www.cell.com Open in urlscan Pro
104.18.124.114  Public Scan

Submitted URL: https://t.cellpress.email.elsevier.com/r/?id=h26f9e97f%2Cecf9390%2Cd8986e2&utm_campaign=STMJ_144661_SC&utm_medium=email&utm_acid=159284...
Effective URL: https://www.cell.com/cell-reports/fulltext/S1097-2765(21)00600-6?utm_campaign=STMJ_144661_SC&utm_medium=email&utm_aci...
Submission: On August 23 via manual from US

Form analysis 3 forms found in the DOM

POST /action/doLogin?redirectUri=https%3A%2F%2Fwww.cell.com%2Fcell-reports%2Ffulltext%2FS1097-2765%2821%2900600-6%3Futm_campaign%3DSTMJ_144661_SC%26utm_medium%3Demail%26utm_acid%3D159284417%26SIS_ID%3D%26dgcid%3DSTMJ_144661_SC%26CMX_ID%3D%26utm_in%3DDM173038%26utm_source%3DAC_

<form
  action="/action/doLogin?redirectUri=https%3A%2F%2Fwww.cell.com%2Fcell-reports%2Ffulltext%2FS1097-2765%2821%2900600-6%3Futm_campaign%3DSTMJ_144661_SC%26utm_medium%3Demail%26utm_acid%3D159284417%26SIS_ID%3D%26dgcid%3DSTMJ_144661_SC%26CMX_ID%3D%26utm_in%3DDM173038%26utm_source%3DAC_"
  method="post"><input type="hidden" name="redirectUri"
    value="https://www.cell.com/cell-reports/fulltext/S1097-2765(21)00600-6?utm_campaign=STMJ_144661_SC&amp;utm_medium=email&amp;utm_acid=159284417&amp;SIS_ID=&amp;dgcid=STMJ_144661_SC&amp;CMX_ID=&amp;utm_in=DM173038&amp;utm_source=AC_"><input
    type="hidden" name="referer"
    value="/cell-reports/fulltext/S1097-2765(21)00600-6?utm_campaign=STMJ_144661_SC&amp;utm_medium=email&amp;utm_acid=159284417&amp;SIS_ID=&amp;dgcid=STMJ_144661_SC&amp;CMX_ID=&amp;utm_in=DM173038&amp;utm_source=AC_"><input type="hidden"
    name="ecommRedirect"><input type="hidden" name="code" value="cell-site"><input type="hidden" name="UX3LoginWidget" value="true"><input type="hidden" name="isPopup" value="true">
  <div class="input-group">
    <div class="label"><label for="login">Email/Username</label></div><input id="login" type="text" name="login" value="" size="15" class="login">
  </div>
  <div class="input-group">
    <div class="label"><label for="password">Password</label></div><input id="password" type="password" name="password" value="" autocomplete="off" class="password"><a href="#" class="login__field__action js-show-password">Show</a>
    <div class="actions"><a href="https://www.cell.com/action/requestResetPassword" class="link show-request-reset-password">Forgot password?</a></div>
  </div>
  <div class="remember"><input type="checkbox" name="savePassword" id="a1f1ba25-79af-4194-aaa9-66206104a800-remember" value="1" checked="checked"><label for="a1f1ba25-79af-4194-aaa9-66206104a800-remember">Remember me</label></div>
  <div class="submit" disabled="disabled"><input type="submit" name="submit" value="Log in" class="button submit primary" disabled="disabled"></div>
</form>

POST /action/requestResetPassword

<form action="/action/requestResetPassword" method="post" class="request-reset-password-form"><input type="hidden" name="platform"><input type="hidden" name="requestResetPassword" value="true"><input type="hidden" name="websiteName"
    value="Cell Press"><input type="hidden" name="codeSite" value="cell-site">
  <div class="input-group">
    <div class="label"><label for="reset-password-email">Email*</label></div><input id="reset-password-email" type="text" name="email" value="" size="15" class="email">
  </div>
  <div class="submit" disabled="disabled"><input type="submit" name="submit" value="Submit" disabled="disabled" class="button primary submit"></div>
</form>

Name: quickSearchBarGET https://www.cell.com/action/doSearch?journalCode=molcel

<form action="https://www.cell.com/action/doSearch?journalCode=molcel" name="quickSearchBar" method="get" title="Quick Search">
  <div class="clearfix">
    <div class="col-sm-5 col-md-6 col-lg-7">
      <div class="input-group quick-search__searchbar"><input type="text" name="text1" placeholder="Search for..." autocomplete="off" data-contributors-conf="3" data-topics-conf="3" data-publication-titles-conf="3" data-history-items-conf="3"
          aria-label="Enter a search term" class="searchText searchText-autocomplete ui-autocomplete-input">
        <ul id="ui-id-1" tabindex="0" class="ui-menu ui-widget ui-widget-content ui-autocomplete ui-front" style="display: none;"></ul>
      </div><button type="submit" title="Search" aria-label="Submit the search form" class="btn quick-search__button icon-search"><span>Go search</span></button>
    </div>
    <div class="col-sm-4 col-md-4 col-lg-3"><select name="field1" aria-label="Select a search area" class="quick-search__dropdown">
        <option value="AllField">All Content</option>
        <option value="Title">Article Title</option>
        <option value="Contrib">Authors</option>
        <option value="Keyword">Keywords</option>
        <option value="Abstract">Abstract</option>
        <option value="AbstractTitleKeywordFilterField">Article Title, Abstract, Keywords</option>
      </select>
      <div class="quick-search__scope-options clearfix"><input type="hidden" name="journalCode" value="molcel"><label title="This Journal"><span>This Journal</span><input type="radio" name="SeriesKey"
            id="searchScopeSeries-a1f05748-166f-41e0-b01a-ca8ac1cc95d4" title="This Journal" value="molcel" checked="checked" aria-label="Search within current journal"></label><label title="Full site"><span>Full site</span><input type="radio"
            name="SeriesKey" id="searchScopeFullSite-a1f05748-166f-41e0-b01a-ca8ac1cc95d4" value="" title="Full site" aria-label="Search within full site"></label></div>
    </div>
    <div class="col-sm-3 col-md-2 col-lg-2">
      <div class="quick-search__results-count visible-xs visible-sm"></div>
      <div class="quick-search__advanced-region">
        <span><a href="https://www.cell.com/search/advanced?SeriesKey=molcel&amp;ISSN=1097-2765&amp;journalCode=molcel" title="Advanced search" class="quick-search__advanced-link">Advanced Search</a></span><span
          class="quick-search__save-search visible-xs visible-sm"><a href="/action/doSaveSearch" role="button" data-toggle="modal" data-target="#saveSearchDialog" aria-label="Click here to save your search" title="Save search">Save search</a></span>
      </div>
    </div>
    <div class="quick-search__alert hidden">
      <p>Please enter a term before submitting your search.</p><a href="#" class="quick-search__alert--close"> Ok</a>
    </div>
  </div>
</form>

Text Content

Skip to Main Content


LOGIN TO YOUR ACCOUNT

Email/Username
Password
Show
Forgot password?
Remember me

Don’t have an account?
Create a Free Account

If you don't remember your password, you can reset it by entering your email
address and clicking the Reset Password button. You will then receive an email
that contains a secure link for resetting your password


Email*


If the address matches a valid account an email will be sent to __email__ with
instructions for resetting your password

Cancel
Article|Online Now
Structure of the human signal peptidase complex reveals the determinants for
signal peptide cleavage
 * Purchase
 * Subscribe
 * Save
    * Add to Online LibraryPowered ByMendeley
    * Add to My Reading List
    * Export Citation
    * Create Citation Alert

 * Share
   Share on
    * Email
    * Twitter
    * Facebook
    * LinkedIn
    * Sina Weibo
      

 * more
    * Reprints
    * Request

 * Top


STRUCTURE OF THE HUMAN SIGNAL PEPTIDASE COMPLEX REVEALS THE DETERMINANTS FOR
SIGNAL PEPTIDE CLEAVAGE

 * A. Manuel Liaci
   A. Manuel Liaci
   Affiliations
   Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht
   University, Universiteitsweg 99, 3584 CG, Utrecht, the Netherlands
   Search for articles by this author
 * Barbara Steigenberger 7
   Author Footnotes
   7 These authors contributed equally
   
