link.springer.com Open in urlscan Pro
151.101.0.95  Public Scan

Submitted URL: http://dx.doi.org/10.1007/s11633-022-1343-2
Effective URL: https://link.springer.com/article/10.1007/s11633-022-1343-2
Submission: On February 08 via manual from US — Scanned from DE

Form analysis 2 forms found in the DOM

POST https://order.springer.com/public/precheckout

<form action="https://order.springer.com/public/precheckout" method="post">
  <button class="c-header__link" type="submit" style="appearance:none;border:none;background:none;color:inherit;position:relative">
    <svg aria-hidden="true" focusable="false" height="18" viewBox="0 0 18 18" width="18" xmlns="http://www.w3.org/2000/svg" style="vertical-align:text-bottom">
      <path
        d="m5 14c1.1045695 0 2 .8954305 2 2s-.8954305 2-2 2-2-.8954305-2-2 .8954305-2 2-2zm10 0c1.1045695 0 2 .8954305 2 2s-.8954305 2-2 2-2-.8954305-2-2 .8954305-2 2-2zm-10 1c-.55228475 0-1 .4477153-1 1s.44771525 1 1 1 1-.4477153 1-1-.44771525-1-1-1zm10 0c-.5522847 0-1 .4477153-1 1s.4477153 1 1 1 1-.4477153 1-1-.4477153-1-1-1zm-12.82032249-15c.47691417 0 .88746157.33678127.98070211.80449199l.23823144 1.19501025 13.36277974.00045554c.5522847.00001882.9999659.44774934.9999659 1.00004222 0 .07084994-.0075361.14150708-.022474.2107727l-1.2908094 5.98534344c-.1007861.46742419-.5432548.80388386-1.0571651.80388386h-10.24805106c-.59173366 0-1.07142857.4477153-1.07142857 1 0 .5128358.41361449.9355072.94647737.9932723l.1249512.0067277h10.35933776c.2749512 0 .4979349.2228539.4979349.4978051 0 .2749417-.2227336.4978951-.4976753.4980063l-10.35959736.0041886c-1.18346732 0-2.14285714-.8954305-2.14285714-2 0-.6625717.34520317-1.24989198.87690425-1.61383592l-1.63768102-8.19004794c-.01312273-.06561364-.01950005-.131011-.0196107-.19547395l-1.71961253-.00064219c-.27614237 0-.5-.22385762-.5-.5 0-.27614237.22385763-.5.5-.5zm14.53193359 2.99950224h-13.11300004l1.20580469 6.02530174c.11024034-.0163252.22327998-.02480398.33844139-.02480398h10.27064786z"
        fill="#333"></path>
    </svg><span class="u-screenreader-only visually-hidden">Go to cart</span><span class="cart-info"
      style="display:none;position:absolute;top:-4px;right:-10px;background-color:#C40606;color:#fff;width:18px;height:18px;font-size:11px;border-radius:50%;line-height:17.5px;text-align:center"></span></button>
</form>

GET /search

<form role="search" method="GET" action="/search">
  <label for="search" class="app-search__label">Search SpringerLink</label>
  <div class="app-search__content">
    <input id="search" class="app-search__input" data-search-input="" autocomplete="off" name="query" type="text" value="">
    <button class="app-search__button" type="submit">
      <span class="u-visually-hidden">Search</span>
      <svg class="u-icon" aria-hidden="true" focusable="false">
        <use xlink:href="#global-icon-search"></use>
      </svg>
    </button>
    <input type="hidden" name="searchType" value="publisherSearch">
  </div>
</form>

Text Content

YOUR PRIVACY

We use cookies to make sure that our website works properly, as well as some
‘optional’ cookies to personalise content and advertising, provide social media
features and analyse how people use our site. By accepting some or all optional
cookies you give consent to the processing of your personal data, including
transfer to third parties, some in countries outside of the European Economic
Area that do not offer the same data protection standards as the country where
you live. You can decide which optional cookies to accept by clicking on ‘Manage
Settings’, where you can also find more information about how your personal data
is processed. Further information can be found in our privacy policy.

Accept all cookies Manage preferences
Skip to main content


Advertisement


Search
Go to cart
 * Log in

Search SpringerLink
Search
Federated Learning with Privacy-preserving and Model IP-right-protection
Download PDF
Download PDF

 * Review
 * Open Access
 * Published: 10 January 2023


FEDERATED LEARNING WITH PRIVACY-PRESERVING AND MODEL IP-RIGHT-PROTECTION

 * Qiang Yang  ORCID: orcid.org/0000-0001-5059-83601,2,
 * Anbu Huang  ORCID: orcid.org/0000-0003-3444-73481,
 * Lixin Fan1,
 * Chee Seng Chan3,
 * Jian Han Lim3,
 * Kam Woh Ng  ORCID: orcid.org/0000-0002-9309-563X4,
 * Ding Sheng Ong5 &
 * …
 * Bowen Li  ORCID: orcid.org/0000-0003-1602-35416 

Show authors

Machine Intelligence Research volume 20, pages 19–37 (2023)Cite this article

 * 178 Accesses

 * 1 Altmetric

 * Metrics details


ABSTRACT

In the past decades, artificial intelligence (AI) has achieved unprecedented
success, where statistical models become the central entity in AI. However, the
centralized training and inference paradigm for building and using these models
is facing more and more privacy and legal challenges. To bridge the gap between
data privacy and the need for data fusion, an emerging AI paradigm federated
learning (FL) has emerged as an approach for solving data silos and data privacy
problems. Based on secure distributed AI, federated learning emphasizes data
security throughout the lifecycle, which includes the following steps: data
preprocessing, training, evaluation, and deployments. FL keeps data security by
using methods, such as secure multi-party computation (MPC), differential
privacy, and hardware solutions, to build and use distributed multiple-party
machine-learning systems and statistical models over different data sources.
Besides data privacy concerns, we argue that the concept of “model” matters,
when developing and deploying federated models, they are easy to expose to
various kinds of risks including plagiarism, illegal copy, and misuse. To
address these issues, we introduce FedIPR, a novel ownership verification
scheme, by embedding watermarks into FL models to verify the ownership of FL
models and protect model intellectual property rights (IPR or IP-right for
short). While security is at the core of FL, there are still many articles
referred to distributed machine learning with no security guarantee as
“federated learning”, which are not satisfied with the FL definition supposed to
be. To this end, in this paper, we reiterate the concept of federated learning
and propose secure federated learning (SFL), where the ultimate goal is to build
trustworthy and safe AI with strong privacy-preserving and IP-right-preserving.
We provide a comprehensive overview of existing works, including threats,
attacks, and defenses in each phase of SFL from the lifecycle perspective.

Download to read the full article text


WORKING ON A MANUSCRIPT?

Avoid the common mistakes




REFERENCES

 1.   A. Krizhevsky, I. Sutskever, G. E. Hinton. ImageNet classification with
      deep convolutional neural networks. In Proceedings of the 25th
      International Conference on Neural Information Processing Systems, ACM,
      Lake Tahoe, USA. pp. 1097–1105, 2012. DOI:
      https://doi.org/10.5555/2999134.2999257.
      
      Google Scholar 

 2.   K. M. He, X. Y. Zhang, S. Q. Ren, J. Sun. Deep residual learning for image
      recognition. In Proceedings of the IEEE Conference on Computer Vision and
      Pattern Recognition, IEEE, Las Vegas, USA, pp. 770–778, 2016. DOI:
      https://doi.org/10.1109/CVPR.2016.90.
      
      Google Scholar 

 3.   J. Devlin, M. W. Chang, K. Lee, K. Toutanova. BERT: Pre-training of deep
      bidirectional transformers for language understanding. In Proceedings of
      Conference of the North American Chapter of the Association for
      Computational Linguistics: Human Language Technologies, ACL, Minneapolis,
      USA, pp. 4171–4186, 2019. DOI: https://doi.org/10.18653/v1/N19-1423.
      
      Google Scholar 

 4.   T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A.
      Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss,
      G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C.
      Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J.
      Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, D. Amodei.
      Language models are few-shot learners. In Proceedings of the 34th
      International Conference on Neural Information Processing Systems, ACM,
      Vancouver, Canada, Article number 159, 2020. DOI:
      https://doi.org/10.5555/3495724.3495883.
      
      Google Scholar 

 5.   H. T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye, G.
      Anderson, G. Corrado, W. Chai, M. Ispir, R. Anil, Z. Haque, L. C. Hong, V.
      Jain, X. B. Liu, H. Shah. Wide & deep learning for recommender systems. In
      Proceedings of the 1st Workshop on Deep Learning for Recommender Systems,
      ACM, Boston, USA, pp. 7–10, 2016. DOI:
      https://doi.org/10.1145/2988450.2988454.
      
      Chapter  Google Scholar 

 6.   H. F. Guo, R. M. Tang, Y. M. Ye, Z. G. Li, X. Q. He. DeepFM: A
      factorization-machine based neural network for CTR prediction. In
      Proceedings of the 26th International Joint Conference on Artificial
      Intelligence, ACM, Melbourne, Australia, pp. 1725–1731, 2017. DOI:
      https://doi.org/10.5555/3172077.3172127.
      
      Google Scholar 

 7.   J. Deng, W. Dong, R. Socher, L. J. Li, K. Li, F. F. Li. ImageNet: A
      large-scale hierarchical image database. In Proceedings of IEEE Conference
      on Computer Vision and Pattern Recognition, IEEE, Miami, USA, pp. 248–255,
      2009. DOI: https://doi.org/10.1109/CVPR.2009.5206848.
      
      Google Scholar 

 8.   Protein Data Bank. A structural view of biology, [Online], Available:
      https://www.rcsb.org/.

 9.   J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K.
      Tunyasuvunakool, R. Bates, A. Žídek, A. Potapenko, A. Bridgland, C. Meyer,
      S. A. A. Kohl, A. J. Ballard, A. Cowie, B. Romera-Paredes, S. Nikolov, R.
      Jain, J. Adler, T. Back, S. Petersen, D. Reiman, E. Clancy, M. Zielinski,
      M. Steinegger, M. Pacholska, T. Berghammer, S. Bodenstein, D. Silver, O.
      Vinyals, A. W. Senior, K. Kavukcuoglu, P. Kohli, D. Hassabis. Highly
      accurate protein structure prediction with AlphaFold. Nature, vol. 596,
      no. 7873, pp. 583–589, 2021. DOI:
      https://doi.org/10.1038/s41586-021-03819-2.
      
