dabs.su.domains
Open in
urlscan Pro
159.89.149.97
Public Scan
URL:
https://dabs.su.domains/
Submission: On November 13 via api from US — Scanned from CA
Submission: On November 13 via api from US — Scanned from CA
Form analysis
1 forms found in the DOMPOST #
<form method="post" action="#">
<div class="fields">
<div class="field half">
<label for="name">Name</label>
<input type="text" name="name" id="name">
</div>
<div class="field half">
<label for="email">Email</label>
<input type="text" name="email" id="email">
</div>
<div class="field">
<label for="message">Message</label>
<textarea name="message" id="message" rows="5"></textarea>
</div>
</div>
<ul class="actions">
<li><a href="" class="button submit">Send Message</a></li>
</ul>
</form>
Text Content
* Overview * How it works * Datasets * Get in touch DABS The Domain Agnostic Benchmark for Self-supervised learning. * Learn more * Read the Paper * See the Code EMBEDDING First, data from pretraining datasets are embedded into vectors of uniform shape in order to allow for a domain-agnostic model architecture that does not depend on the shape of the data within each domain. We encourage the use of our provided embedding module, but participants may also create their own. PRETRAINING Participants have agency over the pretraining objective they choose, and the entire architecture of their model. The goal is to use pretraining datasets to condition a model that is performant accross transfer datasets within a domain, and ultimately to create an architecture and pretraining objective that is performant in this way accross all six domains. TRANSFER LEARNING In the adaptation layer, the model is given labeled data in the same domain as the pretraining data, but possibly from a different dataset and with a different end task. A linear classifier is provided as the adaptation layer in our baseline model, but participants may choose their own adaptation method so long as it is in the spirit of the benchmark. DOMAINS We use six domains in order to capture performance over both traditional ML tasks that have extensive research communities (e.g. computer vision and NLP) and less studied/emerging focal point of the field (e.g. sensor and x-ray data). More information about selection criteria and specific datasets can be found in the DABS paper. IMAGES Phasellus convallis elit id ullam corper amet et pulvinar. Duis aliquam turpis mauris, sed ultricies erat dapibus. SPEECH Phasellus convallis elit id ullam corper amet et pulvinar. Duis aliquam turpis mauris, sed ultricies erat dapibus. TEXT Phasellus convallis elit id ullam corper amet et pulvinar. Duis aliquam turpis mauris, sed ultricies erat dapibus. SENSOR Phasellus convallis elit id ullam corper amet et pulvinar. Duis aliquam turpis mauris, sed ultricies erat dapibus. CHEST X-RAY Phasellus convallis elit id ullam corper amet et pulvinar. Duis aliquam turpis mauris, sed ultricies erat dapibus. TEXT-IMAGE PAIRING Phasellus convallis elit id ullam corper amet et pulvinar. Duis aliquam turpis mauris, sed ultricies erat dapibus. * Learn more GET IN TOUCH Phasellus convallis elit id ullamcorper pulvinar. Duis aliquam turpis mauris, eu ultricies erat malesuada quis. Aliquam dapibus, lacus eget hendrerit bibendum, urna est aliquam sem, sit amet imperdiet est velit quis lorem. Name Email Message * Send Message * ADDRESS 12345 Somewhere Road #654 Nashville, TN 00000-0000 USA * EMAIL user@untitled.tld * PHONE (000) 000-0000 * SOCIAL * Twitter * Facebook * GitHub * Instagram * LinkedIn * © Untitled. All rights reserved. * Design: HTML5 UP