   Barbara Steigenberger
   Footnotes
   7 These authors contributed equally
   
   Affiliations
   Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for
   Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences,
   Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
   
   
   
   Netherlands Proteomics Centre, Padualaan 8, 3584 CH, Utrecht, the Netherlands
   Search for articles by this author
 * Paulo Cesar Telles de Souza 7
   Author Footnotes
   7 These authors contributed equally
   
   Paulo Cesar Telles de Souza
   Footnotes
   7 These authors contributed equally
   
   Affiliations
   Groningen Biomolecular Sciences and Biotechnology Institute and Zernike
   Institute for Advanced Material, University of Groningen, Nijenborgh 7, 9747
   AG, Groningen, the Netherlands
   
   
   
   Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS and
   University of Lyon, Lyon, France
   Search for articles by this author
 * Sem Tamara
   Sem Tamara
   Affiliations
   Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for
   Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences,
   Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
   
   
   
   Netherlands Proteomics Centre, Padualaan 8, 3584 CH, Utrecht, the Netherlands
   Search for articles by this author
 * Mariska Gröllers-Mulderij
   Mariska Gröllers-Mulderij
   Affiliations
   Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht
   University, Universiteitsweg 99, 3584 CG, Utrecht, the Netherlands
   Search for articles by this author
 * Patrick Ogrissek
   Patrick Ogrissek
   Affiliations
   Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht
   University, Universiteitsweg 99, 3584 CG, Utrecht, the Netherlands
   
   
   
   Institute of Chemistry and Metabolomics, University of Lübeck, Ratzeburger
   Allee 160, 23562 Lübeck, Germany
   Search for articles by this author
 * 
 * Siewert J. Marrink
   Siewert J. Marrink
   Affiliations
   Groningen Biomolecular Sciences and Biotechnology Institute and Zernike
   Institute for Advanced Material, University of Groningen, Nijenborgh 7, 9747
   AG, Groningen, the Netherlands
   Search for articles by this author
 * Richard A. Scheltema
   Richard A. Scheltema
   Affiliations
   Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for
   Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences,
   Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
   
   
   
   Netherlands Proteomics Centre, Padualaan 8, 3584 CH, Utrecht, the Netherlands
   Search for articles by this author
 * Friedrich Förster 8
   Author Footnotes
   8 Lead contact
   
   Friedrich Förster
   Correspondence
   Corresponding author
   Contact
   Footnotes
   8 Lead contact
   
   Affiliations
   Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht
   University, Universiteitsweg 99, 3584 CG, Utrecht, the Netherlands
   Search for articles by this author
   
 * Show all authors
 * Show footnotesHide footnotes
   Author Footnotes
   7 These authors contributed equally
   8 Lead contact
   

Published:August 12, 2021DOI:https://doi.org/10.1016/j.molcel.2021.07.031
Plum Print visual indicator of research metrics
PlumX Metrics
 * Mentions
   * News Mentions: 1
 * Social Media
   * Tweets: 80

see details
Previous ArticleCRISPR-based peptide library display and programmable …

Next ArticleSingle-molecule studies reveal branched pathways for activ …

 * Highlights
 * Summary
 * Graphical abstract
 * Keywords
 * References
 * Article Info
 * Related Articles
 * Comments




HIGHLIGHTS

 * •
   The human SPC has two paralogs, both of which are structurally characterized
   here
 * •
   The SPC is a serine protease with a catalytic Ser-His-Asp triad
 * •
   The c-region binding pocket is conserved to bacterial signal peptidases
 * •
   Membrane thinning by the SPC measures signal peptides for length before
   cleavage


SUMMARY

The signal peptidase complex (SPC) is an essential membrane complex in the
endoplasmic reticulum (ER), where it removes signal peptides (SPs) from a large
variety of secretory pre-proteins with exquisite specificity. Although the
determinants of this process have been established empirically, the molecular
details of SP recognition and removal remain elusive. Here, we show that the
human SPC exists in two functional paralogs with distinct proteolytic subunits.
We determined the atomic structures of both paralogs using electron
cryo-microscopy and structural proteomics. The active site is formed by a
catalytic triad and abuts the ER membrane, where a transmembrane window
collectively formed by all subunits locally thins the bilayer. Molecular
dynamics simulations indicate that this unique architecture generates
specificity for SPs based on the length of their hydrophobic segments.


GRAPHICAL ABSTRACT

Graphical Abstract
 * View Large Image
 * Figure Viewer
 * Download Hi-res image


KEYWORDS

 * signal peptidase complex
 * signal peptide
 * protein maturation
 * protein secretion
 * ER translocon
 * membrane thinning
 * cryo-EM
 * crosslinking mass spectrometry
 * molecular dynamics simulations
 * secretory pathway


To read this article in full you will need to make a payment
Purchase one-time access


READ-IT-NOW

Purchase access to all full-text HTML articles for 6 or 36 hr at a low cost.
Click here to explore this opportunity.

Subscribe to Cell Reports
Already a print subscriber? Claim online access
Already an online subscriber? Sign in
Register: Create an account
Institutional Access: Sign in to ScienceDirect


REFERENCES

 1.   * Abraham M.J.
      * Murtola T.
      * Schulz R.
      * Páll S.
      * Smith J.C.
      * Hess B.
      * Lindah E.
      Gromacs: High performance molecular simulations through multi-level
      parallelism from laptops to supercomputers.
      SoftwareX. 2015; 1–2: 19-25
      View in Article
       * Scopus (5856)
       * Crossref
       * Google Scholar

 2.   * Afonine P.V.
      * Poon B.K.
      * Read R.J.
      * Sobolev O.V.
      * Terwilliger T.C.
      * Urzhumtsev A.
      * Adams P.D.
      Real-space refinement in PHENIX for cryo-EM and crystallography.
      Acta Crystallogr. D Struct. Biol. 2018; 74: 531-544
      View in Article
       * Scopus (460)
       * PubMed
       * Crossref
       * Google Scholar

 3.   * Albanese P.
      * Tamara S.
      * Saracco G.
      * Scheltema R.A.
      * Pagliano C.
      How paired PSII-LHCII supercomplexes mediate the stacking of plant
      thylakoid membranes unveiled by structural mass-spectrometry.
      Nat. Commun. 2020; 11: 1361
      View in Article
       * Scopus (0)
       * PubMed
       * Crossref
       * Google Scholar

 4.   * Alzahrani N.
      * Wu M.J.
      * Shanmugam S.
      * Yi M.
      Delayed by design: Role of suboptimal signal peptidase processing of viral
      structural protein precursors in flaviviridae virus assembly.
      Viruses. 2020; 12: 1090
      View in Article
       * Scopus (0)
       * Crossref
       * Google Scholar

 5.   * Antonin W.
      * Meyer H.A.
      * Hartmann E.
      Interactions between Spc2p and other components of the endoplasmic
      reticulum translocation sites of the yeast Saccharomyces cerevisiae.
      J. Biol. Chem. 2000; 275: 34068-34072
      View in Article
       * Scopus (18)
       * PubMed
       * Abstract
       * Full Text
       * Full Text PDF
       * Google Scholar

 6.   * Ashkenazy H.
      * Abadi S.
      * Martz E.
      * Chay O.
      * Mayrose I.
      * Pupko T.
      * Ben-Tal N.
      ConSurf 2016: an improved methodology to estimate and visualize
      evolutionary conservation in macromolecules.
      Nucleic Acids Res. 2016; 44: W344-W350
      View in Article
       * Scopus (888)
       * PubMed
       * Crossref
       * Google Scholar

 7.   * Bastian F.B.
      * Parmentier G.
      * Roux J.
      * Moretti S.
      * Laudet V.
      * Robinson-Rechavi M.
      Bgee: integrating and comparing heterogeneous transcriptome data among
      species.
      in: Proceedings of Data Integration in Life Sciences: Lecture Notes in
      Computer Science, Fifth International Workshop, DILS 2008. Springer, 2008:
      124-131
      View in Article
       * Google Scholar

