www.science.org
Open in
urlscan Pro
104.18.34.21
Public Scan
Submitted URL: https://doi.org/10.1126/science.1261689
Effective URL: https://www.science.org/doi/10.1126/science.1261689
Submission: On October 06 via api from US — Scanned from DE
Effective URL: https://www.science.org/doi/10.1126/science.1261689
Submission: On October 06 via api from US — Scanned from DE
Form analysis
10 forms found in the DOMName: defaultQuickSearch — GET /action/doSearch
<form action="/action/doSearch" name="defaultQuickSearch" method="get">
<fieldset>
<legend class="sr-only">Quick Search anywhere</legend>
<div class="input-group option-0 animation-underline"><label for="AllField9ea9b667-c3ce-40d1-870b-f7e001bbac010" class="sr-only">Enter Search Term</label><input type="search" id="AllField9ea9b667-c3ce-40d1-870b-f7e001bbac010" name="AllField"
autocomplete="off" placeholder="Enter Search Term" data-auto-complete-max-words="7" data-auto-complete-max-chars="32" data-contributors-conf="3" data-topics-conf="3" data-publication-titles-conf="3" data-history-items-conf="3" value=""
class="quick-search__input form-control autocomplete"></div>
</fieldset>
</form>
Name: publicationQuickSearch — GET /action/doSearch
<form action="/action/doSearch" name="publicationQuickSearch" method="get">
<fieldset>
<legend class="sr-only">Quick Search in Journals</legend>
<div class="input-group option-1 option-journal animation-underline"><label for="AllField9ea9b667-c3ce-40d1-870b-f7e001bbac011" class="sr-only">Enter Search Term</label><input type="search" id="AllField9ea9b667-c3ce-40d1-870b-f7e001bbac011"
name="AllField" autocomplete="off" placeholder="Enter Search Term" data-auto-complete-max-words="7" data-auto-complete-max-chars="32" data-contributors-conf="3" data-topics-conf="3" data-publication-titles-conf="3" data-history-items-conf="3"
value="" class="quick-search__input form-control autocomplete"><input type="hidden" name="SeriesKey" value="science"></div>
</fieldset>
</form>
Name: publicationQuickSearch — GET /action/doSearch
<form action="/action/doSearch" name="publicationQuickSearch" method="get">
<fieldset>
<legend class="sr-only">Quick Search in Journals</legend>
<div class="input-group option-2 option-journal animation-underline"><label for="AllField9ea9b667-c3ce-40d1-870b-f7e001bbac012" class="sr-only">Enter Search Term</label><input type="search" id="AllField9ea9b667-c3ce-40d1-870b-f7e001bbac012"
name="AllField" autocomplete="off" placeholder="Enter Search Term" data-auto-complete-max-words="7" data-auto-complete-max-chars="32" data-contributors-conf="3" data-topics-conf="3" data-publication-titles-conf="3" data-history-items-conf="3"
value="" class="quick-search__input form-control autocomplete"><input type="hidden" name="SeriesKey" value="sciadv"></div>
</fieldset>
</form>
Name: publicationQuickSearch — GET /action/doSearch
<form action="/action/doSearch" name="publicationQuickSearch" method="get">
<fieldset>
<legend class="sr-only">Quick Search in Journals</legend>
<div class="input-group option-3 option-journal animation-underline"><label for="AllField9ea9b667-c3ce-40d1-870b-f7e001bbac013" class="sr-only">Enter Search Term</label><input type="search" id="AllField9ea9b667-c3ce-40d1-870b-f7e001bbac013"
name="AllField" autocomplete="off" placeholder="Enter Search Term" data-auto-complete-max-words="7" data-auto-complete-max-chars="32" data-contributors-conf="3" data-topics-conf="3" data-publication-titles-conf="3" data-history-items-conf="3"
value="" class="quick-search__input form-control autocomplete"><input type="hidden" name="SeriesKey" value="sciimmunol"></div>
</fieldset>
</form>
Name: publicationQuickSearch — GET /action/doSearch
<form action="/action/doSearch" name="publicationQuickSearch" method="get">
<fieldset>
<legend class="sr-only">Quick Search in Journals</legend>
<div class="input-group option-4 option-journal animation-underline"><label for="AllField9ea9b667-c3ce-40d1-870b-f7e001bbac014" class="sr-only">Enter Search Term</label><input type="search" id="AllField9ea9b667-c3ce-40d1-870b-f7e001bbac014"
name="AllField" autocomplete="off" placeholder="Enter Search Term" data-auto-complete-max-words="7" data-auto-complete-max-chars="32" data-contributors-conf="3" data-topics-conf="3" data-publication-titles-conf="3" data-history-items-conf="3"
value="" class="quick-search__input form-control autocomplete"><input type="hidden" name="SeriesKey" value="scirobotics"></div>
</fieldset>
</form>
Name: publicationQuickSearch — GET /action/doSearch
<form action="/action/doSearch" name="publicationQuickSearch" method="get">
<fieldset>
<legend class="sr-only">Quick Search in Journals</legend>
<div class="input-group option-5 option-journal animation-underline"><label for="AllField9ea9b667-c3ce-40d1-870b-f7e001bbac015" class="sr-only">Enter Search Term</label><input type="search" id="AllField9ea9b667-c3ce-40d1-870b-f7e001bbac015"
name="AllField" autocomplete="off" placeholder="Enter Search Term" data-auto-complete-max-words="7" data-auto-complete-max-chars="32" data-contributors-conf="3" data-topics-conf="3" data-publication-titles-conf="3" data-history-items-conf="3"
value="" class="quick-search__input form-control autocomplete"><input type="hidden" name="SeriesKey" value="signaling"></div>
</fieldset>
</form>
Name: publicationQuickSearch — GET /action/doSearch
<form action="/action/doSearch" name="publicationQuickSearch" method="get">
<fieldset>
<legend class="sr-only">Quick Search in Journals</legend>
<div class="input-group option-6 option-journal animation-underline"><label for="AllField9ea9b667-c3ce-40d1-870b-f7e001bbac016" class="sr-only">Enter Search Term</label><input type="search" id="AllField9ea9b667-c3ce-40d1-870b-f7e001bbac016"
name="AllField" autocomplete="off" placeholder="Enter Search Term" data-auto-complete-max-words="7" data-auto-complete-max-chars="32" data-contributors-conf="3" data-topics-conf="3" data-publication-titles-conf="3" data-history-items-conf="3"
value="" class="quick-search__input form-control autocomplete"><input type="hidden" name="SeriesKey" value="stm"></div>
</fieldset>
</form>
Name: defaultQuickSearch — GET /action/doSearch
<form action="/action/doSearch" name="defaultQuickSearch" method="get" id="quick-search-from-e7029926-2304-4dc3-a2d3-f6c677f7bbc70" role="search">
<fieldset>
<legend class="sr-only">Quick Search anywhere</legend>
<div class="input-group option-0 align-items-center animation-underline animation-underline--primary"><label for="AllFielde7029926-2304-4dc3-a2d3-f6c677f7bbc70" class="sr-only">Enter Search Term</label><input type="search"
id="AllFielde7029926-2304-4dc3-a2d3-f6c677f7bbc70" name="AllField" autocomplete="off" placeholder="Enter Search Term" data-auto-complete-max-words="7" data-auto-complete-max-chars="32" data-contributors-conf="3" data-topics-conf="3"
data-publication-titles-conf="3" data-history-items-conf="3" value="" class="quick-search__input form-control autocomplete">
<div class="input-group-append"><button type="submit" title="Search" class="btn quick-search__btn p-0"><i class="icon-search align-middle"></i></button></div>
</div>
</fieldset>
</form>
POST /action/submitComment
<form id="eletterForm" action="/action/submitComment" method="POST"><input type="hidden" name="doi" value="10.1126/science.1261689">
<div class="modal-body">
<div class="compose-wrapper mb-2x">
<h5 class="text-deep-gray text-md letter-spacing-default mb-1x">Compose eLetter</h5>
<div class="form-group"><label for="eletterTitle">Title:</label><input type="text" id="eletterTitle" name="title" placeholder="eg. Re. this article..." required="required" class="form-control">
<div class="invalid-feedback">Title is required</div>
</div>
<div class="form-group"><label for="eletterComment">Contents:</label><textarea id="eletterComment" rows="8" name="comment" class="form-control tinyMCEInput"></textarea></div>
</div>
<div class="contribs-wrapper mb-2x">
<h5 class="text-deep-gray text-md letter-spacing-default mb-1x">Contributors</h5>
<div class="contribs-forms-wrapper">
<div id="#contribForm1" class="eletter-contrib-form bg-very-light-gray pt-1_5x px-1x">
<div class="d-none justify-content-end eletter-contrib-form__remove-wrapper"><button class="eletter-contrib-form__remove btn btn-with-icon--outline-secondary btn-with-icon--sm border-darker-gray mb-1"><span
class="text-uppercase text-xxs">remove contributor</span><i class="icon-close"></i></button></div>
<div class="form-group"><label for="contribFirstName1">First name:</label><input type="text" id="contribFirstName1" name="firstName" placeholder="eg. John" class="form-control eletter-contrib-form__input"></div>
<div class="form-group"><label for="contribLastName1">Last name:</label><input type="text" id="contribLastName1" name="lastName" placeholder="eg. Doe" class="form-control eletter-contrib-form__input"></div>
<div class="form-group"><label for="contribEmail1">Email:</label><input type="email" id="contribEmail1" name="email" placeholder="eg. example@gmail.com" class="form-control eletter-contrib-form__input"></div>
<div class="form-group"><label for="contribRole1">Role/occupation:</label><input type="text" id="contribRole1" name="role" placeholder="eg. Orthopedic Surgeon" class="form-control eletter-contrib-form__input"></div>
<div class="form-group pb-1_5x"><label for="contribAffiliation1">affiliation:</label><input type="text" id="contribAffiliation1" name="affiliation" placeholder="eg. Royal Free Hospital" class="form-control eletter-contrib-form__input">
</div>
</div>
</div>
<div class="d-flex justify-content-end"><button id="eletterAddContrib" type="button" class="btn btn-outline-primary text-xs px-2_5x py-2 font-weight-500">add another contributor</button></div>
</div>
