www.nature.com Open in urlscan Pro
151.101.64.95  Public Scan

URL: https://www.nature.com/articles/s41893-024-01483-8
Submission: On December 21 via api from US — Scanned from DK

Form analysis 2 forms found in the DOM

GET /search

<form class="c-header__search-form" action="/search" method="get" role="search" autocomplete="off" data-test="inline-search">
  <label class="c-header__heading" for="keywords">Search articles by subject, keyword or author</label>
  <div class="c-header__search-layout c-header__search-layout--max-width">
    <div>
      <input type="text" required="" class="c-header__input" id="keywords" name="q" value="">
    </div>
    <div class="c-header__search-layout">
      <div>
        <label for="results-from" class="c-header__visually-hidden">Show results from</label>
        <select id="results-from" name="journal" class="c-header__select">
          <option value="" selected="">All journals</option>
          <option value="natsustain">This journal</option>
        </select>
      </div>
      <div>
        <button type="submit" class="c-header__search-button">Search</button>
      </div>
    </div>
  </div>
</form>

POST https://www.nature.com/briefing/anthropocene

<form action="https://www.nature.com/briefing/anthropocene" method="post" data-location="banner" data-track="signup_nature_briefing_banner" data-track-action="transmit-form" data-track-category="nature briefing"
  data-track-label="Briefing banner submit: Flagship">
  <input id="briefing-banner-signup-form-input-track-originReferralPoint" type="hidden" name="track_originReferralPoint" value="AnthropoceneBriefingBanner">
  <input id="briefing-banner-signup-form-input-track-formType" type="hidden" name="track_formType" value="DirectEmailBanner">
  <input type="hidden" value="false" name="gdpr_tick" id="gdpr_tick_banner">
  <input type="hidden" value="false" name="marketing" id="marketing_input_banner">
  <input type="hidden" value="false" name="marketing_tick" id="marketing_tick_banner">
  <input type="hidden" value="AnthropoceneBriefingBanner" name="brieferEntryPoint" id="brieferEntryPoint_banner">
  <label class="nature-briefing-banner__email-label" for="emailAddress">Email address</label>
  <div class="nature-briefing-banner__email-wrapper">
    <input class="nature-briefing-banner__email-input box-sizing text14" type="email" id="emailAddress" name="emailAddress" value="" placeholder="e.g. jo.smith@university.ac.uk" required="" data-test-element="briefing-emailbanner-email-input">
    <input type="hidden" value="true" name="N:anthropocene" id="defaultNewsletter_banner">
    <button type="submit" class="nature-briefing-banner__submit-button box-sizing text14" data-test-element="briefing-emailbanner-signup-button">Sign up</button>
  </div>
  <div class="nature-briefing-banner__checkbox-wrapper grid grid-12 last">
    <input class="nature-briefing-banner__checkbox-checkbox" id="gdpr-briefing-banner-checkbox" type="checkbox" name="gdpr" value="true" data-test-element="briefing-emailbanner-gdpr-checkbox" required="">
    <label class="nature-briefing-banner__checkbox-label box-sizing text13 sans-serif block tighten-line-height" for="gdpr-briefing-banner-checkbox">I agree my information will be processed in accordance with the <em>Nature</em> and Springer Nature
      Limited <a href="https://www.nature.com/info/privacy">Privacy Policy</a>.</label>
  </div>
</form>

Text Content

YOUR PRIVACY, YOUR CHOICE

We use essential cookies to make sure the site can function. We, and our 208
partners, also use optional cookies and similar technologies for advertising,
personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to
store and access personal data on your device, such as browsing behaviour and
unique identifiers. Some third parties are outside of the European Economic
Area, with varying standards of data protection. See our privacy policy for more
information on the use of your personal data. Your consent choices apply to
nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage
preferences'.
You can also change your preferences or withdraw consent at any time via 'Your
privacy choices', found in the footer of every page.

We use cookies and similar technologies for the following purposes:

STORE AND/OR ACCESS INFORMATION ON A DEVICE

Cookies, device or similar online identifiers (e.g. login-based identifiers,
randomly assigned identifiers, network based identifiers) together with other
information (e.g. browser type and information, language, screen size, supported
technologies etc.) can be stored or read on your device to recognise it each
time it connects to an app or to a website, for one or several of the purposes
presented here.

PERSONALISED ADVERTISING AND CONTENT, ADVERTISING AND CONTENT MEASUREMENT,
AUDIENCE RESEARCH AND SERVICES DEVELOPMENT

Advertising and content can be personalised based on your profile. Your activity
on this service can be used to build or improve a profile about you for
personalised advertising and content. Advertising and content performance can be
measured. Reports can be generated based on your activity and those of others.
Your activity on this service can help develop and improve products and
services.

Accept all cookies Reject optional cookies Manage preferences
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited
support for CSS. To obtain the best experience, we recommend you use a more up
to date browser (or turn off compatibility mode in Internet Explorer). In the
meantime, to ensure continued support, we are displaying the site without styles
and JavaScript.



Advertisement


 * View all journals
 * Search
   
   
   SEARCH
   
   Search articles by subject, keyword or author
   Show results from All journals This journal
   Search
   Advanced search
   
   
   QUICK LINKS
   
    * Explore articles by subject
    * Find a job
    * Guide to authors
    * Editorial policies

 * Log in

 * Explore content
   
   
   EXPLORE CONTENT
   
    * Research articles
    * Reviews & Analysis
    * News & Comment
    * Current issue
    * Collections
   
    * Follow us on Facebook
    * Follow us on Twitter
    * Subscribe
    * Sign up for alerts
    * RSS feed

 * About the journal
   
   
   ABOUT THE JOURNAL
   
    * Aims & Scope
    * Journal Information
    * Journal Metrics
    * About the Editors
    * Research Cross-Journal Editorial Team
    * Reviews Cross-Journal Editorial Team
    * Our publishing models
    * Editorial Values Statement
    * Editorial Policies
    * Content Types
    * Community
    * Expert panels
    * Advisory Panel
    * Contact

 * Publish with us
   
   
   PUBLISH WITH US
   
    * Submission Guidelines
    * For Reviewers
    * Language editing services
    * Submit manuscript

