dataladder.com Open in urlscan Pro
172.67.130.199  Public Scan

Submitted URL: http://www.dataladder.com/
Effective URL: https://dataladder.com/
Submission: On October 04 via api from SG — Scanned from DE

Form analysis 2 forms found in the DOM

POST /#gf_7

<form method="post" enctype="multipart/form-data" target="gform_ajax_frame_7" id="gform_7" class="gf_simple_horizontal gform_legacy_markup" action="/#gf_7" siq_id="autopick_8324">
  <div class="gform_body gform-body">
    <ul id="gform_fields_7" class="gform_fields top_label form_sublabel_below description_below">
      <li id="field_7_1" class="gfield gf_simple_horizon gfield_contains_required field_sublabel_below field_description_below gfield_visibility_visible"><label class="gfield_label screen-reader-text" for="input_7_1">*Enter your email address<span
            class="gfield_required"><span class="gfield_required gfield_required_asterisk">*</span></span></label>
        <div class="ginput_container ginput_container_email">
          <input name="input_1" id="input_7_1" type="text" value="" class="large" placeholder="*Enter your email address" aria-required="true" aria-invalid="false">
        </div>
      </li>
      <li id="field_7_3" class="gfield field_sublabel_below field_description_below gfield_visibility_hidden">
        <div class="admin-hidden-markup"><i class="gform-icon gform-icon--hidden"></i><span>Hidden</span></div><label class="gfield_label" for="input_7_3">Last Name</label>
        <div class="ginput_container ginput_container_text"><input name="input_3" id="input_7_3" type="text" value="Not available" class="medium" aria-invalid="false"> </div>
      </li>
    </ul>
  </div>
  <div class="gform_footer top_label"> <input type="submit" id="gform_submit_button_7" class="gform_button button" value="Download" onclick="if(window[&quot;gf_submitting_7&quot;]){return false;}  window[&quot;gf_submitting_7&quot;]=true;  "
      onkeypress="if( event.keyCode == 13 ){ if(window[&quot;gf_submitting_7&quot;]){return false;} window[&quot;gf_submitting_7&quot;]=true;  jQuery(&quot;#gform_7&quot;).trigger(&quot;submit&quot;,[true]); }"> <input type="hidden" name="gform_ajax"
      value="form_id=7&amp;title=&amp;description=&amp;tabindex=0">
    <input type="hidden" class="gform_hidden" name="is_submit_7" value="1">
    <input type="hidden" class="gform_hidden" name="gform_submit" value="7">
    <input type="hidden" class="gform_hidden" name="gform_unique_id" value="">
    <input type="hidden" class="gform_hidden" name="state_7" value="WyJbXSIsIjhjYzI3NzIxNTU4MmQ2MGQyZWQ4YmMwNGRmN2RmZWYxIl0=">
    <input type="hidden" class="gform_hidden" name="gform_target_page_number_7" id="gform_target_page_number_7" value="0">
    <input type="hidden" class="gform_hidden" name="gform_source_page_number_7" id="gform_source_page_number_7" value="1">
    <input type="hidden" name="gform_field_values" value="">
  </div>
</form>