<div class="statement-wrapper mb-2x">
<h5 class="text-deep-gray text-md letter-spacing-default mb-1x">Statement of Competing Interests</h5>
<div class="form-group mb-1x">
<div class="d-flex"><label class="text-uppercase mr-1x">Competing interests?</label>
<div>
<div class="custom-control custom-radio mb-2"><input id="statementRadioYes" name="competingInterests" type="radio" value="yes" checked="checked" class="custom-control-input"><label for="statementRadioYes"
class="custom-control-label">YES</label></div>
<div class="custom-control custom-radio"><input id="statementRadioNo" name="competingInterests" type="radio" value="no" class="custom-control-input"><label for="statementRadioNo" class="custom-control-label">NO</label></div>
</div>
</div>
</div>
<div class="form-group disclosures-textarea-group"><label for="eletterDisclosures">Please describe the competing interests</label><textarea id="eletterDisclosures" rows="8" name="disclosures" required="required" tabindex="-1"
class="form-control tinyMCEInput"></textarea></div>
</div>
<div class="captcha-wrapper mb-2x">
<div class="g-recaptcha " data-sitekey="6Lc4HR8TAAAAAPFSxfchztMruqn2dTwPIQ9vaX9b" data-expired-callback="eletterCaptchaExpired" data-callback="eletterCaptchaFilled"></div>
</div>
</div>
<div class="modal-footer border-gray"><button type="button" data-dismiss="modal" class="btn btn-outline-secondary btn-outline-secondary--text-darker-gray text-xs text-xs px-2_5x py-2 font-weight-500">CANCEL</button><button id="eletterFormSubmit"
type="submit" class="btn btn-primary text-xs px-2_5x py-2 font-weight-500">SUBMIT</button></div>
</form>
Name: frmCitmgr — POST /action/downloadCitation
<form action="/action/downloadCitation" name="frmCitmgr" class="citation-form" method="post" target="_self"><input type="hidden" name="doi" value="10.1126/science.1261689"><input type="hidden" name="downloadFileName" value="csp_347_"><input
type="hidden" name="include" value="abs">
<fieldset class="format-select">
<div class="select-container">
<select id="slct_format" name="format" class="js__slcInclude" style="
padding: 7px;
color: #595959;
border: 1px solid #7f7f7f;
">
<option value="" selected="selected">Please select one from the list</option>
<option value="ris">RIS (ProCite, Reference Manager)</option>
<option value="endnote">EndNote</option>
<option value="bibtex">BibTex</option>
<option value="medlars">Medlars</option>
<option value="refworks">RefWorks</option>
</select>
</div>
<label class="label-direct" for="direct">
<input id="direct" type="checkbox" name="direct" value="" checked="checked" style="
margin-top: 5px;
margin-right: 7px;
">
<span class="round-check"><span class="check"></span></span> Direct import </label>
</fieldset>
<footer class="form-footer">
<input onclick="onCitMgrSubmit()" class="btn btn-outline-dark btn-sm collapsed text-no-transform" type="submit" name="submit" value="EXPORT CITATION">
</footer>
</form>
Text Content
Advertisement * * news * careers * commentary * Journals * * * Log in * Become A Member science science advances science immunology science robotics science signaling science translational medicine science partner journals Quick Search anywhere Enter Search Term Quick Search in Journals Enter Search Term Quick Search in Journals Enter Search Term Quick Search in Journals Enter Search Term Quick Search in Journals Enter Search Term Quick Search in Journals Enter Search Term Quick Search in Journals Enter Search Term Searching: Anywhere AnywhereScienceScience AdvancesScience ImmunologyScience RoboticsScience SignalingScience Translational Medicine Advanced Search Search TRENDING TERMS: * cancer * climate * artificial intelligence * postdoc * aging Log In Become A Member Quick Search anywhere Enter Search Term science.org * news * careers * commentary * Journals * science * Current Issue * First release papers * Archive * About * About Science * Mission & Scope * Editors & Advisory Boards * Editorial Policies * Information for Authors * Information for Reviewers * Journal Metrics * Staff * Contact Us * TOC Alerts and RSS Feeds * science advances * science immunology * science robotics * science signaling * science translational medicine * science partner journals * Custom publishing * collections * videos * podcasts * blogs * visualizations * prizes and awards * authors & reviewers * librarians * advertisers * about * help * * * * * * * Terms of Service * Privacy Policy * Accessibility * Current Issue * First release papers * Archive * About About Science Mission & Scope Editors & Advisory Boards Editorial Policies Information for Authors Information for Reviewers Journal Metrics Staff Contact Us TOC Alerts and RSS Feeds * Submit manuscript * More * Current Issue * First release papers * Archive * About About ScienceMission & ScopeEditors & Advisory BoardsEditorial PoliciesInformation for AuthorsInformation for ReviewersJournal MetricsStaffContact UsTOC Alerts and RSS Feeds * Submit manuscript GET OUR E-ALERTS HomeScienceVol. 347, No. 6228Materials that couple sensing, actuation, computation, and communication Back To Vol. 347, No. 6228 No access Review Share on * * * * * * MATERIALS THAT COUPLE SENSING, ACTUATION, COMPUTATION, AND COMMUNICATION M. A. McEvoy and N. Correll ncorrell@colorado.eduAuthors Info & Affiliations Science 20 Mar 2015 Vol 347, Issue 6228 DOI: 10.1126/science.1261689 PREVIOUS ARTICLE A mitochondrial UPR-mediated metabolic checkpoint regulates hematopoietic stem cell aging Previous 3,290393 METRICS TOTAL DOWNLOADS3,290 * Last 6 Months685 * Last 12 Months1,456 TOTAL CITATIONS393 * Last 6 Months3 * Last 12 Months39 View all metrics CHECK ACCESS * Contents * Adding autonomy to materials science * Structured Abstract * Abstract * References and Notes * eLetters (0) * * Information & Authors * Metrics & Citations * Check Access * References * Media * Tables * Share ADDING AUTONOMY TO MATERIALS SCIENCE Shape-memory alloys can alter their shape in response to a change in temperature. This can be thought of as a simple autonomous response, albeit one that is fully programmed at the time of fabrication. It is now possible to build materials or combinations of materials that can sense and respond to their local environment, in ways that might also include simple computations and communication. McEvoy and Correll review recent developments in the creation of autonomous materials. They look at how individual abilities are added to a material and the current limitations in the further development of “robotic materials.” Science, this issue 10.1126/science.1261689 STRUCTURED ABSTRACT BACKGROUND The tight integration of sensing, actuation, and computation that biological systems exhibit to achieve shape and appearance changes (like the cuttlefish and birds in flight), adaptive load support (like the banyan tree), or tactile sensing at very high dynamic range (such as the human skin) has long served as inspiration for engineered systems. Artificial materials with such capabilities could enable airplane wings and vehicles with the ability to adapt their aerodynamic profile or camouflage in the environment, bridges and other civil structures that could detect and repair damages, or robotic skin and prosthetics with the ability to sense touch and subtle textures. The vision for such materials has been articulated repeatedly in science and fiction (“programmable matter”) and periodically has undergone a renaissance with the advent of new enabling technology such as fast digital electronics in the 1970s and microelectromechanical systems in the 1990s. ADVANCES Recent advances in manufacturing, combined with the miniaturization of electronics that has culminated in providing the power of a desktop computer of the 1990s on the head of a pin, is enabling a new class of “robotic” materials that transcend classical composite materials in functionality. Whereas state-of-the-art composites are increasingly integrating sensors and actuators at high densities, the availability of cheap and small microprocessors will allow these materials to function autonomously. Yet, this vision requires the tight integration of material science, computer science, and other related disciplines to make fundamental advances in distributed algorithms and manufacturing processes. Advances are currently being made in individual disciplines rather than system integration, which has become increasingly possible in recent years. For example, the composite materials community has made tremendous advances in composites that integrate sensing for nondestructive evaluation, and actuation (for example, for shape-changing airfoils), as well as their manufacturing. At the same time, computer science has created an entire field concerned with distributed algorithms to collect, process, and act upon vast collections of information in the field of sensor networks. Similarly, manufacturing has been revolutionized by advances in three-dimensional (3D) printing, as well as entirely new methods for creating complex structures from unfolding or stretching of patterned 2D composites. Finally, robotics and controls have made advances in controlling robots with multiple actuators, continuum dynamics, and large numbers of distributed sensors. Only a few systems have taken advantage of these advances, however, to create materials that tightly integrate sensing, actuation, computation, and communication in a way that allows them to be mass-produced cheaply and easily. OUTLOOK Robotic materials can enable smart composites that autonomously change their shape, stiffness, or physical appearance in a fully programmable way, extending the functionality of classical “smart materials.” If mass-produced economically and available as a commodity, robotic