward transformable materials. Interaction 19, 38 (2012).
10.1145/2065327.2065337
Crossref
Google Scholar
26
J. Lifton, D. Seetharam, M. Broxton, J. Paradiso, Pushpin Computing System
Overview: A Platform for Distributed, Embedded, Ubiquitous Sensor Networks,
Pervasive Computing (Springer, 2002), pp. 139–151. 10.1007/3-540-45866-2_12
Crossref
Google Scholar
27
J. Ou et al., jamSheets: Thin interfaces with tunable stiffness enabled by layer
jamming. Proceedings of the 8th International Conference on Tangible, Embedded
and Embodied Interaction (Association of Computing Machinery, New York, 2014),
pp. 65–72. 10.1145/2540930.2540971
Crossref
Google Scholar
28
D. Leithinger, S. Follmer, A. Olwal, H. Ishii, Physical telepresence: Shape
capture and display for embodied, computer-mediated remote collaboration.
Proceedings of the 27th annual ACM symposium on User Interface Software and
Technology (Association of Computing Machinery, New York, 2014), pp. 461–470.
10.1145/2642918.2647377
Crossref
Google Scholar
29
R. Niiyama, L. Yao, H. Ishii, Weight and volume changing device with liquid
metal transfer. Proceedings of the 8th International Conference on Tangible,
Embedded and Embodied Interaction (Association of Computing Machinery, New York,
2014), pp. 49–52. 10.1145/2540930.2540953
Crossref
Google Scholar
30
Gibson R. F., A review of recent research on mechanics of multifunctional
composite materials and structures. Compos. Struct. 92, 2793–2810 (2010).
10.1016/j.compstruct.2010.05.003
Crossref
ISI
Google Scholar
31
J. M. Kahn, R. H. Katz, K. S. Pister, Next century challenges: Mobile networking
for “Smart Dust.”Proceedings of the 5th annual ACM/IEEE International Conference
on Mobile computing and Networking (Association of Computing Machinery, New
York, 1999), pp. 271–278. 10.1145/313451.313558
Crossref
Google Scholar
32
R. M. Walser, Electromagnetic metamaterials. Proc. SPIE 4467, Complex Mediums
II: Beyond Linear Isotropic Dielectrics (San Diego, CA, 2001), pp. 1–15 (2001).
10.1117/12.432921
Crossref
Google Scholar
33
Franceschini N., Pichon J.-M., Blanes C., Brady J., From insect vision to robot
vision. Philos. Trans. R. Soc. Lond. B Biol. Sci. 337, 283–294 (1992).
10.1098/rstb.1992.0106
Crossref
ISI
Google Scholar
34
Pfeifer R., Iida F., Morphological computation: Connecting body, brain and
environment. Japanese Scientific Monthly 58, 48 (2005).
10.1007/978-3-642-00616-6_5
Crossref
Google Scholar
35
Sheng X., Hu Y.-H., Maximum likelihood multiple-source localization using
acoustic energy measurements with wireless sensor networks. IEEE Trans. Signal
Processing 53, 44–53 (2005). 10.1109/TSP.2004.838930
Crossref
ISI
Google Scholar
36
Ghasemi-Nejhad M. N., Russ R., Pourjalali S., Manufacturing and testing of
active composite panels with embedded piezoelectric sensors and actuators. J.
Intell. Mater. Syst. Struct. 16, 319–333 (2005). 10.1177/1045389X05050103
Crossref
ISI
Google Scholar
37
Jang S., Jo H., Cho S., Mechitov K., Rice J. A., Sim S.-H., Jung H.-J., Yun
C.-B., Spencer B. F. J., Agha G., Structural health monitoring of a cable-stayed
bridge using smart sensor technology: Deployment and evaluation. Smart
Structures and Systems 6, 439–459 (2010). 10.12989/sss.2010.6.5_6.439
Crossref
ISI
Google Scholar
38
Ihn J.-B., Chang F.-K., Detection and monitoring of hidden fatigue crack growth
using a built-in piezoelectric sensor/actuator network: I. Diagnostics. Smart
