www.cell.com
Open in
urlscan Pro
104.18.124.114
Public Scan
Submitted URL: https://t.cellpress.email.elsevier.com/r/?id=h26f9e97f%2Cecf9390%2Cd8986e2&utm_campaign=STMJ_144661_SC&utm_medium=email&utm_acid=159284...
Effective URL: https://www.cell.com/cell-reports/fulltext/S1097-2765(21)00600-6?utm_campaign=STMJ_144661_SC&utm_medium=email&utm_aci...
Submission: On August 23 via manual from US
Effective URL: https://www.cell.com/cell-reports/fulltext/S1097-2765(21)00600-6?utm_campaign=STMJ_144661_SC&utm_medium=email&utm_aci...
Submission: On August 23 via manual from US
Form analysis
3 forms found in the DOMPOST /action/doLogin?redirectUri=https%3A%2F%2Fwww.cell.com%2Fcell-reports%2Ffulltext%2FS1097-2765%2821%2900600-6%3Futm_campaign%3DSTMJ_144661_SC%26utm_medium%3Demail%26utm_acid%3D159284417%26SIS_ID%3D%26dgcid%3DSTMJ_144661_SC%26CMX_ID%3D%26utm_in%3DDM173038%26utm_source%3DAC_
<form
action="/action/doLogin?redirectUri=https%3A%2F%2Fwww.cell.com%2Fcell-reports%2Ffulltext%2FS1097-2765%2821%2900600-6%3Futm_campaign%3DSTMJ_144661_SC%26utm_medium%3Demail%26utm_acid%3D159284417%26SIS_ID%3D%26dgcid%3DSTMJ_144661_SC%26CMX_ID%3D%26utm_in%3DDM173038%26utm_source%3DAC_"
method="post"><input type="hidden" name="redirectUri"
value="https://www.cell.com/cell-reports/fulltext/S1097-2765(21)00600-6?utm_campaign=STMJ_144661_SC&utm_medium=email&utm_acid=159284417&SIS_ID=&dgcid=STMJ_144661_SC&CMX_ID=&utm_in=DM173038&utm_source=AC_"><input
type="hidden" name="referer"
value="/cell-reports/fulltext/S1097-2765(21)00600-6?utm_campaign=STMJ_144661_SC&utm_medium=email&utm_acid=159284417&SIS_ID=&dgcid=STMJ_144661_SC&CMX_ID=&utm_in=DM173038&utm_source=AC_"><input type="hidden"
name="ecommRedirect"><input type="hidden" name="code" value="cell-site"><input type="hidden" name="UX3LoginWidget" value="true"><input type="hidden" name="isPopup" value="true">
<div class="input-group">
<div class="label"><label for="login">Email/Username</label></div><input id="login" type="text" name="login" value="" size="15" class="login">
</div>
<div class="input-group">
<div class="label"><label for="password">Password</label></div><input id="password" type="password" name="password" value="" autocomplete="off" class="password"><a href="#" class="login__field__action js-show-password">Show</a>
<div class="actions"><a href="https://www.cell.com/action/requestResetPassword" class="link show-request-reset-password">Forgot password?</a></div>
</div>
<div class="remember"><input type="checkbox" name="savePassword" id="a1f1ba25-79af-4194-aaa9-66206104a800-remember" value="1" checked="checked"><label for="a1f1ba25-79af-4194-aaa9-66206104a800-remember">Remember me</label></div>
<div class="submit" disabled="disabled"><input type="submit" name="submit" value="Log in" class="button submit primary" disabled="disabled"></div>
</form>
POST /action/requestResetPassword
<form action="/action/requestResetPassword" method="post" class="request-reset-password-form"><input type="hidden" name="platform"><input type="hidden" name="requestResetPassword" value="true"><input type="hidden" name="websiteName"
value="Cell Press"><input type="hidden" name="codeSite" value="cell-site">
<div class="input-group">
<div class="label"><label for="reset-password-email">Email*</label></div><input id="reset-password-email" type="text" name="email" value="" size="15" class="email">
</div>
<div class="submit" disabled="disabled"><input type="submit" name="submit" value="Submit" disabled="disabled" class="button primary submit"></div>
</form>
Name: quickSearchBar — GET https://www.cell.com/action/doSearch?journalCode=molcel
<form action="https://www.cell.com/action/doSearch?journalCode=molcel" name="quickSearchBar" method="get" title="Quick Search">
<div class="clearfix">
<div class="col-sm-5 col-md-6 col-lg-7">
<div class="input-group quick-search__searchbar"><input type="text" name="text1" placeholder="Search for..." autocomplete="off" data-contributors-conf="3" data-topics-conf="3" data-publication-titles-conf="3" data-history-items-conf="3"
aria-label="Enter a search term" class="searchText searchText-autocomplete ui-autocomplete-input">
<ul id="ui-id-1" tabindex="0" class="ui-menu ui-widget ui-widget-content ui-autocomplete ui-front" style="display: none;"></ul>
</div><button type="submit" title="Search" aria-label="Submit the search form" class="btn quick-search__button icon-search"><span>Go search</span></button>
</div>
<div class="col-sm-4 col-md-4 col-lg-3"><select name="field1" aria-label="Select a search area" class="quick-search__dropdown">
<option value="AllField">All Content</option>
<option value="Title">Article Title</option>
<option value="Contrib">Authors</option>
<option value="Keyword">Keywords</option>
<option value="Abstract">Abstract</option>
<option value="AbstractTitleKeywordFilterField">Article Title, Abstract, Keywords</option>
</select>
<div class="quick-search__scope-options clearfix"><input type="hidden" name="journalCode" value="molcel"><label title="This Journal"><span>This Journal</span><input type="radio" name="SeriesKey"
id="searchScopeSeries-a1f05748-166f-41e0-b01a-ca8ac1cc95d4" title="This Journal" value="molcel" checked="checked" aria-label="Search within current journal"></label><label title="Full site"><span>Full site</span><input type="radio"
name="SeriesKey" id="searchScopeFullSite-a1f05748-166f-41e0-b01a-ca8ac1cc95d4" value="" title="Full site" aria-label="Search within full site"></label></div>
</div>
<div class="col-sm-3 col-md-2 col-lg-2">
<div class="quick-search__results-count visible-xs visible-sm"></div>
<div class="quick-search__advanced-region">
<span><a href="https://www.cell.com/search/advanced?SeriesKey=molcel&ISSN=1097-2765&journalCode=molcel" title="Advanced search" class="quick-search__advanced-link">Advanced Search</a></span><span
class="quick-search__save-search visible-xs visible-sm"><a href="/action/doSaveSearch" role="button" data-toggle="modal" data-target="#saveSearchDialog" aria-label="Click here to save your search" title="Save search">Save search</a></span>