materials have the potential to add unprecedented functionality to everyday objects and surfaces, enabling a vast array of applications ranging from more efficient aircraft and vehicles, to sensorial robotics and prosthetics, to everyday objects like clothing and furniture. Realizing this vision requires not only a new level of interdisciplinary collaboration between the engineering disciplines and the sciences, but also a new model of interdisciplinary education that captures both the disciplinary breadth of robotic materials and the depth of individual disciplines. (Top) Biological systems that tightly integrate sensing, actuation, computation, and communication and (bottom) the engineering applications that could be enabled by materials that take advantage of similar principles. (From left) The cuttlefish (camouflage), an eagle’s wings (shape change), the banyan tree (adaptive load support), and human skin (tactile sensing). CREDITS: CUTTLEFISH: N. HOBGOOD/WIKIMEDIA COMMONS; BALD EAGLE ALASKA: C. CHAPMAN/WIKIMEDIA COMMONS; BANYAN TREE: W. KNIGHT/WIKIMEDIA COMMONS; HUMAN SKIN: A. MCEVOY; MEN IN CAMOUFLAGE HUNTING GEAR: H. RYAN/U.S. FISH AND WILDLIFE SERVICE; 21ST CENTURY AEROSPACE VEHICLE: NASA; SYDNEY HARBOUR BRIDGE: I. BROWN/WIKIMEDIA COMMONS; CYBERHAND: PRENSILIA S.R.L/ PRENSILIA.COM Open in viewer ABSTRACT Tightly integrating sensing, actuation, and computation into composites could enable a new generation of truly smart material systems that can change their appearance and shape autonomously. Applications for such materials include airfoils that change their aerodynamic profile, vehicles with camouflage abilities, bridges that detect and repair damage, or robotic skins and prosthetics with a realistic sense of touch. Although integrating sensors and actuators into composites is becoming increasingly common, the opportunities afforded by embedded computation have only been marginally explored. Here, the key challenge is the gap between the continuous physics of materials and the discrete mathematics of computation. Bridging this gap requires a fundamental understanding of the constituents of such robotic materials and the distributed algorithms and controls that make these structures smart. GET FULL ACCESS TO THIS ARTICLE View all available purchase options and get full access to this article. CHECK ACCESS ALREADY A SUBSCRIBER OR AAAS MEMBER? Sign in as an individual or via your institution REFERENCES AND NOTES 1 Stevens M., Merilaita S., Animal camouflage: Current issues and new perspectives. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 423–427 (2009). 10.1098/rstb.2008.0217 Crossref PubMed ISI Google Scholar 2 Shalaev V. M., Cai W., Chettiar U. K., Yuan H. K., Sarychev A. K., Drachev V. P., Kildishev A. V., Negative index of refraction in optical metamaterials. Opt. Lett. 30, 3356–3358 (2005). 10.1364/OL.30.003356 Crossref PubMed ISI Google Scholar 3 Leonhardt U., Metamaterials: Towards invisibility in the visible. Nat. Mater. 8, 537–538 (2009). 10.1038/nmat2472 Crossref PubMed ISI Google Scholar 4 Morin S. A., Shepherd R. F., Kwok S. W., Stokes A. A., Nemiroski A., Whitesides G. M., Camouflage and display for soft machines. Science 337, 828–832 (2012). 10.1126/science.1222149 Crossref PubMed ISI Google Scholar 5 Thill C., Etches J., Bond I., Potter K., Weaver P., Morphing skins. Aeronaut. J. 112, 117 (2008). Crossref ISI Google Scholar 6 Barbarino S., Bilgen O., Ajaj R. M., Friswell M. I., Inman D. J., A review of morphing aircraft. J. Intell. Mater. Syst. Struct. 22, 823–877 (2011). 10.1177/1045389X11414084 Crossref ISI Google Scholar 7 Vasista S., Tong L., Wong K., Realization of morphing wings: A multidisciplinary challenge. J. Aircr. 49, 11–28 (2012). 10.2514/1.C031060 Crossref ISI Google Scholar 8 Weisshaar T. A., Morphing aircraft systems: Historical perspectives and future challenges. J. Aircr. 50, 337–353 (2013). 10.2514/1.C031456 Crossref ISI Google Scholar 9 D. Adams, Health Monitoring of Structural Materials and Components: Methods with Applications (Wiley, 2007). Google Scholar 10 Blaiszik B., Kramer S. L. B., Olugebefola S. C., Moore J. S., Sottos N. R., White S. R., Self-healing polymers and composites. Annu. Rev. Mater. Res. 40, 179–211 (2010). 10.1146/annurev-matsci-070909-104532 Crossref ISI Google Scholar 11 Dahiya R. S., Metta G., Valle M., Sandini G., Tactile sensing—from humans to humanoids, IEEE Trans. Robotics 26, 1 (2010). 10.1109/TRO.2009.2033627 Crossref ISI Google Scholar 12 N. Farrow, N. Sivagnanadasan, N. Correll, Gesture based distributed user interaction system for a reconfigurable self-organizing smart wall. Proceedings of the 8th International Conference on Tangible, Embedded and Embodied Interaction (Association for Computing Machinery, New York, 2014), pp. 245–246. 10.1145/2540930.2540967 Crossref Google Scholar 13 Profita H., Farrow N., Correll N., Flutter: An exploration of an assistive garment using distributed sensing, computation and actuation. Proceedings of the 9th International Conference on Tangible, Embedded and Embodied Interaction (Association for Computing Machinery, New York, USA, 2015), pp. 359–362. 10.1145/2677199.2680586 Crossref Google Scholar 14 M. A. McEvoy, N. Correll, Shape change through programmable stiffness, International Symposium on Experimental Robotics (ISER), Marrakech, Morocco, 2014. Google Scholar 15 D. Hughes, N. Correll, A soft, amorphous skin that can sense and localize texture, IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, 2014. 10.1109/ICRA.2014.6907101 Crossref Google Scholar 16 Berlin A. A., Gabriel K. J., Distributed MEMS: New challenges for computation. IEEE Comput. Science Eng. 4, 12–16 (1997). 10.1109/99.590851 Crossref ISI Google Scholar 17 Goldstein S. C., Campbell J. D., Mowry T. C., Programmable matter. Computer 38, 99–101 (2005). 10.1109/MC.2005.198 Crossref ISI Google Scholar 18 Abelson H., Weiss R., Allen D., Coore D., Hanson C., Homsy G., Knight T. F., Nagpal R., Rauch E., Sussman G. J., Amorphous computing. Commun. ACM 43, 74–82 (2000). 10.1145/332833.332842 Crossref ISI Google Scholar 19 W. Butera, Text display and graphics control on a paintable computer, self-adaptive and self-organizing systems. First International Conference on Self-Adaptive and Self-Organizing Systems. SASO’07 (IEEE, New York, 2007), pp. 45–54. 10.1109/SASO.2007.60 Crossref Google Scholar 20 Basu S., Gerchman Y., Collins C. H., Arnold F. H., Weiss R., A synthetic multicellular system for programmed pattern formation. Nature 434, 1130–1134 (2005). 10.1038/nature03461 Crossref PubMed ISI Google Scholar 21 Yim M., Shen W.-, Salemi B., Rus D., Moll M., Lipson H., Klavins E., Chirikjian G., Modular self-reconfigurable robot systems. IEEE Robotics & Automation Magazine 14, 43–52 (2007). 10.1109/MRA.2007.339623 Crossref ISI Google Scholar 22 C.-H. Yu, F.-X. Willems, D. Ingber, R. Nagpal, Self-organization of environmentally-adaptive shapes on a modular robot. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, New York, 2007), pp. 2353–2360. 10.1109/IROS.2007.4399491 Crossref Google Scholar 23 P. Levis et al., in TinyOS: An Operating System for Sensor Networks, Ambient Intelligence (Springer, Berlin, 2005), pp. 115–148. 10.1007/3-540-27139-2_7 Crossref Google Scholar 24 H. Ishii, B. Ullmer, Tangible bits: Towards seamless interfaces between people, bits and atoms. Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems (Association of Computing Machinery, New York, 1997), pp. 234–241. 10.1145/258549.258715 Crossref Google Scholar 25 Ishii H., Lakatos D., Bonanni L., Labrune J.-B., Radical atoms: Beyond tangible bits, toward transformable materials. Interaction 19, 38 (2012). 10.1145/2065327.2065337 Crossref Google Scholar 26 J. Lifton, D. Seetharam, M. Broxton, J. Paradiso, Pushpin Computing System Overview: A Platform for Distributed, Embedded, Ubiquitous Sensor Networks, Pervasive Computing (Springer, 2002), pp. 139–151. 10.1007/3-540-45866-2_12 Crossref Google Scholar 27 J. Ou et al., jamSheets: Thin interfaces with tunable stiffness enabled by layer jamming. Proceedings of the 8th International Conference on Tangible, Embedded and Embodied Interaction (Association of Computing Machinery, New York, 2014), pp. 65–72. 10.1145/2540930.2540971 Crossref Google Scholar 28 D. Leithinger, S. Follmer, A. Olwal, H. Ishii, Physical telepresence: Shape capture and display for embodied, computer-mediated remote collaboration. Proceedings of the 27th annual ACM symposium on User Interface Software and Technology (Association of Computing Machinery, New York, 2014), pp. 461–470. 10.1145/2642918.2647377 Crossref Google Scholar 29 R. Niiyama, L. Yao, H. Ishii, Weight and volume changing device with liquid metal transfer. Proceedings of the 8th International Conference on Tangible, Embedded and Embodied Interaction (Association of Computing Machinery, New York, 2014), pp. 49–52. 10.1145/2540930.2540953 Crossref Google Scholar 30 Gibson R. F., A review of recent research on mechanics of multifunctional composite materials and structures. Compos. Struct. 92, 2793–2810 (2010). 10.1016/j.compstruct.2010.05.003 Crossref ISI Google Scholar 31 J. M. Kahn, R. H. Katz, K. S. Pister, Next century challenges: Mobile networking for “Smart Dust.”Proceedings of the 5th annual ACM/IEEE International Conference on Mobile computing and Networking (Association of Computing Machinery, New York, 1999), pp. 271–278. 10.1145/313451.313558 Crossref Google Scholar 32 R. M. Walser, Electromagnetic metamaterials. Proc. SPIE 4467, Complex Mediums II: Beyond Linear Isotropic Dielectrics (San Diego, CA, 2001), pp. 1–15 (2001). 10.1117/12.432921 Crossref Google Scholar 33 Franceschini N., Pichon J.