 8.   * Bendtsen J.D.
      * Nielsen H.
      * von Heijne G.
      * Brunak S.
      Improved prediction of signal peptides: SignalP 3.0.
      J. Mol. Biol. 2004; 340: 783-795
      View in Article
       * Scopus (5494)
       * PubMed
       * Crossref
       * Google Scholar

 9.   * Blobel G.
      * Dobberstein B.
      Transfer of proteins across membranes. I. Presence of proteolytically
      processed and unprocessed nascent immunoglobulin light chains on
      membrane-bound ribosomes of murine myeloma.
      J. Cell Biol. 1975; 67: 835-851
      View in Article
       * PubMed
       * Crossref
       * Google Scholar

 10.  * Bussi G.
      * Donadio D.
      * Parrinello M.
      Canonical sampling through velocity rescaling.
      J. Chem. Physiol. 2007; 126: 014101
      View in Article
       * Scopus (6858)
       * PubMed
       * Crossref
       * Google Scholar

 11.  * Carpenter T.S.
      * López C.A.
      * Neale C.
      * Montour C.
      * Ingólfsson H.I.
      * Di Natale F.
      * Lightstone F.C.
      * Gnanakaran S.
      Capturing phase behavior of ternary lipid mixtures with a refined martini
      coarse-grained force field.
      J. Chem. Theory Comput. 2018; 14: 6050-6062
      View in Article
       * Scopus (31)
       * PubMed
       * Crossref
       * Google Scholar

 12.  * Cox J.
      * Mann M.
      MaxQuant enables high peptide identification rates, individualized
      p.p.b.-range mass accuracies and proteome-wide protein quantification.
      Nat. Biotechnol. 2008; 26: 1367-1372
      View in Article
       * Scopus (7409)
       * PubMed
       * Crossref
       * Google Scholar

 13.  * Crooks G.E.
      * Hon G.
      * Chandonia J.-M.
      * Brenner S.E.
      WebLogo: A Sequence Logo Generator.
      Genome Research. 2004; 14: 1188-1190
      View in Article
       * Scopus (0)
       * PubMed
       * Crossref
       * Google Scholar

 14.  * Daganzo S.M.
      * Erzberger J.P.
      * Lam W.M.
      * Skordalakes E.
      * Zhang R.
      * Franco A.A.
      * Brill S.J.
      * Adams P.D.
      * Berger J.M.
      * Kaufman P.D.
      Structure and function of the conserved core of histone deposition protein
      Asf1.
      Curr. Biol. 2003; 13: 2148-2158
      View in Article
       * Scopus (115)
       * PubMed
       * Abstract
       * Full Text
       * Full Text PDF
       * Google Scholar

 15.  * Darden T.
      * York D.
      * Pedersen L.
      Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems.
      J. Chem. Phys. 1993; 98: 10089-10092
      View in Article
       * Crossref
       * Google Scholar

 16.  * de Jong D.H.
      * Singh G.
      * Bennett W.F.D.
      * Arnarez C.
      * Wassenaar T.A.
      * Schäfer L.V.
      * Periole X.
      * Tieleman D.P.
      * Marrink S.J.
      Improved parameters for the martini coarse-grained protein force field.
      J. Chem. Theory Comput. 2013; 9: 687-697
      View in Article
       * Scopus (646)
       * PubMed
       * Crossref
       * Google Scholar

 17.  * de Jong D.H.
      * Baoukina S.
      * Ingólfsson H.I.
      * Marrink S.J.
      Martini straight: boosting performance using a shorter cutoff and GPUs.
      Comput. Phys. Commun. 2016; 199: 1-7
      View in Article
       * Crossref
       * Google Scholar

 18.  * Drozdetskiy A.
      * Cole C.
      * Procter J.
      * Barton G.J.
      JPred4: a protein secondary structure prediction server.
      Nucleic Acids Res. 2015; 43: W389-W394
      View in Article
       * PubMed
       * Crossref
       * Google Scholar

 19.  * Emsley P.
      * Lohkamp B.
      * Scott W.G.
      * Cowtan K.
      Features and development of Coot.
      Acta Crystallogr. D Biol. Crystallogr. 2010; 66: 486-501
      View in Article
       * Scopus (14022)
       * PubMed
       * Crossref
       * Google Scholar

 20.  * Essletzbichler P.
      * Konopka T.
      * Santoro F.
      * Chen D.
      * Gapp B.V.
      * Kralovics R.
      * Brummelkamp T.R.
      * Nijman S.M.B.
      * Bürckstümmer T.
      Megabase-scale deletion using CRISPR/Cas9 to generate a fully haploid
      human cell line.
      Genome Res. 2014; 24: 2059-2065
      View in Article
       * Scopus (142)
       * PubMed
       * Crossref
       * Google Scholar

 21.  * Essmann U.
      * Perera L.
      * Berkowitz M.L.
      * Darden T.
      * Lee H.
      * Pedersen L.G.
      A smooth particle mesh Ewald method.
      J. Chem. Phys. 1995; 103: 8577-8593
      View in Article
       * Crossref
       * Google Scholar

 22.  * Estoppey D.
      * Lee C.M.
      * Janoschke M.
      * Lee B.H.
      * Wan K.F.
      * Dong H.
      * Mathys P.
      * Filipuzzi I.
      * Schuhmann T.
      * Riedl R.
      * et al.
      The natural product cavinafungin selectively interferes with zika and
      dengue virus replication by inhibition of the host signal peptidase.
      Cell Rep. 2017; 19: 451-460
      View in Article
       * Scopus (40)
       * PubMed
       * Abstract
       * Full Text
       * Full Text PDF
       * Google Scholar

 23.  * Evans E.A.
      * Gilmore R.
      * Blobel G.
      Purification of microsomal signal peptidase as a complex.
      Proc. Natl. Acad. Sci. USA. 1986; 83: 581-585
      View in Article
       * PubMed
       * Crossref
       * Google Scholar

 24.  * Fang H.
      * Panzner S.
      * Mullins C.
      * Hartmann E.
      * Green N.
      The homologue of mammalian SPC12 is important for efficient signal
      peptidase activity in Saccharomyces cerevisiae.
      J. Biol. Chem. 1996; 271: 16460-16465
      View in Article
       * Scopus (0)
       * PubMed
       * Abstract
       * Full Text
       * Full Text PDF
       * Google Scholar

 25.  * Fang H.
      * Mullins C.
      * Green N.
      In addition to SEC11, a newly identified gene, SPC3, is essential for
      signal peptidase activity in the yeast endoplasmic reticulum.
      J. Biol. Chem. 1997; 272: 13152-13158
      View in Article
       * Scopus (30)
       * PubMed
       * Abstract
       * Full Text
       * Full Text PDF
       * Google Scholar

 26.  * Gemmer M.
      * Förster F.
      A clearer picture of the ER translocon complex.
      J. Cell Sci. 2020; 133: jcs231340
      View in Article
       * Scopus (16)
       * PubMed
       * Crossref
       * Google Scholar

 27.  * Goddard T.D.
      * Huang C.C.
      * Meng E.C.
      * Pettersen E.F.
      * Couch G.S.
      * Morris J.H.
      * Ferrin T.E.
      UCSF ChimeraX: meeting modern challenges in visualization and analysis.
      Protein Sci. 2018; 27: 14-25
      View in Article
       * Scopus (805)
       * PubMed
       * Crossref
       * Google Scholar

 28.  * Hegde R.S.
      * Bernstein H.D.
      The surprising complexity of signal sequences.
      Trends Biochem. Sci. 2006; 31: 563-571
      View in Article
       * Scopus (262)
       * PubMed
       * Abstract
       * Full Text
       * Full Text PDF
       * Google Scholar

 29.  * Herzik Jr., M.A.
      * Wu M.
      * Lander G.C.
      High-resolution structure determination of sub-100 kDa complexes using
      conventional cryo-EM.
      Nat. Commun. 2019; 10: 1032
      View in Article
       * Scopus (73)
       * PubMed
       * Crossref
       * Google Scholar