Mater. Struct. 13, 609–620 (2004). 10.1088/0964-1726/13/3/020
Crossref
ISI
Google Scholar
39
Zhao X., Gao H., Zhang G., Ayhan B., Yan F., Kwan C., Rose J. L., Active health
monitoring of an aircraft wing with embedded piezoelectric sensor/actuator
network: I. Defect detection, localization and growth monitoring. Smart Mater.
Struct. 16, 1208–1217 (2007). 10.1088/0964-1726/16/4/032
Crossref
ISI
Google Scholar
40
Zhao X., Qian T., Mei G., Kwan C., Zane R., Walsh C., Paing T., Popovic Z.,
Active health monitoring of an aircraft wing with an embedded piezoelectric
sensor/actuator network: II. Wireless approaches. Smart Mater. Struct. 16,
1218–1225 (2007). 10.1088/0964-1726/16/4/033
Crossref
ISI
Google Scholar
41
Someya T., Kato Y., Sekitani T., Iba S., Noguchi Y., Murase Y., Kawaguchi H.,
Sakurai T., Conformable, flexible, large-area networks of pressure and thermal
sensors with organic transistor active matrixes. Proc. Natl. Acad. Sci. U.S.A.
102, 12321–12325 (2005). 10.1073/pnas.0502392102
Crossref
PubMed
ISI
Google Scholar
42
M. A. McEvoy, N. Correll, Thermoplastic variable stiffness composites with
embedded, networked sensing, actuation, and control. J. Composite Mater. (2014).
10.1177/0021998314525982
Crossref
Google Scholar
43
Park Y.-L., Majidi C., Kramer R., Bérard P., Wood R. J., Hyperelastic pressure
sensing with a liquid-embedded elastomer. J. Micromech. Microeng. 20, 125029
(2010). 10.1088/0960-1317/20/12/125029
Crossref
ISI
Google Scholar
44
Tan H. Z., Slivovsky L. A., Pentland A., A sensing chair using pressure
distribution sensors. IEEE/ASME Trans. Mechatronics 6, 261 (2001).
10.1109/3516.951364
Crossref
Google Scholar
45
Zhou J., Gu Y., Fei P., Mai W., Gao Y., Yang R., Bao G., Wang Z. L., Flexible
piezotronic strain sensor. Nano Lett. 8, 3035–3040 (2008). 10.1021/nl802367t
Crossref
PubMed
ISI
Google Scholar
46
Yamada T., Hayamizu Y., Yamamoto Y., Yomogida Y., Izadi-Najafabadi A., Futaba D.
N., Hata K., A stretchable carbon nanotube strain sensor for human-motion
detection. Nat. Nanotechnol. 6, 296–301 (2011). 10.1038/nnano.2011.36
Crossref
PubMed
ISI
Google Scholar
47
Majidi C., Kramer R., Wood R., A non-differential elastomer curvature sensor for
softer-than-skin electronics. Smart Mater. Struct. 20, 105017 (2011).
10.1088/0964-1726/20/10/105017
Crossref
ISI
Google Scholar
48
Gandhi F., Kang S.-G., Beams with controllable flexural stiffness. Smart Mater.
Struct. 16, 1179–1184 (2007). 10.1088/0964-1726/16/4/028
Crossref
ISI
Google Scholar
49
Murray G., Gandhi F., Multi-layered controllable stiffness beams for morphing:
Energy, actuation force, and material strain considerations. Smart Mater.
Struct. 19, 045002 (2010). 10.1088/0964-1726/19/4/045002
Crossref
ISI
Google Scholar
50
G. McKnight, C. Henry, Variable stiffness materials for reconfigurable surface
applications, Proc. SPIE 5761 Smart Structures and Materials 2005: Active
Materials: Behavior and Mechanics (20 May 2005), pp. 119–126. 10.1117/12.601495
Crossref
Google Scholar
51
Mcknight G., Doty R., Keefe A., Herrera G., Henry C., Segmented reinforcement
variable stiffness materials for reconfigurable surfaces. J. Intell. Mater.
Syst. Struct. 21, 1783–1793 (2010). 10.1177/1045389X10386399
Crossref
ISI
Google Scholar
52
Meng Q., Hu J., A review of shape memory polymer composites and blends. Compos.,
Part A Appl. Sci. Manuf. 40, 1661–1672 (2009). 10.1016/j.compositesa.2009.08.011
Crossref
ISI
Google Scholar