-M., Blanes C., Brady J., From insect vision to robot vision. Philos. Trans. R. Soc. Lond. B Biol. Sci. 337, 283–294 (1992). 10.1098/rstb.1992.0106 Crossref ISI Google Scholar 34 Pfeifer R., Iida F., Morphological computation: Connecting body, brain and environment. Japanese Scientific Monthly 58, 48 (2005). 10.1007/978-3-642-00616-6_5 Crossref Google Scholar 35 Sheng X., Hu Y.-H., Maximum likelihood multiple-source localization using acoustic energy measurements with wireless sensor networks. IEEE Trans. Signal Processing 53, 44–53 (2005). 10.1109/TSP.2004.838930 Crossref ISI Google Scholar 36 Ghasemi-Nejhad M. N., Russ R., Pourjalali S., Manufacturing and testing of active composite panels with embedded piezoelectric sensors and actuators. J. Intell. Mater. Syst. Struct. 16, 319–333 (2005). 10.1177/1045389X05050103 Crossref ISI Google Scholar 37 Jang S., Jo H., Cho S., Mechitov K., Rice J. A., Sim S.-H., Jung H.-J., Yun C.-B., Spencer B. F. J., Agha G., Structural health monitoring of a cable-stayed bridge using smart sensor technology: Deployment and evaluation. Smart Structures and Systems 6, 439–459 (2010). 10.12989/sss.2010.6.5_6.439 Crossref ISI Google Scholar 38 Ihn J.-B., Chang F.-K., Detection and monitoring of hidden fatigue crack growth using a built-in piezoelectric sensor/actuator network: I. Diagnostics. Smart Mater. Struct. 13, 609–620 (2004). 10.1088/0964-1726/13/3/020 Crossref ISI Google Scholar 39 Zhao X., Gao H., Zhang G., Ayhan B., Yan F., Kwan C., Rose J. L., Active health monitoring of an aircraft wing with embedded piezoelectric sensor/actuator network: I. Defect detection, localization and growth monitoring. Smart Mater. Struct. 16, 1208–1217 (2007). 10.1088/0964-1726/16/4/032 Crossref ISI Google Scholar 40 Zhao X., Qian T., Mei G., Kwan C., Zane R., Walsh C., Paing T., Popovic Z., Active health monitoring of an aircraft wing with an embedded piezoelectric sensor/actuator network: II. Wireless approaches. Smart Mater. Struct. 16, 1218–1225 (2007). 10.1088/0964-1726/16/4/033 Crossref ISI Google Scholar 41 Someya T., Kato Y., Sekitani T., Iba S., Noguchi Y., Murase Y., Kawaguchi H., Sakurai T., Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc. Natl. Acad. Sci. U.S.A. 102, 12321–12325 (2005). 10.1073/pnas.0502392102 Crossref PubMed ISI Google Scholar 42 M. A. McEvoy, N. Correll, Thermoplastic variable stiffness composites with embedded, networked sensing, actuation, and control. J. Composite Mater. (2014). 10.1177/0021998314525982 Crossref Google Scholar 43 Park Y.-L., Majidi C., Kramer R., Bérard P., Wood R. J., Hyperelastic pressure sensing with a liquid-embedded elastomer. J. Micromech. Microeng. 20, 125029 (2010). 10.1088/0960-1317/20/12/125029 Crossref ISI Google Scholar 44 Tan H. Z., Slivovsky L. A., Pentland A., A sensing chair using pressure distribution sensors. IEEE/ASME Trans. Mechatronics 6, 261 (2001). 10.1109/3516.951364 Crossref Google Scholar 45 Zhou J., Gu Y., Fei P., Mai W., Gao Y., Yang R., Bao G., Wang Z. L., Flexible piezotronic strain sensor. Nano Lett. 8, 3035–3040 (2008). 10.1021/nl802367t Crossref PubMed ISI Google Scholar 46 Yamada T., Hayamizu Y., Yamamoto Y., Yomogida Y., Izadi-Najafabadi A., Futaba D. N., Hata K., A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 6, 296–301 (2011). 10.1038/nnano.2011.36 Crossref PubMed ISI Google Scholar 47 Majidi C., Kramer R., Wood R., A non-differential elastomer curvature sensor for softer-than-skin electronics. Smart Mater. Struct. 20, 105017 (2011). 10.1088/0964-1726/20/10/105017 Crossref ISI Google Scholar 48 Gandhi F., Kang S.-G., Beams with controllable flexural stiffness. Smart Mater. Struct. 16, 1179–1184 (2007). 10.1088/0964-1726/16/4/028 Crossref ISI Google Scholar 49 Murray G., Gandhi F., Multi-layered controllable stiffness beams for morphing: Energy, actuation force, and material strain considerations. Smart Mater. Struct. 19, 045002 (2010). 10.1088/0964-1726/19/4/045002 Crossref ISI Google Scholar 50 G. McKnight, C. Henry, Variable stiffness materials for reconfigurable surface applications, Proc. SPIE 5761 Smart Structures and Materials 2005: Active Materials: Behavior and Mechanics (20 May 2005), pp. 119–126. 10.1117/12.601495 Crossref Google Scholar 51 Mcknight G., Doty R., Keefe A., Herrera G., Henry C., Segmented reinforcement variable stiffness materials for reconfigurable surfaces. J. Intell. Mater. Syst. Struct. 21, 1783–1793 (2010). 10.1177/1045389X10386399 Crossref ISI Google Scholar 52 Meng Q., Hu J., A review of shape memory polymer composites and blends. Compos., Part A Appl. Sci. Manuf. 40, 1661–1672 (2009). 10.1016/j.compositesa.2009.08.011 Crossref ISI Google Scholar 53 Brown E., Rodenberg N., Amend J., Mozeika A., Steltz E., Zakin M. R., Lipson H., Jaeger H. M., Universal robotic gripper based on the jamming of granular material. Proc. Natl. Acad. Sci. U.S.A. 107, 18809–18814 (2010). 10.1073/pnas.1003250107 Crossref ISI Google Scholar 54 Haines C. S., Lima M. D., Li N., Spinks G. M., Foroughi J., Madden J. D., Kim S. H., Fang S., Jung de Andrade M., Göktepe F., Göktepe Ö., Mirvakili S. M., Naficy S., Lepró X., Oh J., Kozlov M. E., Kim S. J., Xu X., Swedlove B. J., Wallace G. G., Baughman R. H., Artificial muscles from fishing line and sewing thread. Science 343, 868–872 (2014). 10.1126/science.1246906 Crossref PubMed ISI Google Scholar 55 Nespoli A., Besseghini S., Pittaccio S., Villa E., Viscuso S., The high potential of shape memory alloys in developing miniature mechanical devices: A review on shape memory alloy mini-actuators. Sens. Actuators A Phys. 158, 149–160 (2010). 10.1016/j.sna.2009.12.020 Crossref ISI Google Scholar 56 Furst S. J., Bunget G., Seelecke S., Design and fabrication of a bat-inspired flapping-flight platform using shape memory alloy muscles and joints. Smart Mater. Struct. 22, 014011 (2013). 10.1088/0964-1726/22/1/014011 Crossref ISI Google Scholar 57 C. D. Onal, R. J. Wood, D. Rus, Towards printable robotics: Origami-inspired planar fabrication of three-dimensional mechanisms. IEEE International Conference on Robotics and Automation (IEEE, New York, 2011), pp. 4608–4613. 10.1109/ICRA.2011.5980139 Crossref Google Scholar 58 G. K. Klute, J. M. Czerniecki, B. Hannaford, McKibben artificial muscles: Pneumatic actuators with biomechanical intelligence. Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics (IEEE, New York, 1999), pp. 221–226. 10.1109/AIM.1999.803170 Crossref Google Scholar 59 Takashima K., Rossiter J., Mukai T., McKibben artificial muscle using shape-memory polymer. Sens. Actuators A Phys. 164, 116–124 (2010). 10.1016/j.sna.2010.09.010 Crossref ISI Google Scholar 60 De Volder M., Reynaerts D., Pneumatic and hydraulic microactuators: A review. J. Micromech. Microeng. 20, 043001 (2010). 10.1088/0960-1317/20/4/043001 Crossref ISI Google Scholar 61 Shepherd R. F., Ilievski F., Choi W., Morin S. A., Stokes A. A., Mazzeo A. D., Chen X., Wang M., Whitesides G. M., Multigait soft robot. Proc. Natl. Acad. Sci. U.S.A. 108, 20400–20403 (2011). 10.1073/pnas.1116564108 Crossref PubMed ISI Google Scholar 62 N. Correll, C. D. Onal, H. Liang, E. Schoenfeld, D. Rus, Soft autonomous materials—Using active elasticity and embedded distributed computation. 12th International Symposium on Experimental Robotics, Springer Tracts in Advanced Robotics (2014), vol. 79, pp. 227–240. 10.1007/978-3-642-28572-1_16 Crossref Google Scholar 63 A. D. Marchese, K. Konrad, C. D. Onal, D. Rus, Design, curvature control, and autonomous positioning of a soft and highly compliant 2D robotic manipulator. IEEE International Conference on Robotics and Automation (IEEE, New York, 2014). 10.1109/ICRA.2014.6907161 Crossref Google Scholar 64 R. K. Katzschmann, A. D. Marchese, D. Rus, Hydraulic autonomous soft robotic fish for 3D swimming, International Symposium on Experimental Robotics (ISER), Marrakech, Morocco, 2014. Google Scholar 65 Yoshida K., Kamiyama K., Kim J.-, Yokota S., An intelligent microactuator robust against disturbance using electro-rheological fluid. Sens. Actuators A Phys. 175, 101–107 (2012). 10.1016/j.sna.2011.12.049 Crossref ISI Google Scholar 66 Shaikh K. A., Li S., Liu C., Development of a latchable microvalve employing a low-melting-temperature metal alloy. J. Microelectromech. Syst. 17, 1195–1203 (2008). 10.1109/JMEMS.2008.2003055 Crossref ISI Google Scholar 67 Greaves G. N., Greer A. L., Lakes R. S., Rouxel T., Poisson’s ratio and modern materials. Nat. Mater. 10, 823–837 (2011). 10.1038/nmat3134 Crossref PubMed ISI Google Scholar 68 C. Henry, G. McKnight, Cellular variable stiffness materials for ultra-large reversible deformations in reconfigurable structures. Proc. SPIE, Smart Structures and Materials 2006: Active Materials: Behavior and Mechanics (2006), vol. 6170, p. 12. 10.1117/12.659633 Crossref Google Scholar 69 Suomela J., Survey of local algorithms. ACM Comput. Surv. 45, 24 (2013). 10.1145/2431211.2431223 Crossref ISI Google Scholar 70 M. Duckham, Decentralized Spatial Computing: Foundations of Geosensor Setworks (Springer, Berlin, 2012). Google Scholar 71 G. Werner-Allen, G. Tewari, A. Patel, M. Welsh, R. Nagpal, Firefly-inspired sensor network synchronicity with realistic radio effects. Proceedings of the 3rd International Conference on Embedded networked Sensor systems (Association of Computing Machinery, New York, 2005), pp. 142–153. 10.1145/1098918.1098934 Crossref Google Scholar 72 J. Beal et al., in Formal and Practical Aspects of Domain-Specific Languages: Recent Developments (IGI Global, 2012), pp. 436–501. 10.4018/978-1-4666-2092-6.ch016 Crossref Google Scholar 73 Tilak S., Abu-Ghazaleh N. B., Heinzelman W., A taxonomy of wireless micro-sensor network models. Mob. Comput. Commun. Rev. 6, 28–36 (2002). 