 30.  * Herzog F.A.
      * Braun L.
      * Schoen I.
      * Vogel V.
      Improved side chain dynamics in MARTINI simulations of protein-lipid
      interfaces.
      J. Chem. Theory Comput. 2016; 12: 2446-2458
      View in Article
       * Scopus (0)
       * PubMed
       * Crossref
       * Google Scholar

 31.  * Hess B.
      * Bekker H.
      * Berendsen H.J.C.
      * Fraaije J.G.E.M.
      LINCS: a linear constraint solver for molecular simulations.
      J. Comput. Chem. 1997; 18: 1463-1472
      View in Article
       * Crossref
       * Google Scholar

 32.  * Huang J.
      * Rauscher S.
      * Nawrocki G.
      * Ran T.
      * Feig M.
      * de Groot B.L.
      * Grubmüller H.
      * MacKerell Jr., A.D.
      CHARMM36m: an improved force field for folded and intrinsically disordered
      proteins.
      Nat. Methods. 2017; 14: 71-73
      View in Article
       * Scopus (1156)
       * PubMed
       * Crossref
       * Google Scholar

 33.  * Humphrey W.
      * Dalke A.
      * Schulten K.
      VMD: visual molecular dynamics.
      J. Mol. Graph. 1996; 14: 33-38, 27–28
      View in Article
       * Scopus (30650)
       * PubMed
       * Crossref
       * Google Scholar

 34.  * Jackson R.C.
      Quantitative assay for signal peptidase.
      Methods Enzymol. 1983; 96: 784-794
      View in Article
       * Scopus (0)
       * PubMed
       * Crossref
       * Google Scholar

 35.  * Jackson R.C.
      * Blobel G.
      Post-translational processing of full-length presecretory proteins with
      canine pancreatic signal peptidase.
      Ann. N Y Acad. Sci. 1980; 343: 391-404
      View in Article
       * PubMed
       * Crossref
       * Google Scholar

 36.  * Jorgensen W.L.
      Transferable intermolecular potential functions for water, alcohols, and
      ethers. Application to liquid water.
      J. Am. Chem. Soc. 1981; 103: 335-340
      View in Article
       * Crossref
       * Google Scholar

 37.  * Jurchen J.C.
      * Williams E.R.
      Origin of asymmetric charge partitioning in the dissociation of gas-phase
      protein homodimers.
      J. Am. Chem. Soc. 2003; 125: 2817-2826
      View in Article
       * Scopus (237)
       * PubMed
       * Crossref
       * Google Scholar

 38.  * Kalies K.U.
      * Hartmann E.
      Membrane topology of the 12- and the 25-kDa subunits of the mammalian
      signal peptidase complex.
      J. Biol. Chem. 1996; 271: 3925-3929
      View in Article
       * Scopus (39)
       * PubMed
       * Abstract
       * Full Text
       * Full Text PDF
       * Google Scholar

 39.  * Kamitani K.
      * Narita K.
      * Sakiyama F.
      Purification and characterization of hen oviduct N α-acetyltransferase.
      J. Biol. Chem. 1989; 264: 13188-13193
      View in Article
       * PubMed
       * Abstract
       * Full Text PDF
       * Google Scholar

 40.  * Kapp K.
      * Schrempf S.
      * Lemberg M.K.
      * Dobberstein B.
      Post-targeting functions of signal peptides.
      in: Madame Curie Bioscience Database: Protein Transport into the
      Endoplasmic Reticulum. Landes Bioscience, 2009: 1-16
      View in Article
       * Google Scholar

 41.  * Kelstrup C.D.
      * Bekker-Jensen D.B.
      * Arrey T.N.
      * Hogrebe A.
      * Harder A.
      * Olsen J.V.
      Performance evaluation of the Q exactive HF-X for shotgun proteomics.
      J. Proteome Res. 2018; 17: 727-738
      View in Article
       * Scopus (122)
       * PubMed
       * Crossref
       * Google Scholar

 42.  * Kilic A.
      * Klose S.
      * Dobberstein B.
      * Knust E.
      * Kapp K.
      The Drosophila Crumbs signal peptide is unusually long and is a substrate
      for signal peptide peptidase.
      Eur. J. Cell Biol. 2010; 89: 449-461
      View in Article
       * Scopus (0)
       * PubMed
       * Crossref
       * Google Scholar

 43.  * Klauda J.B.
      * Venable R.M.
      * Freites J.A.
      * O’Connor J.W.
      * Tobias D.J.
      * Mondragon-Ramirez C.
      * Vorobyov I.
      * MacKerell Jr., A.D.
      * Pastor R.W.
      Update of the CHARMM all-atom additive force field for lipids: validation
      on six lipid types.
      J. Phys. Chem. B. 2010; 114: 7830-7843
      View in Article
       * Scopus (2261)
       * PubMed
       * Crossref
       * Google Scholar

 44.  * Klausen M.S.
      * Jespersen M.C.
      * Nielsen H.
      * Jensen K.K.
      * Jurtz V.I.
      * Sønderby C.K.
      * Sommer M.O.A.
      * Winther O.
      * Nielsen M.
      * Petersen B.
      * Marcatili P.
      NetSurfP-2.0: Improved prediction of protein structural features by
      integrated deep learning.
      Proteins. 2019; 87: 520-527
      View in Article
       * Scopus (98)
       * PubMed
       * Crossref
       * Google Scholar

 45.  * Klykov O.
      * Steigenberger B.
      * Pektaş S.
      * Fasci D.
      * Heck A.J.R.
      * Scheltema R.A.
      Efficient and robust proteome-wide approaches for cross-linking mass
      spectrometry.
      Nat. Protoc. 2018; 13: 2964-2990
      View in Article
       * Scopus (50)
       * PubMed
       * Crossref
       * Google Scholar

 46.  * Kumar S.
      * Stecher G.
      * Li M.
      * Knyaz C.
      * Tamura K.
      MEGA X: Molecular Evolutionary Genetics Analysis across computing
      platforms.
      Mol. Biol. Evol. 2018; 35: 1547-1549
      View in Article
       * Scopus (8328)
       * PubMed
       * Crossref
       * Google Scholar

 47.  * Kumazaki K.
      * Chiba S.
      * Takemoto M.
      * Furukawa A.
      * Nishiyama K.
      * Sugano Y.
      * Mori T.
      * Dohmae N.
      * Hirata K.
      * Nakada-Nakura Y.
      * et al.
      Structural basis of Sec-independent membrane protein insertion by YidC.
      Nature. 2014; 509: 516-520
      View in Article
       * Scopus (121)
       * PubMed
       * Crossref
       * Google Scholar

 48.  * Lee J.
      * Cheng X.
      * Swails J.M.
      * Yeom M.S.
      * Eastman P.K.
      * Lemkul J.A.
      * Wei S.
      * Buckner J.
      * Jeong J.C.
      * Qi Y.
      * et al.
      CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and
      CHARMM/OpenMM simulations using the CHARMM36 additive force field.
      J. Chem. Theory Comput. 2016; 12: 405-413
      View in Article
       * Scopus (853)
       * PubMed
       * Crossref
       * Google Scholar

 49.  * Liaci A.M.
      * Förster F.
      Empirical analysis of eukaryotic ER signal peptides.
      Mendeley Data, 2021https://doi.org/10.17632/P65tkrr89v.1 (version 1)
      View in Article
       * Crossref
       * Google Scholar

 50.  * Liang H.
      * VanValkenburgh C.
      * Chen X.
      * Mullins C.
      * Van Kaer L.
      * Green N.
      * Fang H.
      Genetic complementation in yeast reveals functional similarities between
      the catalytic subunits of mammalian signal peptidase complex.
      J. Biol. Chem. 2003; 278: 50932-50939
      View in Article
       * Scopus (0)
       * PubMed
       * Abstract
       * Full Text
       * Full Text PDF
       * Google Scholar