POST https://maillist-manage.com/weboptin.zc

<form method="POST" id="zcampaignOptinForm" style="margin: 0px; width: 100%; padding: 0px 15px" action="https://maillist-manage.com/weboptin.zc" target="_zcSignup" siq_id="autopick_6837">
  <div style="background-color: rgb(255, 235, 232); padding: 10px; color: rgb(210, 0, 0); font-size: 11px; margin: 20px 10px 0px; border: 1px solid rgb(255, 217, 211); opacity: 1; height: 33px; width: 298px; display: none" id="errorMsgDiv">Please
    correct the marked field(s) below.</div>
  <div style="position: relative; margin: 10px 0px 15px; display: inline-block; height: 35px; width: 70%" class="SIGNUP_FLD">
    <div id="Zc_SignupSuccess" style="position: absolute; width: 87%; background-color: white; padding: 3px; border: 3px solid rgb(194, 225, 154); margin-bottom: 10px; word-break: break-all; opacity: 1; display: none">
      <div style="width: 20px; padding: 5px; display: table-cell">
        <img class="successicon" src="https://campaigns.zoho.com/images/challangeiconenable.jpg" style="width: 20px">
      </div>
      <div style="display: table-cell">
        <span id="signupSuccessMsg" style="color: rgb(73, 140, 132); font-family: sans-serif; font-size: 14px; line-height: 30px; display: block"></span>
      </div>
    </div>
    <input type="text"
      style="font-size: 14px; border: 1px solid rgb(235, 235, 235); border-radius: 4px; width: 100%; height: 100%; z-index: 4; outline: none; padding: 5px 10px; color: rgb(136, 136, 136); text-align: left; font-family: &quot;Arial&quot;; background-color: transparent; background-color: rgb(255, 255, 255); box-sizing: border-box"
      placeholder="Email" changeitem="SIGNUP_FORM_FIELD" name="CONTACT_EMAIL" id="EMBED_FORM_EMAIL_LABEL">
  </div>
  <div style="position: relative; text-align: left; display: inline-block; margin: 0px 0px 10px; height: 33px; width: 20%" class="SIGNUP_FLD">
    <input type="button" style="text-align: center; width: 100%; height: 100%; z-index: 5; border: 0; color: rgb(255, 255, 255); cursor: pointer; outline: none; font-size: 14px; background-color: rgb(255, 121, 68); margin: 0;  border-radius: 4px"
      name="SIGNUP_SUBMIT_BUTTON" id="zcWebOptin" value="Join Now" onclick="saveOptin(this,false,function runOnFormSubmit_sfe1eeb30b6091836b1b9641418a1a756e6a73058460b2a736(th){
		/*Before submit, if you want to trigger your event, &quot;include your code here&quot;*/
	},'#sfe1eeb30b6091836b1b9641418a1a756e6a73058460b2a736[data-type=&quot;signupform_0&quot;] ',event);">
  </div>
  <input type="hidden" id="fieldBorder" value="rgb(235, 235, 235)">
  <input type="hidden" id="submitType" name="submitType" value="optinCustomView">
  <input type="hidden" id="emailReportId" name="emailReportId" value="">
  <input type="hidden" id="formType" name="formType" value="QuickForm">
  <input type="hidden" name="zx" id="cmpZuid" value="128677637">
  <input type="hidden" name="zcvers" value="3.0">
  <input type="hidden" name="oldListIds" id="allCheckedListIds" value="">
  <input type="hidden" id="mode" name="mode" value="OptinCreateView">
  <input type="hidden" id="zcld" name="zcld" value="1203f7bc14a43d9">
  <input type="hidden" id="document_domain" value="">
  <input type="hidden" id="zc_Url" value="tler.maillist-manage.com">
  <input type="hidden" id="new_optin_response_in" value="0">
  <input type="hidden" id="duplicate_optin_response_in" value="0">
  <input type="hidden" name="zc_trackCode" id="zc_trackCode" value="ZCFORMVIEW">
  <input type="hidden" id="zc_formIx" name="zc_formIx" value="e1eeb30b6091836b1b9641418a1a756e6a73058460b2a736">
  <input type="hidden" id="viewFrom" value="URL_ACTION">
  <span style="display: none" id="dt_CONTACT_EMAIL">1,true,6,Contact Email,2</span>
  <input type="text" style="display:none !important;" name="qs" class="ih"><input type="text" style="display:none !important;" name="lf" class="ih" value="1633357824472"><input type="hidden" name="di" value="1143944199171412881633357824473">
</form>

Text Content

 * Data Quality Management
   * Data Matching
     * Address Matching Software
     * Entity Resolution Software
     * Fuzzy Matching Software
     * OFAC Matching
     * Product Matching
     * Record Linkage Software
   * Data Preparation
   * Data Cleansing
     * Address Data Cleansing
     * Address Scrubbing Software
     * CRM Data Cleansing
     * Database Cleansing
     * Data Migration Cleansing
     * List Matching Software
     * Data Scrubbing Software
     * List Cleaning
     * Merge Purge Software
     * Product Data Cleansing
   * Data Profiling Software
   * Data Deduplication Software
     * Compare Duplicates
     * CRM Deduplication
     * Deduplication in SQL
     * Delete Duplicates
     * Excel Deduplication
   * Data Enrichment Software
   * Data Standardization
     * Address Standardization Software
 * Products
   * DataMatch Enterprise
     * Address Verification (Add-on)
     * API Solution
     * DataMatch Enterprise Command Line
   * ProductMatch
   * What’s New
 * Services
   * Advisory
   * Implementation Services
   * Tailored Programs
   * Training & Certification
 * Industries
   * Education
   * Finance & Insurance
   * Government / Public Sector
   * Healthcare
   * Retail
   * Sales & Marketing
   * See All Industries
 * Resources
   * Blog
   * Case Studies
   * Datasheets
   * Videos
   * White Papers
   * Changelog: DataMatch Enterprise