10.1145/565702.565708 Crossref Google Scholar 74 J. N. Al-Karaki, A. E. Kamal, Routing techniques in wireless sensor networks: A survey. IEEE Wireless Commun. 11, 6 (2004). 10.1109/MWC.2004.1368893 Crossref Google Scholar 75 P. Santi, Topology control in wireless ad hoc and sensor networks. ACM Comput. Surv. 37, 164 (2005). 10.1145/1089733.1089736 Crossref Google Scholar 76 C. Intanagonwiwat, D. Estrin, R. Govindan, J. Heidemann, Impact of network density on data aggregation in wireless sensor networks. Proceedings of the 22nd International Conference on Distributed Computing Systems (IEEE, New York, 2002), pp. 457–458. 10.1109/ICDCS.2002.1022289 Crossref Google Scholar 77 T. He, J. A. Stankovic, C. Lu, T. Abdelzaher, SPEED: A stateless protocol for real-time communication in sensor networks. Proceedings. 23rd International Conference on Distributed Computing Systems (IEEE, New York, 2003), pp. 46–55. 10.1109/ICDCS.2003.1203451 Crossref Google Scholar 78 S. Ma, H. Hosseinmardi, N. Farrow, R. Han, N. Correll, Establishing multi-cast groups in computational robotic materials. IEEE International Conference on Cyber, Physical and Social Computing (IEEE, New York, 2012), pp. 311–316. 10.1109/GreenCom.2012.74 Crossref Google Scholar 79 H. Hosseinmardi, N. Correll, R. Han, Bloom Filter-Based Ad Hoc Multicast Communication in Cyber-Physical Systems and Computational Materials, Wireless Algorithms, Systems, and Applications (Springer, 2012), pp. 595–606. 10.1007/978-3-642-31869-6_52 Crossref Google Scholar 80 Budelmann C., Krieg-Brückner B., From sensorial to smart materials: Intelligent optical sensor network for embedded applications. J. Intell. Mater. Syst. Struct. 24, 2183–2188 (2013). 10.1177/1045389X12462647 Crossref ISI Google Scholar 81 Lanzara G., Salowitz N., Guo Z., Chang F.-K., A spider-web-like highly expandable sensor network for multifunctional materials. Adv. Mater. 22, 4643–4648 (2010). 10.1002/adma.201000661 Crossref PubMed ISI Google Scholar 82 Salowitz N., Guo Z., Li Y.-H., Kim K., Lanzara G., Chang F.-K., Biol.-inspired stretchable network-based intelligent composites. J. Composite Mater. 47, 97–105 (2012). 10.1177/0021998312442900 Crossref ISI Google Scholar 83 P. J. Skabara, N. J. Findlay, Polymer Electronics. Oxford Master Series in Physics 22. By Mark Geoghegan and Georges Hadziioannou. (Wiley Online Library, 2014). 10.1002/anie.201310074 Crossref Google Scholar 84 Teichler A., Perelaer J., Schubert U. S., Inkjet printing of organic electronics–comparison of deposition techniques and state-of-the-art developments. J. Mater. Chem. C 1, 1910 (2013). 10.1039/c2tc00255h Crossref Google Scholar 85 Menguc Y., Park Y.-L., Pei H., Vogt D., Aubin P. M., Winchell E., Fluke L., Stirling L., Wood R. J., Walsh C. J., Wearable soft sensing suit for human gait measurement. Int. J. Robot. Res. 33, 1748–1764 (2014). 10.1177/0278364914543793 Crossref ISI Google Scholar 86 Islam A., Hansen H. N., Tang P. T., Sun J., Process chains for the manufacturing of molded interconnect devices. Int. J. Adv. Manuf. Technol. 42, 831–841 (2009). 10.1007/s00170-008-1660-9 Crossref ISI Google Scholar 87 R. Merz, F. Prinz, K. Ramaswami, M. Terk, L. Weiss, Shape Deposition Manufacturing (Engineering Design Research Center, Carnegie Mellon Univ., Pittsburgh, PA, 1994). Google Scholar 88 Leigh S. J., Bradley R. J., Purssell C. P., Billson D. R., Hutchins D. A., A simple, low-cost conductive composite material for 3D printing of electronic sensors. PLOS ONE 7, e49365 (2012). 10.1371/journal.pone.0049365 Crossref PubMed ISI Google Scholar 89 Ma K. Y., Chirarattananon P., Fuller S. B., Wood R. J., Controlled flight of a biologically inspired, insect-scale robot. Science 340, 603–607 (2013). 10.1126/science.1231806 Crossref PubMed ISI Google Scholar 90 Marsden J. E., Patrick G. W., Shkoller S., Multisymplectic geometry, variational integrators, and nonlinear PDEs. Commun. Math. Phys. 199, 351–395 (1998). 10.1007/s002200050505 Crossref ISI Google Scholar 91 Johnson E. R., Murphey T. D., Scalable variational integrators for constrained mechanical systems in generalized coordinates, IEEE Trans. Robotics 25, 1249 (2009). 10.1109/TRO.2009.2032955 Crossref ISI Google Scholar 92 Toffoli T., Margolus N., Programmable matter: Concepts and realization. Physica D 47, 263–272 (1991). 10.1016/0167-2789(91)90296-L Crossref ISI Google Scholar 93 D’Andrea R., Dullerud G. E., Distributed control design for spatially interconnected systems, IEEE Trans. Automatic Control 48, 1478 (2003). 10.1109/TAC.2003.816954 Crossref ISI Google Scholar 94 Langbort C., Chandra R. S., D’Andrea R., Distributed control design for systems interconnected over an arbitrary graph, IEEE Trans. Automatic Control 49, 1502 (2004). 10.1109/TAC.2004.834123 Crossref ISI Google Scholar 95 Scattolini R., Architectures for distributed and hierarchical model predictive control–a review. J. Process Contr. 19, 723–731 (2009). 10.1016/j.jprocont.2009.02.003 Crossref ISI Google Scholar 96 Hofstein A., Lunetta V. N., The laboratory in science education: Foundations for the twenty-first century. Sci. Educ. 88, 28–54 (2004). 10.1002/sce.10106 Crossref ISI Google Scholar Show all references SUBMIT A RESPONSE TO THIS ARTICLE × COMPOSE ELETTER Title: Title is required Contents: CONTRIBUTORS remove contributor First name: Last name: Email: Role/occupation: affiliation: add another contributor STATEMENT OF COMPETING INTERESTS Competing interests? YES NO Please describe the competing interests CANCELSUBMIT (0)ELETTERS eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter. Log In to Submit a Response No eLetters have been published for this article yet. SHOW ALL eLETTERS RECOMMENDED ARTICLES FROM TRENDMD 1. Adaptive Composites Richard Vaia et al., Science, 2008 2. The NASA-NCI Collaboration on Biomolecular Sensors Daniel S. Goldin et al., Science, 2001 3. Electro-ribbon actuators and electro-origami robots Majid Taghavi et al., Science Robotics, 2018 4. Soft wall-climbing robots Guoying Gu et al., Science Robotics, 2018 5. Consecutive aquatic jump-gliding with water-reactive fuel R. Zufferey et al., Science Robotics, 2019 Powered by * Privacy policy * Do not sell my personal information * Google Analytics settings I consent to the use of Google Analytics and related cookies across the TrendMD network (widget, website, blog). Learn more Yes No INFORMATION & AUTHORS InformationAuthors INFORMATION PUBLISHED IN Science Volume 347 | Issue 6228 20 March 2015 COPYRIGHT Copyright © 2015, American Association for the Advancement of Science. SUBMISSION HISTORY Published in print: 20 March 2015 PERMISSIONS Request permissions for this article. Request permissions ACKNOWLEDGMENTS We are grateful to the Air Force Office of Scientific Research, NASA, NSF, Defense Advanced Research Projects Agency, and Army Research Office for support of this work. AUTHORS AFFILIATIONSEXPAND ALL M. A. MCEVOY Department of Computer Science, University of Colorado at Boulder, Boulder, CO, USA. View all articles by this author N. CORRELL* NCORRELL@COLORADO.EDU Department of Computer Science, University of Colorado at Boulder, Boulder, CO, USA. View all articles by this author NOTES * Corresponding author. E-mail: ncorrell@colorado.edu METRICS & CITATIONS MetricsCitations149 METRICS ARTICLE USAGE Article Metrics * Downloads * Citations No data available. 050100MayJunJulAugSepOct 3,290 393 * Total * 6 Months * 12 Months Total number of downloads and citations for the most recent 6 whole calendar months. Note: The article usage is presented with a three- to four-day delay and will update daily once available. Due to this delay, usage data will not appear immediately following publication. Citation information is sourced from Crossref Cited-by service. ALTMETRICS See more details Picked up by 28 news outlets Blogged by 3 Tweeted by 45 Referenced in 1 patents On 10 Facebook pages Referenced in 4 Wikipedia pages Mentioned in 5 Google+ posts Reddited by 1 672 readers on Mendeley 1 readers on CiteULike CITATIONS CITE AS * M. A. McEvoy * N. Correll , Materials that couple sensing, actuation, computation, and communication.Science347,1261689(2015).DOI:10.1126/science.1261689 EXPORT CITATION Select the format you want to export the citation of this publication. Please select one from the list RIS (ProCite, Reference Manager) EndNote BibTex Medlars RefWorks Direct import CITED BY 1. * Nan Yang, * Zheng Qian, * Huaxian Wei, * Yubo Zhang, Flexible, Light-Interacting, B-Shaped Structures for Computations, Research, 6, (2023)./doi/10.34133/research.0085 Abstract 2. * Takaaki Nishikawa, * Hisaya Yamane, * Naoji Matsuhisa, * Norihisa Miki, Stretchable Strain Sensor with Small but Sufficient Adhesion to Skin, Sensors, 23, 4, (1774), (2023).https://doi.org/10.3390/s23041774 Crossref 3. * Zhongjie Huang, * Shaopeng Li, * Jiaqi Zhang, * Huan Pang, * Andrey Ivankin, * Yuhuang Wang, Localized Photoactuation of Polymer Pens for Nanolithography, Molecules, 28, 3, (1171), (2023).https://doi.org/10.3390/molecules28031171 Crossref 4. * Goffredo Giordano, * Saravana Prashanth Murali Babu, * Barbara Mazzolai, Soft robotics towards sustainable development goals and climate actions, Frontiers in Robotics and AI, 10, (2023).https://doi.org/10.3389/frobt.2023.1116005 Crossref 5. * Linda Paternò, * Lucrezia Lorenzon, Soft robotics in wearable and implantable medical applications: Translational challenges and future outlooks, Frontiers in Robotics and AI, 10, (2023).https://doi.org/10.3389/frobt.2023.1075634 Crossref 6. * Merve Karabal, * Ramazan Yuksel, * Fulden Kayginok, * Alptekin Yildiz, * Hulya Cebeci, undefined, AIAA SCITECH 2023 Forum, (2023).https://doi.org/10.2514/6.2023-0318 Crossref 7. * Kenneth AW