 51.  * Lively M.O.
      * Walsh K.A.
      Hen oviduct signal peptidase is an integral membrane protein.
      J. Biol. Chem. 1983; 258: 9488-9495
      View in Article
       * PubMed
       * Abstract
       * Full Text PDF
       * Google Scholar

 52.  * MacKerell A.D.
      * Bashford D.
      * Bellott M.
      * Dunbrack R.L.
      * Evanseck J.D.
      * Field M.J.
      * Fischer S.
      * Gao J.
      * Guo H.
      * Ha S.
      * et al.
      All-atom empirical potential for molecular modeling and dynamics studies
      of proteins.
      J. Phys. Chem. B. 1998; 102: 3586-3616
      View in Article
       * PubMed
       * Crossref
       * Google Scholar

 53.  * Marrink Laboratory
      Martinize and Vermouth: The Ultimate Resolution Transformation Tools.
      GitHub, 2020
      https://github.com/marrink-lab/vermouth-martinize
      View in Article
       * Google Scholar

 54.  * Marrink S.J.
      * Risselada H.J.
      * Yefimov S.
      * Tieleman D.P.
      * de Vries A.H.
      The MARTINI force field: coarse grained model for biomolecular
      simulations.
      J. Phys. Chem. B. 2007; 111: 7812-7824
      View in Article
       * Scopus (3240)
       * PubMed
       * Crossref
       * Google Scholar

 55.  * Martínez L.
      Automatic identification of mobile and rigid substructures in molecular
      dynamics simulations and fractional structural fluctuation analysis.
      PLoS ONE. 2015; 10: e0119264
      View in Article
       * Scopus (0)
       * PubMed
       * Crossref
       * Google Scholar

 56.  * Marty M.T.
      * Baldwin A.J.
      * Marklund E.G.
      * Hochberg G.K.A.
      * Benesch J.L.P.
      * Robinson C.V.
      Bayesian deconvolution of mass and ion mobility spectra: from binary
      interactions to polydisperse ensembles.
      Anal. Chem. 2015; 87: 4370-4376
      View in Article
       * PubMed
       * Crossref
       * Google Scholar

 57.  * McDowell M.A.
      * Heimes M.
      * Fiorentino F.
      * Mehmood S.
      * Farkas Á.
      * Coy-Vergara J.
      * Wu D.
      * Bolla J.R.
      * Schmid V.
      * Heinze R.
      * et al.
      Structural basis of tail-anchored membrane protein biogenesis by the GET
      insertase complex.
      Mol. Cell. 2020; 80: 72-86.e7
      View in Article
       * PubMed
       * Abstract
       * Full Text
       * Full Text PDF
       * Google Scholar

 58.  * McGilvray P.T.
      * Anghel S.A.
      * Sundaram A.
      * Zhong F.
      * Trnka M.J.
      * Fuller J.R.
      * Hu H.
      * Burlingame A.L.
      * Keenan R.J.
      An ER translocon for multi-pass membrane protein biogenesis.
      eLife. 2020; 9: 1-43
      View in Article
       * Crossref
       * Google Scholar

 59.  * Meyer H.A.
      * Hartmann E.
      The yeast SPC22/23 homolog Spc3p is essential for signal peptidase
      activity.
      J. Biol. Chem. 1997; 272: 13159-13164
      View in Article
       * Scopus (32)
       * PubMed
       * Abstract
       * Full Text
       * Full Text PDF
       * Google Scholar

 60.  * Mitra K.
      * Ubarretxena-Belandia I.
      * Taguchi T.
      * Warren G.
      * Engelman D.M.
      Modulation of the bilayer thickness of exocytic pathway membranes by
      membrane proteins rather than cholesterol.
      PNAS. 2004; 101: 4083-4088
      View in Article
       * Scopus (283)
       * PubMed
       * Crossref
       * Google Scholar

 61.  * Mullins C.
      * Meyer H.A.
      * Hartmann E.
      * Green N.
      * Fang H.
      Structurally related Spc1p and Spc2p of yeast signal peptidase complex are
      functionally distinct.
      J. Biol. Chem. 1996; 271: 29094-29099
      View in Article
       * Scopus (36)
       * PubMed
       * Abstract
       * Full Text
       * Full Text PDF
       * Google Scholar

 62.  * Nakane T.
      * Kotecha A.
      * Sente A.
      * McMullan G.
      * Masiulis S.
      * Brown P.M.G.E.
      * Grigoras I.T.
      * Malinauskaite L.
      * Malinauskas T.
      * Miehling J.
      * et al.
      Single-particle cryo-EM at atomic resolution.
      Nature. 2020; 587: 152-156
      View in Article
       * Scopus (83)
       * PubMed
       * Crossref
       * Google Scholar

 63.  * Nielsen H.
      * Tsirigos K.D.
      * Brunak S.
      * von Heijne G.
      A brief history of protein sorting prediction.
      Protein J. 2019; 38: 200-216
      View in Article
       * Scopus (0)
       * PubMed
       * Crossref
       * Google Scholar

 64.  * Nilsson I.
      * Whitley P.
      * von Heijne G.
      The COOH-terminal ends of internal signal and signal-anchor sequences are
      positioned differently in the ER translocase.
      J. Cell Biol. 1994; 126: 1127-1132
      View in Article
       * Scopus (121)
       * PubMed
       * Crossref
       * Google Scholar

 65.  * Nilsson I.
      * Johnson A.E.
      * von Heijne G.
      Cleavage of a tail-anchored protein by signal peptidase.
      FEBS Lett. 2002; 516: 106-108
      View in Article
       * Scopus (20)
       * PubMed
       * Crossref
       * Google Scholar

 66.  * Oostra M.
      * te Lintelo E.G.
      * Deijs M.
      * Verheije M.H.
      * Rottier P.J.M.
      * de Haan C.A.M.
      Localization and membrane topology of coronavirus nonstructural protein 4:
      involvement of the early secretory pathway in replication.
      J. Virol. 2007; 81: 12323-12336
      View in Article
       * Scopus (85)
       * PubMed
       * Crossref
       * Google Scholar

 67.  * Paetzel M.
      Structure and mechanism of Escherichia coli type I signal peptidase.
      Biochim. Biophys. Acta. 2014; 1843: 1497-1508
      View in Article
       * Scopus (43)
       * PubMed
       * Crossref
       * Google Scholar

 68.  * Paetzel M.
      * Dalbey R.E.
      * Strynadka N.C.J.
      Crystal structure of a bacterial signal peptidase in complex with a
      β-lactam inhibitor.
      Nature. 1998; 396: 186-190
      View in Article
       * PubMed
       * Crossref
       * Google Scholar

 69.  * Paetzel M.
      * Karla A.
      * Strynadka N.C.J.
      * Dalbey R.E.
      Signal peptidases.
      Chem. Rev. 2002; 102: 4549-4580
      View in Article
       * Scopus (353)
       * PubMed
       * Crossref
       * Google Scholar

 70.  * Paetzel M.
      * Goodall J.J.
      * Kania M.
      * Dalbey R.E.
      * Page M.G.P.
      Crystallographic and biophysical analysis of a bacterial signal peptidase
      in complex with a lipopeptide-based inhibitor.
      J. Biol. Chem. 2004; 279: 30781-30790
      View in Article
       * Scopus (74)
       * PubMed
       * Abstract
       * Full Text
       * Full Text PDF
       * Google Scholar

 71.  * Palade G.
      * Arch A.
      * Locke M.
      * Locke E.
      * Palade G.
      Intracellular aspects of the process of protein synthesis.
      Science. 1975; 189: 347-358
      View in Article
       * PubMed
       * Crossref
       * Google Scholar

 72.  * Parrinello M.
      * Rahman A.
      Polymorphic transitions in single crystals: A new molecular dynamics
      method.
      J. Appl. Physiol. 1981; 52: 7182-7190
      View in Article
       * Scopus (9157)
       * Crossref
       * Google Scholar

 73.  * Pettersen E.F.
      * Goddard T.D.
      * Huang C.C.
      * Couch G.S.
      * Greenblatt D.M.
      * Meng E.C.
      * Ferrin T.E.
      UCSF Chimera--a visualization system for exploratory research and
      analysis.
      J. Comput. Chem. 2004; 25: 1605-1612
      View in Article
       * Scopus (22167)
       * PubMed
       * Crossref
       * Google Scholar