      Article  Google Scholar 

 10.  A. W. Senior, R. Evans, J. Jumper, J. Kirkpatrick, L. Sifre, T. Green, C.
      L. Qin, A. Žídek, A. W. R. Nelson, A. Bridgland, H. Penedones, S.
      Petersen, K. Simonyan, S. Crossan, P. Kohli, D. T. Jones, D. Silver, K.
      Kavukcuoglu, D. Hassabis. Improved protein structure prediction using
      potentials from deep learning. Nature, vol. 577, no. 7792, pp. 706–710,
      2020. DOI: https://doi.org/10.1038/s41586-019-1923-7.
      
      Article  Google Scholar 

 11.  EU. General data protection regulation, [Online], Available:
      https://gdpr-info.eu/.

 12.  DLA Piper. Data protection laws of the world: Full handbook, [Online],
      Available: https://www.dlapiperdataprotection.com/.

 13.  The National People’s Congress. China data security law, [Online],
      Available:
      http://www.npc.gov.cn/npc/c30834/202106/7c9afl2f51334a73b56d7938f99a788a.shtml.
      (in Chinese)

 14.  B. McMahan, E. Moore, D. Ramage, S. Hampson, B. A. Arcas.
      Communication-efficient learning of deep networks from decentralized data.
      In Proceedings of the 20th International Conference on Artificial
      Intelligence and Statistics, Fort Lauderdale, USA, pp. 1273–1282, 2017.

 15.  L. G. Zhu, Z. J. Liu, S. Han. Deep leakage from gradients. In Proceedings
      of the Advances in Neural Information Processing Systems, Vancouver,
      Canada, pp. 14774–14784, 2019.

 16.  L. T. Phong, Y. Aono, T. Hayashi, L. H. Wang, S. Moriai.
      Privacy-preserving deep learning via additively homomorphic encryption.
      IEEE Transactions on Information Forensics and Security, vol. 13, no. 5,
      pp. 1333–1345, 2018. DOI: https://doi.org/10.1109/TIFS.2017.2787987.
      
      Article  Google Scholar 

 17.  P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N. Bhagoji,
      K. Bonawitz, Z. Charles, G. Cormode, R. Cummings, R. G. L. D’Ohveira, H.
      Eichner, S. El Rouayheb, D. Evans, J. Gardner, Z. Garrett, A. Gascón, B.
      Ghazi, P. B. Gibbons, M. Gruteser, Z. Harchaoui, C. Y. He, L. He, Z. Y.
      Huo, B. Hutchinson, J. Hsu, M. Jaggi, T. Javidi, G. Joshi, M. Khodak, J.
      Konecný, A. Korolova, F. Koushanfar, S. Koyejo, T. Lepoint, Y. Liu, P.
      Mittal, M. Mohri, R. Nock, A. Özgür, R. Pagh, H. Qi, D. Ramage, R. Raskar,
      M. Raykova, D. Song, W. K. Song, S. U. Stich, Z. T. Sun, A. T. Suresh, F.
      Tramèr, P. Vepakomma, J. Y. Wang, L. Xiong, Z. Xu, Q. Yang, F. X. Yu, H.
      Yu, S. Zhao. Advances and open problems in federated learning. Foundations
      and Trends® in Machine Learning, vol. 14, no. 1–2, pp. 1–210, 2021. DOI:
      https://doi.org/10.1561/2200000083.
      
      Article  Google Scholar 

 18.  Y. Z. Ma, X. J. Zhu, J. Hsu. Data poisoning against differentially-private
      learners: Attacks and defenses. In Proceedings of the 28th International
      Joint Conference on Artificial Intelligence, ACM, Macao, China, pp.
      4732–4738, 2019. DOI: https://doi.org/10.5555/3367471.3367701.
      
      Google Scholar 

 19.  Z. B. Ying, Y. Zhang, X. M. Liu. Privacy-preserving in defending against
      membership inference attacks. In Proceedings of the Workshop on
      Privacy-preserving Machine Learning in Practice, ACM, pp. 61–63, 2020.
      DOI: https://doi.org/10.1145/3411501.3419428.

 20.  Q. Yang, Y. Liu, Y. Cheng, Y. Kang, T. J. Chen, H. Yu. Federated Learning,
      San Francisco Bay Area, USA: Morgan & Claypool Publishers, pp. 207, 2019.
      
      Google Scholar 

 21.  Q. Yang, Y. Liu, T. J. Chen, Y. X. Tong. Federated machine learning:
      Concept and applications. ACM Transactions on Intelligent Systems and
      Technology, vol. 10, no. 2, Article number 12, 2019. DOI:
      https://doi.org/10.1145/3298981.

 22.  T. Li, A. K. Sahu, A. Talwalkar, V. Smith. Federated learning: Challenges,
      methods, and future directions. IEEE Signal Processing Magazine, vol. 37,
      no. 3, pp. 50–60, 2020. DOI: https://doi.org/10.1109/MSP.2020.2975749.
      
      Article  Google Scholar 

 23.  L. J. Lyu, H. Yu, Q. Yang. Threats to federated learning: A survey.
      [Online], Available: https://arxiv.org/abs/2003.02133, 2020.

 24.  N. Bouacida, P. Mohapatra. Vulnerabilities in federated learning. IEEE
      Access, vol. 9, pp. 63229–63249, 2021. DOI:
      https://doi.org/10.1109/ACCESS.2021.3075203.
      
      Article  Google Scholar 

 25.  V. Mothukuri, R. M. Parizi, S. Pouriyeh, Y. Huang, A. Dehghantanha, G.
      Srivastava. A survey on security and privacy of federated learning. Future
      Generation Computer Systems, vol. 115, pp. 619–640, 2021. DOI:
      https://doi.org/10.1016/j.future.2020.10.007.
      
      Article  Google Scholar 

 26.  P. R. Liu, X. R. Xu, W. Wang. Threats, attacks and defenses to federated
      learning: Issues, taxonomy and perspectives. Cybersecurity, vol. 5, no. 1,
      Article number 4, 2022. DOI: https://doi.org/10.1186/s42400-021-00105-6.

 27.  X. J. Zhang, H. L. Gu, L. X. Fan, K. Chen, Q. Yang. No free lunch theorem
      for security and utility in federated learning. [Online], Available:
      https://arxiv.org/abs/2203.05816, 2022.

 28.  O. Goldreich, S. Micali, A. Wigderson. How to play ANY mental game. In
      Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing,
      ACM, New York, USA, pp. 218–229, 1987. DOI:
      https://doi.org/10.1145/28395.28420.
      
      Google Scholar 

 29.  T. Rabin, M. Ben-Or. Verifiable secret sharing and multiparty protocols
      with honest majority. In Proceedings of the 21st Annual ACM Symposium on
      Theory of Computing, ACM, Seattle, USA, pp. 73–85, 1989. DOI:
      https://doi.org/10.1145/73007.73014.
      
      Google Scholar 

 30.  C. Dwork. Differential privacy: A survey of results. In Proceedings of the
      5th International Conference on Theory and Applications of Models of
      Computation, Springer, Xi’an, China, pp. 1–19, 2008. DOI:
      https://doi.org/10.1007/978-3-540-79228-4_1.
      
      Google Scholar 

 31.  C. Dwork, A. Roth. The algorithmic foundations of differential privacy.
      Foundations and Trends in Theoretical Computer Science, vol. 9, no. 3–4,
      pp. 211–407, 2014. DOI: https://doi.org/10.1561/0400000042.
      
      MathSciNet  MATH  Google Scholar 

 32.  P. Paillier. Public-key cryptosystems based on composite degree
      residuosity classes. In Proceedings of the International Conference on
      Advances in Cryptology, Springer, Prague, Czech Republic, pp. 223–238,
      1999. DOI: https://doi.org/10.1007/3-540-48910-X_16.
      
      MATH  Google Scholar 

 33.  OMTP. 2009. Advanced trusted environment: OMTP TR1.
      http://www.omtp.org/OMTP_Advanced_Trusted_Environment_OMTP_TR1_v1_1.pdf

 34.  ARM. ARM TrustZone Technology, [Online], Available:
      https://developer.arm.com/documentation/100690/0200/ARM-TrustZone-technology?lang=en.

 35.  M. Sabt, M. Achemlal, A. Bouabdallah. Trusted execution environment: What
      it is, and what it is not. In Proceedings of IEEE Trustcom/BigDataSE/ISPA,
      IEEE, Helsinki, Finland, pp. 57–64, 2015. DOI:
      https://doi.org/10.1109/Trustcom.2015.357.
      
      Google Scholar 

 36.  B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić, P. Laskov, G.
      Giacinto, F. Roli. Evasion attacks against machine learning at test time.
      In Proceedings of the European Conference on Machine Learning and
      Knowledge Discovery in Databases, Springer, Prague, Czech Republic, pp.
      387–402, 2013. DOI: https://doi.org/10.1007/978-3-642-40994-325.
      
      Google Scholar 

 37.  C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J.
      Goodfellow, R. Fergus. Intriguing properties of neural networks. In
      Proceedings of the 2nd International Conference on Learning
      Representations, Banff, Canada, 2014.

 38.  A. Nguyen, J. Yosinski, J. Clune. Deep neural networks are easily fooled:
      High confidence predictions for unrecognizable images. In Proceedings of
      the IEEE Conference on Computer Vision and Pattern Recognition, IEEE,
      Boston, USA, pp. 427–436, 2015. DOI:
      https://doi.org/10.1109/CVPR.2015.7298640.
      
      Google Scholar 

 39.  I. J. Goodfellow, J. Shlens, C. Szegedy. Explaining and harnessing
      adversarial examples. In Proceedings of the 3rd International Conference
      on Learning Representations, San Diego, USA, 2015.