 * Subscribe

 * Sign up for alerts
 * RSS feed

 1. nature
 2. nature sustainability
 3. perspectives
 4. article

 * Perspective
 * Published: 19 December 2024


TAILORED POLICIES FOR PERENNIAL WOODY CROPS ARE CRUCIAL TO ADVANCE SUSTAINABLE
DEVELOPMENT

 * Carlos Martinez-Nuñez  ORCID: orcid.org/0000-0001-7814-49851,
 * Elena Velado-Alonso  ORCID: orcid.org/0000-0003-4805-29291,2,
 * Jacques Avelino  ORCID: orcid.org/0000-0003-1983-94313,4,
 * Pedro J. Rey  ORCID: orcid.org/0000-0001-5550-03935,
 * G. Martijn ten Hoopen  ORCID: orcid.org/0000-0003-2133-31303,
 * Guy Pe’er6,7,
 * Yi Zou  ORCID: orcid.org/0000-0002-7082-92588,
 * Yunhui Liu  ORCID: orcid.org/0000-0001-7282-834X9,
 * Philip Antwi-Agyei10,
 * Adrien Rusch  ORCID: orcid.org/0000-0002-3921-975011,
 * Charles Staver  ORCID: orcid.org/0000-0002-4532-607712,
 * Tharaka S. Priyadarshana  ORCID: orcid.org/0000-0003-3962-546513,
 * Denis J. Sonwa14,15,
 * Damayanti Buchori16,
 * Lucas A. Garibaldi  ORCID: orcid.org/0000-0003-0725-404917,18,
 * Elena D. Concepción  ORCID: orcid.org/0000-0002-6715-690219,
 * Owen T. Lewis  ORCID: orcid.org/0000-0001-7935-611120,
 * Ivette Perfecto  ORCID: orcid.org/0000-0003-1749-719121 &
 * …
 * Ignasi Bartomeus  ORCID: orcid.org/0000-0001-7893-43891 

Show authors

Nature Sustainability (2024)Cite this article

 * 2 Altmetric

 * Metrics details


ABSTRACT

Perennial woody crops, which are crucial to our diets and global economies, have
the potential to play a major role in achieving multiple UN Sustainable
Development Goals pertaining to biodiversity conservation, socio-economic
development and climate change mitigation. However, this potential is hindered
by insufficient scientific and policy attention on perennial woody crops, and by
the intensification of perennial crop cultivation in the form of monocropping
with high external inputs. In this Perspective, we highlight the potential of
properly managed and incentivized perennial woody crops to support holistic
sustainable development and urge scientists and policymakers to develop an
effective agenda to better harness their benefits.

Access through your institution
Buy or subscribe


This is a preview of subscription content, access via your institution


ACCESS OPTIONS

Access through your institution

Access through your institution
Change institution
Buy or subscribe

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

24,99 € / 30 days

cancel any time

Learn more

Subscribe to this journal

Receive 12 digital issues and online access to articles

139,01 € per year

only 11,58 € per issue

Learn more

Buy this article

 * Purchase on SpringerLink
 * Instant access to full article PDF

Buy now

Prices may be subject to local taxes which are calculated during checkout




ADDITIONAL ACCESS OPTIONS:

 * Log in
 * Learn about institutional subscriptions
 * Read our FAQs
 * Contact customer support

Fig. 1: Overlap between the main perennial crops and hotspots of biodiversity.

Fig. 2: The importance of perennial crops worldwide.

Fig. 3: Scientific attention received by perennial crops and annual crops.

Fig. 4: Effects of agricultural practices in perennial crops along the
sustainability gradient.

Fig. 5: Main threats to the sustainability of key perennial crops worldwide.

Fig. 6: Agricultural practices and farming models that could be incentivized by
new agricultural policies.



SIMILAR CONTENT BEING VIEWED BY OTHERS


FOSTERING A CLIMATE-SMART INTENSIFICATION FOR OIL PALM

Article 25 March 2021


SEVERE DECLINE IN LARGE FARMLAND TREES IN INDIA OVER THE PAST DECADE

Article Open access 15 May 2024


THE GLOBAL CROPLAND-SPARING POTENTIAL OF HIGH-YIELD FARMING

Article 16 April 2020


REFERENCES

 1.  Clough, Y. et al. Land-use choices follow profitability at the expense of
     ecological functions in Indonesian smallholder landscapes. Nat. Commun. 7,
     13137 (2016).
     
     Article  CAS  Google Scholar 

 2.  Newbold, T. et al. Global effects of land use on local terrestrial
     biodiversity. Nature 520, 45–50 (2015).
     
     Article  CAS  Google Scholar 

 3.  Rohr, J. R. et al. Emerging human infectious diseases and the links to
     global food production. Nat. Sustain. 2, 445–456 (2019).
     
     Article  Google Scholar 

 4.  Díaz, S. et al. Assessing nature’s contributions to people. Science 359,
     270–272 (2018).
     
     Article  Google Scholar 

 5.  Tool for Agroecology Performance Evaluation (TAPE)—Test Version: Process of
     Development and Guidelines for Application (FAO, 2019);
     https://www.fao.org/documents/card/en/c/ca7407en/

 6.  Tscharntke, T., Grass, I., Wanger, T. C., Westphal, C. & Batáry, P. Beyond
     organic farming—harnessing biodiversity-friendly landscapes. Trends Ecol.
     Evol. 36, 919–930 (2021).
     
     Article  CAS  Google Scholar 

 7.  Garibaldi, L. A. et al. Policies for ecological intensification of crop
     production. Trends Ecol. Evol. 34, 282–286 (2019).
     
     Article  Google Scholar 

 8.  Lal, R. et al. Management to mitigate and adapt to climate change. J. Soil
     Water Conserv. 66, 276–285 (2011).
     
     Article  Google Scholar 

 9.  Perfecto, I., Vandermeer, J. & Wright, A. Nature’s Matrix Linking
     Agriculture, Biodiversity Conservation and Food Sovereignty (Taylor and
     Francis, 2019).

 10. Bhagwat, S. A., Willis, K. J., Birks, H. J. B. & Whittaker, R. J.
     Agroforestry: a refuge for tropical biodiversity? Trends Ecol. Evol. 23,
     261–267 (2008).
     
     Article  Google Scholar 

 11. Wanger, T. C. et al. Integrating agroecological production in a robust
     post-2020 Global Biodiversity Framework. Nat. Ecol. Evol. 4, 1150–1152
     (2020).

 12. Fitzherbert, E. B. et al. How will oil palm expansion affect biodiversity?
     Trends Ecol. Evol. 23, 538–545 (2008).
     
     Article  Google Scholar 

 13. Li, T. M. Securing oil palm smallholder livelihoods without more
     deforestation in Indonesia. Nat. Sustain. 2024 74 7, 387–393 (2024).
     
     Article  Google Scholar 

 14. Kalischek, N. et al. Cocoa plantations are associated with deforestation in
     Côte d’Ivoire and Ghana. Nat. Food 2023 45 4, 384–393 (2023).
     
     Article  Google Scholar 

 15. Garibaldi, L. A. & Pérez-Méndez, N. Positive outcomes between crop
     diversity and agricultural employment worldwide. Ecol. Econ. 164, 106358
     (2019).
     
