stats.oarc.ucla.edu
Open in
urlscan Pro
128.97.141.31
Public Scan
URL:
https://stats.oarc.ucla.edu/mplus/seminars/lca/
Submission: On April 01 via manual from US — Scanned from DE
Submission: On April 01 via manual from US — Scanned from DE
Form analysis
2 forms found in the DOMGET https://stats.oarc.ucla.edu/
<form class="search-form" method="get" action="https://stats.oarc.ucla.edu/" role="search" itemprop="potentialAction" itemscope="" itemtype="https://schema.org/SearchAction"><label class="search-form-label screen-reader-text"
for="searchform-1">Search this website</label><input class="search-form-input" type="search" name="s" id="searchform-1" placeholder="Search this website" itemprop="query-input"><input class="search-form-submit" type="submit" value="Search">
<meta content="https://stats.oarc.ucla.edu/?s={s}" itemprop="target">
</form>
POST /mplus/seminars/lca/#wpcf7-f22910-o1
<form action="/mplus/seminars/lca/#wpcf7-f22910-o1" method="post" class="wpcf7-form init" aria-label="Contact form" novalidate="novalidate" data-status="init">
<div style="display: none;">
<input type="hidden" name="_wpcf7" value="22910">
<input type="hidden" name="_wpcf7_version" value="5.9.2">
<input type="hidden" name="_wpcf7_locale" value="en_US">
<input type="hidden" name="_wpcf7_unit_tag" value="wpcf7-f22910-o1">
<input type="hidden" name="_wpcf7_container_post" value="0">
<input type="hidden" name="_wpcf7_posted_data_hash" value="">
<input type="hidden" name="_wpcf7_recaptcha_response" value="">
</div>
<p><label for="namefield"> Your Name (required)<br>
<span class="wpcf7-form-control-wrap" data-name="your-name"><input size="40" class="wpcf7-form-control wpcf7-text wpcf7-validates-as-required" id="namefield" aria-required="true" aria-invalid="false" value="" type="text"
name="your-name"></span><br>
</label>
</p>
<p><label for="emailfield"> Your Email (must be a valid email for us to receive the report!)<br>
<span class="wpcf7-form-control-wrap" data-name="your-email"><input size="40" class="wpcf7-form-control wpcf7-email wpcf7-validates-as-required wpcf7-text wpcf7-validates-as-email" id="emailfield" aria-required="true" aria-invalid="false"
value="" type="email" name="your-email"></span><br>
</label>
</p>
<p><label for="commentfield"> Comment/Error Report (required)<br>
<span class="wpcf7-form-control-wrap" data-name="your-message"><textarea cols="40" rows="10" class="wpcf7-form-control wpcf7-textarea wpcf7-validates-as-required" id="commentfield" aria-required="true" aria-invalid="false"
name="your-message"></textarea></span><br>
</label>
</p>
<span class="wpcf7-form-control-wrap recaptcha"><span data-sitekey="6LfYdSEUAAAAALpzE4-TLY8d8B8SKVQBCnKVDCNH" class="wpcf7-form-control wpcf7-recaptcha g-recaptcha">
<div style="width: 304px; height: 78px;">
<div><iframe title="reCAPTCHA" width="304" height="78" role="presentation" name="a-jmqzdkb6o3tk" frameborder="0" scrolling="no"
sandbox="allow-forms allow-popups allow-same-origin allow-scripts allow-top-navigation allow-modals allow-popups-to-escape-sandbox allow-storage-access-by-user-activation"
src="https://www.google.com/recaptcha/api2/anchor?ar=1&k=6LfYdSEUAAAAALpzE4-TLY8d8B8SKVQBCnKVDCNH&co=aHR0cHM6Ly9zdGF0cy5vYXJjLnVjbGEuZWR1OjQ0Mw..&hl=en&v=moV1mTgQ6S91nuTnmll4Y9yf&size=normal&cb=rniggie204sl"></iframe>
</div><textarea id="g-recaptcha-response" name="g-recaptcha-response" class="g-recaptcha-response"
style="width: 250px; height: 40px; border: 1px solid rgb(193, 193, 193); margin: 10px 25px; padding: 0px; resize: none; display: none;"></textarea>
</div><iframe style="display: none;"></iframe>
</span>
<noscript>
<div class="grecaptcha-noscript">
<iframe src="https://www.google.com/recaptcha/api/fallback?k=6LfYdSEUAAAAALpzE4-TLY8d8B8SKVQBCnKVDCNH" frameborder="0" scrolling="no" width="310" height="430">
</iframe>
