geemap.org
Open in
urlscan Pro
185.199.108.153
Public Scan
Submitted URL: http://geemap.org/
Effective URL: https://geemap.org/
Submission: On December 08 via api from US — Scanned from DE
Effective URL: https://geemap.org/
Submission: On December 08 via api from US — Scanned from DE
Form analysis
2 forms found in the DOM<form class="md-header__option" data-md-component="palette">
<input class="md-option" data-md-color-media="" data-md-color-scheme="default" data-md-color-primary="indigo" data-md-color-accent="indigo" aria-label="Switch to dark mode" type="radio" name="__palette" id="__palette_1">
<label class="md-header__button md-icon" title="Switch to dark mode" for="__palette_2">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24">
<path d="M17 6H7c-3.31 0-6 2.69-6 6s2.69 6 6 6h10c3.31 0 6-2.69 6-6s-2.69-6-6-6zm0 10H7c-2.21 0-4-1.79-4-4s1.79-4 4-4h10c2.21 0 4 1.79 4 4s-1.79 4-4 4zM7 9c-1.66 0-3 1.34-3 3s1.34 3 3 3 3-1.34 3-3-1.34-3-3-3z"></path>
</svg>
</label>
<input class="md-option" data-md-color-media="" data-md-color-scheme="slate" data-md-color-primary="indigo" data-md-color-accent="indigo" aria-label="Switch to light mode" type="radio" name="__palette" id="__palette_2">
<label class="md-header__button md-icon" title="Switch to light mode" for="__palette_1" hidden="">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24">
<path d="M17 7H7a5 5 0 0 0-5 5 5 5 0 0 0 5 5h10a5 5 0 0 0 5-5 5 5 0 0 0-5-5m0 8a3 3 0 0 1-3-3 3 3 0 0 1 3-3 3 3 0 0 1 3 3 3 3 0 0 1-3 3Z"></path>
</svg>
</label>
</form>
Name: search —
<form class="md-search__form" name="search">
<input type="text" class="md-search__input" name="query" aria-label="Search" placeholder="Search" autocapitalize="off" autocorrect="off" autocomplete="off" spellcheck="false" data-md-component="search-query" required="">
<label class="md-search__icon md-icon" for="__search">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24">
<path d="M9.5 3A6.5 6.5 0 0 1 16 9.5c0 1.61-.59 3.09-1.56 4.23l.27.27h.79l5 5-1.5 1.5-5-5v-.79l-.27-.27A6.516 6.516 0 0 1 9.5 16 6.5 6.5 0 0 1 3 9.5 6.5 6.5 0 0 1 9.5 3m0 2C7 5 5 7 5 9.5S7 14 9.5 14 14 12 14 9.5 12 5 9.5 5Z"></path>
</svg>
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24">
<path d="M20 11v2H8l5.5 5.5-1.42 1.42L4.16 12l7.92-7.92L13.5 5.5 8 11h12Z"></path>
</svg>
</label>
<nav class="md-search__options" aria-label="Search">
<a href="https://geemap.org/?q=" class="md-search__icon md-icon" title="Share" aria-label="Share" data-clipboard="" data-clipboard-text="javascript:void(0)" data-md-component="search-share" tabindex="-1">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M18 16.08c-.76 0-1.44.3-1.96.77L8.91 12.7c.05-.23.09-.46.09-.7 0-.24-.04-.47-.09-.7l7.05-4.11c.54.5 1.25.81 2.04.81a3 3 0 0 0 3-3 3 3 0 0 0-3-3 3 3 0 0 0-3 3c0 .24.04.47.09.7L8.04 9.81C7.5 9.31 6.79 9 6 9a3 3 0 0 0-3 3 3 3 0 0 0 3 3c.79 0 1.5-.31 2.04-.81l7.12 4.15c-.05.21-.08.43-.08.66 0 1.61 1.31 2.91 2.92 2.91 1.61 0 2.92-1.3 2.92-2.91A2.92 2.92 0 0 0 18 16.08Z"></path></svg>
</a>
<button type="reset" class="md-search__icon md-icon" title="Clear" aria-label="Clear" tabindex="-1">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24">
<path d="M19 6.41 17.59 5 12 10.59 6.41 5 5 6.41 10.59 12 5 17.59 6.41 19 12 13.41 17.59 19 19 17.59 13.41 12 19 6.41Z"></path>
</svg>
</button>
</nav>
</form>
Text Content
Skip to content geemap Home Type to start searching GitHub * v0.29.6 * 3k * 1k geemap GitHub * v0.29.6 * 3k * 1k * Home Home Table of contents * Announcement * Introduction * Key Features * YouTube Channel * Book * Installation * Get Started * Usage * Cheat Sheet * Tutorials * Courses * Contributing * Citations * FAQ * Changelog * Streamlit Web App * Blog * YouTube Channel * Report Issues * API Reference API Reference * basemaps module * cartoee module * chart module * colormaps module * common module * conversion module * core module * datasets module * deck module * ee_tile_layers module * examples module * foliumap module * geemap module * kepler module * legends module * map_widgets module * ml module * osm module * plot module * plotlymap module * report module * timelapse module * toolbar module * Workshops Workshops * GeoPython 2021 * GEE Workshop 2021 * SRM Workshop 2022 * Crop Mapping 2022 * Japan 2022 * GEE Workshop 2022 Part1 * GEE Workshop 2022 Part2 * AmericaView 