www.tvrbo.com Open in urlscan Pro
3.233.126.24  Public Scan

Submitted URL: https://meettvrbo.com/
Effective URL: https://www.tvrbo.com/
Submission: On April 06 via api from US — Scanned from US

Form analysis 1 forms found in the DOM

<form id="speedometer-form">
  <div class="c-calculator__columns">
    <div class="c-calculator__column">
      <div class="c-calculator__variable">
        <svg class="c-calculator__variable-icon" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 44 45">
          <path
            d="M12.7528 10.9153C12.7722 10.7063 12.8143 10.5013 12.8786 10.302C13.0741 10.03 13.2333 9.7303 13.349 9.4099C13.8964 8.70502 14.7468 8.28691 15.6415 8.28691H17.9962C18.3883 8.28691 18.7682 8.36352 19.1255 8.51455C19.4465 8.65053 19.8164 8.50008 19.952 8.17935C20.0877 7.85861 19.9377 7.48851 19.6168 7.35287C19.533 7.31738 19.4483 7.28484 19.3628 7.25507C20.0495 6.58972 20.477 5.65829 20.477 4.6288C20.477 2.61172 18.8359 0.970703 16.8189 0.970703C14.8018 0.970703 13.1608 2.61172 13.1608 4.6288C13.1608 5.65921 13.589 6.5914 14.2769 7.25692C14.0141 7.34841 13.7609 7.46589 13.5218 7.60734C13.25 5.85675 11.7325 4.51267 9.90706 4.51267C7.88998 4.51267 6.24896 6.15369 6.24896 8.17077C6.24896 9.20042 6.67658 10.132 7.36355 10.7974C7.1983 10.8547 7.03659 10.9226 6.87942 11.0006C6.41126 10.7826 5.88963 10.6607 5.34007 10.6607C3.32299 10.6607 1.68197 12.3017 1.68197 14.3188C1.68197 15.3486 2.10976 16.2803 2.79681 16.9458C1.17034 17.5124 0 19.0611 0 20.8783V23.7375C0 25.1981 1.18834 26.3864 2.64897 26.3864H4.34624C4.69456 26.3864 4.97695 26.1041 4.97695 25.7557C4.97695 25.4073 4.69456 25.125 4.34624 25.125H2.64897C1.88388 25.125 1.26141 24.5026 1.26141 23.7375V20.8783C1.26141 19.2785 2.56294 17.977 4.16267 17.977H6.51731C8.11703 17.977 9.41856 19.2785 9.41856 20.8783V23.7375C9.41856 24.5026 8.79609 25.125 8.031 25.125H7.06855C6.72023 25.125 6.43784 25.4073 6.43784 25.7557C6.43784 26.1041 6.72023 26.3864 7.06855 26.3864H8.031C9.49164 26.3864 10.68 25.1981 10.68 23.7375V20.8783C10.68 20.6607 10.6632 20.447 10.6309 20.2385H12.5982C14.0588 20.2385 15.2471 19.0501 15.2471 17.5895V16.6963H19.5099C20.9705 16.6963 22.1588 15.508 22.1588 14.0474V11.1882C22.1588 10.6345 22.0518 10.0964 21.8405 9.58894C21.7067 9.26728 21.3375 9.11498 21.0158 9.24903C20.6943 9.38291 20.542 9.75208 20.6759 10.0737C20.8229 10.4267 20.8974 10.8017 20.8974 11.1882V14.0474C20.8974 14.8125 20.275 15.4349 19.5099 15.4349H15.2471V14.7302C15.2237 14.313 15.1125 13.3442 14.4366 12.3747C13.8495 11.5328 13.1242 11.1031 12.7528 10.9153ZM16.8189 2.23212C18.1404 2.23212 19.2155 3.30726 19.2155 4.6288C19.2155 5.95035 18.1404 7.02549 16.8189 7.02549C15.4973 7.02549 14.4222 5.95035 14.4222 4.6288C14.4222 3.30726 15.4973 2.23212 16.8189 2.23212ZM9.90698 5.77408C11.2285 5.77408 12.3037 6.84923 12.3037 8.17077C12.3037 8.39858 12.2717 8.61916 12.212 8.82814C12.0257 9.09791 11.8724 9.38888 11.7556 9.69448C11.3156 10.2273 10.6503 10.5675 9.90698 10.5675C8.58544 10.5675 7.51029 9.49231 7.51029 8.17077C7.51029 6.84923 8.58544 5.77408 9.90698 5.77408ZM5.33999 11.9222C6.66153 11.9222 7.73667 12.9974 7.73667 14.3189C7.73667 15.6404 6.66153 16.7156 5.33999 16.7156C4.01845 16.7156 2.9433 15.6404 2.9433 14.3189C2.9433 12.9974 4.01845 11.9222 5.33999 11.9222ZM13.9857 17.5894C13.9857 18.3545 13.3633 18.977 12.5982 18.977H10.2198C9.73341 18.0336 8.89692 17.2989 7.88317 16.9458C8.5703 16.2803 8.998 15.3486 8.998 14.3188C8.998 13.393 8.65229 12.5464 8.08314 11.9014C8.29397 11.8534 8.51076 11.829 8.72974 11.829H11.0844C11.3712 11.829 11.6545 11.8708 11.9265 11.9532C13.1581 12.3266 13.9856 13.4426 13.9856 14.7302L13.9857 17.5894Z"
            fill="white"></path>
          <path
            d="M12.7528 10.9153C12.7722 10.7063 12.8143 10.5013 12.8786 10.302C13.0741 10.03 13.2333 9.7303 13.349 9.4099C13.8964 8.70502 14.7468 8.28691 15.6415 8.28691H17.9962C18.3883 8.28691 18.7682 8.36352 19.1255 8.51455C19.4465 8.65053 19.8164 8.50008 19.952 8.17935C20.0877 7.85861 19.9377 7.48851 19.6168 7.35287C19.533 7.31738 19.4483 7.28484 19.3628 7.25507C20.0495 6.58972 20.477 5.65829 20.477 4.6288C20.477 2.61172 18.8359 0.970703 16.8189 0.970703C14.8018 0.970703 13.1608 2.61172 13.1608 4.6288C13.1608 5.65921 13.589 6.5914 14.2769 7.25692C14.0141 7.34841 13.7609 7.46589 13.5218 7.60734C13.25 5.85675 11.7325 4.51267 9.90706 4.51267C7.88998 4.51267 6.24896 6.15369 6.24896 8.17077C6.24896 9.20042 6.67658 10.132 7.36355 10.7974C7.1983 10.8547 7.03659 10.9226 6.87942 11.0006C6.41126 10.7826 5.88963 10.6607 5.34007 10.6607C3.32299 10.6607 1.68197 12.3017 1.68197 14.3188C1.68197 15.3486 2.10976 16.2803 2.79681 16.9458C1.17034 17.5124 0 19.0611 0 20.8783V23.7375C0 25.1981 1.18834 26.3864 2.64897 26.3864H4.34624C4.69456 26.3864 4.97695 26.1041 4.97695 25.7557C4.97695 25.4073 4.69456 25.125 4.34624 25.125H2.64897C1.88388 25.125 1.26141 24.5026 1.26141 23.7375V20.8783C1.26141 19.2785 2.56294 17.977 4.16267 17.977H6.51731C8.11703 17.977 9.41856 19.2785 9.41856 20.8783V23.7375C9.41856 24.5026 8.79609 25.125 8.031 25.125H7.06855C6.72023 25.125 6.43784 25.4073 6.43784 25.7557C6.43784 26.1041 6.72023 26.3864 7.06855 26.3864H8.031C9.49164 26.3864 10.68 25.1981 10.68 23.7375V20.8783C10.68 20.6607 10.6632 20.447 10.6309 20.2385H12.5982C14.0588 20.2385 15.2471 19.0501 15.2471 17.5895V16.6963H19.5099C20.9705 16.6963 22.1588 15.508 22.1588 14.0474V11.1882C22.1588 10.6345 22.0518 10.0964 21.8405 9.58894C21.7067 9.26728 21.3375 9.11498 21.0158 9.24903C20.6943 9.38291 20.542 9.75208 20.6759 10.0737C20.8229 10.4267 20.8974 10.8017 20.8974 11.1882V14.0474C20.8974 14.8125 20.275 15.4349 19.5099 15.4349H15.2471V14.7302C15.2237 14.313 15.1125 13.3442 14.4366 12.3747C13.8495 11.5328 13.1242 11.1031 12.7528 10.9153ZM16.8189 2.23212C18.1404 2.23212 19.2155 3.30726 19.2155 4.6288C19.2155 5.95035 18.1404 7.02549 16.8189 7.02549C15.4973 7.02549 14.4222 5.95035 14.4222 4.6288C14.4222 3.30726 15.4973 2.23212 16.8189 2.23212ZM9.90698 5.77408C11.2285 5.77408 12.3037 6.84923 12.3037 8.17077C12.3037 8.39858 12.2717 8.61916 12.212 8.82814C12.0257 9.09791 11.8724 9.38888 11.7556 9.69448C11.3156 10.2273 10.6503 10.5675 9.90698 10.5675C8.58544 10.5675 7.51029 9.49231 7.51029 8.17077C7.51029 6.84923 8.58544 5.77408 9.90698 5.77408ZM5.33999 11.9222C6.66153 11.9222 7.73667 12.9974 7.73667 14.3189C7.73667 15.6404 6.66153 16.7156 5.33999 16.7156C4.01845 16.7156 2.9433 15.6404 2.9433 14.3189C2.9433 12.9974 4.01845 11.9222 5.33999 11.9222ZM13.9857 17.5894C13.9857 18.3545 13.3633 18.977 12.5982 18.977H10.2198C9.73341 18.0336 8.89692 17.2989 7.88317 16.9458C8.5703 16.2803 8.998 15.3486 8.998 14.3188C8.998 13.393 8.65229 12.5464 8.08314 11.9014C8.29397 11.8534 8.51076 11.829 8.72974 11.829H11.0844C11.3712 11.829 11.6545 11.8708 11.9265 11.9532C13.1581 12.3266 13.9856 13.4426 13.9856 14.7302L13.9857 17.5894Z"
            fill="url(#paint0_linear_3901_3043)" fill-opacity="0.2"></path>
          <path
            d="M12.7528 10.9153C12.7722 10.7063 12.8143 10.5013 12.8786 10.302C13.0741 10.03 13.2333 9.7303 13.349 9.4099C13.8964 8.70502 14.7468 8.28691 15.6415 8.28691H17.9962C18.3883 8.28691 18.7682 8.36352 19.1255 8.51455C19.4465 8.65053 19.8164 8.50008 19.952 8.17935C20.0877 7.85861 19.9377 7.48851 19.6168 7.35287C19.533 7.31738 19.4483 7.28484 19.3628 7.25507C20.0495 6.58972 20.477 5.65829 20.477 4.6288C20.477 2.61172 18.8359 0.970703 16.8189 0.970703C14.8018 0.970703 13.1608 2.61172 13.1608 4.6288C13.1608 5.65921 13.589 6.5914 14.2769 7.25692C14.0141 7.34841 13.7609 7.46589 13.5218 7.60734C13.25 5.85675 11.7325 4.51267 9.90706 4.51267C7.88998 4.51267 6.24896 6.15369 6.24896 8.17077C6.24896 9.20042 6.67658 10.132 7.36355 10.7974C7.1983 10.8547 7.03659 10.9226 6.87942 11.0006C6.41126 10.7826 5.88963 10.6607 5.34007 10.6607C3.32299 10.6607 1.68197 12.3017 1.68197 14.3188C1.68197 15.3486 2.10976 16.2803 2.79681 16.9458C1.17034 17.5124 0 19.0611 0 20.8783V23.7375C0 25.1981 1.18834 26.3864 2.64897 26.3864H4.34624C4.69456 26.3864 4.97695 26.1041 4.97695 25.7557C4.97695 25.4073 4.69456 25.125 4.34624 25.125H2.64897C1.88388 25.125 1.26141 24.5026 1.26141 23.7375V20.8783C1.26141 19.2785 2.56294 17.977 4.16267 17.977H6.51731C8.11703 17.977 9.41856 19.2785 9.41856 20.8783V23.7375C9.41856 24.5026 8.79609 25.125 8.031 25.125H7.06855C6.72023 25.125 6.43784 25.4073 6.43784 25.7557C6.43784 26.1041 6.72023 26.3864 7.06855 26.3864H8.031C9.49164 26.3864 10.68 25.1981 10.68 23.7375V20.8783C10.68 20.6607 10.6632 20.447 10.6309 20.2385H12.5982C14.0588 20.2385 15.2471 19.0501 15.2471 17.5895V16.6963H19.5099C20.9705 16.6963 22.1588 15.508 22.1588 14.0474V11.1882C22.1588 10.6345 22.0518 10.0964 21.8405 9.58894C21.7067 9.26728 21.3375 9.11498 21.0158 9.24903C20.6943 9.38291 20.542 9.75208 20.6759 10.0737C20.8229 10.4267 20.8974 10.8017 20.8974 11.1882V14.0474C20.8974 14.8125 20.275 15.4349 19.5099 15.4349H15.2471V14.7302C15.2237 14.313 15.1125 13.3442 14.4366 12.3747C13.8495 11.5328 13.1242 11.1031 12.7528 10.9153ZM16.8189 2.23212C18.1404 2.23212 19.2155 3.30726 19.2155 4.6288C19.2155 5.95035 18.1404 7.02549 16.8189 7.02549C15.4973 7.02549 14.4222 5.95035 14.4222 4.6288C14.4222 3.30726 15.4973 2.23212 16.8189 2.23212ZM9.90698 5.77408C11.2285 5.77408 12.3037 6.84923 12.3037 8.17077C12.3037 8.39858 12.2717 8.61916 12.212 8.82814C12.0257 9.09791 11.8724 9.38888 11.7556 9.69448C11.3156 10.2273 10.6503 10.5675 9.90698 10.5675C8.58544 10.5675 7.51029 9.49231 7.51029 8.17077C7.51029 6.84923 8.58544 5.77408 9.90698 5.77408ZM5.33999 11.9222C6.66153 11.9222 7.73667 12.9974 7.73667 14.3189C7.73667 15.6404 6.66153 16.7156 5.33999 16.7156C4.01845 16.7156 2.9433 15.6404 2.9433 14.3189C2.9433 12.9974 4.01845 11.9222 5.33999 11.9222ZM13.9857 17.5894C13.9857 18.3545 13.3633 18.977 12.5982 18.977H10.2198C9.73341 18.0336 8.89692 17.2989 7.88317 16.9458C8.5703 16.2803 8.998 15.3486 8.998 14.3188C8.998 13.393 8.65229 12.5464 8.08314 11.9014C8.29397 11.8534 8.51076 11.829 8.72974 11.829H11.0844C11.3712 11.829 11.6545 11.8708 11.9265 11.9532C13.1581 12.3266 13.9856 13.4426 13.9856 14.7302L13.9857 17.5894Z"
