www.slingacademy.com
Open in
urlscan Pro
2a06:98c1:3121::3
Public Scan
URL:
https://www.slingacademy.com/article/pandas-using-dataframe-replace-method-7-examples/?utm_content=cmp-true
Submission: On October 11 via api from LU — Scanned from NL
Submission: On October 11 via api from LU — Scanned from NL
Form analysis
2 forms found in the DOMGET https://www.slingacademy.com
<form class="ml-4 md:ml-auto grow max-w-[600px]" action="https://www.slingacademy.com" method="get">
<div class="relative w-full flex">
<input type="text" name="s" required="" maxlength="30" title="Search slingacademy.com" id="search" class="w-full h-full pl-4 pr-12 py-2 rounded-full bg-zinc-700 text-white/90 focus:outline-none focus:ring-2 focus:ring-green-500"
placeholder="Search">
<button type="submit" class="absolute top-0 right-0 h-full w-12 flex justify-center items-center"><svg xmlns="http://www.w3.org/2000/svg" class="h-5 w-5 text-white/90" fill="none" viewBox="0 0 24 24" stroke="currentColor">
<path
d="M 13 3 C 7.4889971 3 3 7.4889971 3 13 C 3 18.511003 7.4889971 23 13 23 C 15.396508 23 17.597385 22.148986 19.322266 20.736328 L 25.292969 26.707031 A 1.0001 1.0001 0 1 0 26.707031 25.292969 L 20.736328 19.322266 C 22.148986 17.597385 23 15.396508 23 13 C 23 7.4889971 18.511003 3 13 3 z M 13 5 C 17.430123 5 21 8.5698774 21 13 C 21 17.430123 17.430123 21 13 21 C 8.5698774 21 5 17.430123 5 13 C 5 8.5698774 8.5698774 5 13 5 z">
</path>
</svg>
</button>
</div>
</form>
GET https://www.slingacademy.com
<form class="mx-auto px-4 grow max-w-[800px]" action="https://www.slingacademy.com" method="get">
<p class="my-4 text-center font-light text-sm text-zinc-500">Search tutorials, examples, and resources</p>
<div class="relative w-full flex">
<input type="text" name="s" required="" maxlength="30" title="Search slingacademy.com" id="search" class="w-full pl-4 pr-12 py-2 rounded-full bg-white border border-1 border-zinc-400 focus:outline-none focus:ring-2 focus:ring-green-500"
placeholder="Search...">
<button type="submit" class="absolute top-0 right-0 h-full w-12 flex justify-center items-center"><svg xmlns="http://www.w3.org/2000/svg" class="h-5 w-5 text-zinc-500" fill="none" viewBox="0 0 24 24" stroke="currentColor">
<path
d="M 13 3 C 7.4889971 3 3 7.4889971 3 13 C 3 18.511003 7.4889971 23 13 23 C 15.396508 23 17.597385 22.148986 19.322266 20.736328 L 25.292969 26.707031 A 1.0001 1.0001 0 1 0 26.707031 25.292969 L 20.736328 19.322266 C 22.148986 17.597385 23 15.396508 23 13 C 23 7.4889971 18.511003 3 13 3 z M 13 5 C 17.430123 5 21 8.5698774 21 13 C 21 17.430123 17.430123 21 13 21 C 8.5698774 21 5 17.430123 5 13 C 5 8.5698774 8.5698774 5 13 5 z">
</path>
</svg>
</button>
</div>
</form>
Text Content
Sling S Academy A * Home * JavaScript * Python * Next.js * FastAPI PANDAS Series Pandas Series Cheat Sheet Create Pandas Series from Different Sources Add and Insert New Elements into a Series Sorting a Series Counting Pandas Series Elements Counting NaN & Non-NaN in Pandas Updating Series Indexes in Pandas Convert Pandas Series to Dict Get Unique Values in Series Pandas: Access Series Elements First/Last N in Pandas Series Clean Series with Pandas Remove Non-numeric in Pandas Series List Indexes in Pandas Series Get List from Pandas Series Convert Pandas Series to Dictionary Multi-Index Series in Pandas Looping Through a Series Pandas: Memory Usage of Series/DF Pandas: Series Value Check Pandas: Detect NaN in Series Check if Pandas Series is Empty Naming/Renaming Pandas Series Cast Pandas Series Data Types Deep Copy of Pandas Series Convert Pandas Series to NumPy Update Pandas Series Element Drop Item from Pandas Series pandas.Series.xs() Explained Sum of N Series in Pandas Element-wise Subtract Series