     Article  Google Scholar 

 16. Seneduangdeth, D., Ounmany, K., Phommavong, S., Phouxay, K. & Hathalong, K.
     Labor employment opportunities in coffee production in southern Lao
     People’s Democratic Republic. J. Asian Rural Stud. 2, 16–36 (2018).
     
     Article  Google Scholar 

 17. Agricultural Policy Monitoring and Evaluation 2022: Reforming Agricultural
     Policies for Climate Change Mitigation (OECD, 2022);
     https://doi.org/10.1787/7f4542bf-en

 18. Batáry, P., Dicks, L. V., Kleijn, D. & Sutherland, W. J. The role of
     agri-environment schemes in conservation and environmental management.
     Conserv. Biol. 29, 1006–1016 (2015).
     
     Article  Google Scholar 

 19. Boetzl, F. A. et al. A multitaxa assessment of the effectiveness of
     agri-environmental schemes for biodiversity management. Proc. Natl Acad.
     Sci. USA 118, e2016038118 (2021).
     
     Article  CAS  Google Scholar 

 20. Candel, J. J. L., Lakner, S. & Pe’er, G. Europe’s reformed agricultural
     policy disappoints. Nature 595, 650 (2021).
     
     Article  CAS  Google Scholar 

 21. Pe’er, G. et al. Action needed for the EU Common Agricultural Policy to
     address sustainability challenges. People Nat. 2, 305–316 (2020).
     
     Article  Google Scholar 

 22. Nicholson, E. et al. Scientific foundations for an ecosystem goal,
     milestones and indicators for the post-2020 global biodiversity framework.
     Nat. Ecol. Evol. 5, 1338–1349 (2021).
     
     Article  Google Scholar 

 23. Pimentel, D. et al. Annual vs. perennial grain production. Agric. Ecosyst.
     Environ. 161, 1–9 (2012).
     
     Article  Google Scholar 

 24. Batello, C. et al. Perennial Crops for Food Security: Proceedings of the
     FAO Expert Workshop (FAO, 2014).

 25. Crews, T. E., Carton, W. & Olsson, L. Is the future of agriculture
     perennial? Imperatives and opportunities to reinvent agriculture by
     shifting from annual monocultures to perennial polycultures. Glob. Sustain.
     1, e11 (2018).
     
     Article  Google Scholar 

 26. Kleijn, D. et al. Ecological intensification: bridging the gap between
     science and practice. Trends Ecol. Evol. 34, 154–166 (2019).
     
     Article  Google Scholar 

 27. Myers, N., Mittermeler, R. A., Mittermeler, C. G., Da Fonseca, G. A. B. &
     Kent, J. Biodiversity hotspots for conservation priorities. Nature 403,
     853–858 (2000).
     
     Article  CAS  Google Scholar 

 28. Sonwa, D. J., Weise, S. F., Schroth, G., Janssens, M. J. J. & Shapiro, H.
     Y. Structure of cocoa farming systems in West and Central Africa: a review.
     Agrofor. Syst. 93, 2009–2025 (2019).
     
     Article  Google Scholar 

 29. Tarifa, R. et al. Agricultural intensification erodes taxonomic and
     functional diversity in Mediterranean olive groves by filtering out rare
     species. J. Appl. Ecol. 58, 2266–2276 (2021).
     
     Article  Google Scholar 

 30. Winter, S. et al. Effects of vegetation management intensity on
     biodiversity and ecosystem services in vineyards: a meta-analysis. J. Appl.
     Ecol. https://doi.org/10.1111/1365-2664.13124 (2018).

 31. Valencia, V., García-Barrios, L., West, P., Sterling, E. J. & Naeem, S. The
     role of coffee agroforestry in the conservation of tree diversity and
     community composition of native forests in a Biosphere Reserve. Agric.
     Ecosyst. Environ. 189, 154–163 (2014).
     
     Article  Google Scholar 

 32. Schroth, G. & Harvey, C. A. Biodiversity conservation in cocoa production
     landscapes: an overview. Biodivers. Conserv. 16, 2237–2244 (2007).
     
     Article  Google Scholar 

 33. Rey, P. J. et al. Landscape-moderated biodiversity effects of ground herb
     cover in olive groves: implications for regional biodiversity conservation.
     Agric. Ecosyst. Environ. 277, 61–73 (2019).
     
     Article  Google Scholar 

 34. Sonwa, D. J. et al. Diversity of plants in cocoa agroforests in the humid
     forest zone of Southern Cameroon. Biodivers. Conserv. 16, 2385–2400 (2007).
     
     Article  Google Scholar 

 35. Bruggisser, O. T., Schmidt-Entling, M. H. & Bacher, S. Effects of vineyard
     management on biodiversity at three trophic levels. Biol. Conserv. 143,
     1521–1528 (2010).
     
     Article  Google Scholar 

 36. Clough, Y. et al. Combining high biodiversity with high yields in tropical
     agroforests. Proc. Natl Acad. Sci. USA 108, 8311–8316 (2011).
     
     Article  CAS  Google Scholar 

 37. Kavvadias, V. & Koubouris, G. in Soil Fertility Management for Sustainable
     Development (eds Panpatte, D. & Jhala, Y.) 167–188 (Springer, 2019).

 38. Cerda, R. et al. Effects of shade, altitude and management on multiple
     ecosystem services in coffee agroecosystems. Eur. J. Agron. 82, 308–319
     (2017).
     
     Article  Google Scholar 

 39. FAOSTAT (FAO, 2021); https://www.fao.org/faostat

 40. Ewing, P. M. et al. Smallholder farms have and can store more carbon than
     previously estimated. Glob. Change Biol. 29, 1471–1483 (2023).
     
     Article  CAS  Google Scholar 

 41. Batsi, G., Sonwa, D. J., Mangaza, L., Ebuy, J. & Kahindo, J. M. Preliminary
     estimation of above-ground carbon storage in cocoa agroforests of
     Bengamisa-Yangambi forest landscape (Democratic Republic of Congo).
     Agrofor. Syst. 95, 1505–1517 (2021).
     
     Article  Google Scholar 

 42. Perfecto, I. & Vandermeer, J. The agroecological matrix as alternative to
     the land-sparing/agriculture intensification model. Proc. Natl Acad. Sci.
     USA 107, 5786–5791 (2010).
     
     Article  CAS  Google Scholar 

 43. Kremen, C. & Merenlender, A. M. Landscapes that work for biodiversity and
     people. Science 362, eaau6020 (2018).
     
     Article  Google Scholar 

 44. González del Portillo, D., Arroyo, B. & Morales, M. B. The adequacy of
     alfalfa crops as an agri-environmental scheme: a review of agronomic
     benefits and effects on biodiversity. J. Nat. Conserv. 69, 126253 (2022).
     