            stroke="white"></path>
          <path
            d="M31.4094 23.2559C26.3783 23.2559 22.2852 27.349 22.2852 32.3801C22.2852 37.4112 26.3783 41.5043 31.4094 41.5043C36.4405 41.5043 40.5336 37.4112 40.5336 32.3801C40.5336 27.349 36.4405 23.2559 31.4094 23.2559ZM31.4094 40.2429C27.0738 40.2429 23.5466 36.7157 23.5466 32.3801C23.5466 28.0445 27.0738 24.5173 31.4094 24.5173C35.745 24.5173 39.2722 28.0445 39.2722 32.3801C39.2722 36.7157 35.745 40.2429 31.4094 40.2429Z"
            fill="white"></path>
          <path
            d="M31.4094 23.2559C26.3783 23.2559 22.2852 27.349 22.2852 32.3801C22.2852 37.4112 26.3783 41.5043 31.4094 41.5043C36.4405 41.5043 40.5336 37.4112 40.5336 32.3801C40.5336 27.349 36.4405 23.2559 31.4094 23.2559ZM31.4094 40.2429C27.0738 40.2429 23.5466 36.7157 23.5466 32.3801C23.5466 28.0445 27.0738 24.5173 31.4094 24.5173C35.745 24.5173 39.2722 28.0445 39.2722 32.3801C39.2722 36.7157 35.745 40.2429 31.4094 40.2429Z"
            fill="url(#paint1_linear_3901_3043)" fill-opacity="0.2"></path>
          <path
            d="M31.4094 23.2559C26.3783 23.2559 22.2852 27.349 22.2852 32.3801C22.2852 37.4112 26.3783 41.5043 31.4094 41.5043C36.4405 41.5043 40.5336 37.4112 40.5336 32.3801C40.5336 27.349 36.4405 23.2559 31.4094 23.2559ZM31.4094 40.2429C27.0738 40.2429 23.5466 36.7157 23.5466 32.3801C23.5466 28.0445 27.0738 24.5173 31.4094 24.5173C35.745 24.5173 39.2722 28.0445 39.2722 32.3801C39.2722 36.7157 35.745 40.2429 31.4094 40.2429Z"
            stroke="white"></path>
          <path
            d="M40.8464 25.5538C40.6421 25.2717 40.2477 25.2086 39.9656 25.4131C39.6836 25.6175 39.6205 26.0117 39.8249 26.2939C41.1133 28.0721 41.7944 30.1769 41.7944 32.3805C41.7944 38.1072 37.1354 42.7661 31.4088 42.7661C25.6821 42.7661 21.0231 38.1072 21.0231 32.3805C21.0231 26.6537 25.6821 21.9948 31.4088 21.9948C33.8558 21.9948 36.2321 22.8622 38.0997 24.4371C38.3661 24.6617 38.7639 24.6277 38.9884 24.3616C39.213 24.0952 39.1792 23.6974 38.9129 23.4729C36.8181 21.7062 34.153 20.7334 31.4088 20.7334C24.9866 20.7334 19.7617 25.9583 19.7617 32.3805C19.7617 38.8027 24.9866 44.0275 31.4088 44.0275C37.831 44.0275 43.0558 38.8027 43.0558 32.3805C43.0558 29.9093 42.2918 27.5487 40.8464 25.5538Z"
            fill="white"></path>
          <path
            d="M40.8464 25.5538C40.6421 25.2717 40.2477 25.2086 39.9656 25.4131C39.6836 25.6175 39.6205 26.0117 39.8249 26.2939C41.1133 28.0721 41.7944 30.1769 41.7944 32.3805C41.7944 38.1072 37.1354 42.7661 31.4088 42.7661C25.6821 42.7661 21.0231 38.1072 21.0231 32.3805C21.0231 26.6537 25.6821 21.9948 31.4088 21.9948C33.8558 21.9948 36.2321 22.8622 38.0997 24.4371C38.3661 24.6617 38.7639 24.6277 38.9884 24.3616C39.213 24.0952 39.1792 23.6974 38.9129 23.4729C36.8181 21.7062 34.153 20.7334 31.4088 20.7334C24.9866 20.7334 19.7617 25.9583 19.7617 32.3805C19.7617 38.8027 24.9866 44.0275 31.4088 44.0275C37.831 44.0275 43.0558 38.8027 43.0558 32.3805C43.0558 29.9093 42.2918 27.5487 40.8464 25.5538Z"
            fill="url(#paint2_linear_3901_3043)" fill-opacity="0.2"></path>
          <path
            d="M40.8464 25.5538C40.6421 25.2717 40.2477 25.2086 39.9656 25.4131C39.6836 25.6175 39.6205 26.0117 39.8249 26.2939C41.1133 28.0721 41.7944 30.1769 41.7944 32.3805C41.7944 38.1072 37.1354 42.7661 31.4088 42.7661C25.6821 42.7661 21.0231 38.1072 21.0231 32.3805C21.0231 26.6537 25.6821 21.9948 31.4088 21.9948C33.8558 21.9948 36.2321 22.8622 38.0997 24.4371C38.3661 24.6617 38.7639 24.6277 38.9884 24.3616C39.213 24.0952 39.1792 23.6974 38.9129 23.4729C36.8181 21.7062 34.153 20.7334 31.4088 20.7334C24.9866 20.7334 19.7617 25.9583 19.7617 32.3805C19.7617 38.8027 24.9866 44.0275 31.4088 44.0275C37.831 44.0275 43.0558 38.8027 43.0558 32.3805C43.0558 29.9093 42.2918 27.5487 40.8464 25.5538Z"
            stroke="white"></path>
          <path
            d="M32.1957 28.3044V27.4227C32.1957 27.0743 31.9133 26.792 31.565 26.792C31.2166 26.792 30.9343 27.0743 30.9343 27.4227V28.3044C29.9522 28.4608 29.1992 29.3136 29.1992 30.3391V30.95C29.1992 32.0861 30.1235 33.0103 31.2595 33.0103H32.4384C32.5657 33.0103 32.6693 33.1138 32.6693 33.2411V34.42C32.6693 34.8605 32.3109 35.2189 31.8704 35.2189H31.2595C30.819 35.2189 30.4606 34.8605 30.4606 34.42V34.1146C30.4606 33.7662 30.1782 33.4839 29.8299 33.4839C29.4816 33.4839 29.1992 33.7662 29.1992 34.1146V34.42C29.1992 35.4455 29.9522 36.2982 30.9343 36.4547V37.3364C30.9343 37.6848 31.2166 37.9671 31.565 37.9671C31.9133 37.9671 32.1957 37.6848 32.1957 37.3364V36.4547C33.1777 36.2983 33.9307 35.4455 33.9307 34.42V33.2411C33.9307 32.4182 33.2613 31.7488 32.4384 31.7488H31.2595C30.819 31.7488 30.4606 31.3904 30.4606 30.95V30.3391C30.4606 29.8986 30.819 29.5402 31.2595 29.5402H31.8704C32.3109 29.5402 32.6693 29.8986 32.6693 30.3391V30.6445C32.6693 30.9929 32.9517 31.2752 33.3 31.2752C33.6483 31.2752 33.9307 30.9929 33.9307 30.6445V30.3391C33.9307 29.3136 33.1777 28.4608 32.1957 28.3044Z"
            fill="white"></path>
          <path
            d="M32.1957 28.3044V27.4227C32.1957 27.0743 31.9133 26.792 31.565 26.792C31.2166 26.792 30.9343 27.0743 30.9343 27.4227V28.3044C29.9522 28.4608 29.1992 29.3136 29.1992 30.3391V30.95C29.1992 32.0861 30.1235 33.0103 31.2595 33.0103H32.4384C32.5657 33.0103 32.6693 33.1138 32.6693 33.2411V34.42C32.6693 34.8605 32.3109 35.2189 31.8704 35.2189H31.2595C30.819 35.2189 30.4606 34.8605 30.4606 34.42V34.1146C30.4606 33.7662 30.1782 33.4839 29.8299 33.4839C29.4816 33.4839 29.1992 33.7662 29.1992 34.1146V34.42C29.1992 35.4455 29.9522 36.2982 30.9343 36.4547V37.3364C30.9343 37.6848 31.2166 37.9671 31.565 37.9671C31.9133 37.9671 32.1957 37.6848 32.1957 37.3364V36.4547C33.1777 36.2983 33.9307 35.4455 33.9307 34.42V33.2411C33.9307 32.4182 33.2613 31.7488 32.4384 31.7488H31.2595C30.819 31.7488 30.4606 31.3904 30.4606 30.95V30.3391C30.4606 29.8986 30.819 29.5402 31.2595 29.5402H31.8704C32.3109 29.5402 32.6693 29.8986 32.6693 30.3391V30.6445C32.6693 30.9929 32.9517 31.2752 33.3 31.2752C33.6483 31.2752 33.9307 30.9929 33.9307 30.6445V30.3391C33.9307 29.3136 33.1777 28.4608 32.1957 28.3044Z"
            fill="url(#paint3_linear_3901_3043)" fill-opacity="0.2"></path>
          <path
            d="M32.1957 28.3044V27.4227C32.1957 27.0743 31.9133 26.792 31.565 26.792C31.2166 26.792 30.9343 27.0743 30.9343 27.4227V28.3044C29.9522 28.4608 29.1992 29.3136 29.1992 30.3391V30.95C29.1992 32.0861 30.1235 33.0103 31.2595 33.0103H32.4384C32.5657 33.0103 32.6693 33.1138 32.6693 33.2411V34.42C32.6693 34.8605 32.3109 35.2189 31.8704 35.2189H31.2595C30.819 35.2189 30.4606 34.8605 30.4606 34.42V34.1146C30.4606 33.7662 30.1782 33.4839 29.8299 33.4839C29.4816 33.4839 29.1992 33.7662 29.1992 34.1146V34.42C29.1992 35.4455 29.9522 36.2982 30.9343 36.4547V37.3364C30.9343 37.6848 31.2166 37.9671 31.565 37.9671C31.9133 37.9671 32.1957 37.6848 32.1957 37.3364V36.4547C33.1777 36.2983 33.9307 35.4455 33.9307 34.42V33.2411C33.9307 32.4182 33.2613 31.7488 32.4384 31.7488H31.2595C30.819 31.7488 30.4606 31.3904 30.4606 30.95V30.3391C30.4606 29.8986 30.819 29.5402 31.2595 29.5402H31.8704C32.3109 29.5402 32.6693 29.8986 32.6693 30.3391V30.6445C32.6693 30.9929 32.9517 31.2752 33.3 31.2752C33.6483 31.2752 33.9307 30.9929 33.9307 30.6445V30.3391C33.9307 29.3136 33.1777 28.4608 32.1957 28.3044Z"
            stroke="white"></path>
          <path
            d="M27.8259 8.31423C31.343 8.31423 34.2604 10.9305 34.7343 14.3191L34.2503 13.9616C33.9701 13.7545 33.5753 13.8138 33.3683 14.0941C33.1613 14.3743 33.2207 14.7691 33.5009 14.9761L35.0576 16.126C35.1668 16.2067 35.2983 16.2495 35.4323 16.2495C35.4651 16.2495 35.498 16.2469 35.5308 16.2417C35.6977 16.2154 35.8469 16.1231 35.9452 15.9857L37.1376 14.3196C37.3404 14.0363 37.275 13.6424 36.9918 13.4396C36.7085 13.2369 36.3146 13.3022 36.1118 13.5855L35.9342 13.8337C35.2447 9.98384 31.8712 7.05273 27.826 7.05273C27.4777 7.05273 27.1953 7.33504 27.1953 7.68344C27.1953 8.03184 27.4775 8.31423 27.8259 8.31423Z"
            fill="white"></path>
          <path
            d="M27.8259 8.31423C31.343 8.31423 34.2604 10.9305 34.7343 14.3191L34.2503 13.9616C33.9701 13.7545 33.5753 13.8138 33.3683 14.0941C33.1613 14.3743 33.2207 14.7691 33.5009 14.9761L35.0576 16.126C35.1668 16.2067 35.2983 16.2495 35.4323 16.2495C35.4651 16.2495 35.498 16.2469 35.5308 16.2417C35.6977 16.2154 35.8469 16.1231 35.9452 15.9857L37.1376 14.3196C37.3404 14.0363 37.275 13.6424 36.9918 13.4396C36.7085 13.2369 36.3146 13.3022 36.1118 13.5855L35.9342 13.8337C35.2447 9.98384 31.8712 7.05273 27.826 7.05273C27.4777 7.05273 27.1953 7.33504 27.1953 7.68344C27.1953 8.03184 27.4775 8.31423 27.8259 8.31423Z"
            fill="url(#paint4_linear_3901_3043)" fill-opacity="0.2"></path>
          <path
            d="M27.8259 8.31423C31.343 8.31423 34.2604 10.9305 34.7343 14.3191L34.2503 13.9616C33.9701 13.7545 33.5753 13.8138 33.3683 14.0941C33.1613 14.3743 33.2207 14.7691 33.5009 14.9761L35.0576 16.126C35.1668 16.2067 35.2983 16.2495 35.4323 16.2495C35.4651 16.2495 35.498 16.2469 35.5308 16.2417C35.6977 16.2154 35.8469 16.1231 35.9452 15.9857L37.1376 14.3196C37.3404 14.0363 37.275 13.6424 36.9918 13.4396C36.7085 13.2369 36.3146 13.3022 36.1118 13.5855L35.9342 13.8337C35.2447 9.98384 31.8712 7.05273 27.826 7.05273C27.4777 7.05273 27.1953 7.33504 27.1953 7.68344C27.1953 8.03184 27.4775 8.31423 27.8259 8.31423Z"
