lambdalabs.com Open in urlscan Pro
2606:4700:10::6816:3bb8  Public Scan

Submitted URL: http://lambdalabs.com/
Effective URL: https://lambdalabs.com/
Submission: On April 26 via api from GB — Scanned from GB

Form analysis 1 forms found in the DOM

<form id="contact-modal-form" ng-show="isContactFormVisible" class="block form-with-dynamic-labels ng-pristine ng-valid ng-valid-email">
  <h2 class="title">Talk to an Engineer</h2>
  <h3 class="subtitle">Call us at <span class="bold">(866) 711-2025</span> or complete the form below and we'll be in touch shortly.</h3>
  <input type="hidden" name="csrfmiddlewaretoken" value="aW1zd0aSAynK79V2T6Qom6ygFRtALMt6HjBEu6qrr6nPoKKi08lowLHp5pRWm9y9" autocomplete="off">
  <!-- Shipping address name input -->
  <div class="input-container">
    <input id="fname-input" ng-keyup="handleUserInput()" type="text" name="fname" autocomplete="contact given-name" ng-model="contact.first_name" class="input-with-dynamic-label ng-pristine ng-untouched ng-valid ng-empty empty" ng-class="{empty: contact.first_name.length === 0,
                            errors: validation &amp;&amp; !validation.first_name}">
    <label for="fname-input" class="shrinking-label">First Name</label>
  </div>
  <!-- Shipping address name input -->
  <div class="input-container">
    <input id="lname-input" ng-keyup="handleUserInput()" type="text" name="lname" autocomplete="contact family-name" ng-model="contact.last_name" class="input-with-dynamic-label ng-pristine ng-untouched ng-valid ng-empty empty" ng-class="{empty: contact.last_name.length === 0,
                            errors: validation &amp;&amp; !validation.last_name}">
    <label for="lname-input" class="shrinking-label">Last Name</label>
  </div>
  <!-- Email input -->
  <div class="input-container">
    <input id="email-input" ng-keyup="handleUserInput()" type="email" name="email" autocomplete="contact email" ng-model="contact.email" class="input-with-dynamic-label ng-pristine ng-untouched ng-valid ng-empty ng-valid-email empty" ng-class="{empty: contact.email.length === 0,
                            errors: validation &amp;&amp; !validation.email}">
    <label for="email-input" class="shrinking-label">Email (work email required)</label>
  </div>
  <!-- Phone input -->
  <div class="input-container">
    <input id="phone-input" ng-keyup="handleUserInput()" type="tel" name="phone" autocomplete="contact tel" ng-model="contact.phone" class="input-with-dynamic-label ng-pristine ng-untouched ng-valid ng-empty empty" ng-class="{empty: contact.phone.length === 0,
                            errors: validation &amp;&amp; !validation.phone}">
    <label for="phone-input" class="shrinking-label">Phone</label>
  </div>
  <!-- Organization input -->
  <div class="input-container">
    <input id="organization-input" ng-keyup="handleUserInput()" type="text" name="organization" ng-model="contact.organization" class="input-with-dynamic-label ng-pristine ng-untouched ng-valid ng-empty empty" ng-class="{empty: contact.organization.length === 0,
                            errors: validation &amp;&amp; !validation.organization}">
    <label for="organization-input" class="shrinking-label">Organization</label>
  </div>
  <!-- Product -->
  <div class="input-container">
    <select id="product-select" class="input-with-dynamic-label ng-pristine ng-untouched ng-valid ng-empty empty" ng-model="contact.product" ng-options="product as product.description for (url, product) in productMap" ng-class="{empty: contact.product === null,
                             errors: validation &amp;&amp; !validation.product}">
      <option value="?" selected="selected"></option>
      <option label="Tensorbook - GPU Laptop" value="object:4">Tensorbook - GPU Laptop</option>
      <option label="Tensorbook - Premium Support" value="object:5">Tensorbook - Premium Support</option>
      <option label="Lambda Vector - GPU Workstation" value="object:6">Lambda Vector - GPU Workstation</option>
      <option label="Lambda Scalar - GPU Server" value="object:7">Lambda Scalar - GPU Server</option>
      <option label="Hyperplane - 4x/8x NVLink A100 Server" value="object:8">Hyperplane - 4x/8x NVLink A100 Server</option>
      <option label="Echelon - GPU HPC Cluster" value="object:9">Echelon - GPU HPC Cluster</option>
      <option label="Lambda GPU Cloud" value="object:10">Lambda GPU Cloud</option>
      <option label="Lambda Colocation Services" value="object:11">Lambda Colocation Services</option>
    </select>
    <label for="product-select" class="shrinking-label">Which product are you interested in?</label>
  </div>
  <button ng-click="submitContactForm()" class="cta external blue" ng-class="{disabled: !isContactSalesSubmitBtnEnabled}" type="submit">Submit</button>
</form>