 40.  E. Bagdasaryan, A. Veit, Y. Q. Hua, D. Estrin, V. Shmatikov. How to
      backdoor federated learning. In Proceedings of the 23rd International
      Conference on Artificial Intelligence and Statistics, Palermo, Italy, pp.
      2938–2948, 2020.

 41.  H. J. Zhang, Z. J. Xie, R. Zarei, T. Wu, K. W. Chen. Adaptive client
      selection in resource constrained federated learning systems: A deep
      reinforcement learning approach. IEEE Access, vol. 9, pp. 98423–98432,
      2021. DOI: https://doi.org/10.1109/ACCESS.2021.3095915.
      
      Article  Google Scholar 

 42.  R. Albelaihi, X. Sun, W. D. Craft, L. K. Yu, C. G. Wang. Adaptive
      participant selection in heterogeneous federated learning. In Proceedings
      of IEEE Global Communications Conference, IEEE, Madrid, Spain, 2021. DOI:
      https://doi.org/10.1109/GLOBECOM46510.2021.9685077.
      
      Google Scholar 

 43.  F. Mo, A. S. Shamsabadi, K. Katevas, S. Demetriou, I. Leontiadis, A.
      Cavallaro, H. Haddadi. DarkneTZ: Towards model privacy at the edge using
      trusted execution environments. In Proceedings of the 18th International
      Conference on Mobile Systems, Applications, and Services, ACM, Toronto,
      Canada, pp. 161–174, 2020. DOI: https://doi.org/10.1145/3386901.3388946.
      
      Chapter  Google Scholar 

 44.  A. B. Huang, Y. Liu, T. J. Chen, Y. K. Zhou, Q. Sun, H. F. Chai, Q. Yang.
      StarFL: Hybrid federated learning architecture for smart urban computing.
      ACM Transactions on Intelligent Systems and Technology, vol. 12, no. 4,
      Article number 43, 2021. DOI: https://doi.org/10.1145/3467956.

 45.  B. Hitaj, G. Ateniese, F. Perez-Cruz. Deep models under the GAN:
      Information leakage from collaborative deep learning. In Proceedings of
      ACM SIGSAC Conference on Computer and Communications Security, ACM,
      Dallas, USA, pp. 603–618, 2017. DOI:
      https://doi.org/10.1145/3133956.3134012.
      
      Google Scholar 

 46.  B. Zhao, K. R. Mopuri, H. Bilen. iDLG: Improved deep leakage from
      gradients. [Online], Available: https://arxiv.org/abs/2001.02610, 2020.

 47.  J. Geiping, H. Bauermeister, H. Dröge, M. Moeller. Inverting gradients-how
      easy is it to break privacy in federated learning? In Proceedings of the
      34th International Conference on Neural Information Processing Systems,
      ACM, Vancouver, Canada, Article number 33, 2020. DOI:
      https://doi.org/10.5555/3495724.3497145.
      
      Google Scholar 

 48.  Y. J. Wang, J. R. Deng, D. Guo, C. H. Wang, X. R. Meng, H. Liu, C. W.
      Ding, S. Rajasekaran. SAPAG: A self-adaptive privacy attack from
      gradients. [Online], Available: https://arxiv.org/abs/2009.06228, 2020.

 49.  J. Y. Zhu, M. B. Blaschko. R-GAP: Recursive gradient attack on privacy. In
      Proceedings of the 9th International Conference on Learning
      Representations, 2021.

 50.  X. Jin, P. Y. Chen, C. Y. Hsu, C. M. Yu, T. Y. Chen. Catastrophic data
      leakage in vertical federated learning. In Proceedings of the 34th
      Conference on Neural Information Processing Systems, pp. 994–1006, 2021.

 51.  Z. H. Li, J. X. Zhang, L. Y. Liu, J. Liu. Auditing privacy defenses in
      federated learning via generative gradient leakage. [Online], Available:
      https://arxiv.org/abs/2203.15696, 2022.

 52.  S. Hardy, W. Henecka, H. Ivey-Law, R. Nock, G. Patrini, G. Smith, B.
      Thorne. Private federated learning on vertically partitioned data via
      entity resolution and additively homomorphic encryption. [Online],
      Available: https://arxiv.org/abs/1711.10677, 2017.

 53.  C. L. Zhang, S. Y. Li, J. Z. Xia, W. Wang, F. Yan, Y. Liu. BatchCrypt:
      Efficient homomorphic encryption for cross-silo federated learning. In
      Proceedings of USENIX Conference on USENIX Annual Technical Conference,
      Berkeley, USA, Article number. 33, 2020. DOI:
      https://doi.org/10.5555/3489146.3489179.

 54.  A. Huang, Y. Y. Chen, Y. Liu, T. J. Chen, Q. Yang. RPN: A residual pooling
      network for efficient federated learning. In Proceedings of the 24th
      European Conference on Artificial Intelligence, Santiago de Compostela,
      Spain, pp. 1223–1229, 2020.

 55.  H. B. McMahan, D. Ramage, K. Talwar, L. Zhang. Learning differentially
      private recurrent language models. In Proceedings of the 6th International
      Conference on Learning Representations, Vancouver, Canada, 2018.

 56.  K. Wei, J. Li, M. Ding, C. Ma, H. H. Yang, F. Farokhi, S. Jin, T. Q. S.
      Quek, H. V. Poor. Federated learning with differential privacy: Algorithms
      and performance analysis. IEEE Transactions on Information Forensics and
      Security, vol. 15, pp. 3454–3469, 2020. DOI:
      https://doi.org/10.1109/TIFS.2020.2988575.
      
      Article  Google Scholar 

 57.  C. L. Xie, K. L. Huang, P. Y. Chen, B. Li. DBA: Distributed backdoor
      attacks against federated learning. In Proceedings of the 8th
      International Conference on Learning Representations, Addis Ababa,
      Ethiopia, 2020.

 58.  A. B. Huang. Dynamic backdoor attacks against federated learning.
      [Online], Available: https://arxiv.org/abs/2011.07429, 2020.

 59.  J. Feng, Q. Z. Cai, Z. H. Zhou. Learning to confuse: Generating training
      time adversarial data with auto-encoder. In Proceedings of the 33rd
      International Conference on Neural Information Processing Systems, ACM,
      Vancouver, Canada, Article number 32, 2019. DOI:
      https://doi.org/10.5555/3454287.3455361.
      
      Google Scholar 

 60.  S. S. Hu, J. R. Lu, W. Wan, L. Y. Zhang. Challenges and approaches for
      mitigating byzantine attacks in federated learning. [Online], Available:
      https://arxiv.org/abs/2112.14468, 2021.

 61.  M. H. Fang, X. Y. Cao, J. Y. Jia, N. Z. Gong. Local model poisoning
      attacks to byzantine-robust federated learning. In Proceedings of the 29th
      USENIX Conference on Security Symposium, ACM, Berkeley, USA, Article
      number 92, 2020. DOI: https://doi.org/10.5555/3489212.3489304.
      
      Google Scholar 

 62.  D. Yin, Y. D. Chen, R. Kannan, P. Bartlett. Byzantine-robust distributed
      learning: Towards optimal statistical rates. In Proceedings of the 35th
      International Conference on Machine Learning, Stockholm, Sweden, pp.
      5650–5659, 2018.

 63.  P. Blanchard, E. M. El Mhamdi, R. Guerraoui, J. Stainer. Machine learning
      with adversaries: Byzantine tolerant gradient descent. In Proceedings of
      the 31st International Conference on Neural Information Processing
      Systems, ACM, Long Beach, USA, pp. 118–128, 2017. DOI:
      https://doi.org/10.5555/3294771.3294783.
      
      Google Scholar 

 64.  C. Xie, S. Koyejo, I. Gupta. Zeno: Distributed stochastic gradient descent
      with suspicion-based fault-tolerance. In Proceedings of the 36th
      International Conference on Machine Learning, Long Beach, USA, pp.
      6893–6901, 2019.

 65.  Y. Dong, X. J. Chen, L. Y. Shen, D. K. Wang. Privacy-preserving
      distributed machine learning based on secret sharing. In Proceedings of
      the 21st International Conference on Information and Communications
      Security, Springer, Beijing, China, pp. 684–702, 2019. DOI:
      https://doi.org/10.1007/978-3-030-41579-2_40.
      
      Google Scholar 

 66.  R. Kanagavelu, Z. X. Li, J. Samsudin, Y. C. Yang, F. Yang, R. S. M. Goh,
      M. Cheah, P. Wiwatphonthana, K. Akkarajitsakul, S. G. Wang. Two-phase
      multi-party computation enabled privacy-preserving federated learning. In
      Proceedings of the 20th IEEE/ACM International Symposium on Cluster, Cloud
      and Internet Computing, IEEE, Melbourne, Australia, pp. 410–419, 2020.
      DOI: https://doi.org/10.1109/CCGrid49817.2020.00-52.
      
      Google Scholar 

 67.  M. O. Rabin. How to exchange secrets with oblivious transfer, Technical
      Report Paper 2005/187, 2005.

 68.  A. C. C. Yao. How to generate and exchange secrets. In Proceedings of the
      27th Annual Symposium on Foundations of Computer Science, IEEE, Toronto,
      Canada, pp. 162–167, 1986. DOI: https://doi.org/10.1109/SFCS.1986.25.
      
      Google Scholar 

 69.  Intel®. Architecture instruction set extensions programming reference,
      Technical Report 319433-012, Intel Corporation, USA, 2012.

 70.  V. Costan, S. Devadas. Intel SGX explained, Technical Report Paper
      2016/086, 2016.

 71.  ArmDeveloper. Arm TrustZone Technology, [Online], Available:
      https://developer.arm.com/documentation/100690/0200/ARM-TrustZone-technology?lang=en,
      December 05, 2019.

