zlib.pub
Open in
urlscan Pro
2606:4700:3035::ac43:bd7c
Public Scan
URL:
https://zlib.pub/book/practical-python-data-wrangling-and-data-quality-getting-started-with-reading-cleaning-and-...
Submission: On March 29 via manual from DE — Scanned from DE
Submission: On March 29 via manual from DE — Scanned from DE
Form analysis
2 forms found in the DOMGET https://zlib.pub/search
<form action="https://zlib.pub/search" class="my-auto w-100 d-inline-block order-1" method="GET">
<div class="input-group">
<input class="form-control border border-right-0" name="q" placeholder="Search Books / Articles / PDF" type="text">
<span class="input-group-append">
<button class="btn btn-outline-light border border-left-0" type="submit">Search</button>
</span>
</div>
</form>
POST https://zlib.pub/download/practical-python-data-wrangling-and-data-quality-getting-started-with-reading-cleaning-and-analyzing-data-ufel04klj340
<form action="https://zlib.pub/download/practical-python-data-wrangling-and-data-quality-getting-started-with-reading-cleaning-and-analyzing-data-ufel04klj340" method="post">
<div class="g-recaptcha" data-sitekey="6LdrFLMdAAAAABIxrK9AISTVGRgF_EOFMt0sAEA9">
<div style="width: 304px; height: 78px;">
<div><iframe title="reCAPTCHA" width="304" height="78" role="presentation" name="a-88pfvs1pwhkg" frameborder="0" scrolling="no"
sandbox="allow-forms allow-popups allow-same-origin allow-scripts allow-top-navigation allow-modals allow-popups-to-escape-sandbox allow-storage-access-by-user-activation"
src="https://www.google.com/recaptcha/api2/anchor?ar=1&k=6LdrFLMdAAAAABIxrK9AISTVGRgF_EOFMt0sAEA9&co=aHR0cHM6Ly96bGliLnB1Yjo0NDM.&hl=de&v=moV1mTgQ6S91nuTnmll4Y9yf&size=normal&cb=z64ysj9hdojc"></iframe></div><textarea
id="g-recaptcha-response" name="g-recaptcha-response" class="g-recaptcha-response" style="width: 250px; height: 40px; border: 1px solid rgb(193, 193, 193); margin: 10px 25px; padding: 0px; resize: none; display: none;"></textarea>
</div><iframe style="display: none;"></iframe>
</div>
<button class="btn btn-primary btn-block" type="submit" style="width: 80%;"> Download PDF </button>
</form>
Text Content
ZLIB.PUB Search * Home * Categories Religion History Technique Computers Programming Mathematics Logic Military History Linguistics Foreign Economy Other Social Sciences PRACTICAL PYTHON DATA WRANGLING AND DATA QUALITY: GETTING STARTED WITH READING, CLEANING, AND ANALYZING DATA PDF Title Practical Python Data Wrangling and Data Quality: Getting Started with Reading, Cleaning, and Analyzing Data Author Susan E. McGregor Language English ISBN 1492091502 / 9781492091509 Year 2021 Pages 416 File Size 7.5 MB Total Downloads 2,564 Total Views 5,859 Edition 1 Pages In File 578 Identifier 1492091502,9781492091509 Org File Size 7,890,266 Extension pdf Download PDF -------------------------------------------------------------------------------- PREVIEW CLICK TO PREVIEW PDF -------------------------------------------------------------------------------- SUMMARY Download Practical Python Data Wrangling and Data Quality: Getting Started with Reading, Cleaning, and Analyzing Data PDF -------------------------------------------------------------------------------- DESCRIPTION The world around us is full of data that holds unique insights and valuable stories, and this book will help you uncover them. Whether you already work with data or want to learn more about its possibilities, the examples and techniques in this practical book will help you more easily clean, evaluate, and analyze data so that you can generate meaningful insights and compelling visualizations.Complementing foundational concepts with expert advice, author Susan E. McGregor provides the resources you need to extract, evaluate, and analyze a wide variety of data sources and formats, along with the tools to communicate your findings effectively. This book delivers a methodical, jargon-free way for data practitioners at any level, from true novices to seasoned professionals, to harness the power of data.Use Python 3.8+ to read, write, and transform data from a variety of sourcesUnderstand and use programming basics in Python to wrangle data at scaleOrganize, document, and structure your code using best practicesCollect data from structured data files, web pages, and APIsPerform basic statistical analyses to make meaning from datasetsVisualize and present data in clear and compelling ways... -------------------------------------------------------------------------------- TABLE