Element-wise multiply 2 Series Divide Series by Series in Pandas pandas.Series.floordiv() Guide Pandas: Series Modulo Operation Exponentiate 2 Pandas Series Guide: pandas.Series.combine() Understanding pandas.Series.combine_first() Custom Rounding in Pandas Series Pandas Series.lt() & le() Pandas Series.gt() & Series.ge() Methods Pandas: Series Equality Check Product of Values in Pandas Series Dot Product in Pandas Pandas Series.apply() Examples Pandas Series Aggregation pandas.Series.transform() Guide pandas.Series.map() Explained Guide to pandas.Series.groupby() Pandas Series rolling() In-depth Expanding Window Ops in Pandas Exponential Weight in Pandas Exploring pandas.Series.pipe() pandas.Series.abs() Tutorial Checking Series for All True Using pandas.Series.any() Lag-N Autocorrelation in Pandas Understanding pandas.Series.between() pandas.Series.clip() Guide Pandas: Correlation of Series pandas.Series.cov() Tutorial Cumulative Min/Max in Pandas Cumulative Sum/Product with Pandas pandas.Series.diff() Guide pandas.Series.factorize() Guide Computing Kurtosis with Pandas Min/Max in Pandas Series Computing Series Mean in Pandas Pandas Series Median Pandas: Find Series Mode Get N Largest Values in Pandas Get N Smallest Elements in Series pandas.Series.pct_change() Guide pandas.Series.quantile() Guide pandas.Series.rank() Examples Pandas Series.sem() Explained Unbiased Skew with Pandas Pandas: Std Deviation of Series Pandas: Unbiased Variance Count Unique Values in Series Unique Values in Pandas Series Pandas: Monotonic Series Check Pandas: Count Unique Values pandas.Series.align() Explained pandas.Series.case_when() Guide Removing Duplicates in Pandas pandas Series.equals() method Pandas: Get N Elements of a Series Pandas idxmax() & idxmin() Guide Using pandas.Series.isin() Method pandas.Series.reindex() Guide Reindex-like Method Examples Renaming Pandas Series Indexes Pandas Series.reset_index() Guide Advanced pandas.Series.sample() pandas.Series.take() method pandas.Series.truncate() Explored Mastering pandas.Series.where() Using pandas.Series.mask() Method Pandas: Prefix/Suffix for Series Filter Pandas Series by Condition pandas.Series.bfill() Explained Drop NA/NaN from Pandas Series pandas.Series.ffill() Explained Master pandas.Series.fillna() Pandas Series.interpolate() Guide Series to List of Tuples Pandas: Series.replace() Examples Pandas Series.argsort() Tutorial List of Tuples to Pandas Series pandas.Series.reorder_levels() Sorting Pandas Series by Index pandas swaplevel() Method pandas.Series.unstack() Guide pandas.Series.explore() Guide Pandas searchsorted() Guide pandas.Series.repeat() Tutorial pandas .squeeze() Method Guide Visualize Time Series with Holidays Comparing 2 Pandas Series Update Pandas Series In Place Pandas Time Series Handling pandas.Series.asfreq() Guide Time Series in Pandas Explained Pandas: Date Strings to Datetime Time Series with Pandas pandas.Series.asof() Explained pandas.Series.shift() Explained Pandas Series.resample() Explained pandas tz_convert() Explained pandas.Series.tz_localize() Guide pandas.Series.at_time() Guide Selecting Values with between_time() Exploring pandas.Series.cat() Working with Dates in pandas Trimming Whitespaces in Pandas Pandas: Case Transformation pandas.Series.str.match() Guide Pandas String Padding Guide Pandas Regex in Series Slice Substrings in Pandas Series pandas str.slice_replace() Guide pandas.Series.str.split() Guide Pandas: Check Series Substrings Pandas DatetimeIndex Explained Pandas TimedeltaIndex Guide Pandas PeriodIndex Guide Pandas: Handle DST Transitions Pandas Custom Holidays Business Hours in Pandas Pandas Time Series Shift&Lag Time Series to datetime List Pandas Time Series Frequency Split