 72.  Androidtrusty. Android Trusty TEE, [Online], Available:
      https://source.android.com/security/trusty, 2019.

 73.  AMD. AMD Secure Encrypted Virtualization, [Online], Available:
      https://developer.amd.com/sev/.

 74.  F. Mo, H. Haddadi, K. Katevas, E. Marin, D. Perino, N. Kourtellis. PPFL:
      Privacy-preserving federated learning with trusted execution environments.
      In Proceedings of the 19th Annual International Conference on Mobile
      Systems, Applications, and Services, ACM, pp. 94–108, 2021. DOI:
      https://doi.org/10.1145/3458864.3466628.

 75.  A. Kurakin, I. J. Goodfellow, S. Bengio. Adversarial examples in the
      physical world. In Proceedings of the 5th International Conference on
      Learning Representations, Toulon, France, 2017.

 76.  N. Carlini, D. Wagner. Adversarial examples are not easily detected:
      Bypassing ten detection methods. In Proceedings of the 10th ACM Workshop
      on Artificial Intelligence and Security, ACM, Dallas, USA, pp. 3–14, 2017.
      DOI: https://doi.org/10.1145/3128572.3140444.
      
      Chapter  Google Scholar 

 77.  P. Y. Chen, H. Zhang, Y. Sharma, J. F. Yi, C. J. Hsieh. ZOO: Zeroth order
      optimization based black-box attacks to deep neural networks without
      training substitute models. In Proceedings of the 10th ACM Workshop on
      Artificial Intelligence and Security, ACM, Dallas, USA, pp. 15–26, 2017.
      DOI: https://doi.org/10.1145/3128572.3140448.
      
      Chapter  Google Scholar 

 78.  A. Ilyas, L. Engstrom, A. Athalye, J. Lin. Black-box adversarial attacks
      with limited queries and information. In Proceedings of the 35th
      International Conference on Machine Learning, Stockholm, Sweden, pp.
      2137–2146, 2018.

 79.  D. Y. Meng, H. Chen. MagNet: A two-pronged defense against adversarial
      examples. In Proceedings of ACM SIGSAC Conference on Computer and
      Communications Security, ACM, Dallas, USA, pp. 135–147, 2017. DOI:
      https://doi.org/10.1145/3133956.3134057.
      
      Google Scholar 

 80.  S. M. Moosavi-Dezfooli, A. Fawzi, P. Frossard. Deep Fool: A simple and
      accurate method to fool deep neural networks. In Proceedings of the IEEE
      Conference on Computer Vision and Pattern Recognition, IEEE, Las Vegas,
      USA, pp. 2574–2582, 2016. DOI: https://doi.org/10.1109/CVPR.2016.282.
      
      Google Scholar 

 81.  N. Papernot, P. McDaniel, X. Wu, S. Jha, A. Swami. Distillation as a
      defense to adversarial perturbations against deep neural networks. In
      Proceedings of IEEE Symposium on Security and Privacy, IEEE, San Jose,
      USA, pp. 582–597, 2016. DOI: https://doi.org/10.1109/SP.2016.41.
      
      Google Scholar 

 82.  J. H. Metzen, T. Genewein, V. Fischer, B. Bischoff. On detecting
      adversarial perturbations. In Proceedings of the 5th International
      Conference on Learning Representations, Toulon, France, 2017.

 83.  K. Grosse, P. Manoharan, N. Papernot, M. Backes, P. McDaniel. On the
      (statistical) detection of adversarial examples. [Online], Available:
      https://arxiv.org/abs/1702.06280, 2017.

 84.  C. Fu, X. H. Zhang, S. L. Ji, J. Y. Chen, J. Z. Wu, S. Q. Guo, J. Zhou, A.
      X. Liu, T. Wang. Label inference attacks against vertical federated
      learning. In Proceedings of the 31st USENIX Security Symposium, USENIX
      Association, Boston, USA, 2022.
      
      Google Scholar 

 85.  Y. Liu, Z. H. Yi, T. J. Chen. Backdoor attacks and defenses in
      feature-partitioned collaborative learning. [Online], Available:
      https://arxiv.org/abs/2007.03608, 2020.

 86.  X. J. Luo, Y. C. Wu, X. K. Xiao, B. C. Ooi. Feature inference attack on
      model predictions in vertical federated learning. In Proceedings of the
      37th IEEE International Conference on Data Engineering, IEEE, Chania,
      Greece, pp. 181–192, 2021. DOI:
      https://doi.org/10.1109/ICDE51399.2021.00023.
      
      Google Scholar 

 87.  A. Pustozerova, R. Mayer. Information leaks in federated learning. In
      Proceedings of the Workshop on Decentralized IoT Systems and Security,
      DISS, San Diego, USA, 2020. DOI: https://doi.org/10.14722/diss.2020.23004.
      
      Google Scholar 

 88.  Y. Uchida, Y. Nagai, S. Sakazawa, S. Satoh. Embedding watermarks into deep
      neural networks. In Proceedings of ACM International Conference on
      Multimedia Retrieval, ACM, Bucharest, Romania, pp. 269–277, 2017. DOI:
      https://doi.org/10.1145/3078971.3078974.
      
      Google Scholar 

 89.  L. X. Fan, K. W. Ng, C. S. Chan, Q. Yang, DeepIP: Deep neural network
      intellectual property protection with passports. IEEE Transactions on
      Pattern Analysis and Machine Intelligence, to be published. DOI:
      https://doi.org/10.1109/TPAMI.2021.3088846.

 90.  Y. Adi, C. Baum, M. Cisse, B. Pinkas, J. Keshet. Turning your weakness
      into a strength: Watermarking deep neural networks by backdooring. In
      Proceedings of the 27th USENIX Conference on Security Symposium, ACM,
      Baltimore, USA, pp. 1615–1631, 2018. DOI:
      https://doi.org/10.5555/3277203.3277324.
      
      Google Scholar 

 91.  B. G. A. Tekgul, Y. X. Xia, S. Marchal, N. Asokan. WAFFLE: Watermarking in
      federated learning. In Proceedings of the 40th International Symposium on
      Reliable Distributed Systems, IEEE, Chicago, USA, pp. 310–320, 2021. DOI:
      https://doi.org/10.1109/SRDS53918.2021.00038.
      
      Google Scholar 

 92.  B. W. Li, L. X. Fan, H. L. Gu, J. Li, Q. Yang. FedIPR: Ownership
      verification for federated deep neural network models. [Online],
      Available: https://arxiv.org/abs/2109.13236, 2022.

 93.  E. M. El Mhamdi, R. Guerraoui, S. Rouault. The hidden vulnerability of
      distributed learning in Byzantium. In Proceedings of the 35th
      International Conference on Machine Learning, Stockholm, Sweden, pp.
      3521–3530, 2018.

 94.  Y. He, N. Yu, M. Keuper, M. Fritz. Beyond the spectrum: Detecting
      Deepfakes via re-synthesis. In Proceedings of the 30th International Joint
      Conference on Artificial Intelligence, Beijing, China, pp. 2534–2541,
      2021. DOI: https://doi.org/10.24963/ijcai.2021/349.

 95.  L. Chai, D. Bau, S. N. Lim, P. Isola. What makes fake images detectable?
      Understanding properties that generalize. In Proceedings of the 16th
      European Conference on Computer Vision, Springer, Glasgow, UK, pp.
      103–120, 2020. DOI: https://doi.org/10.1007/978-3-030-58574-7_7.
      
      Google Scholar 

 96.  Z. Z. Liu, X. J. Qi, P. H. S. Torr. Global texture enhancement for fake
      face detection in the wild. In Proceedings of IEEE/CVF Conference on
      Computer Vision and Pattern Recognition, IEEE, Seattle, USA, pp.
      8057–8066, 2020. DOI: https://doi.org/10.1109/CVPR42600.2020.00808.
      
      Google Scholar 

 97.  E. Nezhadarya, Z. J. Wang, R. K. Ward. Robust image watermarking based on
      multiscale gradient direction quantization. IEEE Transactions on
      Information Forensics and Security, vol. 6, no. 4, pp. 1200–1213, 2011.
      DOI: https://doi.org/10.1109/TIFS.2011.2163627.
      
      Article  Google Scholar 

 98.  H. Fang, W. M. Zhang, H. Zhou, H. Cui, N. H. Yu. Screen-shooting resilient
      watermarking. IEEE Transactions on Information Forensics and Security,
      vol. 14, no. 6, pp. 1403–1418, 2019. DOI:
      https://doi.org/10.1109/TIFS.2018.2878541.
      
      Article  Google Scholar 

 99.  H. Mareen, J. De Praeter, G. Van Wallendael, P. Lambert. A scalable
      architecture for uncompressed-domain watermarked videos. IEEE Transactions
      on Information Forensics and Security, vol. 14, no. 6, pp. 1432–1444,
      2019. DOI: https://doi.org/10.1109/TIFS.2018.2879301.
      
      Article  Google Scholar 

 100. M. Asikuzzaman, M. R. Pickering. An overview of digital video
      watermarking. IEEE Transactions on Circuits and Systems for Video
      Technology, vol. 28, no. 9, pp. 2131–2153, 2018. DOI:
      https://doi.org/10.1109/TCSVT.2017.2712162.
      
      Article  Google Scholar 

 101. M. J. Hwang, J. Lee, M. Lee, H. G. Kang. SVD-based adaptive QIM
      watermarking on stereo audio signals. IEEE Transactions on Multimedia,
      vol. 20, no. 1, pp. 45–54, 2018. DOI:
      https://doi.org/10.1109/TMM.2017.2721642.
      
      Article  Google Scholar 

 102. Y. Erfani, R. Pichevar, J. Rouat. Audio watermarking using spikegram and a
      two-dictionary approach. IEEE Transactions on Information Forensics and
      Security, vol. 12, no. 4, pp. 840–852, 2017. DOI:
      https://doi.org/10.1109/TIFS.2016.2636094.
      
      Article  Google Scholar 

 103. A. Nadeau, G. Sharma. An audio watermark designed for efficient and robust
      resynchronization after Analog playback. IEEE Transactions on Information
      Forensics and Security, vol. 12, no. 6, pp. 1393–1405, 2017. DOI:
      https://doi.org/10.1109/TIFS.2017.2661724.
      