            stroke="white"></path>
          <path
            d="M13.232 35.62C13.0249 35.3397 12.63 35.2804 12.35 35.4875C12.0698 35.6944 12.0104 36.0893 12.2174 36.3695L12.5748 36.8534C9.18627 36.3795 6.57001 33.4622 6.57001 29.9452C6.57001 29.5968 6.28762 29.3145 5.9393 29.3145C5.59098 29.3145 5.30859 29.5968 5.30859 29.9452C5.30859 33.9903 8.23962 37.3638 12.0895 38.0533L11.8413 38.2309C11.5581 38.4336 11.4927 38.8276 11.6955 39.1108C11.8186 39.283 12.0123 39.3747 12.2089 39.3747C12.3359 39.3747 12.4642 39.3363 12.5753 39.2568L14.2416 38.0645C14.3789 37.9662 14.4712 37.8169 14.4975 37.65C14.5238 37.483 14.4822 37.3126 14.3819 37.1768L13.232 35.62Z"
            fill="white"></path>
          <path
            d="M13.232 35.62C13.0249 35.3397 12.63 35.2804 12.35 35.4875C12.0698 35.6944 12.0104 36.0893 12.2174 36.3695L12.5748 36.8534C9.18627 36.3795 6.57001 33.4622 6.57001 29.9452C6.57001 29.5968 6.28762 29.3145 5.9393 29.3145C5.59098 29.3145 5.30859 29.5968 5.30859 29.9452C5.30859 33.9903 8.23962 37.3638 12.0895 38.0533L11.8413 38.2309C11.5581 38.4336 11.4927 38.8276 11.6955 39.1108C11.8186 39.283 12.0123 39.3747 12.2089 39.3747C12.3359 39.3747 12.4642 39.3363 12.5753 39.2568L14.2416 38.0645C14.3789 37.9662 14.4712 37.8169 14.4975 37.65C14.5238 37.483 14.4822 37.3126 14.3819 37.1768L13.232 35.62Z"
            fill="url(#paint5_linear_3901_3043)" fill-opacity="0.2"></path>
          <path
            d="M13.232 35.62C13.0249 35.3397 12.63 35.2804 12.35 35.4875C12.0698 35.6944 12.0104 36.0893 12.2174 36.3695L12.5748 36.8534C9.18627 36.3795 6.57001 33.4622 6.57001 29.9452C6.57001 29.5968 6.28762 29.3145 5.9393 29.3145C5.59098 29.3145 5.30859 29.5968 5.30859 29.9452C5.30859 33.9903 8.23962 37.3638 12.0895 38.0533L11.8413 38.2309C11.5581 38.4336 11.4927 38.8276 11.6955 39.1108C11.8186 39.283 12.0123 39.3747 12.2089 39.3747C12.3359 39.3747 12.4642 39.3363 12.5753 39.2568L14.2416 38.0645C14.3789 37.9662 14.4712 37.8169 14.4975 37.65C14.5238 37.483 14.4822 37.3126 14.3819 37.1768L13.232 35.62Z"
            stroke="white"></path>
          <defs>
            <linearGradient id="paint0_linear_3901_3043" x1="11.0794" y1="0.970703" x2="11.0794" y2="26.3864" gradientUnits="userSpaceOnUse">
              <stop stop-color="#DC3929"></stop>
              <stop offset="1" stop-opacity="0"></stop>
            </linearGradient>
            <linearGradient id="paint1_linear_3901_3043" x1="31.4094" y1="23.2559" x2="31.4094" y2="41.5043" gradientUnits="userSpaceOnUse">
              <stop stop-color="#DC3929"></stop>
              <stop offset="1" stop-opacity="0"></stop>
            </linearGradient>
            <linearGradient id="paint2_linear_3901_3043" x1="31.4088" y1="20.7334" x2="31.4088" y2="44.0275" gradientUnits="userSpaceOnUse">
              <stop stop-color="#DC3929"></stop>
              <stop offset="1" stop-opacity="0"></stop>
            </linearGradient>
            <linearGradient id="paint3_linear_3901_3043" x1="31.565" y1="26.792" x2="31.565" y2="37.9671" gradientUnits="userSpaceOnUse">
              <stop stop-color="#DC3929"></stop>
              <stop offset="1" stop-opacity="0"></stop>
            </linearGradient>
            <linearGradient id="paint4_linear_3901_3043" x1="32.2254" y1="7.05273" x2="32.2254" y2="16.2495" gradientUnits="userSpaceOnUse">
              <stop stop-color="#DC3929"></stop>
              <stop offset="1" stop-opacity="0"></stop>
            </linearGradient>
            <linearGradient id="paint5_linear_3901_3043" x1="9.9069" y1="29.3145" x2="9.9069" y2="39.3747" gradientUnits="userSpaceOnUse">
              <stop stop-color="#DC3929"></stop>
              <stop offset="1" stop-opacity="0"></stop>
            </linearGradient>
          </defs>
        </svg>
        <div class="c-calculator__variable-inner">
          <div class="c-calculator__variable-inner-row">
            <label class="c-calculator__variable-title"> Conversion rate </label>
            <div class="c-calculator__variable-value">
              <input id="input-slider-field--cr" class="input-slider-field" maxlength="256" placeholder="0" type="number" required="">
              <span class="c-calculator__variable-append"> % </span>
            </div>
          </div>
          <div class="c-calculator__variable-inner-row">
            <input id="range-slider--cr" class="range-slider" type="range" min="0" max="10" step="0.1" value="3">
          </div>
        </div>
      </div>
      <div class="c-calculator__variable">
        <svg class="c-calculator__variable-icon" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 44 45">
          <g id="g6" fill="#fff" clip-path="url(#clip0_4756_1761)">
            <path id="path2"
              d="m43.09 11.49-8.987-.444c0-.093.008-.187.008-.28 0-3.674-2.55-6.878-6.068-7.61a.634.634 0 0 0-.742.493c-.067.35.15.682.483.759 2.935.613 5.069 3.29 5.069 6.357 0 3.58-2.851 6.485-6.344 6.485-3.435 0-6.236-2.795-6.344-6.28v-.213c0-3.11 2.167-5.795 5.152-6.375a.646.646 0 0 0 .5-.75.633.633 0 0 0-.734-.511c-3.426.665-5.952 3.647-6.152 7.167l-8.453-.41-.308-1.422v-.069a.651.651 0 0 0-.475-.434L3.359 6.436a1.856 1.856 0 0 0-1.617.375C1.267 7.22 1 7.774 1 8.371c0 .92.609 1.695 1.484 1.9l4.46 1.031 1.475 7.099a.626.626 0 0 0 .609.502c.041 0 .083-.008.133-.017a.641.641 0 0 0 .484-.758l-.834-4.014h1.292c.392 1.807 2.41 11.198 2.801 13.005.067.29.317.502.609.502H40.63v1.423H11.92l-1.692-8.146a.628.628 0 0 0-.742-.495.641.641 0 0 0-.483.759l1.8 8.65a.62.62 0 0 0 .609.502h.708v1.423h-.116c-.675 0-1.217.563-1.217 1.244v1.483c0 .69.55 1.245 1.217 1.245h.175c.05.247.125.485.217.707a3.421 3.421 0 0 0-.276 1.355c0 1.84 1.468 3.34 3.268 3.34 1.8 0 3.268-1.5 3.268-3.34 0-.776-.258-1.492-.7-2.063h2.56c.34 0 .624-.29.624-.639 0-.349-.283-.639-.625-.639h-8.478v-1.423H40.63v1.423H23.258a.637.637 0 0 0-.626.64c0 .349.284.639.626.639h10.837c.05.247.125.485.217.707a3.421 3.421 0 0 0-.276 1.355c0 1.84 1.468 3.34 3.268 3.34 1.8 0 3.268-1.5 3.268-3.34 0-.776-.259-1.492-.7-2.063h.8c.675 0 1.217-.562 1.217-1.244v-1.483c0-.69-.55-1.244-1.217-1.244H16.014v-1.423h24.65c.675 0 1.217-.562 1.217-1.244v-1.483a1.23 1.23 0 0 0-1.167-1.244l2.95-14.07a.643.643 0 0 0-.575-.784ZM15.387 39.841c-1.108 0-2.017-.93-2.017-2.063v-.076a3.243 3.243 0 0 0 2.017.715c.342 0 .626-.29.626-.639v-1.96a2.064 2.064 0 0 1 1.392 1.96c0 1.134-.9 2.063-2.018 2.063Zm-.625-4.125v1.32a2.058 2.058 0 0 1-1.292-1.32h1.292Zm21.908 0v1.32a2.058 2.058 0 0 1-1.292-1.32h1.292Zm.625 4.125c-1.109 0-2.017-.93-2.017-2.063v-.076a3.243 3.243 0 0 0 2.017.715c.342 0 .625-.29.625-.639v-1.96a2.064 2.064 0 0 1 1.392 1.96c0 1.134-.909 2.063-2.017 2.063ZM13.37 31.737v-1.423h1.392v1.423h-1.392ZM41.472 16.62l-4.993-.23.625-3.912 5.185.256-.817 3.886Zm-.967 4.627-4.793-.077.558-3.502 4.935.23-.7 3.349Zm-10.578 5.087.183-3.98 4.135.06-.625 3.912h-3.693v.008Zm-5.144 0L24.6 22.27l4.268.068-.183 3.996h-3.902Zm-4.943 0-.65-4.141 4.151.068.183 4.082H19.84v-.009Zm-7.936-9.791 5.168.239.65 4.107-4.893-.077-.925-4.27Zm6.444.298 3.643.17a7.59 7.59 0 0 0 1.142.716l.15 3.247-4.294-.068-.641-4.065Zm2.267-1.176-2.467-.11-.634-4.031 1.442.068a7.78 7.78 0 0 0 1.66 4.073Zm9.553 5.42.167-3.605c.042-.025.092-.05.133-.085l4.552.205-.567 3.545-4.285-.06Zm5.677-8.667-.625 3.92-3.268-.153a7.755 7.755 0 0 0 2.001-3.86l1.892.093Zm-6.794 5.676-.133 2.974L24.533 21l-.125-2.761a7.456 7.456 0 0 0 2.1.298c.893 0 1.751-.153 2.543-.443ZM16.24 11.455l.633 4.04-5.243-.239-.876-4.065 5.486.264Zm-6.42 1.38H8.545l-.458-2.198a.635.635 0 0 0-.475-.494L2.759 9.018a.664.664 0 0 1-.509-.656c0-.435.392-.75.809-.656l5.969 1.423.15.682.642 3.025Zm3.285 9.264 4.819.077.658 4.167h-4.56l-.917-4.244Zm21.774 4.235.626-3.894 4.735.077-.8 3.817h-4.56Z">
            </path>
            <path id="path4"
              d="M23.808 9.104c0 1.27 1.008 2.31 2.259 2.31h.892c.55 0 1.008.46 1.008 1.03 0 .563-.45 1.032-1.008 1.032H25.95a.843.843 0 0 1-.809-.614.618.618 0 0 0-.775-.426.637.637 0 0 0-.417.793 2.087 2.087 0 0 0 1.951 1.525v1.116c0 .35.283.64.625.64s.625-.29.625-.64v-1.125c1.16-.093 2.076-1.09 2.076-2.3 0-1.27-1.008-2.31-2.259-2.31h-.892c-.55 0-1.009-.46-1.009-1.031s.45-1.031 1.01-1.031h.8c.374 0 .7.247.808.613.1.341.45.529.775.427a.637.637 0 0 0 .417-.793 2.088 2.088 0 0 0-1.734-1.508V5.678c0-.35-.283-.639-.625-.639a.637.637 0 0 0-.625.64v1.124c-1.167.094-2.084 1.09-2.084 2.301Z">
            </path>
          </g>
          <defs id="defs11">
            <clipPath id="clip0_4756_1761">
              <path id="rect8" fill="#fff" d="M0 0h43v43H0z" transform="translate(.618 .908)"></path>
            </clipPath>
          </defs>
        </svg>
        <div class="c-calculator__variable-inner">
          <div class="c-calculator__variable-inner-row">
            <label class="c-calculator__variable-title"> Average order value </label>
            <div class="c-calculator__variable-value">
              <input id="input-slider-field--aov" class="input-slider-field" maxlength="256" placeholder="0" type="number" required="">
              <span class="c-calculator__variable-append"> $ </span>
            </div>
          </div>
          <div class="c-calculator__variable-inner-row">
            <input id="range-slider--aov" class="range-slider" type="range" min="0" max="1000" step="5" value="120">
          </div>
        </div>
      </div>
      <div class="c-calculator__variable">
        <svg class="c-calculator__variable-icon" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 44 45">