Time Series in Pandas pandas.Series.dt.floor() Explained Turning Off Pandas Future Warnings pandas Series to_period() Explained pandas.Series.convert_dtypes() pandas.Series.to_markdown() Guide Pandas Time Series Analysis Adjusting Prices: Dividends & Splits Pandas EMA of Stock Price Pandas: Calculating Stock RSI DataFrames DataFrame Cheat Sheet Pandas Data Types Guide List of Dicts to DataFrame DataFrame to List of Dicts Import CSV into DataFrame Read Excel Files with Pandas Parsing JSON to DataFrame Parse HTML Table to DataFrame SQLite to DataFrame in Pandas Save DataFrame to CSV Save DataFrame to Excel Select Columns by Data Type Store DataFrame in SQLite Saving DataFrame as JSON Render DataFrame to HTML Table Serve DataFrame as REST API Read XML into DataFrame DataFrame to XML with Pandas DataFrame to PDF with Pandas Read Clipboard Data with Pandas Pandas & HDFStore Guide Pandas json_normalize() Explained Selecting SQLite rows with Pandas Create & Add Data to DataFrame Create DataFrame & Add Columns Pandas DataFrame from NumPy Array Create DataFrame from Dict DataFrame from N Series in Pandas Listing DataFrame Row Labels View DataFrame Column Labels Viewing Data Types in Pandas Pandas: Multi-Type Columns? Summarizing DataFrames in Pandas Pandas DataFrame Data Types DataFrame to NumPy Conversion Inspect DataFrame Axes Counting Rows & Columns in Pandas Count Elements & Dimensions in DF Check Empty DataFrame in Pandas Managing Duplicate Labels in DF Pandas: Casting DataFrame Types Guide to pandas convert_dtypes() pandas infer_objects() Explained Deep/Shallow DataFrame Copies Pandas: First/Last N Rows Access/Modify Cell with .at[]/.iat[] Mastering pandas.DataFrame.loc[] pandas.DataFrame.insert() Guide Understanding DataFrame.items() pandas.DataFrame.iterrows() Guide Get Pandas Column Position Exploring pd.DataFrame.itertuples() Drop a Column in Pandas Pandas: Creating DataFrame DataFrame to List of Tuples Deep Dive into DataFrame.xs() pandas.DataFrame.get() Examples Exploring pandas.DataFrame.isin() pandas.DataFrame.where() Guide pandas.DataFrame.mask() Tutorial Pandas DataFrame.query() Method Element-wise Sum in Pandas Subtract DataFrames Element-wise Pandas Elem-wise Multiplication Divide DataFrames Element-wise Pandas Modulo of DataFrames Element-wise Exponentiation in Pandas Logarithmic Operations in Pandas Master pandas.DataFrame.dot() Pandas lt() & le() Methods Explained Pandas gt() & ge() Methods Guide Comparing DataFrames Element-wise Pandas DataFrame.combine() Method pandas `combine_first()` Method Master DataFrame.apply() in Pandas DataFrame.map() Method Explained Pandas DataFrame.pipe() Guide Pandas DataFrame.agg() Examples Pandas DataFrame.aggregate() DataFrame.transform() in Pandas Master DataFrame.groupby() Pandas Rolling Window Calculations Expanding Window Calculations Pandas EW Calculations Pandas DataFrame.abs() Explained Pandas DataFrame.all() Guide Pandas DataFrame.any() Method Pandas DataFrame.clip() Tutorial Pairwise Correlation in Pandas Counting Non-Null Values in DF Pandas DataFrame.cummax() Explained Pandas DataFrame.cummin() Pandas & Google Sheets Tutorial Setting Random Seed in Pandas Pandas DataFrame.cumprod() Guide Accessing & Modifying Excel in OneDrive Handling Large Data with Pandas & Dask Pandas DataFrame.cumsum() Guide Cleaning Text Data with Pandas Master DataFrame.diff() in Pandas Pandas: Reading from S3 with Examples Web Scraping with Pandas Pandas DataFrame.eval() Method Pandas Profiling for Data Analysis Pandas DataFrame.kurt() Pandas & Spark Integration DataFrame.kurtosis() in Pandas DataFrame.max() in Pandas Pandas for Geospatial Data Analysis Pandas DataFrame.min() Guide Understanding DataFrame.mean() Pandas DataFrame.median() Guide