2023 * SciPy 2023 * City Plus 2023 * G4G 2023 * NCSU 2023 * AGU 2023 * Notebooks Notebooks * 00 ee auth colab * 00 geemap colab * 00 geemap key features * 01 geemap intro * 02 using basemaps * 03 inspector tool * 04 split panel map * 05 drawing tools * 06 marker cluster * 07 geojson * 08 ee js to ipynb * 09 plotting * 10 shapefiles * 11 export image * 12 zonal statistics * 13 zonal statistics by group * 14 legends * 15 convert js to py * 16 add animated text * 17 add colorbar to gif * 18 create landsat timelapse * 19 search places and datasets * 20 timeseries inspector * 21 export map to html png * 22 import scripts * 23 import assets * 24 publish maps * 25 load rasters * 26 heroku * 27 timelapse app * 28 voila * 29 pydeck * 30 image props stats * 31 unsupervised classification * 32 supervised classification * 33 accuracy assessment * 34 extract values * 35 geemap colab * 36 quality mosaic * 37 pydeck 3d * 38 cloud geotiff * 39 timelapse * 40 ipywidgets * 41 water app * 42 upload data * 43 extract values to points * 44 cog stac * 45 cog mosaic * 46 local rf training * 47 image thumbnails * 48 folium legend * 49 colorbar * 50 cartoee quickstart * 51 cartoee projections * 52 cartoee gif * 53 layer vis * 54 vector vis * 55 raster vis * 56 local data * 57 cartoee blend * 58 add vector * 59 whitebox * 60 colormaps * 61 cartoee scalebar * 62 time slider * 63 charts * 64 data catalog * 65 vector styling * 66 cartoee legend * 67 training samples * 68 netcdf to ee * 69 cartoee vector * 70 linked maps * 71 timelapse * 72 time slider gui * 73 transect * 74 csv to points * 75 sankee * 76 osm to ee * 77 planet imagery * 78 ts inspector * 79 chart histogram * 80 point layer * 81 goes timelapse * 82 contours * 83 local tile * 84 openstreetmap * 85 postgis * 86 image overlay * 87 add points from xy * 88 circle markers * 89 add labels * 90 naip timelapse * 91 planetary computer * 92 plotly * 93 cog inspector * 94 heremap * 95 create cog * 96 image chips * 97 join table * 98 timelapse fading * 99 landsat 9 * 100 numpy to cog * 101 lidar * 102 blend hillshade * 103 split control * 104 clip image * 105 netcdf * 106 kepler gl * 107 pydeck * 108 image zonal stats * 109 coordinate grids * 110 choropleth * 111 image count * 112 cartoee basemap * 113 image area * 114 dynamic world * 115 land cover * 116 land cover timeseries * 117 fishnet * 118 download image * 119 plot raster * 120 javascript * 121 vector style * 122 lidar * 123 sentinel1 timelapse * 124 more datasets * 125 example code * 126 inspector * 127 create legend * 128 add widget * 129 vector to gif * 130 print objects * 131 arcgis * 132 folium colorbar * 133 gradio * 134 ee to geotiff * 135 segmentation * 136 download parallel * 137 create grid * 138 draw control * 139 layer to image Table of contents * Announcement * Introduction * Key Features * YouTube Channel WELCOME TO GEEMAP¶ A Python package for interactive geospatial analysis and visualization with Google Earth Engine * GitHub repo: https://github.com/gee-community/geemap * Documentation: https://geemap.org * PyPI: https://pypi.org/project/geemap * Conda-forge: https://anaconda.org/conda-forge/geemap * 360+ GEE notebook examples: https://github.com/giswqs/earthengine-py-notebooks * GEE Tutorials on YouTube: https://youtube.com/@giswqs * Free software: MIT license Acknowledgment: The geemap project is supported by the National Aeronautics and Space Administration (NASA) under Grant No. 80NSSC22K1742 issued through the Open Source Tools, Frameworks, and Libraries 2020 Program. ANNOUNCEMENT¶ The book Earth Engine and Geemap: Geospatial Data Science with Python, written by Qiusheng Wu, has been published by Locate Press in July 2023. If you're interested in purchasing the book, please visit this URL: https://locatepress.com/book/gee. INTRODUCTION¶ Geemap is a Python package for interactive geospatial analysis and visualization with Google Earth Engine (GEE), which is a cloud computing platform with a multi-petabyte catalog of satellite imagery and geospatial datasets. During the past few years, GEE has become very popular in the geospatial community and it has empowered numerous environmental applications at local, regional, and global scales. GEE provides both JavaScript and Python APIs for making computational requests to the Earth Engine servers. Compared with the