          <g id="g8" fill="#fff" clip-path="url(#clip0_4756_1779)">
            <path id="path2"
              d="M43.306 33.63h-2.774V12.477a2.43 2.43 0 0 0-2.427-2.428h-4.508a.687.687 0 0 0-.318.078c-2.638-5.952-9.602-8.64-15.555-6.002a11.787 11.787 0 0 0-6.003 6.002.687.687 0 0 0-.318-.078H6.895a2.43 2.43 0 0 0-2.427 2.428V33.63H1.694a.693.693 0 0 0-.694.694v3.814a2.43 2.43 0 0 0 2.427 2.428h38.146A2.43 2.43 0 0 0 44 38.138v-3.814a.693.693 0 0 0-.694-.694ZM22.5 4.501c5.745 0 10.403 4.658 10.403 10.403S28.245 25.307 22.5 25.307 12.097 20.65 12.097 14.904c.006-5.742 4.66-10.397 10.403-10.403Zm0 22.194c6.501 0 11.79-5.29 11.79-11.79 0-.465-.027-.928-.082-1.388h2.857V31.55H7.935V13.517h2.857c-.055.46-.082.923-.082 1.387 0 6.501 5.289 11.79 11.79 11.79ZM5.855 12.477c0-.575.465-1.04 1.04-1.04h4.336c-.071.228-.134.459-.191.693H7.242a.693.693 0 0 0-.694.693v19.42c0 .383.31.694.694.694h30.516c.383 0 .694-.31.694-.694v-19.42a.693.693 0 0 0-.694-.693H33.96c-.057-.234-.12-.466-.19-.694h4.335c.575 0 1.04.466 1.04 1.04V33.63H5.855V12.477Zm20.537 22.54-.23.694h-7.323l-.231-.694h7.784Zm16.22 3.121a1.04 1.04 0 0 1-1.04 1.04H3.428a1.04 1.04 0 0 1-1.04-1.04v-3.12h14.758l.536 1.605c.094.284.36.475.658.475h8.322c.298 0 .564-.191.658-.474l.536-1.607h14.758v3.121Z">
            </path>
            <path id="path4"
              d="M22.5 23.92a9.016 9.016 0 0 0 9.016-9.015A9.016 9.016 0 0 0 22.5 5.889a9.016 9.016 0 0 0-9.017 9.016A9.027 9.027 0 0 0 22.5 23.92Zm-5.861-13.894.466.465a.695.695 0 0 0 .981-.981l-.466-.466a7.593 7.593 0 0 1 4.186-1.737v.661a.693.693 0 1 0 1.387 0v-.661c1.54.14 3 .746 4.186 1.737l-.466.466a.695.695 0 0 0 .982.981l.465-.465a7.593 7.593 0 0 1 1.737 4.185h-.661a.693.693 0 1 0 0 1.387h.661c-.14 1.54-.745 3-1.736 4.186l-.466-.466a.695.695 0 0 0-.981.982l.465.465a7.595 7.595 0 0 1-4.186 1.738v-.662a.693.693 0 1 0-1.387 0v.662c-1.54-.14-3-.746-4.186-1.737l.466-.465a.695.695 0 0 0-.981-.982l-.466.466a7.596 7.596 0 0 1-1.737-4.187h.661a.693.693 0 1 0 0-1.387h-.661c.14-1.54.745-3 1.737-4.185Z">
            </path>
            <path id="path6" d="M22.5 15.597h2.08a.693.693 0 1 0 0-1.387h-1.386v-3.468a.693.693 0 1 0-1.387 0v4.162c0 .383.31.693.693.693Z"></path>
          </g>
          <defs id="defs13">
            <clipPath id="clip0_4756_1779">
              <path id="rect10" fill="#fff" d="M0 0h43v43H0z" transform="translate(.618 .111)"></path>
            </clipPath>
          </defs>
        </svg>
        <div class="c-calculator__variable-inner">
          <div class="c-calculator__variable-inner-row">
            <label class="c-calculator__variable-title"> Monthly sessions </label>
            <div class="c-calculator__variable-value">
              <input id="input-slider-field--ms" class="input-slider-field" maxlength="256" placeholder="0" type="number" required="">
              <span class="c-calculator__variable-append"> k </span>
            </div>
          </div>
          <div class="c-calculator__variable-inner-row">
            <input id="range-slider--ms" class="range-slider" type="range" min="1" max="1000" step="1" value="100">
          </div>
        </div>
      </div>
      <div data-display="desktop">
        <div class="c-calculator__output-wrapper c-calculator__output-wrapper--impact">
          <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 245 46" style="fill:none">
            <path d="M23.06.768C10.73.768.732 10.764.732 23.096c0 12.33 9.997 22.327 22.328 22.327h198.88c12.332 0 22.328-9.996 22.328-22.327 0-12.332-9.996-22.328-22.327-22.328z" style="fill:url(#aba)"></path>
            <path d="M23.06.768C10.73.768.732 10.764.732 23.096c0 12.33 9.997 22.327 22.328 22.327h198.88c12.332 0 22.328-9.996 22.328-22.327 0-12.332-9.996-22.328-22.327-22.328z" style="stroke:url(#bab);stroke-width:1.53553998"></path>
            <defs>
              <linearGradient id="aba" x1="123.52" x2="123.52" y1="-3.417" y2="45.093" gradientTransform="translate(-1.02 -.437)" gradientUnits="userSpaceOnUse">
                <stop stop-color="#242424"></stop>
                <stop offset="1"></stop>
              </linearGradient>
              <linearGradient id="bab" x1="123.52" x2="123.52" y1="-33.252" y2="34.768" gradientTransform="translate(-1.02 -.437)" gradientUnits="userSpaceOnUse">
                <stop stop-color="#DB3929"></stop>
                <stop offset="1" stop-color="#DB3929" stop-opacity="0"></stop>
              </linearGradient>
            </defs>
          </svg>
          <div class="c-calculator__output-title"> A/B Test Impact </div>
        </div>
        <ul class="c-calculator__impact">
          <li class="c-calculator__impact-item">
            <button class="c-calculator__impact-item-button" data-value="5"> +5<span>%</span>
            </button>
          </li>
          <li class="c-calculator__impact-item">
            <button class="c-calculator__impact-item-button" data-value="12"> +12<span>%</span>
            </button>
          </li>
          <li class="c-calculator__impact-item">
            <button class="c-calculator__impact-item-button" data-value="16"> +16<span>%</span>
            </button>
          </li>
        </ul>
      </div>
    </div>
    <div class="c-calculator__column c-calculator__column--mobile">
      <div>
        <div class="c-calculator__output-wrapper c-calculator__output-wrapper--impact">
          <svg preserveAspectRatio="none" viewBox="0 0 264 51" xmlns="http://www.w3.org/2000/svg" style="fill:none">
            <path fill="url(#abb)" d="M24.845 1.444c-13.26 0-24.01 10.75-24.01 24.01 0 13.26 10.75 24.009 24.01 24.009h213.858c13.26 0 24.01-10.75 24.01-24.01 0-13.26-10.75-24.01-24.01-24.01H24.845Z"></path>
            <path stroke="url(#baa)" stroke-width="1.651" d="M24.845 1.444c-13.26 0-24.01 10.75-24.01 24.01 0 13.26 10.75 24.009 24.01 24.009h213.858c13.26 0 24.01-10.75 24.01-24.01 0-13.26-10.75-24.01-24.01-24.01H24.845Z"></path>
            <defs>
              <linearGradient id="abb" x1="131.774" x2="131.774" y1="-3.526" y2="48.637" gradientUnits="userSpaceOnUse">
                <stop stop-color="#242424"></stop>
                <stop offset="1"></stop>
              </linearGradient>
              <linearGradient id="baa" x1="131.774" x2="131.774" y1="-35.608" y2="37.535" gradientUnits="userSpaceOnUse">
                <stop stop-color="#DB3929"></stop>
                <stop offset="1" stop-color="#DB3929" stop-opacity="0"></stop>
              </linearGradient>
            </defs>
          </svg>
          <div class="c-calculator__output-title"> A/B Test Impact </div>
        </div>
        <ul class="c-calculator__impact">
          <li class="c-calculator__impact-item">
            <button class="c-calculator__impact-item-button" data-value="5"> +5<span>%</span>
            </button>
          </li>
          <li class="c-calculator__impact-item">
            <button class="c-calculator__impact-item-button" data-value="12"> +12<span>%</span>
            </button>
          </li>
          <li class="c-calculator__impact-item">
            <button class="c-calculator__impact-item-button" data-value="16"> +16<span>%</span>
            </button>
          </li>
        </ul>
      </div>
      <div class="c-calculator__output">
        <div class="c-calculator__output-wrapper c-calculator__output-wrapper--ear">
          <svg preserveAspectRatio="none" viewBox="0 0 264 51" xmlns="http://www.w3.org/2000/svg" style="fill:none">
            <defs>
              <linearGradient id="abc" x1="131.774" x2="131.774" y1="-3.526" y2="48.637" gradientUnits="userSpaceOnUse">
                <stop stop-color="#242424"></stop>
                <stop offset="1"></stop>
              </linearGradient>
              <linearGradient id="bac" x1="131.774" x2="131.774" y1="-35.608" y2="37.535" gradientUnits="userSpaceOnUse">
                <stop stop-color="#DB3929"></stop>
                <stop offset="1" stop-color="#DB3929" stop-opacity="0"></stop>
              </linearGradient>
            </defs>
            <path fill="url(#abc)" d="M24.845 1.444c-13.26 0-24.01 10.75-24.01 24.01 0 13.26 10.75 24.009 24.01 24.009h213.858c13.26 0 24.01-10.75 24.01-24.01 0-13.26-10.75-24.01-24.01-24.01H24.845Z"></path>
            <path stroke="url(#bac)" stroke-width="1.651" d="M24.845 1.444c-13.26 0-24.01 10.75-24.01 24.01 0 13.26 10.75 24.009 24.01 24.009h213.858c13.26 0 24.01-10.75 24.01-24.01 0-13.26-10.75-24.01-24.01-24.01H24.845Z"></path>
          </svg>
          <div class="c-calculator__output-title"> Extra Annual Revenue </div>
        </div>
        <div class="c-calculator__output-inner">
          <svg preserveAspectRatio="none" viewBox="0 0 279 41" xmlns="http://www.w3.org/2000/svg">
            <rect x="0.279163" y="0.40955" width="262.133" height="41.3553" transform="matrix(1 0 -0.365539 0.930796 16.136 0.873069)" fill="#0F0F0F" stroke="url(#paint0_linear_3901_3150)" stroke-width="0.88"></rect>
            <defs>
              <linearGradient id="paint0_linear_3901_3150" x1="123.558" y1="-21.7448" x2="114.775" y2="36.0886" gradientUnits="userSpaceOnUse">
                <stop stop-color="#939393"></stop>
                <stop offset="1" stop-color="#101010"></stop>
              </linearGradient>
            </defs>
          </svg>
          <p class="c-calculator__output-value display--ear"> $0 </p>
        </div>
      </div>
      <div class="c-calculator__output">
        <div class="c-calculator__output-title"> Revenue Per User </div>
        <div class="c-calculator__output-inner">
          <svg preserveAspectRatio="none" viewBox="0 0 279 41" xmlns="http://www.w3.org/2000/svg">