53
Brown E., Rodenberg N., Amend J., Mozeika A., Steltz E., Zakin M. R., Lipson H.,
Jaeger H. M., Universal robotic gripper based on the jamming of granular
material. Proc. Natl. Acad. Sci. U.S.A. 107, 18809–18814 (2010).
10.1073/pnas.1003250107
Crossref
ISI
Google Scholar
54
Haines C. S., Lima M. D., Li N., Spinks G. M., Foroughi J., Madden J. D., Kim S.
H., Fang S., Jung de Andrade M., Göktepe F., Göktepe Ö., Mirvakili S. M., Naficy
S., Lepró X., Oh J., Kozlov M. E., Kim S. J., Xu X., Swedlove B. J., Wallace G.
G., Baughman R. H., Artificial muscles from fishing line and sewing thread.
Science 343, 868–872 (2014). 10.1126/science.1246906
Crossref
PubMed
ISI
Google Scholar
55
Nespoli A., Besseghini S., Pittaccio S., Villa E., Viscuso S., The high
potential of shape memory alloys in developing miniature mechanical devices: A
review on shape memory alloy mini-actuators. Sens. Actuators A Phys. 158,
149–160 (2010). 10.1016/j.sna.2009.12.020
Crossref
ISI
Google Scholar
56
Furst S. J., Bunget G., Seelecke S., Design and fabrication of a bat-inspired
flapping-flight platform using shape memory alloy muscles and joints. Smart
Mater. Struct. 22, 014011 (2013). 10.1088/0964-1726/22/1/014011
Crossref
ISI
Google Scholar
57
C. D. Onal, R. J. Wood, D. Rus, Towards printable robotics: Origami-inspired
planar fabrication of three-dimensional mechanisms. IEEE International
Conference on Robotics and Automation (IEEE, New York, 2011), pp. 4608–4613.
10.1109/ICRA.2011.5980139
Crossref
Google Scholar
58
G. K. Klute, J. M. Czerniecki, B. Hannaford, McKibben artificial muscles:
Pneumatic actuators with biomechanical intelligence. Proceedings of IEEE/ASME
International Conference on Advanced Intelligent Mechatronics (IEEE, New York,
1999), pp. 221–226. 10.1109/AIM.1999.803170
Crossref
Google Scholar
59
Takashima K., Rossiter J., Mukai T., McKibben artificial muscle using
shape-memory polymer. Sens. Actuators A Phys. 164, 116–124 (2010).
10.1016/j.sna.2010.09.010
Crossref
ISI
Google Scholar
60
De Volder M., Reynaerts D., Pneumatic and hydraulic microactuators: A review. J.
Micromech. Microeng. 20, 043001 (2010). 10.1088/0960-1317/20/4/043001
Crossref
ISI
Google Scholar
61
Shepherd R. F., Ilievski F., Choi W., Morin S. A., Stokes A. A., Mazzeo A. D.,
Chen X., Wang M., Whitesides G. M., Multigait soft robot. Proc. Natl. Acad. Sci.
U.S.A. 108, 20400–20403 (2011). 10.1073/pnas.1116564108
Crossref
PubMed
ISI
Google Scholar
62
N. Correll, C. D. Onal, H. Liang, E. Schoenfeld, D. Rus, Soft autonomous
materials—Using active elasticity and embedded distributed computation. 12th
International Symposium on Experimental Robotics, Springer Tracts in Advanced
Robotics (2014), vol. 79, pp. 227–240. 10.1007/978-3-642-28572-1_16
Crossref
Google Scholar
63
A. D. Marchese, K. Konrad, C. D. Onal, D. Rus, Design, curvature control, and
autonomous positioning of a soft and highly compliant 2D robotic manipulator.
IEEE International Conference on Robotics and Automation (IEEE, New York, 2014).
10.1109/ICRA.2014.6907161
Crossref
Google Scholar
64
R. K. Katzschmann, A. D. Marchese, D. Rus, Hydraulic autonomous soft robotic
fish for 3D swimming, International Symposium on Experimental Robotics (ISER),
Marrakech, Morocco, 2014.
Google Scholar
65
Yoshida K., Kamiyama K., Kim J.-, Yokota S., An intelligent microactuator robust
against disturbance using electro-rheological fluid. Sens. Actuators A Phys.