     Article  Google Scholar 

 45. Glover, J. D. et al. Increased food and ecosystem security via perennial
     grains. Science 328, 1638–1639 (2010).
     
     Article  CAS  Google Scholar 

 46. DeHaan, L. R. et al. Discussion: prioritize perennial grain development for
     sustainable food production and environmental benefits. Sci. Total Environ.
     895, 164975 (2023).
     
     Article  CAS  Google Scholar 

 47. Zhang, S. et al. Sustained productivity and agronomic potential of
     perennial rice. Nat. Sustain. 6, 28–38 (2022).
     
     Article  Google Scholar 

 48. ASEAN Regional Guidelines for Sustainable Agriculture in ASEAN Jakarta
     (ASEAN Secretariat, 2023).

 49. The common agricultural policy at a glance. European Commission
     https://agriculture.ec.europa.eu/common-agricultural-policy/cap-overview/cap-glance_en
     (2021).

 50. Forbidden Fruit (Pesticide Action Network Europe, 2022);
     https://www.pan-europe.info/sites/pan-europe.info/files/public/resources/reports/ForbiddenFruit_01.pdf

 51. Jha, S. et al. Shade coffee: update on a disappearing refuge for
     biodiversity. BioScience 64, 416–428 (2014).
     
     Article  Google Scholar 

 52. Harvey, C. A. et al. Transformation of coffee-growing landscapes across
     Latin America: a review. Agron. Sustain. Dev. 41, 1–19 (2021).
     
     Article  Google Scholar 

 53. Guerrero-Casado, J., Carpio, A. J., Tortosa, F. S. & Villanueva, A. J.
     Environmental challenges of intensive woody crops: the case of super
     high-density olive groves. Sci. Total Environ. 798, 149212 (2021).
     
     Article  CAS  Google Scholar 

 54. Morgado, R. et al. Drivers of irrigated olive grove expansion in
     Mediterranean landscapes and associated biodiversity impacts. Landsc. Urban
     Plan. 225, 104429 (2022).
     
     Article  Google Scholar 

 55. Kopittke, P. M., Menzies, N. W., Wang, P., McKenna, B. A. & Lombi, E. Soil
     and the intensification of agriculture for global food security. Environ.
     Int. 132, 105078 (2019).
     
     Article  Google Scholar 

 56. Wolkovich, E. M., García De Cortázar-Atauri, I., Morales-Castilla, I.,
     Nicholas, K. A. & Lacombe, T. From Pinot to Xinomavro in the world’s future
     wine-growing regions. Nat. Clim. Change 2017 81 8, 29–37 (2018).
     
     Article  Google Scholar 

 57. Dempewolf, H., Krishnan, S. & Guarino, L. Our shared global responsibility:
     safeguarding crop diversity for future generations. Proc. Natl Acad. Sci.
     USA 120, e2205768119 (2023).
     
     Article  CAS  Google Scholar 

 58. Kühn, S. Global employment and social trends. World Employ. Soc. Outlook
     2018, 5–10 (2018).
     
     Article  Google Scholar 

 59. Kleijn, D. et al. Bending the curve of biodiversity loss requires rewarding
     farmers economically for conservation management. ARPHA Prepr. 4, e104881
     (2023).
     
     Google Scholar 

 60. Scheper, J. et al. Biodiversity and pollination benefits trade off against
     profit in an intensive farming system. Proc. Natl Acad. Sci. USA 120,
     e2212124120 (2023).
     
     Article  CAS  Google Scholar 

 61. Hayes, T., Murtinho, F., Wolff, H., López-Sandoval, M. F. & Salazar, J.
     Effectiveness of payment for ecosystem services after loss and uncertainty
     of compensation. Nat. Sustain. 5, 81–88 (2021).
     
     Article  Google Scholar 

 62. Malekpour, S. et al. What scientists need to do to accelerate progress on
     the SDGs. Nature 621, 250–254 (2023).
     
     Article  CAS  Google Scholar 

 63. Zinngrebe, Y. et al. Prioritizing partners and products for the
     sustainability of the EU’s agri-food trade. One Earth 7, 674–686 (2024).
     
     Article  Google Scholar 

 64. Waarts, Y. R. et al. Multiple pathways towards achieving a living income
     for different types of smallholder tree-crop commodity farmers. Food Secur.
     13, 1467–1496 (2021).
     
     Article  CAS  Google Scholar 

 65. Gaudaré, U. et al. Soil organic carbon stocks potentially at risk of
     decline with organic farming expansion. Nat. Clim. Change 13, 719–725
     (2023).
     
     Article  Google Scholar 

 66. Wijerathna-Yapa, A., Henry, R. J., Dunn, M. & Beveridge, C. A. Science and
     opinion in decision making: a case study of the food security collapse in
     Sri Lanka. Mod. Agric. 1, 142–151 (2023).
     
     Article  Google Scholar 

 67. Asitoakor, B. K. et al. Influences of climate variability on cocoa health
     and productivity in agroforestry systems in Ghana. Agric. For. Meteorol.
     327, 109199 (2022).
     
     Article  Google Scholar 

 68. Jamal, A. M. et al. Gendered perceptions and adaptation practices of
     smallholder cocoa farmers to climate variability in the central region of
     Ghana. Environ. Chall. 5, 100293 (2021).
     
     Article  Google Scholar 

 69. Afriyie-Kraft, L., Zabel, A. & Damnyag, L. Adaptation strategies of
     Ghanaian cocoa farmers under a changing climate. For. Policy Econ. 113,
     102115 (2020).
     
     Article  Google Scholar 

 70. Antwi-Agyei, P. et al. Perceived stressors of climate vulnerability across
     scales in the Savannah zone of Ghana: a participatory approach. Reg.
     Environ. Change 17, 213–227 (2017).
     
     Article  Google Scholar 

 71. Tang, F. H. M. et al. CROPGRIDS: a global geo-referenced dataset of 173
     crops. Sci. Data 11, 1–14 (2024).
     
     Article  Google Scholar 

 72. Noss, R. F. et al. How global biodiversity hotspots may go unrecognized:
     lessons from the North American Coastal Plain. Divers. Distrib. 21, 236–244
     (2015).
     