            <rect x="0.279163" y="0.40955" width="262.133" height="41.3553" transform="matrix(1 0 -0.365539 0.930796 16.136 0.873069)" fill="#0F0F0F" stroke="url(#paint0_linear_3901_3150)" stroke-width="0.88"></rect>
            <defs>
              <linearGradient id="paint0_linear_3901_3150" x1="123.558" y1="-21.7448" x2="114.775" y2="36.0886" gradientUnits="userSpaceOnUse">
                <stop stop-color="#939393"></stop>
                <stop offset="1" stop-color="#101010"></stop>
              </linearGradient>
            </defs>
          </svg>
          <p class="c-calculator__output-value display--rpu"> $0 </p>
        </div>
      </div>
      <div class="c-calculator__output">
        <div class="c-calculator__output-title"> Current Annual Revenue </div>
        <div class="c-calculator__output-inner">
          <svg preserveAspectRatio="none" viewBox="0 0 279 41" xmlns="http://www.w3.org/2000/svg">
            <rect x="0.279163" y="0.40955" width="262.133" height="41.3553" transform="matrix(1 0 -0.365539 0.930796 16.136 0.873069)" fill="#0F0F0F" stroke="url(#paint0_linear_3901_3150)" stroke-width="0.88"></rect>
            <defs>
              <linearGradient id="paint0_linear_3901_3150" x1="123.558" y1="-21.7448" x2="114.775" y2="36.0886" gradientUnits="userSpaceOnUse">
                <stop stop-color="#939393"></stop>
                <stop offset="1" stop-color="#101010"></stop>
              </linearGradient>
            </defs>
          </svg>
          <p class="c-calculator__output-value display--ar"> $0 </p>
        </div>
      </div>
    </div>
    <div class="c-calculator__column">
      <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" id="svg116" class="c-calculator__dial" style="fill:none" version="1.1" viewBox="0 0 519.2 519.2">
        <mask id="a" width="450" height="405" x="513" y="275" maskUnits="userSpaceOnUse">
          <path id="path2" d="M0 0h448.8v403.92H0z" style="fill:#d9d9d9" transform="matrix(1 0 0 -1 513.894 679.917)"></path>
        </mask>
        <g id="g17" style="filter:url(#e)">
          <circle id="circle15" cx="738.294" cy="531.198" r="76.56" style="fill:url(#f)" transform="translate(-478.694 -264.557)"></circle>
        </g>
        <mask id="h" width="88" height="94" x="689" y="493" maskUnits="userSpaceOnUse">
          <path id="path21" d="M689.2 493.404h87.435v93.318H689.2z" style="fill:url(#g)"></path>
        </mask>
        <path id="path140" d="M425.28 414.164c38.487-40.876 62.071-95.941 62.071-156.515 0-126.121-102.24-228.362-228.36-228.362-126.122 0-228.363 102.24-228.363 228.362 0 60.574 23.585 115.639 62.072 156.515z"
          style="fill:url(#paint8_linear_3901_3026)"></path>
        <path id="path142"
          d="M425.28 414.164c38.487-40.876 62.071-95.941 62.071-156.515 0-126.121-102.24-228.362-228.36-228.362-126.122 0-228.363 102.24-228.363 228.362 0 60.574 23.585 115.639 62.072 156.515h11.706c-9.785-10.214-20.372-22.03-27.939-32.543-18.063-25.102-35.105-70.983-35.105-70.983l5.558-3.831c-3.647-15.797-5.574-32.253-5.574-49.158 0-93.53 58.996-173.28 141.804-204.067v-5.335s47.45-12.005 78.368-11.376c31.135.634 78.367 11.376 78.367 11.376v7.287c80.144 32.107 136.75 110.5 136.75 202.115 0 17.204-1.997 33.942-5.77 49.996l5.565 3.836s-17.04 45.88-35.105 70.982c-7.359 10.226-17.575 21.683-27.133 31.7z"
          style="fill:url(#paint9_linear_3901_3026)"></path>
        <g id="g205" style="filter:url(#filter0_dd_3901_3026)" transform="translate(-471.03 -207.065)">
          <circle id="circle203" cx="729.57" cy="467.791" r="77.912" style="fill:url(#paint11_linear_3901_3026)"></circle>
        </g>
        <path id="path214"
          d="M155.844 375.509c-4.276 0-6.962-2.888-6.962-7.724 0-4.814 2.686-7.724 6.962-7.724 4.254 0 6.941 2.91 6.941 7.724 0 4.836-2.687 7.724-6.94 7.724zm0-1.523c3.471 0 5.262-2.014 5.262-6.201 0-4.187-1.79-6.202-5.262-6.202-3.492 0-5.283 2.015-5.283 6.202 0 4.187 1.791 6.2 5.283 6.2z"
          style="fill:#fff"></path>
        <path id="path216"
          d="M110.413 263.285H98.524v-1.097c0-2.888 1.053-4.3 4.075-5.396l3.358-1.186c2.172-.806 2.888-1.545 2.888-3.135 0-1.97-1.365-2.91-4.209-2.91-3.246 0-4.589 1.254-4.589 3.493v.268h-1.59v-.201c0-2.665 1.836-5.06 6.224-5.06 4.03 0 5.776 1.992 5.776 4.41 0 2.306-1.432 3.605-4.074 4.5l-3.067 1.03c-2.463.873-3.157 1.859-3.157 3.963l3.358-.134h6.896zm8.581.224c-4.276 0-6.963-2.888-6.963-7.724 0-4.814 2.687-7.724 6.963-7.724 4.254 0 6.941 2.91 6.941 7.724 0 4.836-2.687 7.724-6.94 7.724zm0-1.523c3.47 0 5.262-2.014 5.262-6.201 0-4.187-1.792-6.202-5.262-6.202-3.492 0-5.283 2.015-5.283 6.202 0 4.187 1.791 6.2 5.283 6.2z"
          style="fill:#fff"></path>
        <path id="path218"
          d="M153.092 148.285h-1.612v-3.18h-9.605v-1.163l9.336-10.657h1.881v10.366h2.8v1.455h-2.8zm-9.023-4.634h7.411v-8.441h-.112l-7.299 8.306zm20.123 4.858c-4.276 0-6.963-2.888-6.963-7.724 0-4.814 2.687-7.724 6.963-7.724 4.254 0 6.94 2.91 6.94 7.724 0 4.836-2.686 7.724-6.94 7.724zm0-1.523c3.47 0 5.261-2.014 5.261-6.201 0-4.187-1.79-6.202-5.26-6.202-3.494 0-5.285 2.015-5.285 6.202 0 4.187 1.791 6.2 5.284 6.2z"
          style="fill:#fff"></path>
        <path id="path220"
          d="M346.185 148.509c-4.097 0-6.627-1.433-6.627-4.3 0-1.857 1.298-3.29 3.761-3.782v-.157c-2.17-.291-3.358-1.612-3.358-3.314 0-2.306 2.127-3.895 6.224-3.895 4.12 0 6.224 1.589 6.224 3.895 0 1.702-1.187 3.023-3.358 3.314v.157c2.507.492 3.761 1.925 3.761 3.783 0 2.866-2.552 4.299-6.627 4.299zm0-8.62c3.18 0 4.634-.873 4.634-2.641 0-1.657-1.119-2.665-4.634-2.665-3.493 0-4.634 1.008-4.634 2.665 0 1.768 1.455 2.64 4.634 2.64zm0 7.097c3.56 0 5.015-.895 5.015-3.022 0-1.948-1.5-2.933-5.015-2.933-3.515 0-5.015.985-5.015 2.933 0 2.127 1.433 3.022 5.015 3.022zm14.945 1.523c-4.276 0-6.962-2.888-6.962-7.724 0-4.814 2.686-7.724 6.962-7.724 4.254 0 6.941 2.91 6.941 7.724 0 4.836-2.687 7.724-6.94 7.724zm0-1.523c3.471 0 5.262-2.014 5.262-6.201 0-4.187-1.79-6.202-5.262-6.202-3.492 0-5.283 2.015-5.283 6.202 0 4.187 1.791 6.2 5.283 6.2z"
          style="fill:#fff"></path>
        <path id="path222"
          d="M251.806 110.497c-4.814 0-6.896-2.283-6.896-7.858 0-4.5 2.172-7.59 6.851-7.59 3.426 0 5.933 1.769 5.933 4.79v.158h-1.724v-.157c0-1.858-1.097-3.268-4.209-3.268-3.806 0-5.194 2.015-5.194 6v1.343h.157c.515-1.68 2.574-2.933 5.552-2.933 3.672 0 5.821 1.79 5.821 4.702 0 2.933-2.284 4.813-6.29 4.813zm-.045-1.522c3.224 0 4.702-1.12 4.702-3.403 0-2.217-1.433-3.381-4.679-3.381-3.045 0-4.904 1.209-4.904 3.246 0 2.329 1.747 3.538 4.881 3.538zm15.041 1.522c-4.276 0-6.962-2.888-6.962-7.724 0-4.813 2.686-7.724 6.962-7.724 4.254 0 6.941 2.91 6.941 7.724 0 4.836-2.687 7.724-6.94 7.724zm0-1.522c3.471 0 5.262-2.015 5.262-6.202 0-4.186-1.79-6.201-5.262-6.201-3.492 0-5.283 2.015-5.283 6.2 0 4.188 1.791 6.203 5.283 6.203z"
          style="fill:#fff"></path>
        <path id="path226"
          d="M384.357 263.285h-1.59v-11.933h-3.537v-1.21h.784c1.656 0 2.462-.447 3.044-1.857h1.3zm9.064.224c-4.276 0-6.963-2.888-6.963-7.724 0-4.814 2.687-7.724 6.963-7.724 4.254 0 6.94 2.91 6.94 7.724 0 4.836-2.686 7.724-6.94 7.724zm0-1.523c3.47 0 5.261-2.014 5.261-6.201 0-4.187-1.79-6.202-5.26-6.202-3.494 0-5.285 2.015-5.285 6.202 0 4.187 1.791 6.2 5.284 6.2zm15.48 1.523c-4.277 0-6.963-2.888-6.963-7.724 0-4.814 2.686-7.724 6.962-7.724 4.254 0 6.941 2.91 6.941 7.724 0 4.836-2.687 7.724-6.94 7.724zm0-1.523c3.47 0 5.261-2.014 5.261-6.201 0-4.187-1.79-6.202-5.262-6.202-3.492 0-5.283 2.015-5.283 6.202 0 4.187 1.791 6.2 5.283 6.2z"
          style="fill:#fff"></path>
        <path id="path228"
          d="M347.163 375.285h-1.59v-11.933h-3.537v-1.21h.783c1.657 0 2.463-.447 3.045-1.857h1.3zm14.191 0h-11.889v-1.097c0-2.888 1.053-4.3 4.075-5.396l3.358-1.186c2.172-.806 2.888-1.545 2.888-3.135 0-1.97-1.365-2.91-4.209-2.91-3.246 0-4.589 1.254-4.589 3.493v.268h-1.59v-.201c0-2.665 1.836-5.06 6.224-5.06 4.03 0 5.776 1.992 5.776 4.41 0 2.306-1.433 3.605-4.074 4.5l-3.068 1.03c-2.462.873-3.156 1.859-3.156 3.963l3.358-.134h6.896zm8.581.224c-4.276 0-6.963-2.888-6.963-7.724 0-4.814 2.687-7.724 6.963-7.724 4.254 0 6.941 2.91 6.941 7.724 0 4.836-2.687 7.724-6.94 7.724zm0-1.523c3.47 0 5.261-2.014 5.261-6.201 0-4.187-1.79-6.202-5.26-6.202-3.493 0-5.285 2.015-5.285 6.202 0 4.187 1.792 6.2 5.284 6.2z"
          style="fill:#fff"></path>
        <path id="path147" d="M87.269 371.153c1.468 2.105 2.115 3.068 3.699 5.216l16.59-14.562c.327-.293.232-.979-.202-1.562l-.024-.003c-.45-.56-1.089-.82-1.46-.571z" style="fill:#fff;fill-opacity:.2"></path>
        <path id="path149" d="M55.784 290.253c.384 2.537.537 3.687 1.005 6.314l21.325-5.704c.423-.118.642-.775.511-1.49l-.02-.013c-.155-.701-.613-1.218-1.056-1.159z" style="fill:#fff;fill-opacity:.2"></path>
        <path id="path151" d="M57.366 212.277c-.509 2.515-.759 3.647-1.219 6.276l21.989 1.946c.437.034.868-.509.99-1.225l-.015-.02c.095-.711-.158-1.354-.595-1.45z" style="fill:#fff;fill-opacity:.2"></path>
        <path id="path153" d="M88.49 137.824c-1.553 2.044-2.27 2.955-3.827 5.122l18.955 11.314c.379.221 1.003-.081 1.424-.672l-.004-.025c.394-.599.446-1.288.094-1.564z" style="fill:#fff;fill-opacity:.2"></path>
        <path id="path155" d="M143.819 82.939c-2.197 1.326-3.2 1.908-5.448 3.346l13.436 17.515c.271.345.963.296 1.572-.099l.005-.024c.588-.412.89-1.033.666-1.419z" style="fill:#fff;fill-opacity:.2"></path>
        <path id="path157" d="M221.103 52.844c-2.538.384-3.687.538-6.314 1.006l5.706 21.324c.118.423.776.642 1.49.511l.014-.021c.701-.155 1.218-.613 1.158-1.056z" style="fill:#fff;fill-opacity:.2"></path>