175, 101–107 (2012). 10.1016/j.sna.2011.12.049
Crossref
ISI
Google Scholar
66
Shaikh K. A., Li S., Liu C., Development of a latchable microvalve employing a
low-melting-temperature metal alloy. J. Microelectromech. Syst. 17, 1195–1203
(2008). 10.1109/JMEMS.2008.2003055
Crossref
ISI
Google Scholar
67
Greaves G. N., Greer A. L., Lakes R. S., Rouxel T., Poisson’s ratio and modern
materials. Nat. Mater. 10, 823–837 (2011). 10.1038/nmat3134
Crossref
PubMed
ISI
Google Scholar
68
C. Henry, G. McKnight, Cellular variable stiffness materials for ultra-large
reversible deformations in reconfigurable structures. Proc. SPIE, Smart
Structures and Materials 2006: Active Materials: Behavior and Mechanics (2006),
vol. 6170, p. 12. 10.1117/12.659633
Crossref
Google Scholar
69
Suomela J., Survey of local algorithms. ACM Comput. Surv. 45, 24 (2013).
10.1145/2431211.2431223
Crossref
ISI
Google Scholar
70
M. Duckham, Decentralized Spatial Computing: Foundations of Geosensor Setworks
(Springer, Berlin, 2012).
Google Scholar
71
G. Werner-Allen, G. Tewari, A. Patel, M. Welsh, R. Nagpal, Firefly-inspired
sensor network synchronicity with realistic radio effects. Proceedings of the
3rd International Conference on Embedded networked Sensor systems (Association
of Computing Machinery, New York, 2005), pp. 142–153. 10.1145/1098918.1098934
Crossref
Google Scholar
72
J. Beal et al., in Formal and Practical Aspects of Domain-Specific Languages:
Recent Developments (IGI Global, 2012), pp. 436–501.
10.4018/978-1-4666-2092-6.ch016
Crossref
Google Scholar
73
Tilak S., Abu-Ghazaleh N. B., Heinzelman W., A taxonomy of wireless micro-sensor
network models. Mob. Comput. Commun. Rev. 6, 28–36 (2002). 10.1145/565702.565708
Crossref
Google Scholar
74
J. N. Al-Karaki, A. E. Kamal, Routing techniques in wireless sensor networks: A
survey. IEEE Wireless Commun. 11, 6 (2004). 10.1109/MWC.2004.1368893
Crossref
Google Scholar
75
P. Santi, Topology control in wireless ad hoc and sensor networks. ACM Comput.
Surv. 37, 164 (2005). 10.1145/1089733.1089736
Crossref
Google Scholar
76
C. Intanagonwiwat, D. Estrin, R. Govindan, J. Heidemann, Impact of network
density on data aggregation in wireless sensor networks. Proceedings of the 22nd
International Conference on Distributed Computing Systems (IEEE, New York,
2002), pp. 457–458. 10.1109/ICDCS.2002.1022289
Crossref
Google Scholar
77
T. He, J. A. Stankovic, C. Lu, T. Abdelzaher, SPEED: A stateless protocol for
real-time communication in sensor networks. Proceedings. 23rd International
Conference on Distributed Computing Systems (IEEE, New York, 2003), pp. 46–55.
10.1109/ICDCS.2003.1203451
Crossref
Google Scholar
78
S. Ma, H. Hosseinmardi, N. Farrow, R. Han, N. Correll, Establishing multi-cast
groups in computational robotic materials. IEEE International Conference on
Cyber, Physical and Social Computing (IEEE, New York, 2012), pp. 311–316.
10.1109/GreenCom.2012.74
Crossref
Google Scholar
79
H. Hosseinmardi, N. Correll, R. Han, Bloom Filter-Based Ad Hoc Multicast
Communication in Cyber-Physical Systems and Computational Materials, Wireless
Algorithms, Systems, and Applications (Springer, 2012), pp. 595–606.
10.1007/978-3-642-31869-6_52
Crossref
Google Scholar
80
Budelmann C., Krieg-Brückner B., From sensorial to smart materials: Intelligent
optical sensor network for embedded applications. J. Intell. Mater. Syst.
Struct. 24, 2183–2188 (2013). 10.1177/1045389X12462647
Crossref
ISI