Hoffmann, * Tony G Chen, * Mark R Cutkosky, * David Lentink, Bird-inspired robotics principles as a framework for developing smart aerospace materials, Journal of Composite Materials, 57, 4, (679-710), (2023).https://doi.org/10.1177/00219983231152663 Crossref 8. * Sark Pangrui Xing, * Bart Van Dijk, * Pengcheng An, * Miguel Bruns, * Yaliang Chuang, * Stephen Jia Wang, undefined, Proceedings of the Seventeenth International Conference on Tangible, Embedded, and Embodied Interaction, (1-14), (2023).https://doi.org/10.1145/3569009.3572800 Crossref 9. * He Zifan, * Lu Jiyun, * Cui Shengming, * Zuo Hongfu, undefined, Advanced Optical Manufacturing Technologies and Applications 2022; and 2nd International Forum of Young Scientists on Advanced Optical Manufacturing (AOMTA and YSAOM 2022), (3), (2023).https://doi.org/10.1117/12.2653207 Crossref 10. * Jiahui Qiu, * Aihong Ji, * Kongjun Zhu, * Qinfei Han, * Wei Wang, * Qian Qi, * Guangming Chen, A Gecko-Inspired Robot with a Flexible Spine Driven by Shape Memory Alloy Springs, Soft Robotics, (2023).https://doi.org/10.1089/soro.2022.0080 Crossref 11. See more Loading... Citation information is sourced from Crossref Cited-by service. MEDIA FiguresMultimedia FIGURES (Top) Biological systems that tightly integrate sensing, actuation, computation, and communication and (bottom) the engineering applications that could be enabled by materials that take advantage of similar principles. (From left) The cuttlefish (camouflage), an eagle’s wings (shape change), the banyan tree (adaptive load support), and human skin (tactile sensing). CREDITS: CUTTLEFISH: N. HOBGOOD/WIKIMEDIA COMMONS; BALD EAGLE ALASKA: C. CHAPMAN/WIKIMEDIA COMMONS; BANYAN TREE: W. KNIGHT/WIKIMEDIA COMMONS; HUMAN SKIN: A. MCEVOY; MEN IN CAMOUFLAGE HUNTING GEAR: H. RYAN/U.S. FISH AND WILDLIFE SERVICE; 21ST CENTURY AEROSPACE VEHICLE: NASA; SYDNEY HARBOUR BRIDGE: I. BROWN/WIKIMEDIA COMMONS; CYBERHAND: PRENSILIA S.R.L/ PRENSILIA.COM GO TO FIGUREOPEN IN VIEWER MULTIMEDIA TABLES SHARE SHARE SHARE ARTICLE LINK https://www.science.org/doi/10.1126/science.1261689 Copy Link Copied! Copying failed. SHARE ON SOCIAL MEDIA FacebookTwitterLinkedinRedditWeChatemail CHECK ACCESS CHECK ACCESS CHECK ACCESS LOG IN TO VIEW THE FULL TEXT AAAS ID LOGIN AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions. * Become a AAAS Member * Activate your AAAS ID * Purchase Access to Other Journals in the Science Family * Account Help Log in via OpenAthens. via OpenAthens Log in via Shibboleth. via Shibboleth MORE OPTIONS Register for free to read this article As a service to the community, this article is available for free. Login or register for free to read this article. Purchase this issue in print Buy a single issue of Science for just $15 USD. REFERENCES REFERENCES 1 Stevens M., Merilaita S., Animal camouflage: Current issues and new perspectives. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 423–427 (2009). 10.1098/rstb.2008.0217 Crossref PubMed ISI Google Scholar 2 Shalaev V. M., Cai W., Chettiar U. K., Yuan H. K., Sarychev A. K., Drachev V. P., Kildishev A. V., Negative index of refraction in optical metamaterials. Opt. Lett. 30, 3356–3358 (2005). 10.1364/OL.30.003356 Crossref PubMed ISI Google Scholar 3 Leonhardt U., Metamaterials: Towards invisibility in the visible. Nat. Mater. 8, 537–538 (2009). 10.1038/nmat2472 Crossref PubMed ISI Google Scholar 4 Morin S. A., Shepherd R. F., Kwok S. W., Stokes A. A., Nemiroski A., Whitesides G. M., Camouflage and display for soft machines. Science 337, 828–832 (2012). 10.1126/science.1222149 Crossref PubMed ISI Google Scholar 5 Thill C., Etches J., Bond I., Potter K., Weaver P., Morphing skins. Aeronaut. J. 112, 117 (2008). Crossref ISI Google Scholar 6 Barbarino S., Bilgen O., Ajaj R. M., Friswell M. I., Inman D. J., A review of morphing aircraft. J. Intell. Mater. Syst. Struct. 22, 823–877 (2011). 10.1177/1045389X11414084 Crossref ISI Google Scholar 7 Vasista S., Tong L., Wong K., Realization of morphing wings: A multidisciplinary challenge. J. Aircr. 49, 11–28 (2012). 10.2514/1.C031060 Crossref ISI Google Scholar 8 Weisshaar T. A., Morphing aircraft systems: Historical perspectives and future challenges. J. Aircr. 50, 337–353 (2013). 10.2514/1.C031456 Crossref ISI Google Scholar 9 D. Adams, Health Monitoring of Structural Materials and Components: Methods with Applications (Wiley, 2007). Google Scholar 10 Blaiszik B., Kramer S. L. B., Olugebefola S. C., Moore J. S., Sottos N. R., White S. R., Self-healing polymers and composites. Annu. Rev. Mater. Res. 40, 179–211 (2010). 10.1146/annurev-matsci-070909-104532 Crossref ISI Google Scholar 11 Dahiya R. S., Metta G., Valle M., Sandini G., Tactile sensing—from humans to humanoids, IEEE Trans. Robotics 26, 1 (2010). 10.1109/TRO.2009.2033627 Crossref ISI Google Scholar 12 N. Farrow, N. Sivagnanadasan, N. Correll, Gesture based distributed user interaction system for a reconfigurable self-organizing smart wall. Proceedings of the 8th International Conference on Tangible, Embedded and Embodied Interaction (Association for Computing Machinery, New York, 2014), pp. 245–246. 10.1145/2540930.2540967 Crossref Google Scholar 13 Profita H., Farrow N., Correll N., Flutter: An exploration of an assistive garment using distributed sensing, computation and actuation. Proceedings of the 9th International Conference on Tangible, Embedded and Embodied Interaction (Association for Computing Machinery, New York, USA, 2015), pp. 359–362. 10.1145/2677199.2680586 Crossref Google Scholar 14 M. A. McEvoy, N. Correll, Shape change through programmable stiffness, International Symposium on Experimental Robotics (ISER), Marrakech, Morocco, 2014. Google Scholar 15 D. Hughes, N. Correll, A soft, amorphous skin that can sense and localize texture, IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, 2014. 10.1109/ICRA.2014.6907101 Crossref Google Scholar 16 Berlin A. A., Gabriel K. J., Distributed MEMS: New challenges for computation. IEEE Comput. Science Eng. 4, 12–16 (1997). 10.1109/99.590851 Crossref ISI Google Scholar 17 Goldstein S. C., Campbell J. D., Mowry T. C., Programmable matter. Computer 38, 99–101 (2005). 10.1109/MC.2005.198 Crossref ISI Google Scholar 18 Abelson H., Weiss R., Allen D., Coore D., Hanson C., Homsy G., Knight T. F., Nagpal R., Rauch E., Sussman G. J., Amorphous computing. Commun. ACM 43, 74–82 (2000). 10.1145/332833.332842 Crossref ISI Google Scholar 19 W. Butera, Text display and graphics control on a paintable computer, self-adaptive and self-organizing systems. First International Conference on Self-Adaptive and Self-Organizing Systems. SASO’07 (IEEE, New York, 2007), pp. 45–54. 10.1109/SASO.2007.60 Crossref Google Scholar 20 Basu S., Gerchman Y., Collins C. H., Arnold F. H., Weiss R., A synthetic multicellular system for programmed pattern formation. Nature 434, 1130–1134 (2005). 10.1038/nature03461 Crossref PubMed ISI Google Scholar 21 Yim M., Shen W.-, Salemi B., Rus D., Moll M., Lipson H., Klavins E., Chirikjian G., Modular self-reconfigurable robot systems. IEEE Robotics & Automation Magazine 14, 43–52 (2007). 10.1109/MRA.2007.339623 Crossref ISI Google Scholar 22 C.-H. Yu, F.-X. Willems, D. Ingber, R. Nagpal, Self-organization of environmentally-adaptive shapes on a modular robot. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, New York, 2007), pp. 2353–2360. 10.1109/IROS.2007.4399491 Crossref Google Scholar 23 P. Levis et al., in TinyOS: An Operating System for Sensor Networks, Ambient Intelligence (Springer, Berlin, 2005), pp. 115–148. 10.1007/3-540-27139-2_7 Crossref Google Scholar 24 H. Ishii, B. Ullmer, Tangible bits: Towards seamless interfaces between people, bits and atoms. Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems (Association of Computing Machinery, New York, 1997), pp. 234–241. 10.1145/258549.258715 Crossref Google Scholar 25 Ishii H., Lakatos D., Bonanni L., Labrune J.-B., Radical atoms: Beyond tangible bits, toward transformable materials. Interaction 19, 38 (2012). 10.1145/2065327.2065337 Crossref Google Scholar 26 J. Lifton, D. Seetharam, M. Broxton, J. Paradiso, Pushpin Computing System Overview: A Platform for Distributed, Embedded, Ubiquitous Sensor Networks, Pervasive Computing (Springer, 2002), pp. 139–151. 10.1007/3-540-45866-2_12 Crossref Google Scholar 27 J. Ou et al., jamSheets: Thin interfaces with tunable stiffness enabled by layer jamming. Proceedings of the 8th International Conference on Tangible, Embedded and Embodied Interaction (Association of Computing Machinery, New York, 2014), pp. 65–72. 10.1145/2540930.2540971 Crossref Google Scholar 28 D. Leithinger, S. Follmer, A. Olwal, H. Ishii, Physical telepresence: Shape capture and display for embodied, computer-mediated remote collaboration. Proceedings of the 27th annual ACM symposium on User Interface Software and Technology (Association of Computing Machinery, New York, 2014), pp. 461–470. 10.1145/2642918.2647377 Crossref Google Scholar 29 R. Niiyama, L. Yao, H. Ishii, Weight and volume changing device with liquid metal transfer. Proceedings of the 8th International Conference on Tangible, Embedded and Embodied Interaction (Association of Computing Machinery, New York, 2014), pp. 49–52. 10.1145/2540930.2540953 Crossref Google Scholar 30 Gibson R. F., A review of recent research on mechanics of multifunctional composite materials and structures. Compos. Struct. 92, 2793–2810 (2010). 10.1016/j.compstruct.2010.05.003 Crossref ISI Google Scholar 31 J. M. Kahn, R. H. Katz, K. S. Pister, Next century challenges: Mobile networking for “Smart Dust.”Proceedings of the 5th annual ACM/IEEE International Conference on Mobile computing and Networking (Association of Computing Machinery, New York, 1999), pp. 271–278. 