        <path id="path159" d="M303.94 54.077c-2.496-.595-3.619-.883-6.231-1.434l-2.699 21.909c-.049.436.479.886 1.19 1.032l.021-.014c.708.119 1.358-.112 1.469-.545z" style="fill:#fff;fill-opacity:.2"></path>
        <path id="path161" d="M377.501 87.305c-1.977-1.636-2.857-2.39-4.957-4.038l-12.097 18.465c-.237.37.038 1.006.612 1.452l.024-.004c.583.419 1.269.5 1.559.16z" style="fill:#fff;fill-opacity:.2"></path>
        <path id="path163" d="M434.568 147.109c-1.308-2.208-1.881-3.215-3.301-5.476l-17.627 13.289c-.348.268-.304.959.085 1.572l.025.005c.406.592 1.024.899 1.413.678z" style="fill:#fff;fill-opacity:.2"></path>
        <path id="path165" d="M460.482 220.434c-.497-2.518-.702-3.659-1.287-6.263l-21.047 6.658c-.417.137-.607.804-.444 1.511l.021.013c.187.693.667 1.189 1.107 1.11z" style="fill:#fff;fill-opacity:.2"></path>
        <path id="path167" d="M462.693 306.495c.637-2.486.944-3.604 1.539-6.206l-21.861-3.068c-.435-.056-.893.464-1.052 1.173l.014.021c-.131.705.089 1.36.52 1.478z" style="fill:#fff;fill-opacity:.2"></path>
        <path id="path169" d="M431.515 376.019c1.645-1.97 2.404-2.847 4.06-4.939l-18.409-12.181c-.369-.238-1.006.034-1.454.605l.003.025c-.422.581-.505 1.266-.167 1.558z" style="fill:#fff;fill-opacity:.2"></path>
        <path id="path193" d="M451.106 343.8c1.628-3.461 2.39-5.012 3.988-8.654l-31.142-10.603c-.621-.205-1.437.428-1.867 1.422l.014.034c-.388.996-.25 2.016.348 2.309z" style="fill:#fff;fill-opacity:.6"></path>
        <path id="path171" d="M342.814 65.045c-3.475-1.599-5.031-2.349-8.686-3.916l-10.349 31.226c-.199.623.44 1.434 1.437 1.856l.034-.015c1 .381 2.018.234 2.307-.366z" style="fill:#fff;fill-opacity:.6"></path>
        <path id="path173" d="M410.057 111.476c-2.623-2.783-3.786-4.061-6.588-6.883l-21.289 25.079c-.418.504-.128 1.495.638 2.259h.037c.785.727 1.784.972 2.276.523z" style="fill:#fff"></path>
        <path id="path175" d="M263.875 49.321c-3.824-.074-5.551-.138-9.528-.112l3.015 32.759c.067.65.978 1.137 2.06 1.125l.026-.027c1.068-.051 1.942-.594 1.967-1.259z" style="fill:#fff"></path>
        <path id="path177" d="M181.769 62.279c-3.568 1.379-5.19 1.974-8.861 3.504l15.196 29.177c.308.577 1.335.683 2.332.261l.014-.034c.969-.452 1.573-1.285 1.343-1.91z" style="fill:#fff;fill-opacity:.6"></path>
        <path id="path179" d="M113.698 104.197c-2.744 2.664-4.004 3.846-6.784 6.69l25.395 20.911c.509.41 1.496.106 2.249-.672l-.001-.037c.715-.795.945-1.798.489-2.283z" style="fill:#fff"></path>
        <path id="path181" d="M65.737 175.593c-1.408 3.557-2.071 5.152-3.437 8.887l31.744 8.632c.633.165 1.407-.518 1.774-1.536l-.016-.033c.326-1.019.123-2.028-.492-2.284z" style="fill:#fff;fill-opacity:.6"></path>
        <path id="path183" d="M51.525 251.302c-.061 3.825-.118 5.551-.077 9.528l32.747-3.136c.65-.069 1.134-.981 1.117-2.063l-.026-.026c-.056-1.068-.601-1.94-1.267-1.962z" style="fill:#fff"></path>
        <path id="path185" d="M63.078 333.84c1.597 3.475 2.292 5.057 4.046 8.627l28.181-16.974c.556-.343.598-1.375.116-2.344l-.035-.011c-.512-.94-1.381-1.491-1.99-1.223z" style="fill:#fff;fill-opacity:.6"></path>
        <path id="path187" d="M112.269 398.514c2.52 2.877 3.636 4.196 6.334 7.118l22.184-24.292c.436-.487.182-1.488-.556-2.28l-.037-.001c-.757-.755-1.747-1.036-2.255-.605z" style="fill:#fff"></path>
        <path id="path189" d="M453.007 182.414c-1.069-3.673-1.523-5.339-2.735-9.128l-30.368 12.65c-.601.258-.794 1.272-.459 2.302l.033.016c.368 1.004 1.146 1.677 1.789 1.502z" style="fill:#fff;fill-opacity:.6"></path>
        <path id="path191" d="M465.926 260.237c-.045-3.824-.036-5.552-.188-9.526l-32.647 4.046c-.648.087-1.106 1.013-1.059 2.094l.027.025c.085 1.066.655 1.923 1.321 1.926z" style="fill:#fff"></path>
        <path id="path195" d="M404.103 406.407c2.83-2.573 4.128-3.713 7-6.465l-24.698-21.73c-.496-.427-1.492-.155-2.27.598v.037c-.741.771-1.004 1.766-.564 2.266z" style="fill:#fff"></path>
        <g id="g987" style="stroke-width:1.10882854" transform="matrix(.90185 0 0 .90185 1096.195 -100.475)">
          <path id="path978" d="m-952.953 452.988 57.2-82.5-21.587.412z" style="fill:#fff;fill-opacity:1;stroke:none;stroke-width:1.10882854px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"></path>
          <path id="path980" d="m-934.39 385.2-12.65-7.425h-27.225l28.875-19.525h59.95l-4.4 6.875h-58.3l-7.975 5.775h26.887z"
            style="fill:#fff;fill-opacity:1;stroke:none;stroke-width:1.10882854px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"></path>
        </g>
        <defs id="defs105">
          <linearGradient id="c" x1="738.294" x2="738.29" y1="306.797" y2="755.597" gradientUnits="userSpaceOnUse">
            <stop id="stop28" stop-color="#262626"></stop>
            <stop id="stop30" offset=".831"></stop>
          </linearGradient>
          <linearGradient id="d" x1="738.294" x2="738.294" y1="306.797" y2="728.757" gradientUnits="userSpaceOnUse">
            <stop id="stop33" stop-color="#DC3929"></stop>
            <stop id="stop35" offset="1" stop-color="#DC3929" stop-opacity="0"></stop>
          </linearGradient>
          <linearGradient id="f" x1="738.294" x2="738.294" y1="454.638" y2="607.758" gradientUnits="userSpaceOnUse">
            <stop id="stop38" stop-color="#0D0D0D"></stop>
            <stop id="stop40" offset="1" stop-color="#232323"></stop>
          </linearGradient>
          <linearGradient id="paint11_linear_3901_3026" x1="729.57" x2="729.57" y1="389.879" y2="545.702" gradientUnits="userSpaceOnUse">
            <stop id="stop355" stop-color="#0D0D0D"></stop>
            <stop id="stop357" offset="1" stop-color="#232323"></stop>
          </linearGradient>
          <linearGradient id="paint10_linear_3901_3026" x1="730.02" x2="730.016" y1="238.002" y2="694.725" gradientUnits="userSpaceOnUse">
            <stop id="stop350" stop-color="#262626"></stop>
            <stop id="stop352" offset=".831"></stop>
          </linearGradient>
          <linearGradient id="paint9_linear_3901_3026" x1="730.02" x2="730.02" y1="238.002" y2="667.411" gradientTransform="translate(-471.03 -208.715)" gradientUnits="userSpaceOnUse">
            <stop id="stop345" stop-color="#DC3929"></stop>
            <stop id="stop347" offset="1" stop-color="#DC3929" stop-opacity="0"></stop>
          </linearGradient>
          <linearGradient id="paint8_linear_3901_3026" x1="730.02" x2="730.016" y1="238.002" y2="694.725" gradientTransform="translate(-471.03 -208.715)" gradientUnits="userSpaceOnUse">
            <stop id="stop340" stop-color="#262626"></stop>
            <stop id="stop342" offset=".831"></stop>
          </linearGradient>
          <filter id="b" width="519.2" height="519.2" x="478.694" y="264.557" filterUnits="userSpaceOnUse" style="color-interpolation-filters:sRGB">
            <feFlood id="feFlood43" flood-opacity="0" result="BackgroundImageFix"></feFlood>
            <feColorMatrix id="feColorMatrix45" in="SourceAlpha" result="hardAlpha" values="0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 127 0"></feColorMatrix>
            <feOffset id="feOffset47" dy="-7.04"></feOffset>
            <feGaussianBlur id="feGaussianBlur49" stdDeviation="17.6"></feGaussianBlur>
            <feComposite id="feComposite51" in2="hardAlpha" operator="out"></feComposite>
            <feColorMatrix id="feColorMatrix53" values="0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0.24 0"></feColorMatrix>
            <feBlend id="feBlend55" in2="BackgroundImageFix" result="effect1_dropShadow_3901_3026"></feBlend>
            <feColorMatrix id="feColorMatrix57" in="SourceAlpha" result="hardAlpha" values="0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 127 0"></feColorMatrix>
            <feOffset id="feOffset59" dy="3.52"></feOffset>
            <feGaussianBlur id="feGaussianBlur61" stdDeviation="3.96"></feGaussianBlur>
            <feComposite id="feComposite63" in2="hardAlpha" operator="out"></feComposite>
            <feColorMatrix id="feColorMatrix65" values="0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0"></feColorMatrix>
            <feBlend id="feBlend67" in2="effect1_dropShadow_3901_3026" result="effect2_dropShadow_3901_3026"></feBlend>
            <feBlend id="feBlend69" in="SourceGraphic" in2="effect2_dropShadow_3901_3026" result="shape"></feBlend>
          </filter>
          <filter id="e" width="184.8" height="186.56" x="645.894" y="441.438" filterUnits="userSpaceOnUse" style="color-interpolation-filters:sRGB">
            <feFlood id="feFlood72" flood-opacity="0" result="BackgroundImageFix"></feFlood>
            <feColorMatrix id="feColorMatrix74" in="SourceAlpha" result="hardAlpha" values="0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 127 0"></feColorMatrix>
            <feOffset id="feOffset76" dy="2.64"></feOffset>
            <feGaussianBlur id="feGaussianBlur78" stdDeviation="7.92"></feGaussianBlur>
            <feComposite id="feComposite80" in2="hardAlpha" operator="out"></feComposite>
            <feColorMatrix id="feColorMatrix82" values="0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0.24 0"></feColorMatrix>
            <feBlend id="feBlend84" in2="BackgroundImageFix" result="effect1_dropShadow_3901_3026"></feBlend>
            <feColorMatrix id="feColorMatrix86" in="SourceAlpha" result="hardAlpha" values="0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 127 0"></feColorMatrix>
            <feOffset id="feOffset88" dy="7.92"></feOffset>
            <feGaussianBlur id="feGaussianBlur90" stdDeviation="6.16"></feGaussianBlur>
            <feComposite id="feComposite92" in2="hardAlpha" operator="out"></feComposite>