OF CONTENTS Preface Who Should Read This Book? Who Shouldn’t Read This Book? What to Expect from This Volume Conventions Used in This Book Using Code Examples O’Reilly Online Learning How to Contact Us Acknowledgments 1. Introduction to Data Wrangling and Data Quality What Is “Data Wrangling”? What Is “Data Quality”? Data Integrity Data “Fit” Why Python? Versatility Accessibility Readability Community Python Alternatives Writing and “Running” Python Working with Python on Your Own Device Getting Started with the Command Line Installing Python, Jupyter Notebook, and a Code Editor Working with Python Online Hello World! Using Atom to Create a Standalone Python File Using Jupyter to Create a New Python Notebook Using Google Colab to Create a New Python Notebook Adding the Code In a Standalone File In a Notebook Running the Code In a Standalone File In a Notebook Documenting, Saving, and Versioning Your Work Documenting Saving Versioning Conclusion 2. Introduction to Python The Programming “Parts of Speech” Nouns ≈ Variables Verbs ≈ Functions Cooking with Custom Functions Libraries: Borrowing Custom Functions from Other Coders Taking Control: Loops and Conditionals In the Loop One Condition… Understanding Errors Syntax Snafus Runtime Runaround Logic Loss Hitting the Road with Citi Bike Data Starting with Pseudocode Seeking Scale Conclusion 3. Understanding Data Quality Assessing Data Fit Validity Reliability Representativeness Assessing Data Integrity Necessary, but Not Sufficient Important Achievable Improving Data Quality Data Cleaning Data Augmentation Conclusion 4. Working with File-Based and Feed-Based Data in Python Structured Versus Unstructured Data Working with Structured Data File-Based, Table-Type Data—Take It to Delimit Wrangling Table-Type Data with Python Real-World Data Wrangling: Understanding Unemployment XLSX, ODS, and All the Rest Finally, Fixed-Width Feed-Based Data—Web-Driven Live Updates Wrangling Feed-Type Data with Python Working with Unstructured Data Image-Based Text: Accessing Data in PDFs Wrangling PDFs with Python Accessing PDF Tables with Tabula Conclusion 5. Accessing Web-Based Data Accessing Online XML and JSON Introducing APIs Basic APIs: A Search Engine Example Specialized APIs: Adding Basic Authentication Getting a FRED API Key Using Your API key to Request Data Reading API Documentation Protecting Your API Key When Using Python Creating Your “Credentials” File Using Your Credentials in a Separate Script Getting Started with .gitignore Specialized APIs: Working With OAuth Applying for a Twitter Developer Account Creating Your Twitter “App” and Credentials Encoding Your API Key and Secret Requesting an Access Token and Data from the Twitter API API Ethics Web Scraping: The Data Source of Last Resort Carefully Scraping the MTA Using Browser Inspection Tools The Python Web Scraping Solution: Beautiful Soup Conclusion 6. Assessing Data Quality The Pandemic and the PPP Assessing Data Integrity Is It of Known Pedigree? Is It Timely? Is It Complete? Is It Well-Annotated? Is It High Volume? Is It Consistent? Is It Multivariate? Is It Atomic? Is It Clear? Is It Dimensionally Structured? Assessing Data Fit Validity Reliability Representativeness Conclusion 7. Cleaning, Transforming, and Augmenting Data Selecting a Subset of Citi Bike Data A Simple Split Regular Expressions: Supercharged String Matching Making a Date De-crufting Data Files Decrypting Excel Dates Generating True CSVs from Fixed-Width Data Correcting for Spelling Inconsistencies The Circuitous Path to “Simple” Solutions Gotchas That Will Get Ya! Augmenting Your Data Conclusion 8. Structuring and Refactoring Your Code Revisiting Custom Functions Will You Use It More Than Once? Is It Ugly and Confusing? Do You Just Really Hate the Default Functionality? Understanding Scope Defining the Parameters for Function “Ingredients” What Are Your Options? Getting Into Arguments? Return Values Climbing the “Stack” Refactoring for Fun and Profit A Function for Identifying Weekdays Metadata Without the Mess Documenting Your Custom Scripts and Functions with pydoc The Case for Command-Line Arguments Where Scripts and Notebooks Diverge Conclusion 9. Introduction to Data Analysis Context Is Everything Same but Different What’s Typical? Evaluating Central Tendency What’s That Mean? Embrace the Median Think Different: Identifying Outliers Visualization for Data Analysis What’s Our Data’s Shape? Understanding Histograms The Significance of Symmetry Counting “Clusters” The $2 Million Question Proportional Response Conclusion 10. Presenting Your Data Foundations for Visual Eloquence Making Your Data Statement Charts, Graphs, and Maps: Oh My! Pie Charts Bar and Column Charts Line Charts Scatter Charts Maps Elements of Eloquent Visuals The “Finicky” Details Really Do Make a Difference Trust Your Eyes (and the Experts) Selecting Scales Choosing Colors Above All, Annotate! From Basic to Beautiful: Customizing a Visualization with seaborn and matplotlib Beyond the Basics Conclusion 11. Beyond Python Additional Tools for Data Review Spreadsheet Programs OpenRefine Additional Tools for Sharing and Presenting Data Image Editing for JPGs, PNGs, and GIFs Software for Editing SVGs and Other Vector Formats Reflecting on Ethics Conclusion A. More Python Programming Resources Official Python Documentation Installing Python Resources Where to Look for Libraries Keeping Your Tools Sharp Where to Learn More B. A Bit More About Git You Run git push/pull and End Up in a Weird Text Editor Your git push/pull Command Gets Rejected Run git pull Git Quick Reference C. Finding Data Data Repositories and APIs Subject Matter Experts FOIA/L Requests Custom Data Collection D. Resources for Visualization and Information Design Foundational Books on Information Visualization The Quick Reference You’ll Reach For Sources of Inspiration Index About the Author -------------------------------------------------------------------------------- SIMILAR FREE PDFS PRACTICAL PYTHON DATA WRANGLING AND DATA QUALITY: GETTING STARTED WITH READING, CLEANING, AND ANALYZING DATA * 416 Pages * 2021 DATA WRANGLING WITH PYTHON * 2018 DATA WRANGLING WITH JAVASCRIPT * 430 Pages * 2019 PRACTICAL DATA ANALYSIS WITH PYTHON * 2015 DATA CLEANING DATA CLEANING * 282 Pages * 2019 DATA CLEANING HANDS-ON DATA ANALYSIS WITH PANDAS: EFFICIENTLY PERFORM DATA COLLECTION, WRANGLING, ANALYSIS, AND VISUALIZATION USING PYTHON * 740 Pages * 2019 PYTHON FOR DATA ANALYSIS : DATA WRANGLING WITH PANDAS, NUMPY, AND IPYTHON * 2013 PYTHON FOR DATA ANALYSIS: DATA WRANGLING WITH PANDAS, NUMPY, AND IPYTHON * 550 Pages * 2017 ANALYZING SENSORY DATA WITH R * 2018 ANALYZING QUALITATIVE DATA WITH MAXQDA ANALYZING BASEBALL DATA WITH R * 361 Pages * 2018 PRACTICAL DATA SCIENCE WITH PYTHON 3 * 468 Pages * 2019 DATA SCIENCE WITH PYTHON * 1,255 Pages * 2016 GETTING STARTED WITH DATA SCIENCE: MAKING SENSE OF DATA WITH ANALYTICS * 2015 POPULAR AUTHORS * K.V. * Paul A. Greenberger * Leslie C. Grammer * Wilderness and Third World Medicine Forum * Austere * The Remote * Киреева Т.Н. * Graham Smith BSc(Hon) MD FRCA * David J. Rowbotham MD MRCP FRCA * Donald L. Quicke * A.P. Rasnitsyn * Bulte J.W.M. (eds.) * De Cuyper M. * Goldsmith T.H. * Hunter. * MELISSA C. McDADE * Christopher Janson * Roger E. Koeppe * Richard I. GumportFrank H. Deis * J. Nicholas Housby (eds.) * L. M. Smith (auth.) * T. J. Griffin * P. Prusinkiewicz * Layman D.P. * Fusco G. (eds.) * John J. Tyson (Editors) * O'Shea Michael * James (James Schooley) Schooley * Peter Clark (Editors) * Weisbuch G. * Perelson A.S. * Price E.O. POPULAR TAGS * American Accent Training * Современные проблемы математики * Mathématiques -- Concours * Solid state physics Quantum theory Chemical bonds SCIENCE Physics Condensed Matter Física do estado sólido Mecânica quântica * Dictionary of American History * Управление большими системами * Architectural Record * IEEE Transactions on Antennas and Propagation * National Geographic Magazine (2000 - 2009 гг.) * Technology Review * Радиохобби * Сборники рецептур рыбных изделий * Радиодизайн * Исследования по механике строительных конструкций и материалов * Онегов Анатолий * FHM (Россия) * FHM * Джеймс Питер * Народный доктор * ОСТ Машиностроение и материалообработка * ГОСТ Транспорт * Современная электроника * Виноделие и виноградарство * Экспресс метод Илоны Давыдовой * Школа грибоводства * Мастер на все руки * Комнатные и садовые растения * Игнатова. Английский язык. Интенсивный курс * Катера и Яхты * Successful Writing * Радио (1940 - 1949 гг.) * CHIP * About * Terms of Service * Privacy Policy * Cookie Policy * Contact us * DMCA & Copyright Disclaimer: ZLIB is a pdf web search tool for unreservedly accessible pdf archives on the Internet. We don't have any document on our server. In the event that you have any inquiry or need to eliminate any substance recorded here if it's not too much trouble, go ahead and reach us at zlibpub[at]protonmail.com. © ZLIB all rights reserved 2024.