10.1145/313451.313558 Crossref Google Scholar 32 R. M. Walser, Electromagnetic metamaterials. Proc. SPIE 4467, Complex Mediums II: Beyond Linear Isotropic Dielectrics (San Diego, CA, 2001), pp. 1–15 (2001). 10.1117/12.432921 Crossref Google Scholar 33 Franceschini N., Pichon J.-M., Blanes C., Brady J., From insect vision to robot vision. Philos. Trans. R. Soc. Lond. B Biol. Sci. 337, 283–294 (1992). 10.1098/rstb.1992.0106 Crossref ISI Google Scholar 34 Pfeifer R., Iida F., Morphological computation: Connecting body, brain and environment. Japanese Scientific Monthly 58, 48 (2005). 10.1007/978-3-642-00616-6_5 Crossref Google Scholar 35 Sheng X., Hu Y.-H., Maximum likelihood multiple-source localization using acoustic energy measurements with wireless sensor networks. IEEE Trans. Signal Processing 53, 44–53 (2005). 10.1109/TSP.2004.838930 Crossref ISI Google Scholar 36 Ghasemi-Nejhad M. N., Russ R., Pourjalali S., Manufacturing and testing of active composite panels with embedded piezoelectric sensors and actuators. J. Intell. Mater. Syst. Struct. 16, 319–333 (2005). 10.1177/1045389X05050103 Crossref ISI Google Scholar 37 Jang S., Jo H., Cho S., Mechitov K., Rice J. A., Sim S.-H., Jung H.-J., Yun C.-B., Spencer B. F. J., Agha G., Structural health monitoring of a cable-stayed bridge using smart sensor technology: Deployment and evaluation. Smart Structures and Systems 6, 439–459 (2010). 10.12989/sss.2010.6.5_6.439 Crossref ISI Google Scholar 38 Ihn J.-B., Chang F.-K., Detection and monitoring of hidden fatigue crack growth using a built-in piezoelectric sensor/actuator network: I. Diagnostics. Smart Mater. Struct. 13, 609–620 (2004). 10.1088/0964-1726/13/3/020 Crossref ISI Google Scholar 39 Zhao X., Gao H., Zhang G., Ayhan B., Yan F., Kwan C., Rose J. L., Active health monitoring of an aircraft wing with embedded piezoelectric sensor/actuator network: I. Defect detection, localization and growth monitoring. Smart Mater. Struct. 16, 1208–1217 (2007). 10.1088/0964-1726/16/4/032 Crossref ISI Google Scholar 40 Zhao X., Qian T., Mei G., Kwan C., Zane R., Walsh C., Paing T., Popovic Z., Active health monitoring of an aircraft wing with an embedded piezoelectric sensor/actuator network: II. Wireless approaches. Smart Mater. Struct. 16, 1218–1225 (2007). 10.1088/0964-1726/16/4/033 Crossref ISI Google Scholar 41 Someya T., Kato Y., Sekitani T., Iba S., Noguchi Y., Murase Y., Kawaguchi H., Sakurai T., Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc. Natl. Acad. Sci. U.S.A. 102, 12321–12325 (2005). 10.1073/pnas.0502392102 Crossref PubMed ISI Google Scholar 42 M. A. McEvoy, N. Correll, Thermoplastic variable stiffness composites with embedded, networked sensing, actuation, and control. J. Composite Mater. (2014). 10.1177/0021998314525982 Crossref Google Scholar 43 Park Y.-L., Majidi C., Kramer R., Bérard P., Wood R. J., Hyperelastic pressure sensing with a liquid-embedded elastomer. J. Micromech. Microeng. 20, 125029 (2010). 10.1088/0960-1317/20/12/125029 Crossref ISI Google Scholar 44 Tan H. Z., Slivovsky L. A., Pentland A., A sensing chair using pressure distribution sensors. IEEE/ASME Trans. Mechatronics 6, 261 (2001). 10.1109/3516.951364 Crossref Google Scholar 45 Zhou J., Gu Y., Fei P., Mai W., Gao Y., Yang R., Bao G., Wang Z. L., Flexible piezotronic strain sensor. Nano Lett. 8, 3035–3040 (2008). 10.1021/nl802367t Crossref PubMed ISI Google Scholar 46 Yamada T., Hayamizu Y., Yamamoto Y., Yomogida Y., Izadi-Najafabadi A., Futaba D. N., Hata K., A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 6, 296–301 (2011). 10.1038/nnano.2011.36 Crossref PubMed ISI Google Scholar 47 Majidi C., Kramer R., Wood R., A non-differential elastomer curvature sensor for softer-than-skin electronics. Smart Mater. Struct. 20, 105017 (2011). 10.1088/0964-1726/20/10/105017 Crossref ISI Google Scholar 48 Gandhi F., Kang S.-G., Beams with controllable flexural stiffness. Smart Mater. Struct. 16, 1179–1184 (2007). 10.1088/0964-1726/16/4/028 Crossref ISI Google Scholar 49 Murray G., Gandhi F., Multi-layered controllable stiffness beams for morphing: Energy, actuation force, and material strain considerations. Smart Mater. Struct. 19, 045002 (2010). 10.1088/0964-1726/19/4/045002 Crossref ISI Google Scholar 50 G. McKnight, C. Henry, Variable stiffness materials for reconfigurable surface applications, Proc. SPIE 5761 Smart Structures and Materials 2005: Active Materials: Behavior and Mechanics (20 May 2005), pp. 119–126. 10.1117/12.601495 Crossref Google Scholar 51 Mcknight G., Doty R., Keefe A., Herrera G., Henry C., Segmented reinforcement variable stiffness materials for reconfigurable surfaces. J. Intell. Mater. Syst. Struct. 21, 1783–1793 (2010). 10.1177/1045389X10386399 Crossref ISI Google Scholar 52 Meng Q., Hu J., A review of shape memory polymer composites and blends. Compos., Part A Appl. Sci. Manuf. 40, 1661–1672 (2009). 10.1016/j.compositesa.2009.08.011 Crossref ISI Google Scholar 53 Brown E., Rodenberg N., Amend J., Mozeika A., Steltz E., Zakin M. R., Lipson H., Jaeger H. M., Universal robotic gripper based on the jamming of granular material. Proc. Natl. Acad. Sci. U.S.A. 107, 18809–18814 (2010). 10.1073/pnas.1003250107 Crossref ISI Google Scholar 54 Haines C. S., Lima M. D., Li N., Spinks G. M., Foroughi J., Madden J. D., Kim S. H., Fang S., Jung de Andrade M., Göktepe F., Göktepe Ö., Mirvakili S. M., Naficy S., Lepró X., Oh J., Kozlov M. E., Kim S. J., Xu X., Swedlove B. J., Wallace G. G., Baughman R. H., Artificial muscles from fishing line and sewing thread. Science 343, 868–872 (2014). 10.1126/science.1246906 Crossref PubMed ISI Google Scholar 55 Nespoli A., Besseghini S., Pittaccio S., Villa E., Viscuso S., The high potential of shape memory alloys in developing miniature mechanical devices: A review on shape memory alloy mini-actuators. Sens. Actuators A Phys. 158, 149–160 (2010). 10.1016/j.sna.2009.12.020 Crossref ISI Google Scholar 56 Furst S. J., Bunget G., Seelecke S., Design and fabrication of a bat-inspired flapping-flight platform using shape memory alloy muscles and joints. Smart Mater. Struct. 22, 014011 (2013). 10.1088/0964-1726/22/1/014011 Crossref ISI Google Scholar 57 C. D. Onal, R. J. Wood, D. Rus, Towards printable robotics: Origami-inspired planar fabrication of three-dimensional mechanisms. IEEE International Conference on Robotics and Automation (IEEE, New York, 2011), pp. 4608–4613. 10.1109/ICRA.2011.5980139 Crossref Google Scholar 58 G. K. Klute, J. M. Czerniecki, B. Hannaford, McKibben artificial muscles: Pneumatic actuators with biomechanical intelligence. Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics (IEEE, New York, 1999), pp. 221–226. 10.1109/AIM.1999.803170 Crossref Google Scholar 59 Takashima K., Rossiter J., Mukai T., McKibben artificial muscle using shape-memory polymer. Sens. Actuators A Phys. 164, 116–124 (2010). 10.1016/j.sna.2010.09.010 Crossref ISI Google Scholar 60 De Volder M., Reynaerts D., Pneumatic and hydraulic microactuators: A review. J. Micromech. Microeng. 20, 043001 (2010). 10.1088/0960-1317/20/4/043001 Crossref ISI Google Scholar 61 Shepherd R. F., Ilievski F., Choi W., Morin S. A., Stokes A. A., Mazzeo A. D., Chen X., Wang M., Whitesides G. M., Multigait soft robot. Proc. Natl. Acad. Sci. U.S.A. 108, 20400–20403 (2011). 10.1073/pnas.1116564108 Crossref PubMed ISI Google Scholar 62 N. Correll, C. D. Onal, H. Liang, E. Schoenfeld, D. Rus, Soft autonomous materials—Using active elasticity and embedded distributed computation. 12th International Symposium on Experimental Robotics, Springer Tracts in Advanced Robotics (2014), vol. 79, pp. 227–240. 10.1007/978-3-642-28572-1_16 Crossref Google Scholar 63 A. D. Marchese, K. Konrad, C. D. Onal, D. Rus, Design, curvature control, and autonomous positioning of a soft and highly compliant 2D robotic manipulator. IEEE International Conference on Robotics and Automation (IEEE, New York, 2014). 10.1109/ICRA.2014.6907161 Crossref Google Scholar 64 R. K. Katzschmann, A. D. Marchese, D. Rus, Hydraulic autonomous soft robotic fish for 3D swimming, International Symposium on Experimental Robotics (ISER), Marrakech, Morocco, 2014. Google Scholar 65 Yoshida K., Kamiyama K., Kim J.-, Yokota S., An intelligent microactuator robust against disturbance using electro-rheological fluid. Sens. Actuators A Phys. 175, 101–107 (2012). 10.1016/j.sna.2011.12.049 Crossref ISI Google Scholar 66 Shaikh K. A., Li S., Liu C., Development of a latchable microvalve employing a low-melting-temperature metal alloy. J. Microelectromech. Syst. 17, 1195–1203 (2008). 10.1109/JMEMS.2008.2003055 Crossref ISI Google Scholar 67 Greaves G. N., Greer A. L., Lakes R. S., Rouxel T., Poisson’s ratio and modern materials. Nat. Mater. 10, 823–837 (2011). 10.1038/nmat3134 Crossref PubMed ISI Google Scholar 68 C. Henry, G. McKnight, Cellular variable stiffness materials for ultra-large reversible deformations in reconfigurable structures. Proc. SPIE, Smart Structures and Materials 2006: Active Materials: Behavior and Mechanics (2006), vol. 6170, p. 12. 10.1117/12.659633 Crossref Google Scholar 69 Suomela J., Survey of local algorithms. ACM Comput. Surv. 45, 24 (2013). 10.1145/2431211.2431223 Crossref ISI Google Scholar 70 M. Duckham, Decentralized Spatial Computing: Foundations of Geosensor Setworks (Springer, Berlin, 2012). Google Scholar 71 G. Werner-Allen, G. Tewari, A. Patel, M. Welsh, R. Nagpal, Firefly-inspired sensor network synchronicity with realistic radio effects. Proceedings of the 3rd International Conference on Embedded networked Sensor systems (Association of Computing Machinery, New York, 2005), pp. 142–153. 