Pandas DataFrame.mode() guide DataFrame.pct_change() in Pandas Pandas prod() & product() Methods DataFrame.quantile() in Pandas Data Ranks in Pandas Pandas DataFrame.round() Explained Pandas DataFrame.sem() Explained Pandas DataFrame.skew() Method Pandas DataFrame.sum() Examples Pandas DataFrame.std() Explained DataFrame.var() in Pandas Counting Distinct Values in Pandas Add Prefix/Suffix in Pandas Pandas DataFrame.align() Guide Pandas DataFrame.at_time() Guide Using DataFrame.between_time() Dropping Labels in Pandas DF Pandas: Remove Duplicate Rows Pandas DataFrame.duplicated() Pandas equals() Explained Mastering DataFrame.filter() Pandas idxmax() & idxmin() Guide Guide to DataFrame.reindex() Pandas: DataFrame.reindex_like() Renaming DataFrame Columns DataFrame.reset_index() Guide Pandas DataFrame.sample() Guide DataFrame.set_axis() in Pandas Pandas set_index() Method DataFrame.take() in Pandas Pandas DataFrame.truncate() Explained Mastering DataFrame.bfill() in Pandas DataFrame.dropna() in Pandas Pandas DataFrame.ffill() Guide Pandas fillna() Method Examples Pandas interpolate() Explained Identify Missing Values in DF Pandas: Detect Non-Missing Values Pandas DataFrame.replace() Guide DataFrame.droplevel() in Pandas Pandas DataFrame.pivot() Tutorial Pandas .pivot_table() Explained DataFrame.reorder_levels() guide Sort Pandas DataFrame with sort_values() Pandas sort_index() Guide Pandas: nlargest() and nsmallest() Pandas swaplevel() Explained Pandas DataFrame stack() & unstack() Mastering DataFrame.transpose() Pandas DataFrame.melt() Tutorial Pandas DataFrame.assign() Guide DataFrame.explode() in Pandas Pandas DataFrame.squeeze() DataFrame to xarray in Pandas Master Pandas DataFrame.compare() Pandas DataFrame.join() Explained Merge 2 Pandas DataFrames Pandas DataFrame.update() DataFrame.asfreq() in Pandas Pandas DataFrame.asof() Guide DataFrame.shift() in Pandas DataFrame.resample() Guide Pandas to_period() Explained DataFrame.to_timestamp() Guide Understanding DataFrame.tz_convert() NumPy Type Checking with mypy Pandas tz_localize() Guide Pandas to_string() Explained Appending Rows in DataFrame Prepend Row to DataFrame Filter DataFrame by Conditions Pandas MultiIndex Tutorial Iterate DataFrame Rows in Pandas Async/Await in Pandas Selecting Rows in Pandas Selecting Columns in Pandas Swapping Columns in Pandas Change Pandas Columns Order Changing Column Data Type in Pandas Search Rows by String Keyword Sorting DataFrame Rows DataFrame to MongoDB Tutorial Replacing NA/NaN with Zero in DF Create Empty DataFrame in Pandas Filter DataFrame with LIKE/NOT LIKE Shuffling DataFrame Rows Update Cell in Pandas DataFrame Concatenate CSVs into a DataFrame Save DataFrame to Multiple CSVs Add Column Based on Existing Ones Checking Column Existence in DF Check Row Existence in DataFrame Dropping Unused Levels in MultiIndex Select Columns Except Some in Pandas Split DataFrame in Test/Train/Val Sets Indexes with Conditions in Pandas Counting Value Frequency with Pandas Convert ISO Strings to Datetime Appending DataFrame rows to CSV Select N Random Rows in Pandas Select Rows Between Dates Select rows by time frame in Pandas Convert Strings to Numbers in DF Combine Columns in Pandas Print DataFrame Without Index Print All Columns in Pandas Clear DataFrame Rows in Pandas Pandas: Map True/False to 1/0 Filter Pandas DataFrame with regex Dropping Non-Numerical Columns Removing Duplicates in Pandas Renaming DataFrame Columns Dropping Columns in Pandas Dropping Columns in Pandas Drop Columns by Avg Threshold Pandas: String Conversion Pandas: Clean Column Names Read Authenticated CSV with Pandas Select Rows Not in Another DF Appending Footer Row in Pandas Understanding dtype('O') in