Google Scholar
81
Lanzara G., Salowitz N., Guo Z., Chang F.-K., A spider-web-like highly
expandable sensor network for multifunctional materials. Adv. Mater. 22,
4643–4648 (2010). 10.1002/adma.201000661
Crossref
PubMed
ISI
Google Scholar
82
Salowitz N., Guo Z., Li Y.-H., Kim K., Lanzara G., Chang F.-K., Biol.-inspired
stretchable network-based intelligent composites. J. Composite Mater. 47, 97–105
(2012). 10.1177/0021998312442900
Crossref
ISI
Google Scholar
83
P. J. Skabara, N. J. Findlay, Polymer Electronics. Oxford Master Series in
Physics 22. By Mark Geoghegan and Georges Hadziioannou. (Wiley Online Library,
2014). 10.1002/anie.201310074
Crossref
Google Scholar
84
Teichler A., Perelaer J., Schubert U. S., Inkjet printing of organic
electronics–comparison of deposition techniques and state-of-the-art
developments. J. Mater. Chem. C 1, 1910 (2013). 10.1039/c2tc00255h
Crossref
Google Scholar
85
Menguc Y., Park Y.-L., Pei H., Vogt D., Aubin P. M., Winchell E., Fluke L.,
Stirling L., Wood R. J., Walsh C. J., Wearable soft sensing suit for human gait
measurement. Int. J. Robot. Res. 33, 1748–1764 (2014). 10.1177/0278364914543793
Crossref
ISI
Google Scholar
86
Islam A., Hansen H. N., Tang P. T., Sun J., Process chains for the manufacturing
of molded interconnect devices. Int. J. Adv. Manuf. Technol. 42, 831–841 (2009).
10.1007/s00170-008-1660-9
Crossref
ISI
Google Scholar
87
R. Merz, F. Prinz, K. Ramaswami, M. Terk, L. Weiss, Shape Deposition
Manufacturing (Engineering Design Research Center, Carnegie Mellon Univ.,
Pittsburgh, PA, 1994).
Google Scholar
88
Leigh S. J., Bradley R. J., Purssell C. P., Billson D. R., Hutchins D. A., A
simple, low-cost conductive composite material for 3D printing of electronic
sensors. PLOS ONE 7, e49365 (2012). 10.1371/journal.pone.0049365
Crossref
PubMed
ISI
Google Scholar
89
Ma K. Y., Chirarattananon P., Fuller S. B., Wood R. J., Controlled flight of a
biologically inspired, insect-scale robot. Science 340, 603–607 (2013).
10.1126/science.1231806
Crossref
PubMed
ISI
Google Scholar
90
Marsden J. E., Patrick G. W., Shkoller S., Multisymplectic geometry, variational
integrators, and nonlinear PDEs. Commun. Math. Phys. 199, 351–395 (1998).
10.1007/s002200050505
Crossref
ISI
Google Scholar
91
Johnson E. R., Murphey T. D., Scalable variational integrators for constrained
mechanical systems in generalized coordinates, IEEE Trans. Robotics 25, 1249
(2009). 10.1109/TRO.2009.2032955
Crossref
ISI
Google Scholar
92
Toffoli T., Margolus N., Programmable matter: Concepts and realization. Physica
D 47, 263–272 (1991). 10.1016/0167-2789(91)90296-L
Crossref
ISI
Google Scholar
93
D’Andrea R., Dullerud G. E., Distributed control design for spatially
interconnected systems, IEEE Trans. Automatic Control 48, 1478 (2003).
10.1109/TAC.2003.816954
Crossref
ISI
Google Scholar
94
Langbort C., Chandra R. S., D’Andrea R., Distributed control design for systems
interconnected over an arbitrary graph, IEEE Trans. Automatic Control 49, 1502
(2004). 10.1109/TAC.2004.834123
Crossref
ISI
Google Scholar
95
Scattolini R., Architectures for distributed and hierarchical model predictive
control–a review. J. Process Contr. 19, 723–731 (2009).
10.1016/j.jprocont.2009.02.003
Crossref
ISI
Google Scholar
96
Hofstein A., Lunetta V. N., The laboratory in science education: Foundations for
the twenty-first century. Sci. Educ. 88, 28–54 (2004). 10.1002/sce.10106
Crossref
ISI
Google Scholar