      Article  Google Scholar 

 104. Z. X. Lin, F. Peng, M. Long. A low-distortion reversible watermarking for
      2D engineering graphics based on region nesting. IEEE Transactions on
      Information Forensics and Security, vol. 13, no. 9, pp. 2372–2382, 2018.
      DOI: https://doi.org/10.1109/TIFS.2018.2819122.
      
      Article  Google Scholar 

 105. J. Zhang, D. D. Chen, J. Liao, W. M. Zhang, G. Hua, N. H. Yu.
      Passport-aware normalization for deep model protection. In Proceedings of
      the 34th International Conference on Neural Information Processing
      Systems, ACM, Vancouver, Canada, Article number 1896, 2020. DOI:
      https://doi.org/10.5555/3495724.3497620.
      
      Google Scholar 

 106. H. Chen, B. D. Rohani, F. Koushanfar. DeepMarks: A digital fingerprinting
      framework for deep neural networks. [Online], Available:
      https://arxiv.org/abs/1804.03648, 2018.

 107. B. D. Rohani, H. L. Chen, F. Koushanfar. DeepSigns: A generic watermarking
      framework for IP protection of deep learning models. [Online], Available:
      https://arxiv.org/abs/1804.00750, 2018.

 108. E. Le Merrer, P. Pérez, G. Trédan. Adversarial frontier stitching for
      remote neural network watermarking. Neural Computing and Applications,
      vol. 32, no. 13, pp. 9233–9244, 2020. DOI:
      https://doi.org/10.1007/s00521-019-04434-z.
      
      Article  Google Scholar 

 109. D. S. Ong, C. S. Chan, K. W. Ng, L. X. Fan, Q. Yang. Protecting
      intellectual property of generative adversarial networks from ambiguity
      attacks. In Proceedings of the IEEE/CVF Conference on Computer Vision and
      Pattern Recognition, IEEE, Nashville, USA, pp. 3629–3638, 2021. DOI:
      https://doi.org/10.1109/CVPR46437.2021.00363.
      
      Google Scholar 

 110. J. H. Lim, C. S. Chan, K. W. Ng, L. X. Fan, Q. Yang. Protect, show, attend
      and tell: Empowering image captioning models with ownership protection.
      Pattern Recognition, vol. 122, pp. 108285. DOI:
      https://doi.org/10.1016/j.patcog.2021.108285.

 111. A. Radford, L. Metz, S. Chintala. Unsupervised representation learning
      with deep convolutional generative adversarial networks. In Proceedings of
      the 4th International Conference on Learning Representations, San Juan,
      Puerto Rico, 2016.

 112. C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, A.
      Aitken, A. Tejani, J. Totz, Z. H. Wang, W. Z. Shi. Photo-realistic single
      image super-resolution using a generative adversarial network. In
      Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,
      IEEE, Honolulu, USA, pp. 105–114. DOI:
      https://doi.org/10.1109/CVPR.2017.19.

 113. J. Y. Zhu, T. Park, P. Isola, A. A. Efros. Unpaired image-to-image
      translation using cycle-consistent adversarial networks. In Proceedings of
      IEEE International Conference on Computer Vision, IEEE, Venice, Italy, pp.
      2242–2251, 2017. DOI: https://doi.org/10.1109/ICCV.2017.244.
      
      Google Scholar 

 114. F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, T. Ristenpart. Stealing
      machine learning models via prediction APIs. In Proceedings of the 25th
      USENIX Conference on Security Symposium, ACM, Austin, USA, pp. 601–618,
      2016. DOI: https://doi.org/10.5555/3241094.3241142.
      
      Google Scholar 

 115. T. Orekondy, B. Schiele, M. Fritz. Knockoff nets: Stealing functionality
      of black-box models. In Proceedings of the IEEE/CVF Conference on Computer
      Vision and Pattern Recognition, IEEE, Long Beach, USA, pp. 4949–4958,
      2019. DOI: https://doi.org/10.1109/CVPR.2019.00509.
      
      Google Scholar 

 116. N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, A. Swami.
      Practical black-box attacks against machine learning. In Proceedings of
      ACM on Asia Conference on Computer and Communications Security, ACM, Abu
      Dhabi, UAE, pp. 506–519, 2017. DOI:
      https://doi.org/10.1145/3052973.3053009.
      
      Google Scholar 

 117. WeBank AI Department (2020-03-07). Federated AI Technology Enabler (FATE),
      2020-03-07. [Online], Available: https://github.com/FederatedAI/FATE.

 118. K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. In-german, V. Ivanov,
      C. Kiddon, J. Konečný, S. Mazzocchi, B. McMahan, T. Van Overveldt, D.
      Petrou, D. Ramage, J. Roselander. Towards federated learning at scale:
      System design. In Proceedings of the 2nd SysML Conference, Stanford, USA,
      2019.

 119. Google. Tensorflow Federated (TFF), [Online], Available:
      https://tensorflow.google.cn/federated.

 120. OpenMined. PySyft, [Online], Available: https://github.com/OpenMined.

 121. T. Ryffel, A. Trask, M. Dahl, B. Wagner, J. Mancuso, D. Rueckert, J.
      Passerat-Palmbach. A generic framework for privacy preserving deep
      learning. [Online], Available: https://arxiv.org/abs/1811.04017, 2018.

 122. G. A. Reina, A. Gruzdev, P. Foley, O. Perepelkina, M. Sharma, I. Davidyuk,
      I. Trushkin, M. Radionov, A. Mokrov, D. Agapov, J. Martin, B. Edwards, M.
      J. Sheller, S. Pati, P. N. Moorthy, S. H. Wang, P. Shah, S. Bakas. OpenFL:
      An open-source framework for federated learning. [Online], Available:
      https://arxiv.org/abs/2105.06413, 2021.

 123. Intel. OpenFL — An open-source framework for federated learning, [Online],
      Available: https://github.com/intel/openfl.

 124. H. Ludwig, N. Baracaldo, G. Thomas, Y. Zhou, A. Anwar, S. Rajamoni, Y.
      Ong, J. Radhakrishnan, A. Verma, M. Sinn, M. Purcell, A. Rawat, T. Minh,
      N. Holohan, S. Chakraborty, S. Whitherspoon, D. Steuer, L. Wynter, H.
      Hassan, S. Laguna, M. Yurochkin, M. Agarwal, E. Chuba, A. Abay. IBM
      federated learning: An enterprise framework white paper V0.1. [Online],
      Available: https://arxiv.org/abs/2007.10987, 2020.

 125. Nvidia. Nvidia Clara, [Online], Available:
      https://developer.nvidia.com/clara.

 126. C. Y. He, S. Z. Li, J. So, X. Zeng, M. Zhang, H. Y. Wang, X. Y. Wang, P.
      Vepakomma, A. Singh, H. Qiu, X. H. Zhu, J. Z. Wang, L. Shen, P. L. Zhao,
      Y. Kang, Y. Liu, R. Raskar, Q. Yang, M. Annavaram, S. Avestimehr. Fed-ML:
      A research library and benchmark for federated machine learning. [Online],
      Available: https://arxiv.org/abs/2007.13518, 2020.

 127. FedML-AI. FedML, [Online], Available: https://github.com/FedML-AI/FedML.

 128. Bytedance. Fedlearner, [Online], Available:
      https://github.com/bytedance/fedlearner.

 129. D. J. Beutel, T. Topal, A. Mathur, X. C. Qiu, J. Fernandez-Marques, Y.
      Gao, L. Sani, K. H. Li, T. Parcollet, P. P. B. de Gusmão, N. D. Lane.
      Flower: A friendly federated learning research framework. [Online],
      Available: https://arxiv.org/abs/2007.14390, 2020.

 130. PaddlePaddle. PaddleFL, [Online], Available:
      https://github.com/PaddlePaddle/PaddleFL.

 131. Tencent. Angel PowerFL, [Online], Available:
      https://cloud.tencent.com/solution/powerfl.

 132. S. Caldas, S. M. K. Duddu, P. Wu, T. Li, J. Konečný, H. B. McMahan, V.
      Smith, A. Talwalkar. LEAF: A benchmark for federated settings. [Online],
      Available: https://arxiv.org/abs/1812.01097, 2018.

 133. Sherpa.ai. Sherpa.ai, [Online], Available: https://sherpa.ai/.

 134. D. Romanini, A. J. Hall, P. Papadopoulos, T. Titcombe, A. Ismail, T.
      Cebere, R. Sandmann, R. Roehm, M. A. Hoeh. PyVertical: A vertical
      federated learning framework for multi-headed splitNN. [Online],
      Available: https://arxiv.org/abs/2104.00489, 2021.

Download references


ACKNOWLEDGEMENTS

The work was supported by National Key Research and Development Program of China
(No. 2018AAA 0101100).


AUTHOR INFORMATION


AUTHORS AND AFFILIATIONS

 1. WeBank, Shenzhen, 518057, China
    
    Qiang Yang, Anbu Huang & Lixin Fan

 2. Hong Kong University of Science and Technology, Hong Kong, 999077, China
    
    Qiang Yang

 3. University of Malaya, Kuala Lumpur, 50603, Malaysia
    
    Chee Seng Chan & Jian Han Lim

 4. University of Surrey, Guildford, GU2 7XH, UK
    
    Kam Woh Ng

 5. University of Aberystwyth, Wales, SY23 3DD, UK
    
    Ding Sheng Ong

 6. Shanghai Jiao Tong University, Shanghai, 200240, China
    
    Bowen Li

Authors
 1. Qiang Yang
    View author publications
    
    You can also search for this author in PubMed Google Scholar

 2. Anbu Huang
    View author publications
    
    You can also search for this author in PubMed Google Scholar

 3. Lixin Fan
    View author publications
    
    You can also search for this author in PubMed Google Scholar

 4. Chee Seng Chan
    View author publications
    
    You can also search for this author in PubMed Google Scholar

 5. Jian Han Lim
    View author publications
    
    You can also search for this author in PubMed Google Scholar

 6. Kam Woh Ng
    View author publications
    
    You can also search for this author in PubMed Google Scholar

 7. Ding Sheng Ong
    View author publications
    
    You can also search for this author in PubMed Google Scholar

 8. Bowen Li
    View author publications
    
    You can also search for this author in PubMed Google Scholar


CORRESPONDING AUTHOR

Correspondence to Qiang Yang.