     Article  Google Scholar 

Download references


ACKNOWLEDGEMENTS

We acknowledge funding from the project SHOWCASE (SHOWCASing synergies between
agriculture, biodiversity and Ecosystem services to help farmers capitalizing on
native biodiversity) within the EU’s Horizon 2020 research and innovation
programme (grant agreement number 862480). C.M.-N. was supported by the ‘Juan de
la Cierva’ programme (reference number FJC2021-046829-I). T.S.P. was supported
by a research scholarship awarded by the Nanyang Technological University,
Singapore (application number R2004096). P.J.R. acknowledges the projects
RECOVECOS (PID2019-108332GB-I00, funded by MICIN/AEI/10.13039/501100011033) and
OLIVARES VIVOS+ (LIFE20 AT/ES/001487, European Commission). The contribution of
D.J.S. was made possible by financial support from NORAD (grant number
QZA-21/0124) for the CIFOR GCS-REDD+ (Global Comparative Study on REDD+)
project. A.R. acknowledges support from the French National Research Agency
(ANR) under grant number 20-PCPA-0010 and from the National Program PEPR
‘Solutions fondées sur la Nature’ (SOLU-BIOD) through the Living Lab ‘Bacchus’.
G.P. acknowledges funding from the strategic project iCAP-BES through the German
Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig (grant
number DFG FZT 118), as well as from the EU Horizon Europe project
Agroecology-TRANSECT (grant agreement number 101060816). This publication
reflects only the authors’ opinions.


AUTHOR INFORMATION


AUTHORS AND AFFILIATIONS

 1.  Department of Ecology and Evolution, Estación Biológica de Doñana EBD
     (CSIC), Seville, Spain
     
     Carlos Martinez-Nuñez, Elena Velado-Alonso & Ignasi Bartomeus

 2.  Functional Agrobiodiversity, George August University of Göttingen,
     Göttingen, Germany
     
     Elena Velado-Alonso

 3.  French Agricultural Research Centre for International Development (CIRAD),
     UMR PHIM, Montpellier, France
     
     Jacques Avelino & G. Martijn ten Hoopen

 4.  PHIM (Plant Health Institute Montpellier), CIRAD, INRAE, Institut Agro,
     Université de Montpellier, Montpellier, France
     
     Jacques Avelino

 5.  Departamento de Biología Animal, Biología Vegetal y Ecología, Universidad
     de Jaén & Helmholtz Centre for Environmental Research Leipzig (UFZ), Jaén,
     Spain
     
     Pedro J. Rey

 6.  Department of Biodiversity and People, Helmholtz Centre for Environmental
     Research Leipzig (UFZ), Leipzig, Germany
     
     Guy Pe’er

 7.  Department of Biodiversity and People, German Centre for integrative
     Biodiversity Research (iDiv), Leipzig, Germany
     
     Guy Pe’er

 8.  Department of Health and Environmental Sciences, Xi’an Jiaotong-Liverpool
     University, Suzhou, China
     
     Yi Zou

 9.  College of Resources and Environment, China Agricultural University,
     Beijing, China
     
     Yunhui Liu

 10. Department of Environmental Science, Kwame Nkrumah University of Science
     and Technology, Kumasi, Ghana
     
     Philip Antwi-Agyei

 11. INRAE, Bordeaux Sciences Agro, ISVV, SAVE, Villenave d’Ornon, France
     
     Adrien Rusch

 12. Universidad Veracruzana, Xalapa, Mexico
     
     Charles Staver

 13. Asian School of the Environment, Nanyang Technological University,
     Singapore City, Singapore
     
     Tharaka S. Priyadarshana

 14. Center for International Forestry Research (CIFOR), Yaoundé, Cameroon
     
     Denis J. Sonwa

 15. World Resources Institute (WRI), Kinshasa, Democratic Republic of the Congo
     
     Denis J. Sonwa

 16. Center for Transdiciplinary and Sustainability Sciences (CCTS), IPB
     University (Bogor Agricultural University), Bogor, Indonesia
     
     Damayanti Buchori

 17. Agroecología y Desarrollo Rural, Instituto de Investigaciones en Recursos
     Naturales, Universidad Nacional de Río Negro, Río Negro, Argentina
     
     Lucas A. Garibaldi

 18. Agroecología y Desarrollo Rural, Instituto de Investigaciones en Recursos
     Naturales, Consejo Nacional de Investigaciones Científicas y Técnicas
     (CONICET), Río Negro, Argentina
     
     Lucas A. Garibaldi

 19. Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
     
     Elena D. Concepción

 20. Department of Biology, University of Oxford, Oxford, UK
     
     Owen T. Lewis

 21. School for Environment and Sustainability, University of Michigan, Ann
     Arbor, MI, USA
     
     Ivette Perfecto

Authors
 1.  Carlos Martinez-Nuñez
     View author publications
     
     You can also search for this author in PubMed Google Scholar

 2.  Elena Velado-Alonso
     View author publications
     
     You can also search for this author in PubMed Google Scholar

 3.  Jacques Avelino
     View author publications
     
     You can also search for this author in PubMed Google Scholar

 4.  Pedro J. Rey
     View author publications
     
     You can also search for this author in PubMed Google Scholar

 5.  G. Martijn ten Hoopen
     View author publications
     
     You can also search for this author in PubMed Google Scholar

 6.  Guy Pe’er
     View author publications
     
     You can also search for this author in PubMed Google Scholar

 7.  Yi Zou
     View author publications
     
     You can also search for this author in PubMed Google Scholar

 8.  Yunhui Liu
     View author publications
     
     You can also search for this author in PubMed Google Scholar

 9.  Philip Antwi-Agyei
     View author publications
     
     You can also search for this author in PubMed Google Scholar

 10. Adrien Rusch
     View author publications
     
     You can also search for this author in PubMed Google Scholar

 11. Charles Staver
     View author publications
     
     You can also search for this author in PubMed Google Scholar

 12. Tharaka S. Priyadarshana
     View author publications
     
     You can also search for this author in PubMed Google Scholar

 13. Denis J. Sonwa
     View author publications
     
     You can also search for this author in PubMed Google Scholar

 14. Damayanti Buchori
     View author publications
     
     You can also search for this author in PubMed Google Scholar

 15. Lucas A. Garibaldi
     View author publications
     
     You can also search for this author in PubMed Google Scholar

 16. Elena D. Concepción
     View author publications
     
     You can also search for this author in PubMed Google Scholar

 17. Owen T. Lewis
     View author publications
     
     You can also search for this author in PubMed Google Scholar

 18. Ivette Perfecto
     View author publications
     
     You can also search for this author in PubMed Google Scholar

 19. Ignasi Bartomeus
     View author publications
     
     You can also search for this author in PubMed Google Scholar


CONTRIBUTIONS

C.M.-N. conceptualized the study, coordinated the team and wrote the first draft
of the paper. E.V.-A. created Fig. 1 and Supplementary Table 2, and helped to
structure the study. J.A., P.J.R., G.M.t.H., G.P., Y.Z., Y.L., P.A.-A., A.R.,
C.S., T.S.P., D.J.S., D.B., L.A.G., E.D.C., O.T.L. and I.P. contributed to
writing and improving different sections of the paper. I.B. contributed to
structuring and writing the article. All authors contributed importantly to the
final version of the paper.