comprehensive documentation and interactive IDE (i.e., GEE JavaScript Code Editor) of the GEE JavaScript API, the GEE Python API has relatively little documentation and limited functionality for visualizing results interactively. The geemap Python package was created to fill this gap. It is built upon ipyleaflet and ipywidgets, and enables users to analyze and visualize Earth Engine datasets interactively within a Jupyter-based environment. Geemap is intended for students and researchers, who would like to utilize the Python ecosystem of diverse libraries and tools to explore Google Earth Engine. It is also designed for existing GEE users who would like to transition from the GEE JavaScript API to Python API. The automated JavaScript-to-Python conversion module of the geemap package can greatly reduce the time needed to convert existing GEE JavaScripts to Python scripts and Jupyter notebooks. For video tutorials and notebook examples, please visit the examples page. For complete documentation on geemap modules and methods, please visit the API Reference. If you find geemap useful in your research, please consider citing the following papers to support my work. Thank you for your support. * Wu, Q., (2020). geemap: A Python package for interactive mapping with Google Earth Engine. The Journal of Open Source Software, 5(51), 2305. https://doi.org/10.21105/joss.02305 * Wu, Q., Lane, C. R., Li, X., Zhao, K., Zhou, Y., Clinton, N., DeVries, B., Golden, H. E., & Lang, M. W. (2019). Integrating LiDAR data and multi-temporal aerial imagery to map wetland inundation dynamics using Google Earth Engine. Remote Sensing of Environment, 228, 1-13. https://doi.org/10.1016/j.rse.2019.04.015 (pdf | source code) Check out the geemap workshop presented at the GeoPython Conference 2021. This workshop gives a comprehensive introduction to the key features of geemap. KEY FEATURES¶ Below is a partial list of features available for the geemap package. Please check the examples page for notebook examples, GIF animations, and video tutorials. * Convert Earth Engine JavaScripts to Python scripts and Jupyter notebooks. * Display Earth Engine data layers for interactive mapping. * Support Earth Engine JavaScript API-styled functions in Python, such as Map.addLayer(), Map.setCenter(), Map.centerObject(), Map.setOptions(). * Create split-panel maps with Earth Engine data. * Retrieve Earth Engine data interactively using the Inspector Tool. * Interactive plotting of Earth Engine data by simply clicking on the map. * Convert data format between GeoJSON and Earth Engine. * Use drawing tools to interact with Earth Engine data. * Use shapefiles with Earth Engine without having to upload data to one's GEE account. * Export Earth Engine FeatureCollection to other formats (i.e., shp, csv, json, kml, kmz). * Export Earth Engine Image and ImageCollection as GeoTIFF. * Extract pixels from an Earth Engine Image into a 3D numpy array. * Calculate zonal statistics by group. * Add a customized legend for Earth Engine data. * Convert Earth Engine JavaScripts to Python code directly within Jupyter notebook. * Add animated text to GIF images generated from Earth Engine data. * Add colorbar and images to GIF animations generated from Earth Engine data. * Create Landsat timelapse animations with animated text using Earth Engine. * Search places and datasets from Earth Engine Data Catalog. * Use timeseries inspector to visualize landscape changes over time. * Export Earth Engine maps as HTML files and PNG images. * Search Earth Engine API documentation within Jupyter notebooks. * Import Earth Engine assets from personal account. * Publish interactive GEE maps directly within Jupyter notebook. * Add local raster datasets (e.g., GeoTIFF) to the map. * Perform image classification and accuracy assessment. * Extract pixel values interactively and export as shapefile and csv. YOUTUBE CHANNEL¶ I have created a YouTube Channel for sharing geemap tutorials. You can subscribe to my channel for regular updates. If there is any specific tutorial you would like to see, please submit a feature request here. -------------------------------------------------------------------------------- Last update: 1 month ago2023-10-08 Created: 3 years ago2020-08-22 Back to top Copyright © 2022 - 2023 Qiusheng Wu Made with Material for MkDocs