</div>
</div>
<div class="quick-search__alert hidden">
<p>Please enter a term before submitting your search.</p><a href="#" class="quick-search__alert--close"> Ok</a>
</div>
</div>
</form>
Text Content
Skip to Main Content LOGIN TO YOUR ACCOUNT Email/Username Password Show Forgot password? Remember me Don’t have an account? Create a Free Account If you don't remember your password, you can reset it by entering your email address and clicking the Reset Password button. You will then receive an email that contains a secure link for resetting your password Email* If the address matches a valid account an email will be sent to __email__ with instructions for resetting your password Cancel Article|Online Now Structure of the human signal peptidase complex reveals the determinants for signal peptide cleavage * Purchase * Subscribe * Save * Add to Online LibraryPowered ByMendeley * Add to My Reading List * Export Citation * Create Citation Alert * Share Share on * Email * Twitter * Facebook * LinkedIn * Sina Weibo * more * Reprints * Request * Top STRUCTURE OF THE HUMAN SIGNAL PEPTIDASE COMPLEX REVEALS THE DETERMINANTS FOR SIGNAL PEPTIDE CLEAVAGE * A. Manuel Liaci A. Manuel Liaci Affiliations Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, the Netherlands Search for articles by this author * Barbara Steigenberger 7 Author Footnotes 7 These authors contributed equally Barbara Steigenberger Footnotes 7 These authors contributed equally Affiliations Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands Netherlands Proteomics Centre, Padualaan 8, 3584 CH, Utrecht, the Netherlands Search for articles by this author * Paulo Cesar Telles de Souza 7 Author Footnotes 7 These authors contributed equally Paulo Cesar Telles de Souza Footnotes 7 These authors contributed equally Affiliations Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Material, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, the Netherlands Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS and University of Lyon, Lyon, France Search for articles by this author * Sem Tamara Sem Tamara Affiliations Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands Netherlands Proteomics Centre, Padualaan 8, 3584 CH, Utrecht, the Netherlands Search for articles by this author * Mariska Gröllers-Mulderij Mariska Gröllers-Mulderij Affiliations Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, the Netherlands Search for articles by this author * Patrick Ogrissek Patrick Ogrissek Affiliations Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, the Netherlands Institute of Chemistry and Metabolomics, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany Search for articles by this author * * Siewert J. Marrink Siewert J. Marrink Affiliations Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Material, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, the Netherlands Search for articles by this author * Richard A. Scheltema Richard A. Scheltema Affiliations Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands Netherlands Proteomics Centre, Padualaan 8, 3584 CH, Utrecht, the Netherlands Search for articles by this author * Friedrich Förster 8 Author Footnotes 8 Lead contact Friedrich Förster Correspondence Corresponding author Contact Footnotes 8 Lead contact Affiliations Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, the Netherlands Search for articles by this author * Show all authors * Show footnotesHide footnotes Author Footnotes 7 These authors contributed equally 8 Lead contact Published:August 12, 2021DOI:https://doi.org/10.1016/j.molcel.2021.07.031 Plum Print visual indicator of research metrics PlumX Metrics * Mentions * News Mentions: 1 * Social Media * Tweets: 80 see details Previous ArticleCRISPR-based peptide library display and programmable … Next ArticleSingle-molecule studies reveal branched pathways for activ … * Highlights * Summary * Graphical abstract * Keywords * References * Article Info * Related Articles * Comments HIGHLIGHTS * • The human SPC has two paralogs, both of which are structurally characterized here * • The SPC is a serine protease with a catalytic Ser-His-Asp triad * • The c-region binding pocket is conserved to bacterial signal peptidases * • Membrane thinning by the SPC measures signal peptides for length before cleavage SUMMARY The signal peptidase complex (SPC) is an essential membrane complex in the endoplasmic reticulum (ER), where it removes signal peptides (SPs) from a large variety of secretory pre-proteins with exquisite specificity. Although the determinants of this process have been established empirically, the molecular details of SP recognition and removal remain elusive. Here, we show that the human SPC exists in two functional paralogs with distinct proteolytic subunits. We determined the atomic structures of both paralogs using electron cryo-microscopy and structural proteomics. The active site is formed by a catalytic triad and abuts the ER membrane, where a transmembrane window collectively formed by all subunits locally thins the bilayer. Molecular dynamics simulations indicate that this unique architecture generates specificity for SPs based on the length of their hydrophobic segments. GRAPHICAL ABSTRACT Graphical Abstract * View Large Image * Figure Viewer * Download Hi-res image KEYWORDS * signal peptidase complex * signal peptide * protein maturation * protein secretion * ER translocon * membrane thinning * cryo-EM * crosslinking mass spectrometry * molecular dynamics simulations * secretory pathway To read this article in full you will need to make a payment Purchase one-time access READ-IT-NOW Purchase access to all full-text HTML articles for 6 or 36 hr at a low cost. Click here to explore this opportunity. Subscribe to Cell Reports Already a print subscriber? Claim online access Already an online subscriber? Sign in Register: Create an account Institutional Access: Sign in to ScienceDirect REFERENCES 1. * Abraham M.J. * Murtola T. * Schulz R. * Páll S. * Smith J.C. * Hess B. * Lindah E. Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015; 1–2: 19-25 View in Article * Scopus (5856) * Crossref * Google Scholar 2. * Afonine P.V. * Poon B.K. * Read R.J. * Sobolev O.V. * Terwilliger T.C. * Urzhumtsev A. * Adams P.D. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D Struct. Biol. 2018; 74: 531-544 View in Article * Scopus (460) * PubMed * Crossref * Google Scholar 3. * Albanese P. * Tamara S. * Saracco G. * Scheltema R.A. * Pagliano C. How paired PSII-LHCII supercomplexes mediate the stacking of plant thylakoid membranes unveiled by structural mass-spectrometry. Nat. Commun. 2020; 11: 1361 View in Article * Scopus (0) * PubMed * Crossref * Google Scholar 4. * Alzahrani N. * Wu M.J. * Shanmugam S. * Yi M. Delayed by design: Role of suboptimal signal peptidase processing of viral structural protein precursors in flaviviridae virus assembly. Viruses. 2020; 12: 1090 View in Article * Scopus (0) * Crossref * Google Scholar 5. * Antonin W. * Meyer H.A. * Hartmann E. Interactions between Spc2p and other components of the endoplasmic reticulum translocation sites of the yeast Saccharomyces cerevisiae. J. Biol. Chem. 2000; 275: 34068-34072 View in Article * Scopus (18) * PubMed * Abstract * Full Text * Full Text PDF * Google Scholar 6. * Ashkenazy H. * Abadi S. * Martz E. * Chay O. * Mayrose I. * Pupko T. * Ben-Tal N. ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res. 2016; 44: W344-W350 View in Article * Scopus (888) * PubMed * Crossref * Google Scholar 7. * Bastian F.B. * Parmentier G. * Roux J. * Moretti S. * Laudet V. * Robinson-Rechavi M. Bgee: integrating and comparing heterogeneous transcriptome data among species. in: Proceedings of Data Integration in Life Sciences: Lecture Notes in Computer Science, Fifth International Workshop, DILS 2008. Springer, 2008: 124-131 View in Article * Google Scholar 8. * Bendtsen J.D. * Nielsen H. * von Heijne G. * Brunak S. Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 2004; 340: 783-795 View in Article * Scopus (5494) * PubMed * Crossref * Google Scholar 9. * Blobel G. * Dobberstein B. Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma. J. Cell Biol. 1975; 67: 835-851 View in Article * PubMed * Crossref * Google Scholar 10. * Bussi G. * Donadio D. * Parrinello M. Canonical sampling through velocity rescaling. J. Chem. Physiol. 2007; 126: 014101 View in Article * Scopus (6858) * PubMed * Crossref * Google Scholar 11. * Carpenter T.S. * López C.A. * Neale C. * Montour C. * Ingólfsson H.I. * Di Natale F. * Lightstone F.C. * Gnanakaran S. Capturing phase behavior of ternary lipid mixtures with a refined martini coarse-grained force field. J. Chem. Theory Comput. 2018; 14: 6050-6062 View in Article * Scopus (31) * PubMed * Crossref * Google Scholar 12. * Cox J. * Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 2008; 26: 1367-1372 View in Article * Scopus (7409) * PubMed * Crossref * Google Scholar 13. * Crooks G.E. * Hon G. * Chandonia J.-M. * Brenner S.E. WebLogo: A Sequence Logo Generator. Genome Research. 2004; 14: 1188-1190 View in Article * Scopus (0) * PubMed * Crossref * Google Scholar 14. * Daganzo S.M. * Erzberger J.P. * Lam W.M. * Skordalakes E. * Zhang R. * Franco A.A. * Brill S.J. * Adams P.D. * Berger J.M. * Kaufman P.D. Structure and function of the conserved core of histone deposition protein Asf1. Curr. Biol. 2003; 13: 2148-2158 View in Article * Scopus (115) * PubMed * Abstract * Full Text * Full Text PDF * Google Scholar 15. * Darden T. * York D. * Pedersen L. Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. J. Chem. Phys. 1993; 98: 10089-10092 View in Article * Crossref * Google Scholar 16. * de Jong D.H. * Singh G. * Bennett W.F.D. * Arnarez C. * Wassenaar T.A. * Schäfer L.V. * Periole X. * Tieleman D.P. * Marrink S.J. Improved parameters for the martini coarse-grained protein force field. J. Chem. Theory Comput. 2013; 9: 687-697 View in Article * Scopus (646) * PubMed * Crossref * Google Scholar 17. * de Jong D.H. * Baoukina S. * Ingólfsson H.I. * Marrink S.J. Martini straight: boosting performance using a shorter cutoff and GPUs. Comput. Phys. Commun. 2016; 199: 1-7 View in Article * Crossref * Google Scholar 18. * Drozdetskiy A. * Cole C. * Procter J. * Barton G.J. JPred4: a protein secondary structure prediction server. Nucleic Acids Res. 2015; 43: W389-W394 View in Article * PubMed * Crossref * Google Scholar 19. * Emsley P. * Lohkamp B. * Scott W.G. * Cowtan K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 2010; 66: 486-501 View in Article * Scopus (14022) * PubMed * Crossref * Google Scholar 20. * Essletzbichler P. * Konopka T. * Santoro F. * Chen D. * Gapp B.V. * Kralovics R. * Brummelkamp T.R. * Nijman S.M.B. * Bürckstümmer T. Megabase-scale deletion using CRISPR/Cas9 to generate a fully haploid human cell line. Genome Res. 2014; 24: 2059-2065 View in Article * Scopus (142) * PubMed * Crossref * Google Scholar 21. * Essmann U. * Perera L. * Berkowitz M.L. * Darden T. * Lee H. * Pedersen L.G. A smooth particle mesh Ewald method. J. Chem. Phys. 1995; 103: 8577-8593 View in Article * Crossref * Google Scholar 22. * Estoppey D. * Lee C.M. * Janoschke M. * Lee B.H. * Wan K.F. * Dong H. * Mathys P. * Filipuzzi I. * Schuhmann T. * Riedl R. * et al. The natural product cavinafungin selectively interferes with zika and dengue virus replication by inhibition of the host signal peptidase. Cell Rep. 2017; 19: 451-460 View in Article * Scopus (40) * PubMed * Abstract * Full Text * Full Text PDF * Google Scholar 23. * Evans E.A. * Gilmore R. * Blobel G. Purification of microsomal signal peptidase as a complex. Proc. Natl. Acad. Sci. USA. 1986; 83: 581-585 View in Article * PubMed * Crossref * Google Scholar 24. * Fang H. * Panzner S. * Mullins C. * Hartmann E. * Green N. The homologue of mammalian SPC12 is important for efficient signal peptidase activity in Saccharomyces cerevisiae. J. Biol. Chem. 1996; 271: 16460-16465 View in Article * Scopus (0) * PubMed * Abstract * Full Text * Full Text PDF * Google Scholar 25. * Fang H. * Mullins C. * Green N. In addition to SEC11, a newly identified gene, SPC3, is essential for signal peptidase activity in the yeast endoplasmic reticulum. J. Biol. Chem. 1997; 272: 13152-13158 View in Article * Scopus (30) * PubMed * Abstract * Full Text * Full Text PDF * Google Scholar 26. * Gemmer M. * Förster F. A clearer picture of the ER translocon complex. J. Cell Sci. 2020; 133: jcs231340 View in Article * Scopus (16) * PubMed * Crossref * Google Scholar 27. * Goddard T.D. * Huang C.C. * Meng E.C. * Pettersen E.F. * Couch G.S. * Morris J.H. * Ferrin T.E. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 2018; 27: 14-25 View in Article * Scopus (805) * PubMed * Crossref * Google Scholar 28. * Hegde R.S. * Bernstein H.D. The surprising complexity of signal sequences. Trends Biochem. Sci. 2006; 31: 563-571 View in Article * Scopus (262) * PubMed * Abstract * Full Text * Full Text PDF * Google Scholar 29. * Herzik Jr., M.A. * Wu M. * Lander G.C. High-resolution structure determination of sub-100 kDa complexes using conventional cryo-EM. Nat. Commun. 2019; 10: 1032 View in Article * Scopus (73) * PubMed * Crossref * Google Scholar 30. * Herzog F.A. * Braun L. * Schoen I. * Vogel V. Improved side chain dynamics in MARTINI simulations of protein-lipid interfaces. J. Chem. Theory Comput. 2016; 12: 2446-2458 View in Article * Scopus (0) * PubMed * Crossref * Google Scholar 31. * Hess B. * Bekker H. * Berendsen H.J.C. * Fraaije J.G.E.M. LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 1997; 18: 1463-1472 View in Article * Crossref * Google Scholar 32. * Huang J. * Rauscher S. * Nawrocki G. * Ran T. * Feig M. * de Groot B.L. * Grubmüller H. * MacKerell Jr., A.D. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat. Methods. 2017; 14: 71-73 View in Article * Scopus (1156) * PubMed * Crossref * Google Scholar 33. * Humphrey W. * Dalke A. * Schulten K. VMD: visual molecular dynamics. J. Mol. Graph. 1996; 14: 33-38, 27–28 View in Article * Scopus (30650) * PubMed * Crossref * Google Scholar 34. * Jackson R.C. Quantitative assay for signal peptidase. Methods Enzymol. 1983; 96: 784-794 View in Article * Scopus (0) * PubMed * Crossref * Google Scholar 35. * Jackson R.C. * Blobel G. Post-translational processing of full-length presecretory proteins with canine pancreatic signal peptidase. Ann. N Y Acad. Sci. 1980; 343: 391-404 View in Article * PubMed * Crossref * Google Scholar 36. * Jorgensen W.L. Transferable intermolecular potential functions for water, alcohols, and ethers. Application to liquid water. J. Am. Chem. Soc. 1981; 103: 335-340 View in Article * Crossref * Google Scholar 37. * Jurchen J.C. * Williams E.R. Origin of asymmetric charge partitioning in the dissociation of gas-phase protein homodimers. J. Am. Chem. Soc. 2003; 125: 2817-2826 View in Article * Scopus (237) * PubMed * Crossref * Google Scholar 38. * Kalies K.U. * Hartmann E. Membrane topology of the 12- and the 25-kDa subunits of the mammalian signal peptidase complex. J. Biol. Chem. 1996; 271: 3925-3929 View in Article * Scopus (39) * PubMed * Abstract * Full Text * Full Text PDF * Google Scholar 39. * Kamitani K. * Narita K. * Sakiyama F. Purification and characterization of hen oviduct N α-acetyltransferase. J. Biol. Chem. 1989; 264: 13188-13193 View in Article * PubMed * Abstract * Full Text PDF * Google Scholar 40. * Kapp K. * Schrempf S. * Lemberg M.K. * Dobberstein B. Post-targeting functions of signal peptides. in: Madame Curie Bioscience Database: Protein Transport into the Endoplasmic Reticulum. Landes Bioscience, 2009: 1-16 View in Article * Google Scholar 41. * Kelstrup C.D. * Bekker-Jensen D.B. * Arrey T.N. * Hogrebe A. * Harder A. * Olsen J.V. Performance evaluation of the Q exactive HF-X for shotgun proteomics. J. Proteome Res. 2018; 17: 727-738 View in Article * Scopus (122) * PubMed * Crossref * Google Scholar 42. * Kilic A. * Klose S. * Dobberstein B. * Knust E. * Kapp K. The Drosophila Crumbs signal peptide is unusually long and is a substrate for signal peptide peptidase. Eur. J. Cell Biol. 2010; 89: 449-461 View in Article * Scopus (0) * PubMed * Crossref * Google Scholar 43. * Klauda J.B. * Venable R.M. * Freites J.A. * O’Connor J.W. * Tobias D.J. * Mondragon-Ramirez C. * Vorobyov I. * MacKerell Jr., A.D. * Pastor R.W. Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J. Phys. Chem. B. 2010; 114: 7830-7843 View in Article * Scopus (2261) * PubMed * Crossref * Google Scholar 44. * Klausen M.S. * Jespersen M.C. * Nielsen H. * Jensen K.K. * Jurtz V.I. * Sønderby C.K. * Sommer M.O.A. * Winther O. * Nielsen M. * Petersen B. * Marcatili P. NetSurfP-2.0: Improved prediction of protein structural features by integrated deep learning. Proteins. 2019; 87: 520-527 View in Article * Scopus (98) * PubMed * Crossref * Google Scholar 45. * Klykov O. * Steigenberger B. * Pektaş S. * Fasci D. * Heck A.J.R. * Scheltema R.A. Efficient and robust proteome-wide approaches for cross-linking mass spectrometry. Nat. Protoc. 2018; 13: 2964-2990 View in Article * Scopus (50) * PubMed * Crossref * Google Scholar 46. * Kumar S. * Stecher G. * Li M. * Knyaz C. * Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 2018; 35: 1547-1549 View in Article * Scopus (8328) * PubMed * Crossref * Google Scholar 47. * Kumazaki K. * Chiba S. * Takemoto M. * Furukawa A. * Nishiyama K. * Sugano Y. * Mori T. * Dohmae N. * Hirata K. * Nakada-Nakura Y. * et al. Structural basis of Sec-independent membrane protein insertion by YidC. Nature. 2014; 509: 516-520 View in Article * Scopus (121) * PubMed * Crossref * Google Scholar 48. * Lee J. * Cheng X. * Swails J.M. * Yeom M.S. * Eastman P.K. * Lemkul J.A. * Wei S. * Buckner J. * Jeong J.C. * Qi Y. * et al. CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J. Chem. Theory Comput. 