Pandas Replace NaN with Column Mean Pandas DataFrame & Type Hints Pandas Series & Type Hints Generate Heatmap with Pandas Pandas + Faker for Random Data Insert a Row in DataFrame Comparing 2 DataFrame Columns Select Columns by Name Patterns Organize a Pandas Project DataFrame vs Matrix Explained Trim Strings in DataFrame Pandas DataFrame Column Naming Convert DataFrame to Series Concatenate Strings in DataFrame Partition Large DataFrame Append Dict to DataFrame Replace Negative Values in DF Split DataFrame Column Swap Rows in Pandas DataFrame Pandas: Timestamp to Datetime Filtering DataFrame with OR Replicate DataFrame Row N Times Pandas: Auto-Increment Column Find Closest Value in DataFrame Nested Dict to Multi-Index DF Convert DataFrame strings to binary Creating Categorical Columns Pandas: Ordered Categories SparseArray in Pandas Explained Combine Categorical Columns IntervalIndex in Pandas PeriodIndex in Pandas Explained Pandas BusinessDay.is_on_offset() CustomBusinessDay in Pandas Rolling Sample Covariance Rolling Weighted Mean with Pandas Rolling Weighted Window with Pandas Pandas: Rolling Weighted Variance Rolling Weighted Std Deviation Expanding Count in Pandas DF Expanding Min/Max in Pandas Pandas cut() Function Explained Exploring Pandas qcut() Function Pandas get_dummies() Function Pandas from_dummies() Guide Pandas lreshape() Tutorial Pandas wide_to_long() Examples Pandas to_timedelta() Function Pandas: Business Day DatetimeIndex Infer_freq() in Pandas Pandas Dataframe/Series Hashing Pandas: Counting Grouped Rows Sum/Average in Pandas DataFrame Min/Max in DataFrame Groups Count Unique Values in Groups Pandas GroupBy Day of Week Pandas DataFrame Grouping Pandas: Product of Groups Summary Stats of DF Groups Get nth Row of Each Group in Pandas Get Head/Tail Rows in Pandas Rank Values in Pandas Groups Pandas: Cumulative Sum/Avg by Group Cumulative Min/Max in Pandas Pandas Cumulative Product by Group DataFrame from a String Pandas INNER JOIN DataFrames LEFT JOIN with Pandas Pandas: RIGHT JOIN DataFrames Pandas FULL JOIN Tutorial Pandas: CROSS JOIN DataFrames Pandas: SELF JOIN Explained Reading CSV with Custom Delimiter Pandas: Reading Varied CSV Rows Combine Excel Files with Pandas Skip N Rows in Pandas CSV Dropping MultiIndex in Pivot Tables Adding Percent Column in Pandas Pandas Pivot Table Tutorial Pandas Lag/Lead Column Tutorial Find Frequent Value in DF Groups Combine date & time in Pandas Grouping Pandas DataFrame Rows Pandas: Create New Column with Conditions Check Numeric Data in DataFrame Error Fixing Fixing Pandas FutureWarning Fixing pandas Module Error Fixing Pandas ImportError Fixing Pandas Pyarrow Warning Fixing Pandas TypeError Fixing Pandas ValueError Fixing Pandas KeyError Fixing SettingWithCopyWarning Fixing Pandas UnicodeDecodeError Fixing Pandas DtypeWarning Fixing Pandas 'append' Error Fixing Pandas Merge ValueError Fixing Pandas sort attribute Error Fix Pandas 'ix' AttributeError Fixing 'pd' not Defined Error Fixing Pandas String to Float Error Fix Pandas TypeError Fixing Pandas KeyError Fix OutOfBoundsDatetime Error Fixing Pandas ValueError Fixing Pandas ValueError Fixing LinAlgError: Singular Matrix Fix .str AttributeError in Python Fixing Pandas AttributeError Fixing DataFrame not callable Pandas ValueError Fix Fixing Pandas ValueError Fixing Pandas ValueError Fixing Pandas ValueError Fixing Pandas TypeError Fixing Pandas Merge ValueError Fixing NumPy ValueError Fix Pandas ValueError Fixing Pandas TypeError Fixing Pandas Index ValueError Fixing Pandas ValueError Fixing Pandas TypeError Fixing Pandas TypeError Pandas ValueError Fix Fix Pandas ValueError Pandas DataFrame: Group Sorting Fixing Pandas DeprecationWarning 'str' AttributeError