10.1145/1098918.1098934 Crossref Google Scholar 72 J. Beal et al., in Formal and Practical Aspects of Domain-Specific Languages: Recent Developments (IGI Global, 2012), pp. 436–501. 10.4018/978-1-4666-2092-6.ch016 Crossref Google Scholar 73 Tilak S., Abu-Ghazaleh N. B., Heinzelman W., A taxonomy of wireless micro-sensor network models. Mob. Comput. Commun. Rev. 6, 28–36 (2002). 10.1145/565702.565708 Crossref Google Scholar 74 J. N. Al-Karaki, A. E. Kamal, Routing techniques in wireless sensor networks: A survey. IEEE Wireless Commun. 11, 6 (2004). 10.1109/MWC.2004.1368893 Crossref Google Scholar 75 P. Santi, Topology control in wireless ad hoc and sensor networks. ACM Comput. Surv. 37, 164 (2005). 10.1145/1089733.1089736 Crossref Google Scholar 76 C. Intanagonwiwat, D. Estrin, R. Govindan, J. Heidemann, Impact of network density on data aggregation in wireless sensor networks. Proceedings of the 22nd International Conference on Distributed Computing Systems (IEEE, New York, 2002), pp. 457–458. 10.1109/ICDCS.2002.1022289 Crossref Google Scholar 77 T. He, J. A. Stankovic, C. Lu, T. Abdelzaher, SPEED: A stateless protocol for real-time communication in sensor networks. Proceedings. 23rd International Conference on Distributed Computing Systems (IEEE, New York, 2003), pp. 46–55. 10.1109/ICDCS.2003.1203451 Crossref Google Scholar 78 S. Ma, H. Hosseinmardi, N. Farrow, R. Han, N. Correll, Establishing multi-cast groups in computational robotic materials. IEEE International Conference on Cyber, Physical and Social Computing (IEEE, New York, 2012), pp. 311–316. 10.1109/GreenCom.2012.74 Crossref Google Scholar 79 H. Hosseinmardi, N. Correll, R. Han, Bloom Filter-Based Ad Hoc Multicast Communication in Cyber-Physical Systems and Computational Materials, Wireless Algorithms, Systems, and Applications (Springer, 2012), pp. 595–606. 10.1007/978-3-642-31869-6_52 Crossref Google Scholar 80 Budelmann C., Krieg-Brückner B., From sensorial to smart materials: Intelligent optical sensor network for embedded applications. J. Intell. Mater. Syst. Struct. 24, 2183–2188 (2013). 10.1177/1045389X12462647 Crossref ISI Google Scholar 81 Lanzara G., Salowitz N., Guo Z., Chang F.-K., A spider-web-like highly expandable sensor network for multifunctional materials. Adv. Mater. 22, 4643–4648 (2010). 10.1002/adma.201000661 Crossref PubMed ISI Google Scholar 82 Salowitz N., Guo Z., Li Y.-H., Kim K., Lanzara G., Chang F.-K., Biol.-inspired stretchable network-based intelligent composites. J. Composite Mater. 47, 97–105 (2012). 10.1177/0021998312442900 Crossref ISI Google Scholar 83 P. J. Skabara, N. J. Findlay, Polymer Electronics. Oxford Master Series in Physics 22. By Mark Geoghegan and Georges Hadziioannou. (Wiley Online Library, 2014). 10.1002/anie.201310074 Crossref Google Scholar 84 Teichler A., Perelaer J., Schubert U. S., Inkjet printing of organic electronics–comparison of deposition techniques and state-of-the-art developments. J. Mater. Chem. C 1, 1910 (2013). 10.1039/c2tc00255h Crossref Google Scholar 85 Menguc Y., Park Y.-L., Pei H., Vogt D., Aubin P. M., Winchell E., Fluke L., Stirling L., Wood R. J., Walsh C. J., Wearable soft sensing suit for human gait measurement. Int. J. Robot. Res. 33, 1748–1764 (2014). 10.1177/0278364914543793 Crossref ISI Google Scholar 86 Islam A., Hansen H. N., Tang P. T., Sun J., Process chains for the manufacturing of molded interconnect devices. Int. J. Adv. Manuf. Technol. 42, 831–841 (2009). 10.1007/s00170-008-1660-9 Crossref ISI Google Scholar 87 R. Merz, F. Prinz, K. Ramaswami, M. Terk, L. Weiss, Shape Deposition Manufacturing (Engineering Design Research Center, Carnegie Mellon Univ., Pittsburgh, PA, 1994). Google Scholar 88 Leigh S. J., Bradley R. J., Purssell C. P., Billson D. R., Hutchins D. A., A simple, low-cost conductive composite material for 3D printing of electronic sensors. PLOS ONE 7, e49365 (2012). 10.1371/journal.pone.0049365 Crossref PubMed ISI Google Scholar 89 Ma K. Y., Chirarattananon P., Fuller S. B., Wood R. J., Controlled flight of a biologically inspired, insect-scale robot. Science 340, 603–607 (2013). 10.1126/science.1231806 Crossref PubMed ISI Google Scholar 90 Marsden J. E., Patrick G. W., Shkoller S., Multisymplectic geometry, variational integrators, and nonlinear PDEs. Commun. Math. Phys. 199, 351–395 (1998). 10.1007/s002200050505 Crossref ISI Google Scholar 91 Johnson E. R., Murphey T. D., Scalable variational integrators for constrained mechanical systems in generalized coordinates, IEEE Trans. Robotics 25, 1249 (2009). 10.1109/TRO.2009.2032955 Crossref ISI Google Scholar 92 Toffoli T., Margolus N., Programmable matter: Concepts and realization. Physica D 47, 263–272 (1991). 10.1016/0167-2789(91)90296-L Crossref ISI Google Scholar 93 D’Andrea R., Dullerud G. E., Distributed control design for spatially interconnected systems, IEEE Trans. Automatic Control 48, 1478 (2003). 10.1109/TAC.2003.816954 Crossref ISI Google Scholar 94 Langbort C., Chandra R. S., D’Andrea R., Distributed control design for systems interconnected over an arbitrary graph, IEEE Trans. Automatic Control 49, 1502 (2004). 10.1109/TAC.2004.834123 Crossref ISI Google Scholar 95 Scattolini R., Architectures for distributed and hierarchical model predictive control–a review. J. Process Contr. 19, 723–731 (2009). 10.1016/j.jprocont.2009.02.003 Crossref ISI Google Scholar 96 Hofstein A., Lunetta V. N., The laboratory in science education: Foundations for the twenty-first century. Sci. Educ. 88, 28–54 (2004). 10.1002/sce.10106 Crossref ISI Google Scholar CURRENT ISSUE PIM1 CONTROLS GBP1 ACTIVITY TO LIMIT SELF-DAMAGE AND TO GUARD AGAINST PATHOGEN INFECTION * By * Daniel Fisch * Moritz M. Pfleiderer * et al. MAPPING SARS-COV-2 ANTIGENIC RELATIONSHIPS AND SEROLOGICAL RESPONSES * By * Samuel H. Wilks * Barbara Mühlemann * et al. REBALANCE ATTENTION FROM GLOBAL TARGET SETTING TOWARD NATIONAL CLIMATE POLITICS AND POLICY * By * Navroz K. Dubash Table of Contents ADVERTISEMENT SIGN UP FOR SCIENCEADVISER Subscribe to ScienceAdviser to get the latest news, commentary, and research, free to your inbox daily. Subscribe LATEST NEWS News Feature5 Oct 2023 Ancient marriage traditions—and politics—revealed in giant family trees built from DNA News5 Oct 2023 News at a glance: More success for fusion, medical tests under scrutiny, and a grizzly reintroduction News5 Oct 2023 New footprint dates bolster claim that humans lived in Americas during Ice Age News5 Oct 2023 Laser mapping reveals hidden structures in Amazon—with hints at thousands more News4 Oct. 2023 Immunity-enhancing cocktail protects mice against multiple hospital germs News4 Oct 2023 Study of 17,000 years of fish fossils reveals rapid evolution ADVERTISEMENT RECOMMENDEDCLOSE PerspectiveSeptember 2013 Toward Lighter, Stiffer Materials Research ArticleAugust 2019 Multifunctional metallic backbones for origami robotics with strain sensing and wireless communication capabilities PerspectiveApril 2014 Materials both Tough and Soft Research ArticleOctober 2021 Reprogrammable soft actuation and shape-shifting via tensile jamming Research ArticleMay 2020 Soft sensors for a sensing-actuation system with high bladder voiding efficiency ADVERTISEMENT View full textDownload PDF Open in viewer GO TO GO TO Show all references Request permissionsExpand All Collapse Expand for more Authors Info & Affiliations SHOW ALL BOOKS Skip slideshow FOLLOW US * * * * * * * Get our newsletter * NEWS * All News * ScienceInsider * News Features * Subscribe to News from Science * News from Science FAQ * About News from Science * CAREERS * Careers Articles * Find Jobs * Employer Profiles * COMMENTARY * Opinion * Analysis * Blogs * JOURNALS * Science * Science Advances * Science Immunology * Science Robotics * Science Signaling * Science Translational Medicine * Science Partner Journals * AUTHORS & REVIEWERS * Information for Authors * Information for Reviewers * LIBRARIANS * Manage Your Institutional Subscription * Library Admin Portal * Request a Quote * Librarian FAQs * ADVERTISERS * Advertising Kits * Custom Publishing Info * Post a Job * RELATED SITES * AAAS.org * AAAS Communities * EurekAlert! * Science in the Classroom * ABOUT US * Leadership * Work at AAAS * Prizes and Awards * HELP * FAQs * Access and Subscriptions * Order a Single Issue * Reprints and Permissions * TOC Alerts and RSS Feeds * Contact Us FOLLOW US * * * * * * Get our newsletter © 2023 American Association for the Advancement of Science. All rights reserved. AAAS is a partner of HINARI, AGORA, OARE, CHORUS, CLOCKSS, CrossRef and COUNTER. Science ISSN 0036-8075. back to top * Terms of Service * Privacy Policy * Accessibility × Back to article 1800 1801 1802 1803 1804 ✓ Thanks for sharing! AddToAny More… HomeScienceVol. 347, No. 6228Materials that couple sensing, actuation, computation, and communication Back To Vol. 347, No. 6228 SHARE * * * * * * CHECK ACCESS PREVIOUS ARTICLE A mitochondrial UPR-mediated metabolic checkpoint regulates hematopoietic stem cell aging Previous FiguresTables View figure (Top) Biological systems that tightly integrate sensing, actuation, computation, and communication and (bottom) the engineering applications that could be enabled by materials that take advantage of similar principles. (From left) The cuttlefish (camouflage), an eagle’s wings (shape change), the banyan tree (adaptive load support), and human skin (tactile sensing). CREDITS: CUTTLEFISH: N. HOBGOOD/WIKIMEDIA COMMONS; BALD EAGLE ALASKA: C. CHAPMAN/WIKIMEDIA COMMONS; BANYAN TREE: W. KNIGHT/WIKIMEDIA COMMONS; HUMAN SKIN: A. MCEVOY; MEN IN CAMOUFLAGE HUNTING GEAR: H. RYAN/U.S. FISH AND WILDLIFE SERVICE; 21ST CENTURY AEROSPACE VEHICLE: NASA; SYDNEY HARBOUR BRIDGE: I. BROWN/WIKIMEDIA COMMONS; CYBERHAND: PRENSILIA S.R.L/ PRENSILIA.COM Reference #1