CURRENT ISSUE


PIM1 CONTROLS GBP1 ACTIVITY TO LIMIT SELF-DAMAGE AND TO GUARD AGAINST PATHOGEN
INFECTION

 * By
   * Daniel Fisch
   * Moritz M. Pfleiderer
   * et al.


MAPPING SARS-COV-2 ANTIGENIC RELATIONSHIPS AND SEROLOGICAL RESPONSES

 * By
   * Samuel H. Wilks
   * Barbara Mühlemann
   * et al.


REBALANCE ATTENTION FROM GLOBAL TARGET SETTING TOWARD NATIONAL CLIMATE POLITICS
AND POLICY

 * By
   * Navroz K. Dubash

Table of Contents

ADVERTISEMENT




SIGN UP FOR SCIENCEADVISER

Subscribe to ScienceAdviser to get the latest news, commentary, and research,
free to your inbox daily.

Subscribe

LATEST NEWS

News Feature5 Oct 2023
Ancient marriage traditions—and politics—revealed in giant family trees built
from DNA
News5 Oct 2023
News at a glance: More success for fusion, medical tests under scrutiny, and a
grizzly reintroduction
News5 Oct 2023
New footprint dates bolster claim that humans lived in Americas during Ice Age
News5 Oct 2023
Laser mapping reveals hidden structures in Amazon—with hints at thousands more
News4 Oct. 2023
Immunity-enhancing cocktail protects mice against multiple hospital germs
News4 Oct 2023
Study of 17,000 years of fish fossils reveals rapid evolution

ADVERTISEMENT





RECOMMENDEDCLOSE

PerspectiveSeptember 2013
Toward Lighter, Stiffer Materials
Research ArticleAugust 2019
Multifunctional metallic backbones for origami robotics with strain sensing and
wireless communication capabilities
PerspectiveApril 2014
Materials both Tough and Soft
Research ArticleOctober 2021
Reprogrammable soft actuation and shape-shifting via tensile jamming
Research ArticleMay 2020
Soft sensors for a sensing-actuation system with high bladder voiding efficiency


ADVERTISEMENT


View full textDownload PDF
Open in viewer





GO TO
GO TO

Show all references
Request permissionsExpand All
Collapse
Expand for more
Authors Info & Affiliations
SHOW ALL BOOKS
Skip slideshow


FOLLOW US

 * 
 * 
 * 
 * 
 * 
 * 
 * Get our newsletter

 * NEWS
 * All News
 * ScienceInsider
 * News Features
 * Subscribe to News from Science
 * News from Science FAQ
 * About News from Science

 * CAREERS
 * Careers Articles
 * Find Jobs
 * Employer Profiles

 * COMMENTARY
 * Opinion
 * Analysis
 * Blogs

 * JOURNALS
 * Science
 * Science Advances
 * Science Immunology
 * Science Robotics
 * Science Signaling
 * Science Translational Medicine
 * Science Partner Journals

 * AUTHORS & REVIEWERS
 * Information for Authors
 * Information for Reviewers

 * LIBRARIANS
 * Manage Your Institutional Subscription
 * Library Admin Portal
 * Request a Quote
 * Librarian FAQs

 * ADVERTISERS
 * Advertising Kits
 * Custom Publishing Info
 * Post a Job

 * RELATED SITES
 * AAAS.org
 * AAAS Communities
 * EurekAlert!
 * Science in the Classroom

 * ABOUT US
 * Leadership
 * Work at AAAS
 * Prizes and Awards

 * HELP
 * FAQs
 * Access and Subscriptions
 * Order a Single Issue
 * Reprints and Permissions
 * TOC Alerts and RSS Feeds
 * Contact Us

FOLLOW US

 * 
 * 
 * 
 * 
 * 
 * 

Get our newsletter

© 2023 American Association for the Advancement of Science. All rights reserved.
AAAS is a partner of HINARI, AGORA, OARE, CHORUS, CLOCKSS, CrossRef and COUNTER.
Science ISSN 0036-8075.

back to top
 * Terms of Service
 * Privacy Policy
 * Accessibility




×



Back to article




1800
1801
1802
1803
1804

✓
Thanks for sharing!
AddToAny
More…


HomeScienceVol. 347, No. 6228Materials that couple sensing, actuation,
computation, and communication
Back To Vol. 347, No. 6228
SHARE
 * 
 * 
 * 
 * 
 * 
 * 



CHECK ACCESS

PREVIOUS ARTICLE

A mitochondrial UPR-mediated metabolic checkpoint regulates hematopoietic stem
cell aging
Previous
FiguresTables
View figure

(Top) Biological systems that tightly integrate sensing, actuation, computation,
and communication and (bottom) the engineering applications that could be
enabled by materials that take advantage of similar principles.
(From left) The cuttlefish (camouflage), an eagle’s wings (shape change), the
banyan tree (adaptive load support), and human skin (tactile sensing).
CREDITS: CUTTLEFISH: N. HOBGOOD/WIKIMEDIA COMMONS; BALD EAGLE ALASKA: C.
CHAPMAN/WIKIMEDIA COMMONS; BANYAN TREE: W. KNIGHT/WIKIMEDIA COMMONS; HUMAN SKIN:
A. MCEVOY; MEN IN CAMOUFLAGE HUNTING GEAR: H. RYAN/U.S. FISH AND WILDLIFE
SERVICE; 21ST CENTURY AEROSPACE VEHICLE: NASA; SYDNEY HARBOUR BRIDGE: I.
BROWN/WIKIMEDIA COMMONS; CYBERHAND: PRENSILIA S.R.L/ PRENSILIA.COM

Reference #1