Text Content

Opens in a new window Opens an external website Opens an external website in a
new window
<!---->Close this dialog<!---->
This website stores data such as cookies to enable essential site functionality,
as well as marketing, personalisation, and analytics. You may change your
settings at any time or accept the default settings. You may close this banner
to continue with only essential cookies. Privacy Policy
Manage Preferences Accept All Reject All



<!---->Close Cookie Preferences<!---->

GPU Cloud
Colocation
Servers

Lambda Echelon GPU HPC cluster with compute, storage, and networking. Lambda
Scalar PCIe GPU server with up to 10x customizable GPUs and dual Xeon or AMD
EPYC processors. Lambda Hyperplane SXM4 GPU server with up to 8x NVIDIA A100
GPUs, NVLink, NVSwitch, and InfiniBand.
Workstations
Tensorbook
Resources

Lambda Stack Research Blog Forum GPU Benchmarks
Careers

+1 (866) 711‑2025
Talk to an engineer

GPU Systems
Tensorbook GPU laptop with RTX 3080 Max-Q Lambda Vector Workstation with up to
4x GPUs Lambda Echelon Custom GPU HPC Clusters Lambda Scalar PCIe GPU server
with up to 10x customizable GPUs Lambda Hyperplane SXM4 GPU Server with up to 8x
NVIDIA A100 GPUs
GPU Cloud Colocation Resources
Lambda Stack Blog Research Forum GPU Benchmarks
Careers Company
About GitHub Careers Contact
Introducing Lambda Echelon, a GPU cluster designed for deep learning


GPU COMPUTE BUILT FOR DEEP LEARNING

GPU cloud, workstations, servers, and laptops built for deep learning. Speed up
PyTorch, TensorFlow, Keras, and save up to 90%.

Talk to an engineer


5000+ RESEARCH GROUPS TRUST LAMBDA




GPU Cloud

Deep Learning Laptop

Deep Learning Workstation

GPU Cluster

PCIe GPU Server

NVIDIA A100 Server


EASY SYSTEM ADMINISTRATION

Every computer comes with Lambda Stack, which includes frameworks like
TensorFlow and PyTorch. Lambda Stack makes upgrading these frameworks easy.




OUR PUBLISHED RESEARCH

View all research
ICCV 2021


MULTIPLE PAIRWISE RANKING NETWORKS FOR PERSONALIZED VIDEO SUMMARIZATION

We propose a model for personalized video summaries by conditioning the
summarization process with predefined categorical user labels.

Learn more
ICCV 2019


HOLOGAN: UNSUPERVISED LEARNING OF 3D REPRESENTATIONS FROM NATURAL IMAGES

We propose a novel generative adversarial network (GAN) for the task of
unsupervised learning of 3D representations from natural images.

Learn more
NeurIPS 2018


RENDERNET: A DEEP CONVNET FOR DIFFERENTIABLE RENDERING FROM 3D SHAPES

We present a differentiable rendering convolutional network with a novel
projection unit that can render 2D images from 3D shapes.

Learn more
SIGGRAPH Asia 2019


ADVERSARIAL MONTE CARLO DENOISING WITH CONDITIONED AUX. FEATURE MODULATION

We demonstrate that GANs can help denoiser networks produce more realistic
high-frequency details and global illumination.

Learn more

© 2022 Lambda
Forum About Blog Terms of Sale Careers Contact Cookie Preferences



TALK TO AN ENGINEER


CALL US AT (866) 711-2025 OR COMPLETE THE FORM BELOW AND WE'LL BE IN TOUCH
SHORTLY.

First Name
Last Name
Email (work email required)
Phone
Organization
Tensorbook - GPU LaptopTensorbook - Premium SupportLambda Vector - GPU
WorkstationLambda Scalar - GPU ServerHyperplane - 4x/8x NVLink A100
ServerEchelon - GPU HPC ClusterLambda GPU CloudLambda Colocation Services Which
product are you interested in?
Submit
Thank you

We've received your request. An engineer will contact you shortly.