Contact Us Free Download


BEST-IN-CLASS ENTERPRISE


DATA MATCHING AND CLEANSING...

Rated Fastest and Most Accurate Data Matching
Solution Across 15 Different Independent Studies

 * *Enter your email address*
   
 * Hidden
   Last Name
   






CUSTOMER REVIEWS


"DATAMATCH ENTERPRISE - POWERFUL AND EASY TO USE"

★★★★★ 5/5

It does a great job with data cleansing making the matching process even more
powerful and being able to merge rows with very flexible rules for the final
export is extremely helpful.


NICK CORDER
PLATFORM ARCHITECT
WORLDPAY


"MY GO-TO DATABASE TOOL; SAVES TIME, INCREASES EFFICIENCY"

★★★★★ 5/5

DataMatch Enterprise is easy to learn and use. It’s easy to review results.
Saves us tons of time in manually checking records.


SHELLEY HAHN
BUSINESS DEVELOPMENT ASSOCIATE
ST. JOHN ASSOSIATES


"BEST PRODUCT EVER"

★★★★★ 5/5

It makes our matching projects in a short amount of time and helps prove ROI to
our clients.


ANTON ANDERSON
CUSTOMER SATISFACTION MANAGER RENTPATH


SEE HOW CUSTOMERS ARE USING DATAMATCH ENTERPRISE


DISCOVER WHY WE’RE THE HIGHEST RATED DATA MATCHING SOFTWARE IN THE INDUSTRY

Read Customer Stories in Your Vertical



WORLD-CLASS FUZZY MATCHING AND CONTEXTUAL RECOGNITION

When businesses need an intuitive, reliable solution to clean, compare, and
enrich data across the enterprise while delivering unparalleled speed and
accuracy, they turn to Data Ladder.




DATAMATCH


ENTERPRISE


INTUITIVE DATA
CLEANSING

A highly visual data cleansing platform specifically designed to discover and
resolve customer and contact data quality issues.


WORLD-CLASS DATA MATCHING

Match and link records to enrich, deduplicate, and integrate datasets from
virtually any source at unparalleled speed and accuracy.


DATA QUALITY
FIREWALL

Integrate matching algorithms and standardization and within your applications
for real-time data cleansing and deduplication.


ADDRESS VERIFICATION

Check the validity and deliverability of a physical mailing address with address
validation and geocoding capabilities.


PRODUCTMATCH


PRODUCT DATA
CLEANSING

Use semantic and machine learning technologies to structure, standardize, and
match complex product data from multiple sources.


DEDUPE AND
ENRICHMENT

Reduce the number of parts in your inventory while enriching product data by
consolidating items across disparate sources.


PRODUCT
CLASSIFICATION

Classify products into industry-standard (UNSPSC, etc) or custom taxonomies
using contextual recognition technology.


PROFIT
MAXIMIZATION

Optimize spend, pricing, and inventory to maximize profits by obtaining an
accurate, structured view of product and item data.


CUSTOMER REVIEWS

"Best Product Ever"

It makes our matching projects in a short amount of time and helps prove ROI to
our clients.

Anton AndersonCustomer Satisfaction Manager RentPath
"DataMatch Enterprise -Powerful and Easy to Use"

It does a great job with data cleansing making the matching process even more
powerful and being able to merge rows with very Flexible rules for the final
export is extremely helpful.

Nick Corder Platform Architect Worldpay
"My Go-To Database Tool Saves Times, Increases Efficiency"

DataMatch Enterprise is easy to learn and use. It's easy to review results.
Saves us tons of time in manually checking records.