CORRESPONDING AUTHOR

Correspondence to Carlos Martinez-Nuñez.


ETHICS DECLARATIONS


COMPETING INTERESTS

The authors declare no competing interests


PEER REVIEW


PEER REVIEW INFORMATION

Nature Sustainability thanks Timothy Crews and Kirsten Hannam for their
contribution to the peer review of this work.


ADDITIONAL INFORMATION

Publisher’s note Springer Nature remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.


SUPPLEMENTARY INFORMATION


SUPPLEMENTARY INFORMATION

Supplementary Tables 1–4, Fig. 1 and Notes 1–8.


RIGHTS AND PERMISSIONS

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the author(s)
or other rightsholder(s); author self-archiving of the accepted manuscript
version of this article is solely governed by the terms of such publishing
agreement and applicable law.

Reprints and permissions


ABOUT THIS ARTICLE


CITE THIS ARTICLE

Martinez-Nuñez, C., Velado-Alonso, E., Avelino, J. et al. Tailored policies for
perennial woody crops are crucial to advance sustainable development. Nat
Sustain (2024). https://doi.org/10.1038/s41893-024-01483-8

Download citation

 * Received: 26 February 2024

 * Accepted: 01 November 2024

 * Published: 19 December 2024

 * DOI: https://doi.org/10.1038/s41893-024-01483-8


SHARE THIS ARTICLE

Anyone you share the following link with will be able to read this content:

Get shareable link

Sorry, a shareable link is not currently available for this article.



Copy to clipboard

Provided by the Springer Nature SharedIt content-sharing initiative


SUBJECTS

 * Agroecology
 * Environmental impact

Access through your institution
Buy or subscribe

Access through your institution
Change institution
Buy or subscribe
 * Sections
 * Figures
 * References

 * Abstract
 * References
 * Acknowledgements
 * Author information
 * Ethics declarations
 * Peer review
 * Additional information
 * Supplementary information
 * Rights and permissions
 * About this article

Advertisement


 * Fig. 1: Overlap between the main perennial crops and hotspots of
   biodiversity.
   
   

 * Fig. 2: The importance of perennial crops worldwide.
   
   

 * Fig. 3: Scientific attention received by perennial crops and annual crops.
   
   

 * Fig. 4: Effects of agricultural practices in perennial crops along the
   sustainability gradient.
   
   

 * Fig. 5: Main threats to the sustainability of key perennial crops worldwide.
   
   

 * Fig. 6: Agricultural practices and farming models that could be incentivized
   by new agricultural policies.
   
   

 1.  Clough, Y. et al. Land-use choices follow profitability at the expense of
     ecological functions in Indonesian smallholder landscapes. Nat. Commun. 7,
     13137 (2016).
     
     Article CAS  Google Scholar 

 2.  Newbold, T. et al. Global effects of land use on local terrestrial
     biodiversity. Nature 520, 45–50 (2015).
     
     Article CAS  Google Scholar 

 3.  Rohr, J. R. et al. Emerging human infectious diseases and the links to
     global food production. Nat. Sustain. 2, 445–456 (2019).
     
     Article  Google Scholar 

 4.  Díaz, S. et al. Assessing nature’s contributions to people. Science 359,
     270–272 (2018).
     
     Article  Google Scholar 

 5.  Tool for Agroecology Performance Evaluation (TAPE)—Test Version: Process of
     Development and Guidelines for Application (FAO, 2019);
     https://www.fao.org/documents/card/en/c/ca7407en/

 6.  Tscharntke, T., Grass, I., Wanger, T. C., Westphal, C. & Batáry, P. Beyond
     organic farming—harnessing biodiversity-friendly landscapes. Trends Ecol.
     Evol. 36, 919–930 (2021).
     
     Article CAS  Google Scholar 

 7.  Garibaldi, L. A. et al. Policies for ecological intensification of crop
     production. Trends Ecol. Evol. 34, 282–286 (2019).
     
     Article  Google Scholar 

 8.  Lal, R. et al. Management to mitigate and adapt to climate change. J. Soil
     Water Conserv. 66, 276–285 (2011).
     
     Article  Google Scholar 

 9.  Perfecto, I., Vandermeer, J. & Wright, A. Nature’s Matrix Linking
     Agriculture, Biodiversity Conservation and Food Sovereignty (Taylor and
     Francis, 2019).

 10. Bhagwat, S. A., Willis, K. J., Birks, H. J. B. & Whittaker, R. J.
     Agroforestry: a refuge for tropical biodiversity? Trends Ecol. Evol. 23,
     261–267 (2008).
     
     Article  Google Scholar 

 11. Wanger, T. C. et al. Integrating agroecological production in a robust
     post-2020 Global Biodiversity Framework. Nat. Ecol. Evol. 4, 1150–1152
     (2020).

 12. Fitzherbert, E. B. et al. How will oil palm expansion affect biodiversity?
     Trends Ecol. Evol. 23, 538–545 (2008).
     
     Article  Google Scholar 

 13. Li, T. M. Securing oil palm smallholder livelihoods without more
     deforestation in Indonesia. Nat. Sustain. 2024 74 7, 387–393 (2024).
     
     Article  Google Scholar 

 14. Kalischek, N. et al. Cocoa plantations are associated with deforestation in
     Côte d’Ivoire and Ghana. Nat. Food 2023 45 4, 384–393 (2023).
     
     Article  Google Scholar 

 15. Garibaldi, L. A. & Pérez-Méndez, N. Positive outcomes between crop
     diversity and agricultural employment worldwide. Ecol. Econ. 164, 106358
     (2019).
     
     Article  Google Scholar 

 16. Seneduangdeth, D., Ounmany, K., Phommavong, S., Phouxay, K. & Hathalong, K.
     Labor employment opportunities in coffee production in southern Lao
     People’s Democratic Republic. J. Asian Rural Stud. 2, 16–36 (2018).
     
     Article  Google Scholar 

 17. Agricultural Policy Monitoring and Evaluation 2022: Reforming Agricultural
     Policies for Climate Change Mitigation (OECD, 2022);
     https://doi.org/10.1787/7f4542bf-en

 18. Batáry, P., Dicks, L. V., Kleijn, D. & Sutherland, W. J. The role of
     agri-environment schemes in conservation and environmental management.
     Conserv. Biol. 29, 1006–1016 (2015).
     
     Article  Google Scholar 

 19. Boetzl, F. A. et al. A multitaxa assessment of the effectiveness of
     agri-environmental schemes for biodiversity management. Proc. Natl Acad.
     Sci. USA 118, e2016038118 (2021).
     
     Article CAS  Google Scholar 

 20. Candel, J. J. L., Lakner, S. & Pe’er, G. Europe’s reformed agricultural
     policy disappoints. Nature 595, 650 (2021).
     