in Pandas Fix Pandas AttributeError Fixing Pandas FutureWarning Fixing Pandas TypeError Fix TypeError: datetime64 sum ops Fixing Pandas FutureWarning Fixing Pandas AttributeError Fixing Pandas/NumPy Shape Error Fixing Pandas FutureWarning Pandas NameError: null not defined Fixing Pandas ValueError Fixing NDFrame.asof() Error in Pandas Fixing Pandas NameError: NaN Fixing Pandas asof() TypeError Fixing Pandas ValueError Fixing DataFrame.applymap Warning Fixing Pandas SparseArray TypeError Fixing Pandas NameError Home » Pandas » Pandas: Using DataFrame.replace() method (7 examples) PANDAS: USING DATAFRAME.REPLACE() METHOD (7 EXAMPLES) Updated: February 20, 2024 By: Guest Contributor Post a comment Table Of Contents 1 Introduction 2 When to Use DataFrame.replace()? 3 Preparing a Sample DataFrame 4 Example 1: Basic Replacement 5 Example 2: Replacing Multiple Values at Once 6 Example 3: Replacing Values in Specified Columns 7 Example 4: Using Regex for Replacement 8 Example 5: Replacing NaN Values 9 Example 6: Replacing with a Dictionary of Columns 10 Example 7: Advanced Replacement with a Lambda Function 11 Conclusion INTRODUCTION Pandas is an open source Python package that is most widely used for data science/data analysis and machine learning tasks. It allows for manipulating data frames, but one of its most versatile functions is the replace() method. This tutorial will guide you through using the DataFrame.replace() method across seven different examples, ranging from basic to advanced usage. WHEN TO USE DATAFRAME.REPLACE()? The replace() method in Pandas is used to replace a string, regex, list, dictionary, series, number, etc., from a DataFrame. This could be in a single column or the entire DataFrame. Not only does it help in data cleaning by replacing NaN values or arbitrary numbers, but it’s also quite useful for manipulating the data to better fit the needs of your data analysis. PREPARING A SAMPLE DATAFRAME Through out this tutorial, we’ll use this sample DataFrame for practice: import pandas as pd # Sample DataFrame df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6], 'C': ['a', 'b', 'c']}) EXAMPLE 1: BASIC REPLACEMENT df.replace(1, 100) Output: A B C 0 100 4 a 1 2 5 b 2 3 6 c In the example above, all instances of the number 1 in the DataFrame were replaced with 100. EXAMPLE 2: REPLACING MULTIPLE VALUES AT ONCE df.replace([1, 3], [100, 300]) Output: A B C 0 100 4 a 1 2 5 b 2 300 6 c This example demonstrates how to replace multiple values at once. The first list contains the values to be replaced, and the second list their respective replacements. EXAMPLE 3: REPLACING VALUES IN SPECIFIED COLUMNS df.replace({'A': 1, 'B': 5}, 100) Output: A B C 0 100 4 a 1 2 100 b 2 3 6 c This code block showcases replacing values in specified columns. The dictionary keys indicate the columns, and the values indicate the values in those columns that are to be replaced. EXAMPLE 4: USING REGEX FOR REPLACEMENT df = pd.DataFrame({'A': ['1x', '2y', '3z'], 'B': ['4x', '5y', '6z'], 'C': ['ax', 'by', 'cz']}) df.replace(to_replace=r'\d', value='Digit', regex=True) Output: A B C 0 Digitx Digitx ax 1 Digity Digity by 2 Digitz Digitz cz Regular expressions (Regex) provide a powerful way to identify and replace patterns in the data, not just exact matches. In this example, we used regex to replace all numeric characters with the word ‘Digit’. EXAMPLE 5: REPLACING NAN VALUES import numpy as np df = pd.DataFrame({'A': [np.nan, 2, np.nan], 'B': [1, np.nan, 3]}) # Replace NaN values with -1 df.replace(np.nan, -1) Output: A B 0 -1.0 1.0 1 2.0 -1.0 2 -1.0 3.0 NaN values often represent missing data. Using replace(), you can easily replace these with a more appropriate value for further analysis, such as -1 in this case. EXAMPLE 6: REPLACING WITH A DICTIONARY OF COLUMNS df.replace({'A': np.nan, 'B': 1}, -1) Output: A B 0 -1.0 -1.0 1 2.0 NaN 2 -1.0 3.0 This example demonstrates how to use a dictionary where the keys are columns, and the values are the items to replace. It’s a powerful method for replacing specific values across multiple columns. EXAMPLE 7: ADVANCED REPLACEMENT WITH A LAMBDA FUNCTION df = pd.DataFrame({'A': ['apple', 'banana', 'cherry'], 'B': ['d', 'e', 'f']}) df.replace({'A': r'^a.