ADDITIONAL INFORMATION

Qiang Yang is a Fellow of Canadian Academy of Engineering (CAE) and Royal
Society of Canada (RSC), Chief Artificial Intelligence Officer of WeBank and
Chair Professor of CSE Department, Hong Kong University of Science and
Technology, China. He is the Conference Chair of AAAI-21, President of Hong Kong
Society of Artificial Intelligence and Robotics (HKSAIR), the President of
Investment Technology League (ITL) and Open Islands Privacy-Computing
Open-source Community, and former President of IJCAI (2017–2019). He is a fellow
of AAAI, ACM, IEEE and AAAS. He is the founding EiC of two journals: IEEE
Transactions on Big Data and ACM Transactions on Intelligent Systems and
Technology. His latest books are Transfer Learning, Federated Learning,
Privacy-preserving Computing and Practicing Federated Learning.

His research interests include transfer learning and federated learning.

Anbu Huang is currently a senior research scientist at WeBank, his research
papers have been published in leading journals and conferences, such as AAAI and
ACM TIST. He served as a peer reviewer in ACM TIST, IEEE TMI, IJCAI, and other
top artificial intelligence journals and conferences. Previously, He was a
technical team leader at Tencent (2014–2018), and a senior engineer at
MicroStrategy (2012–2014). His latest books are Practicing Federated Learning
(2021) and Dive into Deep Learning (2017).

His research interests include deep learning, machine learning, and federated
learning.

Lixin Fan is the Chief Scientist of Artificial Intelligence at WeBank, China. He
is the author of more than 70 international journals and conference articles. He
has worked at Nokia Research Center and Xerox Research Center Europe. He has
participated in NIPS/NeurIPS, ICML, CVPR, ICCV, ECCV, IJCAI and other top
artificial intelligence conferences for a long time, served as area chair of
ICPR, and organized workshops in various technical fields. He is also the
inventor of more than one hundred patents filed in USA, Europe and China, and
the chairman of the IEEE P2894 Explainable Artificial Intelligence (XAI)
Standard Working Group.

His research interests include machine learning and deep learning, computer
vision and pattern recognition, image and video processing, 3D big data
processing, data visualization and rendering, augmented and virtual reality,
mobile computing and ubiquitous computing, and intelligent man-machine
interface.

Chee Seng Chan is currently a full Professor with Faculty of Computer Science
and Information Technology, University of Malaya, Malaysia. Dr. Chan was the
Founding Chair for the IEEE Computational Intelligence Society Malaysia Chapter,
the Organising Chair for the Asian Conference on Pattern Recognition (2015), the
General Chair for the IEEE Workshop on Multimedia Signal Processing (2019), and
IEEE Visual Communications and Image Processing (2013). He is a Chartered
Engineer registered under the Engineering Council, UK. He was the recipient of
several notable awards, such as Young Scientist Network-Academy of Sciences
Malaysia in 2015 and the Hitachi Research Fellowship in 2013.

His research interests include computer vision and machine learning with focus
on scene understanding. He is also interested in the interplay between language
and vision: generating sentential descriptions about complex scenes.

Jian Han Lim is currently a Ph.D. degree candidate in artificial intelligence
with Universiti Malaya, Malaysia.

His research interests include computer vision and deep learning with a focus on
image captioning.

Kam Woh Ng received the B.Sc. degree from Faculty of Computer Science and
Information Technology, University of Malaya, Malaysia, in 2019. He is currently
a Ph.D. degree candidate at University of Surrey, UK under the supervision of
Prof. Tao Xiang and Prof. Yi-Zhe Song. Prior to joining the University of
Surrey, he was an AI researcher from WeBank, China and a lab member of Center of
Image and Signal Processing (CISIP) in University of Malaya, Malaysia.

His research interests include deep learning, computer vision, representation
learning and their applications.

Ding Sheng Ong received the B.Sc. degree from Faculty of Computer Science and
Information Technology, University of Malaya, Malaysia, in 2020. He currently a
Ph.D. degree candidate at is Aberystwyth University, UK. Prior to joining the
Aberystwyth University, he was a lab member of Center of Image and Signal
Processing (CISiP) in Universiti Malaya, Malaysia.

His research interests include deep learning and computer vision.

Bowen Li received the B.Sc. degree in automation from Xi’an Jiaotong University,
China in 2019. He is currently a Ph.D. degree candidate at Department of
Computer Science and Engineering, Shanghai Jiao Tong University, China. He
worked as a research intern at WeBank AI Group, China in 2021.

His research interests include federated learning, data privacy, and machine
learning security.


RIGHTS AND PERMISSIONS

Open Access This article is licensed under a Creative Commons Attribution 4.0
International License, which permits use, sharing, adaptation, distribution and
reproduction in any medium or format, as long as you give appropriate credit to
the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made.

The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons
licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the
copyright holder.

To view a copy of this licence, visit
http://creativecommons.org/licenses/by/4.0/

Reprints and Permissions


ABOUT THIS ARTICLE


CITE THIS ARTICLE

Yang, Q., Huang, A., Fan, L. et al. Federated Learning with Privacy-preserving
and Model IP-right-protection. Mach. Intell. Res. 20, 19–37 (2023).
https://doi.org/10.1007/s11633-022-1343-2

Download citation

 * Received: 02 March 2020

 * Accepted: 02 June 2020

 * Published: 10 January 2023

 * Issue Date: February 2023

 * DOI: https://doi.org/10.1007/s11633-022-1343-2


SHARE THIS ARTICLE

Anyone you share the following link with will be able to read this content:

Get shareable link

Sorry, a shareable link is not currently available for this article.



Copy to clipboard

Provided by the Springer Nature SharedIt content-sharing initiative


KEYWORDS

 * Federated learning
 * privacy-preserving machine learning
 * security
 * decentralized learning
 * intellectual property protection


Download PDF


WORKING ON A MANUSCRIPT?

Avoid the common mistakes



 * Sections
 * References

 * Abstract
 * References
 * Acknowledgements
 * Author information
 * Additional information
 * Rights and permissions
 * About this article

Advertisement



 1.   A. Krizhevsky, I. Sutskever, G. E. Hinton. ImageNet classification with
      deep convolutional neural networks. In Proceedings of the 25th
      International Conference on Neural Information Processing Systems, ACM,
      Lake Tahoe, USA. pp. 1097–1105, 2012. DOI:
      https://doi.org/10.5555/2999134.2999257.
      
      Google Scholar 

 2.   K. M. He, X. Y. Zhang, S. Q. Ren, J. Sun. Deep residual learning for image
      recognition. In Proceedings of the IEEE Conference on Computer Vision and
      Pattern Recognition, IEEE, Las Vegas, USA, pp. 770–778, 2016. DOI:
      https://doi.org/10.1109/CVPR.2016.90.
      
      Google Scholar 

 3.   J. Devlin, M. W. Chang, K. Lee, K. Toutanova. BERT: Pre-training of deep
      bidirectional transformers for language understanding. In Proceedings of
      Conference of the North American Chapter of the Association for
      Computational Linguistics: Human Language Technologies, ACL, Minneapolis,
      USA, pp. 4171–4186, 2019. DOI: https://doi.org/10.18653/v1/N19-1423.
      
      Google Scholar 

 4.   T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A.
      Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss,
      G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C.
      Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J.
      Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, D. Amodei.
      Language models are few-shot learners. In Proceedings of the 34th
      International Conference on Neural Information Processing Systems, ACM,
      Vancouver, Canada, Article number 159, 2020. DOI:
      https://doi.org/10.5555/3495724.3495883.
      
      Google Scholar 

 5.   H. T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye, G.
      Anderson, G. Corrado, W. Chai, M. Ispir, R. Anil, Z. Haque, L. C. Hong, V.
      Jain, X. B. Liu, H. Shah. Wide & deep learning for recommender systems. In
      Proceedings of the 1st Workshop on Deep Learning for Recommender Systems,
      ACM, Boston, USA, pp. 7–10, 2016. DOI:
      https://doi.org/10.1145/2988450.2988454.
      
      Chapter  Google Scholar 

 6.   H. F. Guo, R. M. Tang, Y. M. Ye, Z. G. Li, X. Q. He. DeepFM: A
      factorization-machine based neural network for CTR prediction. In
      Proceedings of the 26th International Joint Conference on Artificial
      Intelligence, ACM, Melbourne, Australia, pp. 1725–1731, 2017. DOI:
      https://doi.org/10.5555/3172077.3172127.
      
      Google Scholar 

 7.   J. Deng, W. Dong, R. Socher, L. J. Li, K. Li, F. F. Li. ImageNet: A
      large-scale hierarchical image database. In Proceedings of IEEE Conference
      on Computer Vision and Pattern Recognition, IEEE, Miami, USA, pp. 248–255,
      2009. DOI: https://doi.org/10.1109/CVPR.2009.5206848.
      
      Google Scholar 

 8.   Protein Data Bank. A structural view of biology, [Online], Available:
      https://www.rcsb.org/.

 9.   J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K.
      Tunyasuvunakool, R. Bates, A. Žídek, A. Potapenko, A. Bridgland, C. Meyer,
      S. A. A. Kohl, A. J. Ballard, A. Cowie, B. Romera-Paredes, S. Nikolov, R.
      Jain, J. Adler, T. Back, S. Petersen, D. Reiman, E. Clancy, M. Zielinski,
      M. Steinegger, M. Pacholska, T. Berghammer, S. Bodenstein, D. Silver, O.
      Vinyals, A. W. Senior, K. Kavukcuoglu, P. Kohli, D. Hassabis. Highly
      accurate protein structure prediction with AlphaFold. Nature, vol. 596,
      no. 7873, pp. 583–589, 2021. DOI:
      https://doi.org/10.1038/s41586-021-03819-2.
      