 74.  * Pleiner T.
      * Tomaleri G.P.
      * Januszyk K.
      * Inglis A.J.
      * Hazu M.
      * Voorhees R.M.
      Structural basis for membrane insertion by the human ER membrane protein
      complex.
      Science. 2020; 369: 433-436
      View in Article
       * Scopus (21)
       * PubMed
       * Crossref
       * Google Scholar

 75.  * Popa V.
      * Trecroce D.A.
      * McAllister R.G.
      * Konermann L.
      Collision-induced dissociation of electrosprayed protein complexes: An
      all-atom molecular dynamics model with mobile protons.
      J. Phys. Chem. B. 2016; 120: 5114-5124
      View in Article
       * Scopus (35)
       * PubMed
       * Crossref
       * Google Scholar

 76.  * Prod’homme V.
      * Tomasec P.
      * Cunningham C.
      * Lemberg M.K.
      * Stanton R.J.
      * McSharry B.P.
      * Wang E.C.Y.
      * Cuff S.
      * Martoglio B.
      * Davison A.J.
      * et al.
      Human cytomegalovirus UL40 signal peptide regulates cell surface
      expression of the NK cell ligands HLA-E and gpUL18.
      J. Immunol. 2012; 188: 2794-2804
      View in Article
       * Scopus (53)
       * PubMed
       * Crossref
       * Google Scholar

 77.  * Rohou A.
      * Grigorieff N.
      CTFFIND4: fast and accurate defocus estimation from electron micrographs.
      J. Struct. Biol. 2015; 192: 216-221
      View in Article
       * Scopus (1258)
       * PubMed
       * Crossref
       * Google Scholar

 78.  * Rosenthal P.B.
      * Henderson R.
      Optimal determination of particle orientation, absolute hand, and contrast
      loss in single-particle electron cryomicroscopy.
      J. Mol. Biol. 2003; 333: 721-745
      View in Article
       * Scopus (1089)
       * PubMed
       * Crossref
       * Google Scholar

 79.  * Scheltema R.A.
      * Hauschild J.P.
      * Lange O.
      * Hornburg D.
      * Denisov E.
      * Damoc E.
      * Kuehn A.
      * Makarov A.
      * Mann M.
      The Q Exactive HF, a benchtop mass spectrometer with a pre-filter,
      high-performance quadrupole and an ultra-high-field orbitrap analyzer.
      Mol. Cell. Proteomics. 2014; 13: 3698-3708
      View in Article
       * Scopus (197)
       * PubMed
       * Abstract
       * Full Text
       * Full Text PDF
       * Google Scholar

 80.  * Scheres S.H.W.
      A Bayesian view on cryo-EM structure determination.
      J. Mol. Biol. 2012; 415: 406-418
      View in Article
       * Scopus (405)
       * PubMed
       * Crossref
       * Google Scholar

 81.  * Schoebel S.
      * Mi W.
      * Stein A.
      * Ovchinnikov S.
      * Pavlovicz R.
      * DiMaio F.
      * Baker D.
      * Chambers M.G.
      * Su H.
      * Li D.
      * et al.
      Cryo-EM structure of the protein-conducting ERAD channel Hrd1 in complex
      with Hrd3.
      Nature. 2017; 548: 352-355
      View in Article
       * Scopus (87)
       * PubMed
       * Crossref
       * Google Scholar

 82.  * Schwanhäusser B.
      * Busse D.
      * Li N.
      * Dittmar G.
      * Schuchhardt J.
      * Wolf J.
      * Chen W.
      * Selbach M.
      Global quantification of mammalian gene expression control.
      Nature. 2011; 473: 337-342
      View in Article
       * Scopus (3438)
       * PubMed
       * Crossref
       * Google Scholar

 83.  * Senko M.W.
      * Remes P.M.
      * Canterbury J.D.
      * Mathur R.
      * Song Q.
      * Eliuk S.M.
      * Mullen C.
      * Earley L.
      * Hardman M.
      * Blethrow J.D.
      * et al.
      Novel parallelized quadrupole/linear ion trap/Orbitrap tribrid mass
      spectrometer improving proteome coverage and peptide identification rates.
      Anal. Chem. 2013; 85: 11710-11714
      View in Article
       * Scopus (147)
       * PubMed
       * Crossref
       * Google Scholar

 84.  * Sharpe H.J.
      * Stevens T.J.
      * Munro S.
      A comprehensive comparison of transmembrane domains reveals
      organelle-specific properties.
      Cell. 2010; 142: 158-169
      View in Article
       * Scopus (334)
       * PubMed
       * Abstract
       * Full Text
       * Full Text PDF
       * Google Scholar

 85.  * Shelness G.S.
      * Blobel G.
      Two subunits of the canine signal peptidase complex are homologous to
      yeast SEC11 protein.
      J. Biol. Chem. 1990; 265: 9512-9519
      View in Article
       * PubMed
       * Abstract
       * Full Text PDF
       * Google Scholar

 86.  * Shelness G.S.
      * Lin L.
      * Nicchitta C.V.
      Membrane topology and biogenesis of eukaryotic signal peptidase.
      J. Biol. Chem. 1993; 268: 5201-5208
      View in Article
       * PubMed
       * Abstract
       * Full Text PDF
       * Google Scholar

 87.  * Snapp E.L.
      * McCaul N.
      * Quandte M.
      * Cabartova Z.
      * Bontjer I.
      * Källgren C.
      * Nilsson I.
      * Land A.
      * von Heijne G.
      * Sanders R.W.
      * Braakman I.
      Structure and topology around the cleavage site regulate
      post-translational cleavage of the HIV-1 gp160 signal peptide.
      eLife. 2017; 6: 1-25
      View in Article
       * Scopus (16)
       * Crossref
       * Google Scholar

 88.  * Souza P.C.T.
      * Alessandri R.
      * Barnoud J.
      * Thallmair S.
      * Faustino I.
      * Grünewald F.
      * Patmanidis I.
      * Abdizadeh H.
      * Bruininks B.M.H.
      * Wassenaar T.A.
      * et al.
      Martini 3: a general purpose force field for coarse-grained molecular
      dynamics.
      Nat. Methods. 2021; 18: 382-388
      View in Article
       * Scopus (14)
       * PubMed
       * Crossref
       * Google Scholar

 89.  * Steigenberger B.
      * Pieters R.J.
      * Heck A.J.R.
      * Scheltema R.A.
      PhoX: An IMAC-enrichable cross-linking reagent.
      ACS Cent. Sci. 2019; 5: 1514-1522
      View in Article
       * Scopus (34)
       * PubMed
       * Crossref
       * Google Scholar

 90.  * Suzuki R.
      * Matsuda M.
      * Watashi K.
      * Aizaki H.
      * Matsuura Y.
      * Wakita T.
      * Suzuki T.
      Signal peptidase complex subunit 1 participates in the assembly of
      hepatitis C virus through an interaction with E2 and NS2.
      PLoS Pathog. 2013; 9: e1003589
      View in Article
       * Scopus (33)
       * PubMed
       * Crossref
       * Google Scholar

 91.  * Tahara Y.
      * Murata M.
      * Ohnishi S.
      * Fujiyoshi Y.
      * Kikuchi M.
      * Yamamoto Y.
      Functional signal peptide reduces bilayer thickness of phosphatidylcholine
      liposomes.
      Biochemistry. 1992; 31: 8747-8754
      View in Article
       * Scopus (24)
       * PubMed
       * Crossref
       * Google Scholar

 92.  * Tegunov D.
      * Cramer P.
      Real-time cryo-electron microscopy data preprocessing with Warp.
      Nat. Methods. 2019; 16: 1146-1152
      View in Article
       * Scopus (142)
       * PubMed
       * Crossref
       * Google Scholar