*'}, {'A': lambda x: x.group(0).upper()}, regex=True) Output: A B 0 APPLE d 1 banana e 2 cherry f In the most advanced example, we use a lambda function to replace values. Here, any value in column ‘A’ that starts with ‘a’ is replaced by its uppercase version. This example showcases the power of combining regex and lambda functions for dynamic replacements. CONCLUSION The replace() method in Pandas is a highly versatile tool for data preprocessing and cleaning. Throughout this tutorial, we’ve covered multiple ways it can be used, from simple value replacements to complex pattern matching with regex and lambda functions. Understanding these examples will significantly enhance your data manipulation skills and contribute to more effective data analysis workflows. Next Article: Pandas: Convert a list of dicts into a DataFrame Previous Article: Pandas: Detect non-missing values in a DataFrame Series: DateFrames in Pandas Pandas Related Articles Pandas: Remove all non-numeric elements from a Series (3 examples) How to Use Pandas Profiling for Data Analysis (4 examples) How to Handle Large Datasets with Pandas and Dask (4 examples) Pandas – Using DataFrame.pivot() method (3 examples) Pandas: How to ‘FULL JOIN’ 2 DataFrames (3 examples) Pandas: Select columns whose names start/end with a specific string (4 examples) 3 ways to turn off future warnings in Pandas How to Use Pandas for Geospatial Data Analysis (3 examples) How to Integrate Pandas with Apache Spark How to Use Pandas for Web Scraping and Saving Data (2 examples) How to Clean and Preprocess Text Data with Pandas (3 examples) Pandas – Using Series.replace() method (3 examples) Search tutorials, examples, and resources * Resources * Test API * Datasets * Mobile * Flutter * Swift * SwiftUI * Databases * PostgreSQL * MySQL * MongoDB * PHP Ecosystem * PHP programming * Symfony & Doctrine * Laravel & Eloquent * JS, TS, and CSS * JavaScript * TypeScript * Next.js * Tailwind CSS * Node.js * Express.js * NestJS * Sequelize.js * Mongoose.js * Python & Data Science * Python * Pydantic * FastAPI * Django * SQLAlchemy * PyTorch * NumPy * Pandas * Privacy Policy * About Us * Contact © 2024 Sling Academy x ✕ PRIVACY & TRANSPARANTIE slingacademy.com en onze partners vragen om jouw toestemming om je persoonlijke gegevens te gebruiken en om informatie op je apparaat op te slaan en/of te raadplegen. Dit omvat het gebruik van je persoonlijke gegevens voor gepersonaliseerde advertenties en inhoud, advertentie- en inhoudsmeting, doelgroeponderzoek en de ontwikkeling van diensten. Een voorbeeld van gegevensverwerking kan een unieke identificatie zijn die in een cookie wordt opgeslagen. Jouw persoonlijke gegevens kunnen worden opgeslagen, geraadpleegd en gedeeld met 901 partners, of alleen door deze site worden gebruikt. Je kunt je instellingen wijzigen of je toestemming op elk moment intrekken; de link hiervoor is te vinden in onze privacy policy onderaan deze pagina. Sommige leveranciers kunnen je persoonlijke gegevens verwerken op basis van gerechtvaardigd belang, waar je bezwaar tegen kunt maken door je instellingen hieronder te beheren. Instellingen beheren Ga verder met aanbevolen cookies Leverancierslijst | Privacy Policy