      Article  Google Scholar 

 10.  A. W. Senior, R. Evans, J. Jumper, J. Kirkpatrick, L. Sifre, T. Green, C.
      L. Qin, A. Žídek, A. W. R. Nelson, A. Bridgland, H. Penedones, S.
      Petersen, K. Simonyan, S. Crossan, P. Kohli, D. T. Jones, D. Silver, K.
      Kavukcuoglu, D. Hassabis. Improved protein structure prediction using
      potentials from deep learning. Nature, vol. 577, no. 7792, pp. 706–710,
      2020. DOI: https://doi.org/10.1038/s41586-019-1923-7.
      
      Article  Google Scholar 

 11.  EU. General data protection regulation, [Online], Available:
      https://gdpr-info.eu/.

 12.  DLA Piper. Data protection laws of the world: Full handbook, [Online],
      Available: https://www.dlapiperdataprotection.com/.

 13.  The National People’s Congress. China data security law, [Online],
      Available:
      http://www.npc.gov.cn/npc/c30834/202106/7c9afl2f51334a73b56d7938f99a788a.shtml.
      (in Chinese)

 14.  B. McMahan, E. Moore, D. Ramage, S. Hampson, B. A. Arcas.
      Communication-efficient learning of deep networks from decentralized data.
      In Proceedings of the 20th International Conference on Artificial
      Intelligence and Statistics, Fort Lauderdale, USA, pp. 1273–1282, 2017.

 15.  L. G. Zhu, Z. J. Liu, S. Han. Deep leakage from gradients. In Proceedings
      of the Advances in Neural Information Processing Systems, Vancouver,
      Canada, pp. 14774–14784, 2019.

 16.  L. T. Phong, Y. Aono, T. Hayashi, L. H. Wang, S. Moriai.
      Privacy-preserving deep learning via additively homomorphic encryption.
      IEEE Transactions on Information Forensics and Security, vol. 13, no. 5,
      pp. 1333–1345, 2018. DOI: https://doi.org/10.1109/TIFS.2017.2787987.
      
      Article  Google Scholar 

 17.  P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N. Bhagoji,
      K. Bonawitz, Z. Charles, G. Cormode, R. Cummings, R. G. L. D’Ohveira, H.
      Eichner, S. El Rouayheb, D. Evans, J. Gardner, Z. Garrett, A. Gascón, B.
      Ghazi, P. B. Gibbons, M. Gruteser, Z. Harchaoui, C. Y. He, L. He, Z. Y.
      Huo, B. Hutchinson, J. Hsu, M. Jaggi, T. Javidi, G. Joshi, M. Khodak, J.
      Konecný, A. Korolova, F. Koushanfar, S. Koyejo, T. Lepoint, Y. Liu, P.
      Mittal, M. Mohri, R. Nock, A. Özgür, R. Pagh, H. Qi, D. Ramage, R. Raskar,
      M. Raykova, D. Song, W. K. Song, S. U. Stich, Z. T. Sun, A. T. Suresh, F.
      Tramèr, P. Vepakomma, J. Y. Wang, L. Xiong, Z. Xu, Q. Yang, F. X. Yu, H.
      Yu, S. Zhao. Advances and open problems in federated learning. Foundations
      and Trends® in Machine Learning, vol. 14, no. 1–2, pp. 1–210, 2021. DOI:
      https://doi.org/10.1561/2200000083.
      
      Article  Google Scholar 

 18.  Y. Z. Ma, X. J. Zhu, J. Hsu. Data poisoning against differentially-private
      learners: Attacks and defenses. In Proceedings of the 28th International
      Joint Conference on Artificial Intelligence, ACM, Macao, China, pp.
      4732–4738, 2019. DOI: https://doi.org/10.5555/3367471.3367701.
      
      Google Scholar 

 19.  Z. B. Ying, Y. Zhang, X. M. Liu. Privacy-preserving in defending against
      membership inference attacks. In Proceedings of the Workshop on
      Privacy-preserving Machine Learning in Practice, ACM, pp. 61–63, 2020.
      DOI: https://doi.org/10.1145/3411501.3419428.

 20.  Q. Yang, Y. Liu, Y. Cheng, Y. Kang, T. J. Chen, H. Yu. Federated Learning,
      San Francisco Bay Area, USA: Morgan & Claypool Publishers, pp. 207, 2019.
      
      Google Scholar 

 21.  Q. Yang, Y. Liu, T. J. Chen, Y. X. Tong. Federated machine learning:
      Concept and applications. ACM Transactions on Intelligent Systems and
      Technology, vol. 10, no. 2, Article number 12, 2019. DOI:
      https://doi.org/10.1145/3298981.

 22.  T. Li, A. K. Sahu, A. Talwalkar, V. Smith. Federated learning: Challenges,
      methods, and future directions. IEEE Signal Processing Magazine, vol. 37,
      no. 3, pp. 50–60, 2020. DOI: https://doi.org/10.1109/MSP.2020.2975749.
      
      Article  Google Scholar 

 23.  L. J. Lyu, H. Yu, Q. Yang. Threats to federated learning: A survey.
      [Online], Available: https://arxiv.org/abs/2003.02133, 2020.

 24.  N. Bouacida, P. Mohapatra. Vulnerabilities in federated learning. IEEE
      Access, vol. 9, pp. 63229–63249, 2021. DOI:
      https://doi.org/10.1109/ACCESS.2021.3075203.
      
      Article  Google Scholar 

 25.  V. Mothukuri, R. M. Parizi, S. Pouriyeh, Y. Huang, A. Dehghantanha, G.
      Srivastava. A survey on security and privacy of federated learning. Future
      Generation Computer Systems, vol. 115, pp. 619–640, 2021. DOI:
      https://doi.org/10.1016/j.future.2020.10.007.
      
      Article  Google Scholar 

 26.  P. R. Liu, X. R. Xu, W. Wang. Threats, attacks and defenses to federated
      learning: Issues, taxonomy and perspectives. Cybersecurity, vol. 5, no. 1,
      Article number 4, 2022. DOI: https://doi.org/10.1186/s42400-021-00105-6.

 27.  X. J. Zhang, H. L. Gu, L. X. Fan, K. Chen, Q. Yang. No free lunch theorem
      for security and utility in federated learning. [Online], Available:
      https://arxiv.org/abs/2203.05816, 2022.

 28.  O. Goldreich, S. Micali, A. Wigderson. How to play ANY mental game. In
      Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing,
      ACM, New York, USA, pp. 218–229, 1987. DOI:
      https://doi.org/10.1145/28395.28420.
      
      Google Scholar 

 29.  T. Rabin, M. Ben-Or. Verifiable secret sharing and multiparty protocols
      with honest majority. In Proceedings of the 21st Annual ACM Symposium on
      Theory of Computing, ACM, Seattle, USA, pp. 73–85, 1989. DOI:
      https://doi.org/10.1145/73007.73014.
      
      Google Scholar 

 30.  C. Dwork. Differential privacy: A survey of results. In Proceedings of the
      5th International Conference on Theory and Applications of Models of
      Computation, Springer, Xi’an, China, pp. 1–19, 2008. DOI:
      https://doi.org/10.1007/978-3-540-79228-4_1.
      
      Google Scholar 

 31.  C. Dwork, A. Roth. The algorithmic foundations of differential privacy.
      Foundations and Trends in Theoretical Computer Science, vol. 9, no. 3–4,
      pp. 211–407, 2014. DOI: https://doi.org/10.1561/0400000042.
      
      MathSciNet MATH  Google Scholar 

 32.  P. Paillier. Public-key cryptosystems based on composite degree
      residuosity classes. In Proceedings of the International Conference on
      Advances in Cryptology, Springer, Prague, Czech Republic, pp. 223–238,
      1999. DOI: https://doi.org/10.1007/3-540-48910-X_16.
      
      MATH  Google Scholar 

 33.  OMTP. 2009. Advanced trusted environment: OMTP TR1.
      http://www.omtp.org/OMTP_Advanced_Trusted_Environment_OMTP_TR1_v1_1.pdf

 34.  ARM. ARM TrustZone Technology, [Online], Available:
      https://developer.arm.com/documentation/100690/0200/ARM-TrustZone-technology?lang=en.

 35.  M. Sabt, M. Achemlal, A. Bouabdallah. Trusted execution environment: What
      it is, and what it is not. In Proceedings of IEEE Trustcom/BigDataSE/ISPA,
      IEEE, Helsinki, Finland, pp. 57–64, 2015. DOI:
      https://doi.org/10.1109/Trustcom.2015.357.
      
      Google Scholar 

 36.  B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić, P. Laskov, G.
      Giacinto, F. Roli. Evasion attacks against machine learning at test time.
      In Proceedings of the European Conference on Machine Learning and
      Knowledge Discovery in Databases, Springer, Prague, Czech Republic, pp.
      387–402, 2013. DOI: https://doi.org/10.1007/978-3-642-40994-325.
      
      Google Scholar 

 37.  C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J.
      Goodfellow, R. Fergus. Intriguing properties of neural networks. In
      Proceedings of the 2nd International Conference on Learning
      Representations, Banff, Canada, 2014.

 38.  A. Nguyen, J. Yosinski, J. Clune. Deep neural networks are easily fooled:
      High confidence predictions for unrecognizable images. In Proceedings of
      the IEEE Conference on Computer Vision and Pattern Recognition, IEEE,
      Boston, USA, pp. 427–436, 2015. DOI:
      https://doi.org/10.1109/CVPR.2015.7298640.
      
      Google Scholar 

 39.  I. J. Goodfellow, J. Shlens, C. Szegedy. Explaining and harnessing
      adversarial examples. In Proceedings of the 3rd International Conference
      on Learning Representations, San Diego, USA, 2015.

 40.  E. Bagdasaryan, A. Veit, Y. Q. Hua, D. Estrin, V. Shmatikov. How to
      backdoor federated learning. In Proceedings of the 23rd International
      Conference on Artificial Intelligence and Statistics, Palermo, Italy, pp.
      2938–2948, 2020.

 41.  H. J. Zhang, Z. J. Xie, R. Zarei, T. Wu, K. W. Chen. Adaptive client
      selection in resource constrained federated learning systems: A deep
      reinforcement learning approach. IEEE Access, vol. 9, pp. 98423–98432,
      2021. DOI: https://doi.org/10.1109/ACCESS.2021.3095915.
      