 93.  * Ting Y.T.
      * Harris P.W.R.
      * Batot G.
      * Brimble M.A.
      * Baker E.N.
      * Young P.G.
      Peptide binding to a bacterial signal peptidase visualized by peptide
      tethering and carrier-driven crystallization.
      IUCrJ. 2016; 3: 10-19
      View in Article
       * Scopus (9)
       * PubMed
       * Crossref
       * Google Scholar

 94.  * Tschantz W.R.
      * Sung M.
      * Delgado-Partin V.M.
      * Dalbey R.E.
      A serine and a lysine residue implicated in the catalytic mechanism of the
      Escherichia coli leader peptidase.
      J. Biol. Chem. 1993; 268: 27349-27354
      View in Article
       * PubMed
       * Abstract
       * Full Text PDF
       * Google Scholar

 95.  * Tyndall J.D.A.
      * Nall T.
      * Fairlie D.P.
      Proteases universally recognize beta strands in their active sites.
      Chem. Rev. 2005; 105: 973-999
      View in Article
       * Scopus (329)
       * PubMed
       * Crossref
       * Google Scholar

 96.  * Uchida M.
      * Watanabe Y.
      * Fujimoto Y.
      Is phospholipid a required cofactor for the activity of mammalian signal
      peptidase?.
      FEBS Lett. 1986; 200: 343-346
      View in Article
       * PubMed
       * Crossref
       * Google Scholar

 97.  * Uhlén M.
      * Fagerberg L.
      * Hallström B.M.
      * Lindskog C.
      * Oksvold P.
      * Mardinoglu A.
      * Sivertsson Å.
      * Kampf C.
      * Sjöstedt E.
      * Asplund A.
      * et al.
      Proteomics: tissue-based map of the human proteome.
      Science. 2015; 347: 1260419
      View in Article
       * PubMed
       * Crossref
       * Google Scholar

 98.  * UniProt Consortium
      UniProt: the universal protein knowledgebase in 2021.
      Nucleic Acids Res. 2021; 49: D480-D489
      View in Article
       * Scopus (86)
       * PubMed
       * Crossref
       * Google Scholar

 99.  * Van Damme P.
      * Lasa M.
      * Polevoda B.
      * Gazquez C.
      * Elosegui-Artola A.
      * Kim D.S.
      * De Juan-Pardo E.
      * Demeyer K.
      * Hole K.
      * Larrea E.
      * et al.
      N-terminal acetylome analyses and functional insights of the N-terminal
      acetyltransferase NatB.
      Proc. Natl. Acad. Sci. USA. 2012; 109: 12449-12454
      View in Article
       * Scopus (108)
       * PubMed
       * Crossref
       * Google Scholar

 100. * van Dijl J.M.
      * de Jong A.
      * Vehmaanperä J.
      * Venema G.
      * Bron S.
      Signal peptidase I of Bacillus subtilis: patterns of conserved amino acids
      in prokaryotic and eukaryotic type I signal peptidases.
      EMBO J. 1992; 11: 2819-2828
      View in Article
       * Scopus (0)
       * PubMed
       * Crossref
       * Google Scholar

 101. * van Hilten N.
      * Stroh K.S.
      * Risselada H.J.
      Membrane thinning induces sorting of lipids and the amphipathic lipid
      packing sensor (ALPS) protein motif.
      Front. Physiol. 2020; 11: 250
      View in Article
       * Scopus (1)
       * PubMed
       * Crossref
       * Google Scholar

 102. * VanValkenburgh C.
      * Chen X.
      * Mullins C.
      * Fang H.
      * Green N.
      The catalytic mechanism of endoplasmic reticulum signal peptidase appears
      to be distinct from most eubacterial signal peptidases.
      J. Biol. Chem. 1999; 274: 11519-11525
      View in Article
       * Scopus (45)
       * PubMed
       * Abstract
       * Full Text
       * Full Text PDF
       * Google Scholar

 103. * von Heijne G.
      Signal sequences. The limits of variation.
      J. Mol. Biol. 1985; 184: 99-105
      View in Article
       * Scopus (1475)
       * PubMed
       * Crossref
       * Google Scholar

 104. * von Heijne G.
      The signal peptide.
      J. Membr. Biol. 1990; 115: 195-201
      View in Article
       * Scopus (802)
       * PubMed
       * Crossref
       * Google Scholar

 105. * von Heijne G.
      Membrane-protein topology.
      Nat. Rev. Mol. Cell Biol. 2006; 7: 909-918
      View in Article
       * Scopus (342)
       * PubMed
       * Crossref
       * Google Scholar

 106. * von Messling V.
      * Cattaneo R.
      Amino-terminal precursor sequence modulates canine distemper virus fusion
      protein function.
      J. Virol. 2002; 76: 4172-4180
      View in Article
       * Scopus (32)
       * PubMed
       * Crossref
       * Google Scholar

 107. * Wagner T.
      MPI-Dortmund/sphire-janni: JANNI (Version v0.1.2).
      Zendodo, 2020https://doi.org/10.5281/zenodo.3378300
      View in Article
       * Crossref
       * Google Scholar

 108. * Wagner T.
      * Merino F.
      * Stabrin M.
      * Moriya T.
      * Antoni C.
      * Apelbaum A.
      * Hagel P.
      * Sitsel O.
      * Raisch T.
      * Prumbaum D.
      * et al.
      SPHIRE-crYOLO is a fast and accurate fully automated particle picker for
      cryo-EM.
      Commun. Biol. 2019; 2: 218
      View in Article
       * Scopus (175)
       * PubMed
       * Crossref
       * Google Scholar

 109. * Walker S.J.
      * Lively M.O.
      Signal peptidase (eukaryote).
      in: Handbook of Proteolytic Enzymes, Volume 1. Academic Press, 2013:
      3512-3517
      View in Article
       * Google Scholar

 110. * Wassenaar T.A.
      * Pluhackova K.
      * Böckmann R.A.
      * Marrink S.J.
      * Tieleman D.P.
      Going backward: A flexible geometric approach to reverse transformation
      from coarse grained to atomistic models.
      J. Chem. Theory Comput. 2014; 10: 676-690
      View in Article
       * Scopus (299)
       * PubMed
       * Crossref
       * Google Scholar

 111. * Wassenaar T.A.
      * Ingólfsson H.I.
      * Böckmann R.A.
      * Tieleman D.P.
      * Marrink S.J.
      Computational lipidomics with insane: A versatile tool for generating
      custom membranes for molecular simulations.
      J. Chem. Theory Comput. 2015; 11: 2144-2155
      View in Article
       * Scopus (397)
       * PubMed
       * Crossref
       * Google Scholar

 112. * Wickham H.
      ggplot2: Elegant Graphics for Data Analysis..
      Springer, 2009https://doi.org/10.1007/978-0-387-98141-3
      View in Article
       * Crossref
       * Google Scholar

 113. * Wu X.
      * Siggel M.
      * Ovchinnikov S.
      * Mi W.
      * Svetlov V.
      * Nudler E.
      * Liao M.
      * Hummer G.
      * Rapoport T.A.
      Structural basis of ER-associated protein degradation mediated by the Hrd1
      ubiquitin ligase complex.
      Science. 2020; 368: eaaz2449
      View in Article
       * Scopus (14)
       * PubMed
       * Crossref
       * Google Scholar

 114. * Yang J.
      * Anishchenko I.
      * Park H.
      * Peng Z.
      * Ovchinnikov S.
      * Baker D.
      Improved protein structure prediction using predicted interresidue
      orientations.
      Proc. Natl. Acad. Sci. USA. 2020; 117: 1496-1503
      View in Article
       * Scopus (153)
       * PubMed
       * Crossref
       * Google Scholar

 115. * Yip K.M.
      * Fischer N.
      * Paknia E.
      * Chari A.
      * Stark H.
      Atomic-resolution protein structure determination by cryo-EM.
      Nature. 2020; 587: 157-161
      View in Article
       * Scopus (59)
       * PubMed
       * Crossref
       * Google Scholar