<textarea name="g-recaptcha-response" rows="3" cols="40" placeholder="reCaptcha Response Here"> </textarea>
</div>
</noscript>
</span>
<p><input class="wpcf7-form-control wpcf7-submit has-spinner" type="submit" value="Send"><span class="wpcf7-spinner"></span>
</p>
<p style="display: none !important;" class="akismet-fields-container" data-prefix="_wpcf7_ak_"><label>Δ<textarea name="_wpcf7_ak_hp_textarea" cols="45" rows="8" maxlength="100"></textarea></label><input type="hidden" id="ak_js_1"
name="_wpcf7_ak_js" value="1712007116075">
<script>
document.getElementById("ak_js_1").setAttribute("value", (new Date()).getTime());
</script>
</p>
<div class="wpcf7-response-output" aria-hidden="true"></div>
</form>
Text Content
MENU * HOME * SOFTWARE ► * R * Stata * SAS * SPSS * Mplus * Other Packages ► * G*Power * SUDAAN * Sample Power * RESOURCES ► * Annotated Output * Data Analysis Examples * Frequently Asked Questions * Seminars * Textbook Examples * Which Statistical Test? * SERVICES ► * Remote Consulting * Services and Policies ► * Walk-In Consulting * Email Consulting * Fee for Service * FAQ * Software Purchasing and Updating * Consultants for Hire * Other Consulting Centers ► * Department of Statistics Consulting Center * Department of Biomathematics Consulting Clinic * ABOUT US * Skip to primary navigation * Skip to main content * Skip to primary sidebar Institute for Digital Research and Education Search this website * HOME * SOFTWARE * R * Stata * SAS * SPSS * Mplus * Other Packages * G*Power * SUDAAN * Sample Power * RESOURCES * Annotated Output * Data Analysis Examples * Frequently Asked Questions * Seminars * Textbook Examples * Which Statistical Test? * SERVICES * Remote Consulting * Services and Policies * Walk-In Consulting * Email Consulting * Fee for Service * FAQ * Software Purchasing and Updating * Consultants for Hire * Other Consulting Centers * Department of Statistics Consulting Center * Department of Biomathematics Consulting Clinic * ABOUT US LATENT CLASS ANALYSIS IN MPLUS (NYLUND) Latent Class Analysis (LCA) is a statistical method for identifying unmeasured class membership among subjects using categorical and/or continuous observed variables. For example, you may wish to categorize people based on their drinking behaviors (observations) into different types of drinkers (latent classes). This could lead to finding categories such as abstainers, social drinkers, and alcohol abusers. You could try to create models to predict why one falls into particular class memberships (why do people become alcohol abusers), and you can also seek to explore the consequences of such class memberships (does being an alcohol abuser/not abuser predict other variables). You can even combine latent class analysis with other techniques. For example, you might use survival analysis to model time to first use of alcohol and find that latent class analysis identifies a class of long term abstainers and whose survival is modeled separately from non-abstainers. Or if you were using latent growth curve modeling of alchohol use over time, you could apply latent class analysis to the trajectories of alcohol use to identify classes such as abstainers, early drinkers who taper off, and chronic alcohol abusers. LCA can be used in many disciplines such as Health Sciences, Psychology, Education, and the Social Sciences. Examples will be shown using Mplus version 3. * Download and view the PowerPoint slides for this seminar * Download the data files and Mplus statements illustrated in this seminar PRIMARY SIDEBAR -------------------------------------------------------------------------------- Click here to report an error on this page or leave a comment Your Name (required) Your Email (must be a valid email for us to receive the report!) Comment/Error Report (required) Δ How to cite this page UCLA OIT 1. © 2021 UC REGENTS 2. HOME 3. CONTACT