2016; 12: 405-413 View in Article * Scopus (853) * PubMed * Crossref * Google Scholar 49. * Liaci A.M. * Förster F. Empirical analysis of eukaryotic ER signal peptides. Mendeley Data, 2021https://doi.org/10.17632/P65tkrr89v.1 (version 1) View in Article * Crossref * Google Scholar 50. * Liang H. * VanValkenburgh C. * Chen X. * Mullins C. * Van Kaer L. * Green N. * Fang H. Genetic complementation in yeast reveals functional similarities between the catalytic subunits of mammalian signal peptidase complex. J. Biol. Chem. 2003; 278: 50932-50939 View in Article * Scopus (0) * PubMed * Abstract * Full Text * Full Text PDF * Google Scholar 51. * Lively M.O. * Walsh K.A. Hen oviduct signal peptidase is an integral membrane protein. J. Biol. Chem. 1983; 258: 9488-9495 View in Article * PubMed * Abstract * Full Text PDF * Google Scholar 52. * MacKerell A.D. * Bashford D. * Bellott M. * Dunbrack R.L. * Evanseck J.D. * Field M.J. * Fischer S. * Gao J. * Guo H. * Ha S. * et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B. 1998; 102: 3586-3616 View in Article * PubMed * Crossref * Google Scholar 53. * Marrink Laboratory Martinize and Vermouth: The Ultimate Resolution Transformation Tools. GitHub, 2020 https://github.com/marrink-lab/vermouth-martinize View in Article * Google Scholar 54. * Marrink S.J. * Risselada H.J. * Yefimov S. * Tieleman D.P. * de Vries A.H. The MARTINI force field: coarse grained model for biomolecular simulations. J. Phys. Chem. B. 2007; 111: 7812-7824 View in Article * Scopus (3240) * PubMed * Crossref * Google Scholar 55. * Martínez L. Automatic identification of mobile and rigid substructures in molecular dynamics simulations and fractional structural fluctuation analysis. PLoS ONE. 2015; 10: e0119264 View in Article * Scopus (0) * PubMed * Crossref * Google Scholar 56. * Marty M.T. * Baldwin A.J. * Marklund E.G. * Hochberg G.K.A. * Benesch J.L.P. * Robinson C.V. Bayesian deconvolution of mass and ion mobility spectra: from binary interactions to polydisperse ensembles. Anal. Chem. 2015; 87: 4370-4376 View in Article * PubMed * Crossref * Google Scholar 57. * McDowell M.A. * Heimes M. * Fiorentino F. * Mehmood S. * Farkas Á. * Coy-Vergara J. * Wu D. * Bolla J.R. * Schmid V. * Heinze R. * et al. Structural basis of tail-anchored membrane protein biogenesis by the GET insertase complex. Mol. Cell. 2020; 80: 72-86.e7 View in Article * PubMed * Abstract * Full Text * Full Text PDF * Google Scholar 58. * McGilvray P.T. * Anghel S.A. * Sundaram A. * Zhong F. * Trnka M.J. * Fuller J.R. * Hu H. * Burlingame A.L. * Keenan R.J. An ER translocon for multi-pass membrane protein biogenesis. eLife. 2020; 9: 1-43 View in Article * Crossref * Google Scholar 59. * Meyer H.A. * Hartmann E. The yeast SPC22/23 homolog Spc3p is essential for signal peptidase activity. J. Biol. Chem. 1997; 272: 13159-13164 View in Article * Scopus (32) * PubMed * Abstract * Full Text * Full Text PDF * Google Scholar 60. * Mitra K. * Ubarretxena-Belandia I. * Taguchi T. * Warren G. * Engelman D.M. Modulation of the bilayer thickness of exocytic pathway membranes by membrane proteins rather than cholesterol. PNAS. 2004; 101: 4083-4088 View in Article * Scopus (283) * PubMed * Crossref * Google Scholar 61. * Mullins C. * Meyer H.A. * Hartmann E. * Green N. * Fang H. Structurally related Spc1p and Spc2p of yeast signal peptidase complex are functionally distinct. J. Biol. Chem. 1996; 271: 29094-29099 View in Article * Scopus (36) * PubMed * Abstract * Full Text * Full Text PDF * Google Scholar 62. * Nakane T. * Kotecha A. * Sente A. * McMullan G. * Masiulis S. * Brown P.M.G.E. * Grigoras I.T. * Malinauskaite L. * Malinauskas T. * Miehling J. * et al. Single-particle cryo-EM at atomic resolution. Nature. 2020; 587: 152-156 View in Article * Scopus (83) * PubMed * Crossref * Google Scholar 63. * Nielsen H. * Tsirigos K.D. * Brunak S. * von Heijne G. A brief history of protein sorting prediction. Protein J. 2019; 38: 200-216 View in Article * Scopus (0) * PubMed * Crossref * Google Scholar 64. * Nilsson I. * Whitley P. * von Heijne G. The COOH-terminal ends of internal signal and signal-anchor sequences are positioned differently in the ER translocase. J. Cell Biol. 1994; 126: 1127-1132 View in Article * Scopus (121) * PubMed * Crossref * Google Scholar 65. * Nilsson I. * Johnson A.E. * von Heijne G. Cleavage of a tail-anchored protein by signal peptidase. FEBS Lett. 2002; 516: 106-108 View in Article * Scopus (20) * PubMed * Crossref * Google Scholar 66. * Oostra M. * te Lintelo E.G. * Deijs M. * Verheije M.H. * Rottier P.J.M. * de Haan C.A.M. Localization and membrane topology of coronavirus nonstructural protein 4: involvement of the early secretory pathway in replication. J. Virol. 2007; 81: 12323-12336 View in Article * Scopus (85) * PubMed * Crossref * Google Scholar 67. * Paetzel M. Structure and mechanism of Escherichia coli type I signal peptidase. Biochim. Biophys. Acta. 2014; 1843: 1497-1508 View in Article * Scopus (43) * PubMed * Crossref * Google Scholar 68. * Paetzel M. * Dalbey R.E. * Strynadka N.C.J. Crystal structure of a bacterial signal peptidase in complex with a β-lactam inhibitor. Nature. 1998; 396: 186-190 View in Article * PubMed * Crossref * Google Scholar 69. * Paetzel M. * Karla A. * Strynadka N.C.J. * Dalbey R.E. Signal peptidases. Chem. Rev. 2002; 102: 4549-4580 View in Article * Scopus (353) * PubMed * Crossref * Google Scholar 70. * Paetzel M. * Goodall J.J. * Kania M. * Dalbey R.E. * Page M.G.P. Crystallographic and biophysical analysis of a bacterial signal peptidase in complex with a lipopeptide-based inhibitor. J. Biol. Chem. 2004; 279: 30781-30790 View in Article * Scopus (74) * PubMed * Abstract * Full Text * Full Text PDF * Google Scholar 71. * Palade G. * Arch A. * Locke M. * Locke E. * Palade G. Intracellular aspects of the process of protein synthesis. Science. 