 116. * Zamdborg L.
      * LeDuc R.D.
      * Glowacz K.J.
      * Kim Y.B.
      * Viswanathan V.
      * Spaulding I.T.
      * Early B.P.
      * Bluhm E.J.
      * Babai S.
      * Kelleher N.L.
      ProSight PTM 2.0: improved protein identification and characterization for
      top down mass spectrometry.
      Nucleic Acids Res. 2007; 35: W701-W706
      View in Article
       * Scopus (183)
       * PubMed
       * Crossref
       * Google Scholar

 117. * Zhang R.
      * Miner J.J.
      * Gorman M.J.
      * Rausch K.
      * Ramage H.
      * White J.P.
      * Zuiani A.
      * Zhang P.
      * Fernandez E.
      * Zhang Q.
      * et al.
      A CRISPR screen defines a signal peptide processing pathway required by
      flaviviruses.
      Nature. 2016; 535: 164-168
      View in Article
       * PubMed
       * Crossref
       * Google Scholar

 118. * Zheng S.Q.
      * Palovcak E.
      * Armache J.P.
      * Verba K.A.
      * Cheng Y.
      * Agard D.A.
      MotionCor2: anisotropic correction of beam-induced motion for improved
      cryo-electron microscopy.
      Nat. Methods. 2017; 14: 331-332
      View in Article
       * Scopus (1933)
       * PubMed
       * Crossref
       * Google Scholar


ARTICLE INFO


PUBLICATION HISTORY

Published: August 12, 2021
Accepted: July 26, 2021
Received in revised form: June 2, 2021
Received: December 1, 2020


PUBLICATION STAGE

In Press, Corrected Proof


IDENTIFICATION

DOI: https://doi.org/10.1016/j.molcel.2021.07.031


COPYRIGHT

© 2021 Elsevier Inc.


SCIENCEDIRECT

Access this article on ScienceDirect




RELATED ARTICLES




COMMENTS


Please enable JavaScript to view the comments powered by Disqus.

CELL PRESS COMMENTING GUIDELINES

To submit a comment for a journal article, please use the space above and note
the following:

 * We will review submitted comments within 2 business days.
 * This forum is intended for constructive dialog. Comments that are commercial
   or promotional in nature, pertain to specific medical cases, are not relevant
   to the article for which they have been submitted, or are otherwise
   inappropriate will not be posted.
 * We recommend that commenters identify themselves with full names and
   affiliations.
 * Comments must be in compliance with our Terms & Conditions.
 * Comments will not be peer-reviewed.

Structure of the human signal peptidase complex reveals the determinants for
signal peptide cleavage
 * 


Hide CaptionDownloadSee figure in Article
Toggle Thumbstrip
 * Graph. Abst.
   

 * Download Hi-res image
 * Download .PPT




Science that inspires

A Cell Press journal

Close
 * This Journal
   * Back
   * Online Now
   * Current Issue
   * About the Journal
   * Author Resources
   * Archive
   * Alerts
   * Submit
 * Research Journals
   * Back
   * Cell
   * Cancer Cell
   * Cell Chemical Biology
   * Cell Genomics
   * Cell Host & Microbe
   * Cell Metabolism
   * Cell Reports
   * Cell Reports Medicine
   * Cell Reports Methods
   * Cell Reports Physical Science
   * Cell Stem Cell
   * Cell Systems
   * Chem
   * Chem Catalysis
   * Current Biology
   * Developmental Cell
   * Heliyon
   * Immunity
   * iScience
   * Joule
   * Matter
   * Med
   * Molecular Cell
   * Neuron
   * One Earth
   * Patterns
   * STAR Protocols
   * Structure
 * Trends Reviews Journals
   * Back
   * About Trends Reviews Journals
   * Biochemical Sciences
   * Biotechnology
   * Cancer
   * Cell Biology
   * Chemistry
   * Cognitive Sciences
   * Ecology & Evolution
   * Endocrinology & Metabolism
   * Genetics
   * Immunology
   * Microbiology
   * Molecular Medicine
   * Neurosciences
   * Parasitology
   * Pharmacological Sciences
   * Plant Science
 * Partner Journals
   * Back
   * AJHG
   * Biophysical Journal
   * Biophysical Reports
   * EBioMedicine
   * HGG Advances
   * Molecular Plant
   * Molecular Therapy Family
   * Plant Communications
   * Stem Cell Reports
   * The Innovation
 * Collections
   * Back
   * Best of Cell Press
   * Cell Press Reviews
   * Cell Press Selections
   * Consortia Hub
   * Nucleus Collections
   * SnapShot Archive
   * Trends Limited Editions
 * Beyond the Journal
   * Back
   * Cell Career Network
   * Cell Mentor
   * Cell Symposia
   * LabLinks
   * Webinars
 * Evolving the Article
   * Back
   * Community Review
   * Figure360
   * Sneak Peek
   * STAR Methods
 * Science in Society
   * Back
   * Cell Picture Show
   * Cell Press Podcast
   * Cell Press Videos
   * Coloring and Comics
   * Research Arc
 * Connect
   * Back
   * About Cell Press
   * Careers
   * Contact
   * Help & Support
   * Newsroom
   * Publication Alerts
 * Cell Press Home
 * Register
 * Subscribe
 * Claim


Go search
All ContentArticle TitleAuthorsKeywordsAbstractArticle Title, Abstract, Keywords
This JournalFull site
Advanced SearchSave search

Please enter a term before submitting your search.

Ok
 * Log in
 * Register
 * Log in
 * Subscribe
 * Claim





 * 
 * 
 * 
 * 
 * 
 * 
 * 

Research Journals
 * Cell
 * Cancer Cell
 * Cell Chemical Biology
 * Cell Genomics
 * Cell Host & Microbe
 * Cell Metabolism
 * Cell Reports
 * Cell Reports Medicine
 * Cell Reports Methods
 * Cell Reports Physical Science
 * Cell Stem Cell
 * Cell Systems
 * Chem
 * Chem Catalysis
 * Current Biology
 * Developmental Cell
 * Heliyon
 * Immunity
 * iScience
 * Joule
 * Matter
 * Med
 * Molecular Cell
 * Neuron
 * One Earth
 * Patterns
 * STAR Protocols
 * Structure

Trends Reviews Journals
 * Biochemical Sciences
 * Biotechnology
 * Cancer
 * Cell Biology
 * Chemistry
 * Cognitive Sciences
 * Ecology & Evolution
 * Endocrinology & Metabolism
 * Genetics
 * Immunology
 * Microbiology
 * Molecular Medicine
 * Neurosciences
 * Parasitology
 * Pharmacological Sciences
 * Plant Science

Partner Journals
 * AJHG
 * Biophysical Journal
 * Biophysical Reports
 * EBioMedicine
 * HGG Advances
 * Molecular Plant
 * Molecular Therapy Family
 * Plant Communications
 * Stem Cell Reports
 * The Innovation

Collections
 * Best of Cell Press
 * Cell Press Reviews
 * Cell Press Selections
 * Consortia Hub
 * Nucleus Collections
 * SnapShot Archive
 * Trends Limited Editions

Beyond the Journal
 * Cell Career Network
 * Cell Mentor
 * Cell Symposia
 * LabLinks
 * Webinars

Evolving the Article
 * Community Review
 * Figure360
 * Sneak Peek
 * STAR Methods

Science in Society
 * Cell Picture Show
 * Cell Press Podcast
 * Cell Press Videos
 * Coloring and Comics
 * Research Arc

Connect
 * About Cell Press
 * Careers
 * Contact
 * Help & Support
 * Newsroom
 * Publication Alerts

Access
 * Subscribe
 * Read-It-Now
 * Recommend to Librarian

Information
 * For Advertisers
 * For Recruiters
 * For Librarians
 * Cookies
 * Terms & Conditions
 * Privacy Policy
 * Accessibility

We use cookies to help provide and enhance our service and tailor content. To
update your cookie settings, please visit the Cookie Settings for this site.

Copyright © 2021 Elsevier Inc. except certain content provided by third parties.
The content on this site is intended for healthcare professionals.






Click to get updates and verify authenticity.





We use cookies to analyse and improve our service, to improve and personalise
content, advertising and your digital experience. We also share information
about your use of our site with our social media, advertising and analytics
partners. Cookie Policy

Cookie Settings Accept all cookies