     Article CAS  Google Scholar 

 21. Pe’er, G. et al. Action needed for the EU Common Agricultural Policy to
     address sustainability challenges. People Nat. 2, 305–316 (2020).
     
     Article  Google Scholar 

 22. Nicholson, E. et al. Scientific foundations for an ecosystem goal,
     milestones and indicators for the post-2020 global biodiversity framework.
     Nat. Ecol. Evol. 5, 1338–1349 (2021).
     
     Article  Google Scholar 

 23. Pimentel, D. et al. Annual vs. perennial grain production. Agric. Ecosyst.
     Environ. 161, 1–9 (2012).
     
     Article  Google Scholar 

 24. Batello, C. et al. Perennial Crops for Food Security: Proceedings of the
     FAO Expert Workshop (FAO, 2014).

 25. Crews, T. E., Carton, W. & Olsson, L. Is the future of agriculture
     perennial? Imperatives and opportunities to reinvent agriculture by
     shifting from annual monocultures to perennial polycultures. Glob. Sustain.
     1, e11 (2018).
     
     Article  Google Scholar 

 26. Kleijn, D. et al. Ecological intensification: bridging the gap between
     science and practice. Trends Ecol. Evol. 34, 154–166 (2019).
     
     Article  Google Scholar 

 27. Myers, N., Mittermeler, R. A., Mittermeler, C. G., Da Fonseca, G. A. B. &
     Kent, J. Biodiversity hotspots for conservation priorities. Nature 403,
     853–858 (2000).
     
     Article CAS  Google Scholar 

 28. Sonwa, D. J., Weise, S. F., Schroth, G., Janssens, M. J. J. & Shapiro, H.
     Y. Structure of cocoa farming systems in West and Central Africa: a review.
     Agrofor. Syst. 93, 2009–2025 (2019).
     
     Article  Google Scholar 

 29. Tarifa, R. et al. Agricultural intensification erodes taxonomic and
     functional diversity in Mediterranean olive groves by filtering out rare
     species. J. Appl. Ecol. 58, 2266–2276 (2021).
     
     Article  Google Scholar 

 30. Winter, S. et al. Effects of vegetation management intensity on
     biodiversity and ecosystem services in vineyards: a meta-analysis. J. Appl.
     Ecol. https://doi.org/10.1111/1365-2664.13124 (2018).

 31. Valencia, V., García-Barrios, L., West, P., Sterling, E. J. & Naeem, S. The
     role of coffee agroforestry in the conservation of tree diversity and
     community composition of native forests in a Biosphere Reserve. Agric.
     Ecosyst. Environ. 189, 154–163 (2014).
     
     Article  Google Scholar 

 32. Schroth, G. & Harvey, C. A. Biodiversity conservation in cocoa production
     landscapes: an overview. Biodivers. Conserv. 16, 2237–2244 (2007).
     
     Article  Google Scholar 

 33. Rey, P. J. et al. Landscape-moderated biodiversity effects of ground herb
     cover in olive groves: implications for regional biodiversity conservation.
     Agric. Ecosyst. Environ. 277, 61–73 (2019).
     
     Article  Google Scholar 

 34. Sonwa, D. J. et al. Diversity of plants in cocoa agroforests in the humid
     forest zone of Southern Cameroon. Biodivers. Conserv. 16, 2385–2400 (2007).
     
     Article  Google Scholar 

 35. Bruggisser, O. T., Schmidt-Entling, M. H. & Bacher, S. Effects of vineyard
     management on biodiversity at three trophic levels. Biol. Conserv. 143,
     1521–1528 (2010).
     
     Article  Google Scholar 

 36. Clough, Y. et al. Combining high biodiversity with high yields in tropical
     agroforests. Proc. Natl Acad. Sci. USA 108, 8311–8316 (2011).
     
     Article CAS  Google Scholar 

 37. Kavvadias, V. & Koubouris, G. in Soil Fertility Management for Sustainable
     Development (eds Panpatte, D. & Jhala, Y.) 167–188 (Springer, 2019).

 38. Cerda, R. et al. Effects of shade, altitude and management on multiple
     ecosystem services in coffee agroecosystems. Eur. J. Agron. 82, 308–319
     (2017).
     
     Article  Google Scholar 

 39. FAOSTAT (FAO, 2021); https://www.fao.org/faostat

 40. Ewing, P. M. et al. Smallholder farms have and can store more carbon than
     previously estimated. Glob. Change Biol. 29, 1471–1483 (2023).
     
     Article CAS  Google Scholar 

 41. Batsi, G., Sonwa, D. J., Mangaza, L., Ebuy, J. & Kahindo, J. M. Preliminary
     estimation of above-ground carbon storage in cocoa agroforests of
     Bengamisa-Yangambi forest landscape (Democratic Republic of Congo).
     Agrofor. Syst. 95, 1505–1517 (2021).
     
     Article  Google Scholar 

 42. Perfecto, I. & Vandermeer, J. The agroecological matrix as alternative to
     the land-sparing/agriculture intensification model. Proc. Natl Acad. Sci.
     USA 107, 5786–5791 (2010).
     
     Article CAS  Google Scholar 

 43. Kremen, C. & Merenlender, A. M. Landscapes that work for biodiversity and
     people. Science 362, eaau6020 (2018).
     
     Article  Google Scholar 

 44. González del Portillo, D., Arroyo, B. & Morales, M. B. The adequacy of
     alfalfa crops as an agri-environmental scheme: a review of agronomic
     benefits and effects on biodiversity. J. Nat. Conserv. 69, 126253 (2022).
     
     Article  Google Scholar 

 45. Glover, J. D. et al. Increased food and ecosystem security via perennial
     grains. Science 328, 1638–1639 (2010).
     
     Article CAS  Google Scholar 

 46. DeHaan, L. R. et al. Discussion: prioritize perennial grain development for
     sustainable food production and environmental benefits. Sci. Total Environ.
     895, 164975 (2023).
     
     Article CAS  Google Scholar 

 47. Zhang, S. et al. Sustained productivity and agronomic potential of
     perennial rice. Nat. Sustain. 6, 28–38 (2022).
     
     Article  Google Scholar 

 48. ASEAN Regional Guidelines for Sustainable Agriculture in ASEAN Jakarta
     (ASEAN Secretariat, 2023).

 49. The common agricultural policy at a glance. European Commission
     https://agriculture.ec.europa.eu/common-agricultural-policy/cap-overview/cap-glance_en
     (2021).