1975; 189: 347-358 View in Article * PubMed * Crossref * Google Scholar 72. * Parrinello M. * Rahman A. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Physiol. 1981; 52: 7182-7190 View in Article * Scopus (9157) * Crossref * Google Scholar 73. * Pettersen E.F. * Goddard T.D. * Huang C.C. * Couch G.S. * Greenblatt D.M. * Meng E.C. * Ferrin T.E. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem. 2004; 25: 1605-1612 View in Article * Scopus (22167) * PubMed * Crossref * Google Scholar 74. * Pleiner T. * Tomaleri G.P. * Januszyk K. * Inglis A.J. * Hazu M. * Voorhees R.M. Structural basis for membrane insertion by the human ER membrane protein complex. Science. 2020; 369: 433-436 View in Article * Scopus (21) * PubMed * Crossref * Google Scholar 75. * Popa V. * Trecroce D.A. * McAllister R.G. * Konermann L. Collision-induced dissociation of electrosprayed protein complexes: An all-atom molecular dynamics model with mobile protons. J. Phys. Chem. B. 2016; 120: 5114-5124 View in Article * Scopus (35) * PubMed * Crossref * Google Scholar 76. * Prod’homme V. * Tomasec P. * Cunningham C. * Lemberg M.K. * Stanton R.J. * McSharry B.P. * Wang E.C.Y. * Cuff S. * Martoglio B. * Davison A.J. * et al. Human cytomegalovirus UL40 signal peptide regulates cell surface expression of the NK cell ligands HLA-E and gpUL18. J. Immunol. 2012; 188: 2794-2804 View in Article * Scopus (53) * PubMed * Crossref * Google Scholar 77. * Rohou A. * Grigorieff N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 2015; 192: 216-221 View in Article * Scopus (1258) * PubMed * Crossref * Google Scholar 78. * Rosenthal P.B. * Henderson R. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 2003; 333: 721-745 View in Article * Scopus (1089) * PubMed * Crossref * Google Scholar 79. * Scheltema R.A. * Hauschild J.P. * Lange O. * Hornburg D. * Denisov E. * Damoc E. * Kuehn A. * Makarov A. * Mann M. The Q Exactive HF, a benchtop mass spectrometer with a pre-filter, high-performance quadrupole and an ultra-high-field orbitrap analyzer. Mol. Cell. Proteomics. 2014; 13: 3698-3708 View in Article * Scopus (197) * PubMed * Abstract * Full Text * Full Text PDF * Google Scholar 80. * Scheres S.H.W. A Bayesian view on cryo-EM structure determination. J. Mol. Biol. 2012; 415: 406-418 View in Article * Scopus (405) * PubMed * Crossref * Google Scholar 81. * Schoebel S. * Mi W. * Stein A. * Ovchinnikov S. * Pavlovicz R. * DiMaio F. * Baker D. * Chambers M.G. * Su H. * Li D. * et al. Cryo-EM structure of the protein-conducting ERAD channel Hrd1 in complex with Hrd3. Nature. 2017; 548: 352-355 View in Article * Scopus (87) * PubMed * Crossref * Google Scholar 82. * Schwanhäusser B. * Busse D. * Li N. * Dittmar G. * Schuchhardt J. * Wolf J. * Chen W. * Selbach M. Global quantification of mammalian gene expression control. Nature. 2011; 473: 337-342 View in Article * Scopus (3438) * PubMed * Crossref * Google Scholar 83. * Senko M.W. * Remes P.M. * Canterbury J.D. * Mathur R. * Song Q. * Eliuk S.M. * Mullen C. * Earley L. * Hardman M. * Blethrow J.D. * et al. Novel parallelized quadrupole/linear ion trap/Orbitrap tribrid mass spectrometer improving proteome coverage and peptide identification rates. Anal. Chem. 2013; 85: 11710-11714 View in Article * Scopus (147) * PubMed * Crossref * Google Scholar 84. * Sharpe H.J. * Stevens T.J. * Munro S. A comprehensive comparison of transmembrane domains reveals organelle-specific properties. Cell. 2010; 142: 158-169 View in Article * Scopus (334) * PubMed * Abstract * Full Text * Full Text PDF * Google Scholar 85. * Shelness G.S. * Blobel G. Two subunits of the canine signal peptidase complex are homologous to yeast SEC11 protein. J. Biol. Chem. 1990; 265: 9512-9519 View in Article * PubMed * Abstract * Full Text PDF * Google Scholar 86. * Shelness G.S. * Lin L. * Nicchitta C.V. Membrane topology and biogenesis of eukaryotic signal peptidase. J. Biol. Chem. 1993; 268: 5201-5208 View in Article * PubMed * Abstract * Full Text PDF * Google Scholar 87. * Snapp E.L. * McCaul N. * Quandte M. * Cabartova Z. * Bontjer I. * Källgren C. * Nilsson I. * Land A. * von Heijne G. * Sanders R.W. * Braakman I. Structure and topology around the cleavage site regulate post-translational cleavage of the HIV-1 gp160 signal peptide. eLife. 2017; 6: 1-25 View in Article * Scopus (16) * Crossref * Google Scholar 88. * Souza P.C.T. * Alessandri R. * Barnoud J. * Thallmair S. * Faustino I. * Grünewald F. * Patmanidis I. * Abdizadeh H. * Bruininks B.M.H. * Wassenaar T.A. * et al. Martini 3: a general purpose force field for coarse-grained molecular dynamics. Nat. Methods. 2021; 18: 382-388 View in Article * Scopus (14) * PubMed * Crossref * Google Scholar 89. * Steigenberger B. * Pieters R.J. * Heck A.J.R. * Scheltema R.A. PhoX: An IMAC-enrichable cross-linking reagent. ACS Cent. Sci. 2019; 5: 1514-1522 View in Article * Scopus (34) * PubMed * Crossref * Google Scholar 90. * Suzuki R. * Matsuda M. * Watashi K. * Aizaki H. * Matsuura Y. * Wakita T. * Suzuki T. Signal peptidase complex subunit 1 participates in the assembly of hepatitis C virus through an interaction with E2 and NS2. PLoS Pathog. 2013; 9: e1003589 View in Article * Scopus (33) * PubMed * Crossref * Google Scholar 91. * Tahara Y. * Murata M. * Ohnishi S. * Fujiyoshi Y. * Kikuchi M. * Yamamoto Y. Functional signal peptide reduces bilayer thickness of phosphatidylcholine liposomes. Biochemistry. 1992; 31: 8747-8754 View in Article * Scopus (24) * PubMed * Crossref * Google Scholar 92. * Tegunov D. * Cramer P. Real-time cryo-electron microscopy data preprocessing with Warp. Nat. Methods. 2019; 16: 1146-1152 View in Article * Scopus (142) * PubMed * Crossref * Google Scholar 93. * Ting Y.T. * Harris P.W.R. * Batot G. * Brimble M.A. * Baker E.N. * Young P.G. Peptide binding to a bacterial signal peptidase visualized by peptide tethering and carrier-driven crystallization. IUCrJ. 