            <feColorMatrix id="feColorMatrix94" values="0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0"></feColorMatrix>
            <feBlend id="feBlend96" in2="effect1_dropShadow_3901_3026" result="effect2_dropShadow_3901_3026"></feBlend>
            <feBlend id="feBlend98" in="SourceGraphic" in2="effect2_dropShadow_3901_3026" result="shape"></feBlend>
          </filter>
          <filter id="filter0_dd_3901_3026" width="188.063" height="189.853" x="635.539" y="376.446" filterUnits="userSpaceOnUse" style="color-interpolation-filters:sRGB">
            <feFlood id="feFlood268" flood-opacity="0" result="BackgroundImageFix"></feFlood>
            <feColorMatrix id="feColorMatrix270" in="SourceAlpha" result="hardAlpha" type="matrix" values="0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 127 0"></feColorMatrix>
            <feOffset id="feOffset272" dy="2.687"></feOffset>
            <feGaussianBlur id="feGaussianBlur274" stdDeviation="8.06"></feGaussianBlur>
            <feComposite id="feComposite276" in2="hardAlpha" operator="out"></feComposite>
            <feColorMatrix id="feColorMatrix278" type="matrix" values="0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0.24 0"></feColorMatrix>
            <feBlend id="feBlend280" in2="BackgroundImageFix" mode="normal" result="effect1_dropShadow_3901_3026"></feBlend>
            <feColorMatrix id="feColorMatrix282" in="SourceAlpha" result="hardAlpha" type="matrix" values="0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 127 0"></feColorMatrix>
            <feOffset id="feOffset284" dy="8.06"></feOffset>
            <feGaussianBlur id="feGaussianBlur286" stdDeviation="6.269"></feGaussianBlur>
            <feComposite id="feComposite288" in2="hardAlpha" operator="out"></feComposite>
            <feColorMatrix id="feColorMatrix290" type="matrix" values="0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0"></feColorMatrix>
            <feBlend id="feBlend292" in2="effect1_dropShadow_3901_3026" mode="normal" result="effect2_dropShadow_3901_3026"></feBlend>
            <feBlend id="feBlend294" in="SourceGraphic" in2="effect2_dropShadow_3901_3026" mode="normal" result="shape"></feBlend>
          </filter>
          <pattern id="g" width="1" height="1" patternContentUnits="objectBoundingBox">
            <use xlink:href="#i" id="use101" transform="matrix(.001 0 0 .00094 0 -.005)"></use>
          </pattern>
          <pattern id="pattern0" width="1" height="1" patternContentUnits="objectBoundingBox">
            <image
              xlink:href=""
              id="use297" width="1" height="1.011" x="0" y="-.005"></image>
          </pattern>
          <mask id="mask1_3901_3026" width="82" height="87" x="689" y="429" maskUnits="userSpaceOnUse">
            <path id="rect207" d="M689.658 429.879h80.532v85.951h-80.532z" style="fill:url(#pattern0)"></path>
          </mask>
          <mask id="mask0_3901_3026" width="458" height="385" x="501" y="238" maskUnits="userSpaceOnUse">
            <path id="path144" d="M896.31 622.879c38.487-40.876 62.071-95.941 62.071-156.515 0-126.121-102.241-228.362-228.361-228.362-126.121 0-228.362 102.241-228.362 228.362 0 60.574 23.585 115.639 62.072 156.515z"
              style="fill:url(#paint10_linear_3901_3026)"></path>
          </mask>
          <image
            xlink:href=""
            id="i" width="1001" height="1080"></image>
        </defs>
        <g id="display--dial" class="c-calculator__dial-display c-calculator__dial-display--exceed">
          <path id="path107" d="M124.6 123.64h270v270h-270z" style="opacity:0"></path>
          <circle id="circle109" cx="10.901" cy="-366.289" r="93.72" style="stroke:#dc3929;stroke-width:2.64" transform="rotate(133.19)"></circle>
          <path id="path111" d="M260.022 381.398a2.5 2.5 0 0 0 2.053-2.114l3.89-27.612h-12.73l3.89 27.613a2.5 2.5 0 0 0 2.897 2.113z" style="opacity:1;fill:#dc3929"></path>
          <path id="path113"
            d="M260.022 135.882a2.5 2.5 0 0 1 2.053 2.114l3.89 27.612h-12.73l3.89-27.613a2.5 2.5 0 0 1 2.897-2.113zm122.336 123.18a2.5 2.5 0 0 1-2.114 2.053l-27.612 3.89v-12.73l27.613 3.89a2.5 2.5 0 0 1 2.113 2.897zm-245.516 0a2.5 2.5 0 0 0 2.114 2.053l27.612 3.89v-12.73l-27.613 3.89a2.5 2.5 0 0 0-2.113 2.897z"
            style="opacity:0"></path>
        </g>
      </svg>
      <div class="c-calculator__output-wrapper c-calculator__output-wrapper--emr">
        <svg viewBox="0 0 466 69" fill="none" xmlns="http://www.w3.org/2000/svg">
          <path d="M462.68 67.1496H464V65.8296V47.3496C464 22.3201 443.71 2.02961 418.68 2.02961H47.3203C22.2908 2.02961 2.00031 22.3201 2.00031 47.3496V65.8296V67.1496H3.32031H462.68Z" fill="url(#paint0_linear_3901_3176)"
            stroke="url(#paint1_linear_3901_3176)" stroke-width="2.64"></path>
          <defs>
            <linearGradient id="paint0_linear_3901_3176" x1="233" y1="-4.46039" x2="233" y2="65.8296" gradientUnits="userSpaceOnUse">
              <stop stop-color="#242424"></stop>
              <stop offset="1"></stop>
            </linearGradient>
            <linearGradient id="paint1_linear_3901_3176" x1="233" y1="-47.6904" x2="233" y2="50.8696" gradientUnits="userSpaceOnUse">
              <stop stop-color="#DB3929"></stop>
              <stop offset="1" stop-color="#DB3929" stop-opacity="0"></stop>
            </linearGradient>
          </defs>
        </svg>
        <div class="c-calculator__output-title">
          <span id="display--emr">$0K</span> EXTRA Monthly Revenue
        </div>
      </div>
    </div>
    <div class="c-calculator__column c-calculator__column--desktop">
      <div class="c-calculator__output">
        <div class="c-calculator__output-title"> Revenue Per User </div>
        <div class="c-calculator__output-inner">
          <svg preserveAspectRatio="none" viewBox="0 0 279 41" xmlns="http://www.w3.org/2000/svg">
            <rect x="0.279163" y="0.40955" width="262.133" height="41.3553" transform="matrix(1 0 -0.365539 0.930796 16.136 0.873069)" fill="#0F0F0F" stroke="url(#paint0_linear_3901_3150)" stroke-width="0.88"></rect>
            <defs>
              <linearGradient id="paint0_linear_3901_3150" x1="123.558" y1="-21.7448" x2="114.775" y2="36.0886" gradientUnits="userSpaceOnUse">
                <stop stop-color="#939393"></stop>
                <stop offset="1" stop-color="#101010"></stop>
              </linearGradient>
            </defs>
          </svg>
          <p class="c-calculator__output-value display--rpu"> $0 </p>
        </div>
      </div>
      <div class="c-calculator__output">
        <div class="c-calculator__output-title"> Current Annual Revenue </div>
        <div class="c-calculator__output-inner">
          <svg preserveAspectRatio="none" viewBox="0 0 279 41" xmlns="http://www.w3.org/2000/svg">
            <rect x="0.279163" y="0.40955" width="262.133" height="41.3553" transform="matrix(1 0 -0.365539 0.930796 16.136 0.873069)" fill="#0F0F0F" stroke="url(#paint0_linear_3901_3150)" stroke-width="0.88"></rect>
            <defs>
              <linearGradient id="paint0_linear_3901_3150" x1="123.558" y1="-21.7448" x2="114.775" y2="36.0886" gradientUnits="userSpaceOnUse">
                <stop stop-color="#939393"></stop>
                <stop offset="1" stop-color="#101010"></stop>
              </linearGradient>
            </defs>
          </svg>
          <p class="c-calculator__output-value display--ar"> $0 </p>
        </div>
      </div>
      <div class="c-calculator__output">
        <div class="c-calculator__output-wrapper c-calculator__output-wrapper--ear">
          <svg preserveAspectRatio="none" viewBox="0 0 264 51" xmlns="http://www.w3.org/2000/svg" style="fill:none">
            <path fill="url(#abd)" d="M24.845 1.444c-13.26 0-24.01 10.75-24.01 24.01 0 13.26 10.75 24.009 24.01 24.009h213.858c13.26 0 24.01-10.75 24.01-24.01 0-13.26-10.75-24.01-24.01-24.01H24.845Z"></path>
            <path stroke="url(#bad)" stroke-width="1.651" d="M24.845 1.444c-13.26 0-24.01 10.75-24.01 24.01 0 13.26 10.75 24.009 24.01 24.009h213.858c13.26 0 24.01-10.75 24.01-24.01 0-13.26-10.75-24.01-24.01-24.01H24.845Z"></path>
            <defs>
              <linearGradient id="abd" x1="131.774" x2="131.774" y1="-3.526" y2="48.637" gradientUnits="userSpaceOnUse">
                <stop stop-color="#242424"></stop>
                <stop offset="1"></stop>
              </linearGradient>
              <linearGradient id="bad" x1="131.774" x2="131.774" y1="-35.608" y2="37.535" gradientUnits="userSpaceOnUse">
                <stop stop-color="#DB3929"></stop>
                <stop offset="1" stop-color="#DB3929" stop-opacity="0"></stop>
              </linearGradient>
            </defs>
          </svg>
          <div class="c-calculator__output-title"> Extra Annual Revenue </div>
        </div>
        <div class="c-calculator__output-inner">
          <svg preserveAspectRatio="none" viewBox="0 0 279 41" xmlns="http://www.w3.org/2000/svg">
            <rect x="0.279163" y="0.40955" width="262.133" height="41.3553" transform="matrix(1 0 -0.365539 0.930796 16.136 0.873069)" fill="#0F0F0F" stroke="url(#paint0_linear_3901_3150)" stroke-width="0.88"></rect>
            <defs>
              <linearGradient id="paint0_linear_3901_3150" x1="123.558" y1="-21.7448" x2="114.775" y2="36.0886" gradientUnits="userSpaceOnUse">
                <stop stop-color="#939393"></stop>
                <stop offset="1" stop-color="#101010"></stop>
              </linearGradient>
            </defs>
          </svg>
          <p class="c-calculator__output-value display--ear"> $0 </p>
        </div>
      </div>
    </div>
  </div>
</form>