Shelley Hahn Business Development Associate St. John Assosiates
"Best Product Ever"

It makes our matching projects in a short amount of time and helps prove ROI to
our clients.

Anton AndersonCustomer Satisfaction Manager RentPath
"DataMatch Enterprise -Powerful and Easy to Use"

It does a great job with data cleansing making the matching process even more
powerful and being able to merge rows with very Flexible rules for the final
export is extremely helpful.

Nick Corder Platform Architect Worldpay

Previous
Next
See how customers are using DataMatch Enterprise
0 +
Successful Deployments
Across 50+ Countries
0 +
Integrations


CASE STUDIES


SEE HOW THE WORLD'S LEADING COMPANIES CLEAN & MATCH THEIR DATA ACROSS DISPARATE
SOURCES


CLEAN, CATEGORIZE AND ENRICH PRODUCT DATA

Kingfisher increases online sales dramatically by standardizing product
attributes

Read Case Study



DATA MATCHING TO CREATE UNIFIED PATIENT VIEW

West Virginia University conducts cross-database linking for a 360-degree
patient view

Read Case Study



DATA MATCHING TO IMPROVE STUDENT ACHIEVEMENT

SLDS and P-20 program administrators see significant improvement in performance

Read Case Study


DEDUPLICATION WITH FUZZY MATCHING

Zurich Insurance reconciles payee records to create accurate reports efficiently

Read Case Study



DATA CLEANSING AND RECORD LINKAGE

IMPROVE YOUR BOTTOM-LINE WITH VISUAL, AUTOMATED DATA CLEANSING AND RECORD
LINKAGE


Data Ladder is dedicated to helping business users get the most out of their
data through data matching, profiling, deduplication, and enrichment tools.


AGILE AND
ACCESSIBLE

Whether you’re preparing your data for analysis, or cleansing and matching to
build a ‘Single Customer View’, we don’t believe in steep learning curves.
Experience code-free data quality management.


MACHINE LEARNING ENABLED

The Data Ladder Decision Engine ‘learns’ from human input on what is & what is
or isn’t a match just as well as human experts to automatically derive taxonomy
and extract attributes from product data.


4000+
DEPLOYMENTS

Data Ladder’s proprietary matching algorithms are a result of decades of R&D,
matching customer, company, product, and location data from all over the world,
across 4000+ installations.

Learn more about our approach


TESTIMONIALS

Data Ladder's visual approach for business users is cutting edge the visual
interface and well thought out options make for simple and effective data
cleansing implementations.

Ted FriedmanAuthor Magic Quadrant for Data Quality Tools
Given the large amount of data we were working with, & unique requirements, we
never could have cleaned up & completed our data cleansing project without your
help.

Manager
As part of the insurance industry, we have to provide internal reports. We could
not do these reports before. Now, DataMatch™ has become a main staple in my
suite of tools that I work with!

Statistic Manager
DataMatch was the most affordable & simplest software available. Within an
afternoon we had finished our first pass at cleaning the data & started to see
results

Data Quality Manager
Data Ladder's visual approach for business users is cutting edge the visual
interface and well thought out options make for simple and effective data
cleansing implementations.

Ted FriedmanAuthor Magic Quadrant for Data Quality Tools
Given the large amount of data we were working with, & unique requirements, we
never could have cleaned up & completed our data cleansing project without your
help.

Manager

Previous
Next


EXPLORE THE POWER OF OUR DATA MATCHING ENGINE TODAY.

  Thank you for Signing Up

Please correct the marked field(s) below.


1,true,6,Contact Email,2




PLATFORM

 * Products
 * Data Quality Management
 * Changelog
 * Customers & Testimonials


LEARN

 * Blog
 * Case Studies
 * Datasheets
 * All Resources


COMPANY

 * About Us
 * Privacy Policy
 * Partners
 * Services

 * +1 (866) 557 8102
 * sales@dataladder.com


SOCIALIZE WITH US :

Twitter Facebook-f Linkedin Envelope


Copyright © 2021 dataladder.com


 * 
 * 
 * 
 * 




Notifications








We're Online!

How may I help you today?