2016; 3: 10-19 View in Article * Scopus (9) * PubMed * Crossref * Google Scholar 94. * Tschantz W.R. * Sung M. * Delgado-Partin V.M. * Dalbey R.E. A serine and a lysine residue implicated in the catalytic mechanism of the Escherichia coli leader peptidase. J. Biol. Chem. 1993; 268: 27349-27354 View in Article * PubMed * Abstract * Full Text PDF * Google Scholar 95. * Tyndall J.D.A. * Nall T. * Fairlie D.P. Proteases universally recognize beta strands in their active sites. Chem. Rev. 2005; 105: 973-999 View in Article * Scopus (329) * PubMed * Crossref * Google Scholar 96. * Uchida M. * Watanabe Y. * Fujimoto Y. Is phospholipid a required cofactor for the activity of mammalian signal peptidase?. FEBS Lett. 1986; 200: 343-346 View in Article * PubMed * Crossref * Google Scholar 97. * Uhlén M. * Fagerberg L. * Hallström B.M. * Lindskog C. * Oksvold P. * Mardinoglu A. * Sivertsson Å. * Kampf C. * Sjöstedt E. * Asplund A. * et al. Proteomics: tissue-based map of the human proteome. Science. 2015; 347: 1260419 View in Article * PubMed * Crossref * Google Scholar 98. * UniProt Consortium UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 2021; 49: D480-D489 View in Article * Scopus (86) * PubMed * Crossref * Google Scholar 99. * Van Damme P. * Lasa M. * Polevoda B. * Gazquez C. * Elosegui-Artola A. * Kim D.S. * De Juan-Pardo E. * Demeyer K. * Hole K. * Larrea E. * et al. N-terminal acetylome analyses and functional insights of the N-terminal acetyltransferase NatB. Proc. Natl. Acad. Sci. USA. 2012; 109: 12449-12454 View in Article * Scopus (108) * PubMed * Crossref * Google Scholar 100. * van Dijl J.M. * de Jong A. * Vehmaanperä J. * Venema G. * Bron S. Signal peptidase I of Bacillus subtilis: patterns of conserved amino acids in prokaryotic and eukaryotic type I signal peptidases. EMBO J. 1992; 11: 2819-2828 View in Article * Scopus (0) * PubMed * Crossref * Google Scholar 101. * van Hilten N. * Stroh K.S. * Risselada H.J. Membrane thinning induces sorting of lipids and the amphipathic lipid packing sensor (ALPS) protein motif. Front. Physiol. 2020; 11: 250 View in Article * Scopus (1) * PubMed * Crossref * Google Scholar 102. * VanValkenburgh C. * Chen X. * Mullins C. * Fang H. * Green N. The catalytic mechanism of endoplasmic reticulum signal peptidase appears to be distinct from most eubacterial signal peptidases. J. Biol. Chem. 1999; 274: 11519-11525 View in Article * Scopus (45) * PubMed * Abstract * Full Text * Full Text PDF * Google Scholar 103. * von Heijne G. Signal sequences. The limits of variation. J. Mol. Biol. 1985; 184: 99-105 View in Article * Scopus (1475) * PubMed * Crossref * Google Scholar 104. * von Heijne G. The signal peptide. J. Membr. Biol. 1990; 115: 195-201 View in Article * Scopus (802) * PubMed * Crossref * Google Scholar 105. * von Heijne G. Membrane-protein topology. Nat. Rev. Mol. Cell Biol. 2006; 7: 909-918 View in Article * Scopus (342) * PubMed * Crossref * Google Scholar 106. * von Messling V. * Cattaneo R. Amino-terminal precursor sequence modulates canine distemper virus fusion protein function. J. Virol. 2002; 76: 4172-4180 View in Article * Scopus (32) * PubMed * Crossref * Google Scholar 107. * Wagner T. MPI-Dortmund/sphire-janni: JANNI (Version v0.1.2). Zendodo, 2020https://doi.org/10.5281/zenodo.3378300 View in Article * Crossref * Google Scholar 108. * Wagner T. * Merino F. * Stabrin M. * Moriya T. * Antoni C. * Apelbaum A. * Hagel P. * Sitsel O. * Raisch T. * Prumbaum D. * et al. SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM. Commun. Biol. 2019; 2: 218 View in Article * Scopus (175) * PubMed * Crossref * Google Scholar 109. * Walker S.J. * Lively M.O. Signal peptidase (eukaryote). in: Handbook of Proteolytic Enzymes, Volume 1. Academic Press, 2013: 3512-3517 View in Article * Google Scholar 110. * Wassenaar T.A. * Pluhackova K. * Böckmann R.A. * Marrink S.J. * Tieleman D.P. Going backward: A flexible geometric approach to reverse transformation from coarse grained to atomistic models. J. Chem. Theory Comput. 2014; 10: 676-690 View in Article * Scopus (299) * PubMed * Crossref * Google Scholar 111. * Wassenaar T.A. * Ingólfsson H.I. * Böckmann R.A. * Tieleman D.P. * Marrink S.J. Computational lipidomics with insane: A versatile tool for generating custom membranes for molecular simulations. J. Chem. Theory Comput. 2015; 11: 2144-2155 View in Article * Scopus (397) * PubMed * Crossref * Google Scholar 112. * Wickham H. ggplot2: Elegant Graphics for Data Analysis.. Springer, 2009https://doi.org/10.1007/978-0-387-98141-3 View in Article * Crossref * Google Scholar 113. * Wu X. * Siggel M. * Ovchinnikov S. * Mi W. * Svetlov V. * Nudler E. * Liao M. * Hummer G. * Rapoport T.A. Structural basis of ER-associated protein degradation mediated by the Hrd1 ubiquitin ligase complex. Science. 2020; 368: eaaz2449 View in Article * Scopus (14) * PubMed * Crossref * Google Scholar 114. * Yang J. * Anishchenko I. * Park H. * Peng Z. * Ovchinnikov S. * Baker D. Improved protein structure prediction using predicted interresidue orientations. Proc. Natl. Acad. Sci. USA. 2020; 117: 1496-1503 View in Article * Scopus (153) * PubMed * Crossref * Google Scholar 115. * Yip K.M. * Fischer N. * Paknia E. * Chari A. * Stark H. Atomic-resolution protein structure determination by cryo-EM. Nature. 2020; 587: 157-161 View in Article * Scopus (59) * PubMed * Crossref * Google Scholar 116. * Zamdborg L. * LeDuc R.D. * Glowacz K.J. * Kim Y.B. * Viswanathan V. * Spaulding I.T. * Early B.P. * Bluhm E.J. * Babai S. * Kelleher N.L. ProSight PTM 2.0: improved protein identification and characterization for top down mass spectrometry. Nucleic Acids Res. 2007; 35: W701-W706 View in Article * Scopus (183) * PubMed * Crossref * Google Scholar 117. * Zhang R. * Miner J.J. * Gorman M.J. * Rausch K. * Ramage H. * White J.P. * Zuiani A. * Zhang P. * Fernandez E. * Zhang Q. * et al. A CRISPR screen defines a signal peptide processing pathway required by flaviviruses. Nature. 