Text Content

TestimonialsCase Studies
Services
Full Funnel StrategyA/B Tests
Contact Us
Book a call
BOOK A CALL




WE WILL UPLIFT YOUR REVENUE BY 16% IN 90 DAYS

Or you don't pay again until we do

Or you don't pay again until we do


Get Started

"I can say without a doubt that working with TVRBO has been the best marketing
investment to date."

"I can say without a doubt that working with TVRBO has been the best marketing
investment to date."


300+ Conversion Happy Customers

21%
Average Increase Per CRO Test
30%
Average CPA Decrease
18%
Average AOV Increase



WHO IS TVRBO FOR?

High 6, 7 & 8-figure e-commerce brands that want to scale beyond ads.

What's in it for you? Achieve a greater ROAS without increasing your ad spend.
Our Method to Accelerate Growth:



Healthier Scaling Foundation: Ads amplify, but we build from within.

Scale Faster Than Ever Before: Elevate every touchpoint in the customer journey.

Increased Revenue Per User: Maximize AOV and Conversion Rate.




REVIEWS

From my perspective, TVRBO's help has had the most direct and meaningful impact
on our business, and I would definitely recommend TVRBO to small business
struggling to manage your website funnel.

Paolo - Giant Loop




We sell niche products, really, they are a niche within a niche making the
customers very difficult to target. They've been great with feedback concerning
the nuance of our product, and adapted quickly. They also have a great tracking
and communication document that they have put together. 10/10.

Erik - Robert Axle Project




Before we launched Moon, we had no idea if anyone would buy our awning. In less
than a year we’re a team of 6 people selling more shades than we can produce. We
have a business we can count on and we wouldn’t be here without TVRBO.

Henry - Moon




Excellent experience all around with great communication, flexibility, and
collaboration. TVRBO team really know what they’re doing and it has been a
pleasure working with them.

Annan - One Plus




TVRBO has done an awesome job communicating and sharing the strategy and was
very detailed with everything. Highly recommended.

Will - Reason




TVRBO is phenomenal. They are extremely knowledgeable and professional. I highly
recommend them.

Ryan - Talius




The TVRBO team has proven themselves to be invaluable partners to EarthCruiser
in expanding both our brand reach and product demand in a strategic, data-driven
manner.

Mary - EarthCruiser







353%
Aggregated Test Uplift
Moon
Case Study
142%
Aggregated Test Uplift
Giant Loop
Case Study
191%
Increase in Revenue Per Visitor
Spout Water
Case Study


SPOUT WATER - FULL FUNNEL

We designed Spout’s website and an educational pre-sale page for their product,
which is new to the market. Through a full-funnel approach, we communicated the
benefits of this product’s new technology to unaware audiences, speaking
directly to their pain-points. As we managed the pre-sale phase of this product
launch, we also incorporated tiered pricing and urgency messaging to further
drive sales.With feedback and customer data from tonality reports, behavioral
analyses and heat map tools, we identified the proper way to communicate with
audiences. And through our educational messaging angle on why Spout was an
effective water purification solution, we were able to nearly triple the revenue
per visitor. Finally, we also increased the brand’s profitability by achieving
nearly 2x their initial ROAS without touching ad spend.

‍

 * High converting elements above the fold.
 * Social proof across the website (press mentions, testimonials, awards...).
 * Better value propositions and overall copy.
 * Increased readability.
 * Increase urgency with timers and messaging.
 * Answered FAQs based on tonality report throughout the pages and in the FAQ
   section.

114%
Conversion rate

191%
Revenue per user
Before
After



MOONFAB - A/B TEST

We developed vehicle-specific landing pages for this client to appeal to their
audience's mass desires: finding innovative solutions to add to their "van life"
vehicles, including vans, trucks, and SUVs. Additionally, we focused on the main
website by adding high-converting elements that convey the brand's main USPs in
a visually appealing and easy-to-digest way. Also, we had to understand the
customers' pain points and motivations, as they were not communicated clearly on
the product page. Then, we compared their product to competitors to educate on
why Moon's product had a better quality/cost proposal than most brands. Finally,
we increased the readability on several pages, including the product page, and
increased the AOV by offering more products on the exit funnel.

353%
Aggregated Test Uplift

72%
Biggest Uplift singular test
Before
After

Before we launched Moon, we had no idea if anyone would buy our awning. In less
than a year, we’re a team of 6 people selling more shades than we can produce.

We have a business we can count on and we wouldn’t be here without TVRBO.


GIANT LOOP - A/B TEST

For Giant Loop, we A/B tested product pages to tackle low-hanging fruit. One of
the main issues was that the differentiation of product usage needed to be
clearer. We ran a tonality report, conducted a behavioral analysis with heatmap
tools, and looked at other sources, such as Google Analytics, to create a solid
base of customer data and feedback. We used the feedback and data to ensure our
improvements would make the highest impact possible.

‍

 * The subtitle helped users quickly gather important context regarding the
   product.
 * A/B Test the right text for your headings and subtitles to see long-term SEO
   benefits.
 * Testing text above the fold results in continuous improvement and
   optimization of the pages that matter the most.
 * We used strong keywords to drive user engagement.

142%
Aggregated Test Uplift

30%
Biggest Uplift singular test
Before
After

From my perspective, TVRBO's help has had the most direct and meaningful impact
on our business, and I would definitely recommend TVRBO to small business
struggling to manage your website funnel.


SPOUT WATER - FULL FUNNEL

We designed Spout’s website and an educational pre-sale page for their product,
which is new to the market. Through a full-funnel approach, we communicated the
benefits of this product’s new technology to unaware audiences, speaking
directly to their pain-points. As we managed the pre-sale phase of this product
launch, we also incorporated tiered pricing and urgency messaging to further
drive sales.With feedback and customer data from tonality reports, behavioral
analyses and heat map tools, we identified the proper way to communicate with
audiences. And through our educational messaging angle on why Spout was an
effective water purification solution, we were able to nearly triple the revenue
per visitor. Finally, we also increased the brand’s profitability by achieving
nearly 2x their initial ROAS without touching ad spend.

‍

 * High converting elements above the fold.
 * Social proof across the website (press mentions, testimonials, awards...).
 * Better value propositions and overall copy.
 * Increased readability.
 * Increase urgency with timers and messaging.
 * Answered FAQs based on tonality report throughout the pages and in the FAQ
   section.

114%
Conversion rate

191%
Revenue per user
Before
After



MOONFAB - A/B TEST

We developed vehicle-specific landing pages for this client to appeal to their
audience's mass desires: finding innovative solutions to add to their "van life"
vehicles, including vans, trucks, and SUVs. Additionally, we focused on the main
website by adding high-converting elements that convey the brand's main USPs in
a visually appealing and easy-to-digest way. Also, we had to understand the
customers' pain points and motivations, as they were not communicated clearly on
the product page. Then, we compared their product to competitors to educate on
why Moon's product had a better quality/cost proposal than most brands. Finally,
we increased the readability on several pages, including the product page, and
increased the AOV by offering more products on the exit funnel.

353%
Aggregated Test Uplift

72%
Biggest Uplift singular test
Before
After

Before we launched Moon, we had no idea if anyone would buy our awning. In less
than a year, we’re a team of 6 people selling more shades than we can produce.

We have a business we can count on and we wouldn’t be here without TVRBO.




GET STARTED



WHERE CRO AGENCIES STOP,
WE PUSH FURTHER.

As an RPU-focused agency, we know revenue optimization goes beyond just a few
A/B tests and landing pages redesigns. It involves fine-tuning the entire user
journey, leveraging customer data, to increase revenue without raising ad spend.
Click for sound





1:01









1
Focus on Revenue per User (RPU)
Strategically shift your focus from solely Conversion Rate to Average Order
Value AND Conversion Rate. At their intersection, emerges RPU, a key metric to
track to achieve more profitability & higher ROAS.
2
Use Customer Data
Decisions are based on real data—NOT best practices or gut feelings. We collect,
compile, and analyze data from your customer feedback to better connect with and
understand your audience.
3
Optimize the Full Customer Funnel
The customer journey extends beyond a landing page, and so does our work. We
test and optimize the entire funnel, hitting every touchpoint, to compound the
highest conversion rate possible & skyrocket revenue.



ENVISION YOUR GROWTH

Input your business numbers to see your potential revenue.
Conversion rate
%

Average order value
$

Monthly sessions
k

A/B Test Impact
 * +5%
 * +12%
 * +16%

A/B Test Impact
 * +5%
 * +12%
 * +16%

Extra Annual Revenue

$0

Revenue Per User

$0

Current Annual Revenue

$0

$0K EXTRA Monthly Revenue
Revenue Per User

$0

Current Annual Revenue

$0

Extra Annual Revenue

$0


PERFORMANCE-BASED PRICING MODEL

Our partnership is results driven. We'll earn a commission off our winning
tests. If no impact is made, you don't pay.
BOOK A CALL


BECOME UNSTOPPABLE


Schedule a free, no-commitment strategy session with our team.  Spots are
limited.
book a call
Full Funnel StrategyA/B TestsTestimonials
Case StudiesContact Us
Follow Us

© 2024 TVRBO. All rights reserved.
Terms of serviceCookies SettingsPrivacy Policy

SUBSCRIBE NOW
X
Ready to see how you can achieve these results?
Ready to see how you can achieve these results?

Subscribe for exclusive insights
to increase your revenue per user.

Subscribe now
X
Thank you for subscribing!


Get ready to scale your business.


Thank you for subscribing!


Get ready to scale your business.
Made with ♥️ by OptiMonk