 50. Forbidden Fruit (Pesticide Action Network Europe, 2022);
     https://www.pan-europe.info/sites/pan-europe.info/files/public/resources/reports/ForbiddenFruit_01.pdf

 51. Jha, S. et al. Shade coffee: update on a disappearing refuge for
     biodiversity. BioScience 64, 416–428 (2014).
     
     Article  Google Scholar 

 52. Harvey, C. A. et al. Transformation of coffee-growing landscapes across
     Latin America: a review. Agron. Sustain. Dev. 41, 1–19 (2021).
     
     Article  Google Scholar 

 53. Guerrero-Casado, J., Carpio, A. J., Tortosa, F. S. & Villanueva, A. J.
     Environmental challenges of intensive woody crops: the case of super
     high-density olive groves. Sci. Total Environ. 798, 149212 (2021).
     
     Article CAS  Google Scholar 

 54. Morgado, R. et al. Drivers of irrigated olive grove expansion in
     Mediterranean landscapes and associated biodiversity impacts. Landsc. Urban
     Plan. 225, 104429 (2022).
     
     Article  Google Scholar 

 55. Kopittke, P. M., Menzies, N. W., Wang, P., McKenna, B. A. & Lombi, E. Soil
     and the intensification of agriculture for global food security. Environ.
     Int. 132, 105078 (2019).
     
     Article  Google Scholar 

 56. Wolkovich, E. M., García De Cortázar-Atauri, I., Morales-Castilla, I.,
     Nicholas, K. A. & Lacombe, T. From Pinot to Xinomavro in the world’s future
     wine-growing regions. Nat. Clim. Change 2017 81 8, 29–37 (2018).
     
     Article  Google Scholar 

 57. Dempewolf, H., Krishnan, S. & Guarino, L. Our shared global responsibility:
     safeguarding crop diversity for future generations. Proc. Natl Acad. Sci.
     USA 120, e2205768119 (2023).
     
     Article CAS  Google Scholar 

 58. Kühn, S. Global employment and social trends. World Employ. Soc. Outlook
     2018, 5–10 (2018).
     
     Article  Google Scholar 

 59. Kleijn, D. et al. Bending the curve of biodiversity loss requires rewarding
     farmers economically for conservation management. ARPHA Prepr. 4, e104881
     (2023).
     
     Google Scholar 

 60. Scheper, J. et al. Biodiversity and pollination benefits trade off against
     profit in an intensive farming system. Proc. Natl Acad. Sci. USA 120,
     e2212124120 (2023).
     
     Article CAS  Google Scholar 

 61. Hayes, T., Murtinho, F., Wolff, H., López-Sandoval, M. F. & Salazar, J.
     Effectiveness of payment for ecosystem services after loss and uncertainty
     of compensation. Nat. Sustain. 5, 81–88 (2021).
     
     Article  Google Scholar 

 62. Malekpour, S. et al. What scientists need to do to accelerate progress on
     the SDGs. Nature 621, 250–254 (2023).
     
     Article CAS  Google Scholar 

 63. Zinngrebe, Y. et al. Prioritizing partners and products for the
     sustainability of the EU’s agri-food trade. One Earth 7, 674–686 (2024).
     
     Article  Google Scholar 

 64. Waarts, Y. R. et al. Multiple pathways towards achieving a living income
     for different types of smallholder tree-crop commodity farmers. Food Secur.
     13, 1467–1496 (2021).
     
     Article CAS  Google Scholar 

 65. Gaudaré, U. et al. Soil organic carbon stocks potentially at risk of
     decline with organic farming expansion. Nat. Clim. Change 13, 719–725
     (2023).
     
     Article  Google Scholar 

 66. Wijerathna-Yapa, A., Henry, R. J., Dunn, M. & Beveridge, C. A. Science and
     opinion in decision making: a case study of the food security collapse in
     Sri Lanka. Mod. Agric. 1, 142–151 (2023).
     
     Article  Google Scholar 

 67. Asitoakor, B. K. et al. Influences of climate variability on cocoa health
     and productivity in agroforestry systems in Ghana. Agric. For. Meteorol.
     327, 109199 (2022).
     
     Article  Google Scholar 

 68. Jamal, A. M. et al. Gendered perceptions and adaptation practices of
     smallholder cocoa farmers to climate variability in the central region of
     Ghana. Environ. Chall. 5, 100293 (2021).
     
     Article  Google Scholar 

 69. Afriyie-Kraft, L., Zabel, A. & Damnyag, L. Adaptation strategies of
     Ghanaian cocoa farmers under a changing climate. For. Policy Econ. 113,
     102115 (2020).
     
     Article  Google Scholar 

 70. Antwi-Agyei, P. et al. Perceived stressors of climate vulnerability across
     scales in the Savannah zone of Ghana: a participatory approach. Reg.
     Environ. Change 17, 213–227 (2017).
     
     Article  Google Scholar 

 71. Tang, F. H. M. et al. CROPGRIDS: a global geo-referenced dataset of 173
     crops. Sci. Data 11, 1–14 (2024).
     
     Article  Google Scholar 

 72. Noss, R. F. et al. How global biodiversity hotspots may go unrecognized:
     lessons from the North American Coastal Plain. Divers. Distrib. 21, 236–244
     (2015).
     
     Article  Google Scholar 

Nature Sustainability (Nat Sustain) ISSN 2398-9629 (online)


NATURE.COM SITEMAP


ABOUT NATURE PORTFOLIO

 * About us
 * Press releases
 * Press office
 * Contact us


DISCOVER CONTENT

 * Journals A-Z
 * Articles by subject
 * protocols.io
 * Nature Index


PUBLISHING POLICIES

 * Nature portfolio policies
 * Open access


AUTHOR & RESEARCHER SERVICES

 * Reprints & permissions
 * Research data
 * Language editing
 * Scientific editing
 * Nature Masterclasses
 * Research Solutions


LIBRARIES & INSTITUTIONS

 * Librarian service & tools
 * Librarian portal
 * Open research
 * Recommend to library


ADVERTISING & PARTNERSHIPS

 * Advertising
 * Partnerships & Services
 * Media kits
 * Branded content


PROFESSIONAL DEVELOPMENT

 * Nature Careers
 * Nature Conferences


REGIONAL WEBSITES

 * Nature Africa
 * Nature China
 * Nature India
 * Nature Italy
 * Nature Japan
 * Nature Middle East

 * Privacy Policy
 * Use of cookies
 * Your privacy choices/Manage cookies
 * Legal notice
 * Accessibility statement
 * Terms & Conditions
 * Your US state privacy rights

© 2024 Springer Nature Limited


Close banner Close

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in
anthropocene research, free to your inbox weekly.

Email address
Sign up
I agree my information will be processed in accordance with the Nature and
Springer Nature Limited Privacy Policy.
Close banner Close
Get the most important science stories of the day, free in your inbox. Sign up
for Nature Briefing: Anthropocene