2016; 535: 164-168 View in Article * PubMed * Crossref * Google Scholar 118. * Zheng S.Q. * Palovcak E. * Armache J.P. * Verba K.A. * Cheng Y. * Agard D.A. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods. 2017; 14: 331-332 View in Article * Scopus (1933) * PubMed * Crossref * Google Scholar ARTICLE INFO PUBLICATION HISTORY Published: August 12, 2021 Accepted: July 26, 2021 Received in revised form: June 2, 2021 Received: December 1, 2020 PUBLICATION STAGE In Press, Corrected Proof IDENTIFICATION DOI: https://doi.org/10.1016/j.molcel.2021.07.031 COPYRIGHT © 2021 Elsevier Inc. SCIENCEDIRECT Access this article on ScienceDirect RELATED ARTICLES COMMENTS Please enable JavaScript to view the comments powered by Disqus. CELL PRESS COMMENTING GUIDELINES To submit a comment for a journal article, please use the space above and note the following: * We will review submitted comments within 2 business days. * This forum is intended for constructive dialog. Comments that are commercial or promotional in nature, pertain to specific medical cases, are not relevant to the article for which they have been submitted, or are otherwise inappropriate will not be posted. * We recommend that commenters identify themselves with full names and affiliations. * Comments must be in compliance with our Terms & Conditions. * Comments will not be peer-reviewed. Structure of the human signal peptidase complex reveals the determinants for signal peptide cleavage * Hide CaptionDownloadSee figure in Article Toggle Thumbstrip * Graph. Abst. * Download Hi-res image * Download .PPT Science that inspires A Cell Press journal Close * This Journal * Back * Online Now * Current Issue * About the Journal * Author Resources * Archive * Alerts * Submit * Research Journals * Back * Cell * Cancer Cell * Cell Chemical Biology * Cell Genomics * Cell Host & Microbe * Cell Metabolism * Cell Reports * Cell Reports Medicine * Cell Reports Methods * Cell Reports Physical Science * Cell Stem Cell * Cell Systems * Chem * Chem Catalysis * Current Biology * Developmental Cell * Heliyon * Immunity * iScience * Joule * Matter * Med * Molecular Cell * Neuron * One Earth * Patterns * STAR Protocols * Structure * Trends Reviews Journals * Back * About Trends Reviews Journals * Biochemical Sciences * Biotechnology * Cancer * Cell Biology * Chemistry * Cognitive Sciences * Ecology & Evolution * Endocrinology & Metabolism * Genetics * Immunology * Microbiology * Molecular Medicine * Neurosciences * Parasitology * Pharmacological Sciences * Plant Science * Partner Journals * Back * AJHG * Biophysical Journal * Biophysical Reports * EBioMedicine * HGG Advances * Molecular Plant * Molecular Therapy Family * Plant Communications * Stem Cell Reports * The Innovation * Collections * Back * Best of Cell Press * Cell Press Reviews * Cell Press Selections * Consortia Hub * Nucleus Collections * SnapShot Archive * Trends Limited Editions * Beyond the Journal * Back * Cell Career Network * Cell Mentor * Cell Symposia * LabLinks * Webinars * Evolving the Article * Back * Community Review * Figure360 * Sneak Peek * STAR Methods * Science in Society * Back * Cell Picture Show * Cell Press Podcast * Cell Press Videos * Coloring and Comics * Research Arc * Connect * Back * About Cell Press * Careers * Contact * Help & Support * Newsroom * Publication Alerts * Cell Press Home * Register * Subscribe * Claim Go search All ContentArticle TitleAuthorsKeywordsAbstractArticle Title, Abstract, Keywords This JournalFull site Advanced SearchSave search Please enter a term before submitting your search. Ok * Log in * Register * Log in * Subscribe * Claim * * * * * * * Research Journals * Cell * Cancer Cell * Cell Chemical Biology * Cell Genomics * Cell Host & Microbe * Cell Metabolism * Cell Reports * Cell Reports Medicine * Cell Reports Methods * Cell Reports Physical Science * Cell Stem Cell * Cell Systems * Chem * Chem Catalysis * Current Biology * Developmental Cell * Heliyon * Immunity * iScience * Joule * Matter * Med * Molecular Cell * Neuron * One Earth * Patterns * STAR Protocols * Structure Trends Reviews Journals * Biochemical Sciences * Biotechnology * Cancer * Cell Biology * Chemistry * Cognitive Sciences * Ecology & Evolution * Endocrinology & Metabolism * Genetics * Immunology * Microbiology * Molecular Medicine * Neurosciences * Parasitology * Pharmacological Sciences * Plant Science Partner Journals * AJHG * Biophysical Journal * Biophysical Reports * EBioMedicine * HGG Advances * Molecular Plant * Molecular Therapy Family * Plant Communications * Stem Cell Reports * The Innovation Collections * Best of Cell Press * Cell Press Reviews * Cell Press Selections * Consortia Hub * Nucleus Collections * SnapShot Archive * Trends Limited Editions Beyond the Journal * Cell Career Network * Cell Mentor * Cell Symposia * LabLinks * Webinars Evolving the Article * Community Review * Figure360 * Sneak Peek * STAR Methods Science in Society * Cell Picture Show * Cell Press Podcast * Cell Press Videos * Coloring and Comics * Research Arc Connect * About Cell Press * Careers * Contact * Help & Support * Newsroom * Publication Alerts Access * Subscribe * Read-It-Now * Recommend to Librarian Information * For Advertisers * For Recruiters * For Librarians * Cookies * Terms & Conditions * Privacy Policy * Accessibility We use cookies to help provide and enhance our service and tailor content. To update your cookie settings, please visit the Cookie Settings for this site. Copyright © 2021 Elsevier Inc. except certain content provided by third parties. The content on this site is intended for healthcare professionals. Click to get updates and verify authenticity. We use cookies to analyse and improve our service, to improve and personalise content, advertising and your digital experience. We also share information about your use of our site with our social media, advertising and analytics partners. Cookie Policy Cookie Settings Accept all cookies