      Article  Google Scholar 

 42.  R. Albelaihi, X. Sun, W. D. Craft, L. K. Yu, C. G. Wang. Adaptive
      participant selection in heterogeneous federated learning. In Proceedings
      of IEEE Global Communications Conference, IEEE, Madrid, Spain, 2021. DOI:
      https://doi.org/10.1109/GLOBECOM46510.2021.9685077.
      
      Google Scholar 

 43.  F. Mo, A. S. Shamsabadi, K. Katevas, S. Demetriou, I. Leontiadis, A.
      Cavallaro, H. Haddadi. DarkneTZ: Towards model privacy at the edge using
      trusted execution environments. In Proceedings of the 18th International
      Conference on Mobile Systems, Applications, and Services, ACM, Toronto,
      Canada, pp. 161–174, 2020. DOI: https://doi.org/10.1145/3386901.3388946.
      
      Chapter  Google Scholar 

 44.  A. B. Huang, Y. Liu, T. J. Chen, Y. K. Zhou, Q. Sun, H. F. Chai, Q. Yang.
      StarFL: Hybrid federated learning architecture for smart urban computing.
      ACM Transactions on Intelligent Systems and Technology, vol. 12, no. 4,
      Article number 43, 2021. DOI: https://doi.org/10.1145/3467956.

 45.  B. Hitaj, G. Ateniese, F. Perez-Cruz. Deep models under the GAN:
      Information leakage from collaborative deep learning. In Proceedings of
      ACM SIGSAC Conference on Computer and Communications Security, ACM,
      Dallas, USA, pp. 603–618, 2017. DOI:
      https://doi.org/10.1145/3133956.3134012.
      
      Google Scholar 

 46.  B. Zhao, K. R. Mopuri, H. Bilen. iDLG: Improved deep leakage from
      gradients. [Online], Available: https://arxiv.org/abs/2001.02610, 2020.

 47.  J. Geiping, H. Bauermeister, H. Dröge, M. Moeller. Inverting gradients-how
      easy is it to break privacy in federated learning? In Proceedings of the
      34th International Conference on Neural Information Processing Systems,
      ACM, Vancouver, Canada, Article number 33, 2020. DOI:
      https://doi.org/10.5555/3495724.3497145.
      
      Google Scholar 

 48.  Y. J. Wang, J. R. Deng, D. Guo, C. H. Wang, X. R. Meng, H. Liu, C. W.
      Ding, S. Rajasekaran. SAPAG: A self-adaptive privacy attack from
      gradients. [Online], Available: https://arxiv.org/abs/2009.06228, 2020.

 49.  J. Y. Zhu, M. B. Blaschko. R-GAP: Recursive gradient attack on privacy. In
      Proceedings of the 9th International Conference on Learning
      Representations, 2021.

 50.  X. Jin, P. Y. Chen, C. Y. Hsu, C. M. Yu, T. Y. Chen. Catastrophic data
      leakage in vertical federated learning. In Proceedings of the 34th
      Conference on Neural Information Processing Systems, pp. 994–1006, 2021.

 51.  Z. H. Li, J. X. Zhang, L. Y. Liu, J. Liu. Auditing privacy defenses in
      federated learning via generative gradient leakage. [Online], Available:
      https://arxiv.org/abs/2203.15696, 2022.

 52.  S. Hardy, W. Henecka, H. Ivey-Law, R. Nock, G. Patrini, G. Smith, B.
      Thorne. Private federated learning on vertically partitioned data via
      entity resolution and additively homomorphic encryption. [Online],
      Available: https://arxiv.org/abs/1711.10677, 2017.

 53.  C. L. Zhang, S. Y. Li, J. Z. Xia, W. Wang, F. Yan, Y. Liu. BatchCrypt:
      Efficient homomorphic encryption for cross-silo federated learning. In
      Proceedings of USENIX Conference on USENIX Annual Technical Conference,
      Berkeley, USA, Article number. 33, 2020. DOI:
      https://doi.org/10.5555/3489146.3489179.

 54.  A. Huang, Y. Y. Chen, Y. Liu, T. J. Chen, Q. Yang. RPN: A residual pooling
      network for efficient federated learning. In Proceedings of the 24th
      European Conference on Artificial Intelligence, Santiago de Compostela,
      Spain, pp. 1223–1229, 2020.

 55.  H. B. McMahan, D. Ramage, K. Talwar, L. Zhang. Learning differentially
      private recurrent language models. In Proceedings of the 6th International
      Conference on Learning Representations, Vancouver, Canada, 2018.

 56.  K. Wei, J. Li, M. Ding, C. Ma, H. H. Yang, F. Farokhi, S. Jin, T. Q. S.
      Quek, H. V. Poor. Federated learning with differential privacy: Algorithms
      and performance analysis. IEEE Transactions on Information Forensics and
      Security, vol. 15, pp. 3454–3469, 2020. DOI:
      https://doi.org/10.1109/TIFS.2020.2988575.
      
      Article  Google Scholar 

 57.  C. L. Xie, K. L. Huang, P. Y. Chen, B. Li. DBA: Distributed backdoor
      attacks against federated learning. In Proceedings of the 8th
      International Conference on Learning Representations, Addis Ababa,
      Ethiopia, 2020.

 58.  A. B. Huang. Dynamic backdoor attacks against federated learning.
      [Online], Available: https://arxiv.org/abs/2011.07429, 2020.

 59.  J. Feng, Q. Z. Cai, Z. H. Zhou. Learning to confuse: Generating training
      time adversarial data with auto-encoder. In Proceedings of the 33rd
      International Conference on Neural Information Processing Systems, ACM,
      Vancouver, Canada, Article number 32, 2019. DOI:
      https://doi.org/10.5555/3454287.3455361.
      
      Google Scholar 

 60.  S. S. Hu, J. R. Lu, W. Wan, L. Y. Zhang. Challenges and approaches for
      mitigating byzantine attacks in federated learning. [Online], Available:
      https://arxiv.org/abs/2112.14468, 2021.

 61.  M. H. Fang, X. Y. Cao, J. Y. Jia, N. Z. Gong. Local model poisoning
      attacks to byzantine-robust federated learning. In Proceedings of the 29th
      USENIX Conference on Security Symposium, ACM, Berkeley, USA, Article
      number 92, 2020. DOI: https://doi.org/10.5555/3489212.3489304.
      
      Google Scholar 

 62.  D. Yin, Y. D. Chen, R. Kannan, P. Bartlett. Byzantine-robust distributed
      learning: Towards optimal statistical rates. In Proceedings of the 35th
      International Conference on Machine Learning, Stockholm, Sweden, pp.
      5650–5659, 2018.

 63.  P. Blanchard, E. M. El Mhamdi, R. Guerraoui, J. Stainer. Machine learning
      with adversaries: Byzantine tolerant gradient descent. In Proceedings of
      the 31st International Conference on Neural Information Processing
      Systems, ACM, Long Beach, USA, pp. 118–128, 2017. DOI:
      https://doi.org/10.5555/3294771.3294783.
      
      Google Scholar 

 64.  C. Xie, S. Koyejo, I. Gupta. Zeno: Distributed stochastic gradient descent
      with suspicion-based fault-tolerance. In Proceedings of the 36th
      International Conference on Machine Learning, Long Beach, USA, pp.
      6893–6901, 2019.

 65.  Y. Dong, X. J. Chen, L. Y. Shen, D. K. Wang. Privacy-preserving
      distributed machine learning based on secret sharing. In Proceedings of
      the 21st International Conference on Information and Communications
      Security, Springer, Beijing, China, pp. 684–702, 2019. DOI:
      https://doi.org/10.1007/978-3-030-41579-2_40.
      
      Google Scholar 

 66.  R. Kanagavelu, Z. X. Li, J. Samsudin, Y. C. Yang, F. Yang, R. S. M. Goh,
      M. Cheah, P. Wiwatphonthana, K. Akkarajitsakul, S. G. Wang. Two-phase
      multi-party computation enabled privacy-preserving federated learning. In
      Proceedings of the 20th IEEE/ACM International Symposium on Cluster, Cloud
      and Internet Computing, IEEE, Melbourne, Australia, pp. 410–419, 2020.
      DOI: https://doi.org/10.1109/CCGrid49817.2020.00-52.
      
      Google Scholar 

 67.  M. O. Rabin. How to exchange secrets with oblivious transfer, Technical
      Report Paper 2005/187, 2005.

 68.  A. C. C. Yao. How to generate and exchange secrets. In Proceedings of the
      27th Annual Symposium on Foundations of Computer Science, IEEE, Toronto,
      Canada, pp. 162–167, 1986. DOI: https://doi.org/10.1109/SFCS.1986.25.
      
      Google Scholar 

 69.  Intel®. Architecture instruction set extensions programming reference,
      Technical Report 319433-012, Intel Corporation, USA, 2012.

 70.  V. Costan, S. Devadas. Intel SGX explained, Technical Report Paper
      2016/086, 2016.

 71.  ArmDeveloper. Arm TrustZone Technology, [Online], Available:
      https://developer.arm.com/documentation/100690/0200/ARM-TrustZone-technology?lang=en,
      December 05, 2019.

 72.  Androidtrusty. Android Trusty TEE, [Online], Available:
      https://source.android.com/security/trusty, 2019.

 73.  AMD. AMD Secure Encrypted Virtualization, [Online], Available:
      https://developer.amd.com/sev/.

 74.  F. Mo, H. Haddadi, K. Katevas, E. Marin, D. Perino, N. Kourtellis. PPFL:
      Privacy-preserving federated learning with trusted execution environments.
      In Proceedings of the 19th Annual International Conference on Mobile
      Systems, Applications, and Services, ACM, pp. 94–108, 2021. DOI:
      https://doi.org/10.1145/3458864.3466628.

 75.  A. Kurakin, I. J. Goodfellow, S. Bengio. Adversarial examples in the
      physical world. In Proceedings of the 5th International Conference on
      Learning Representations, Toulon, France, 2017.

 76.  N. Carlini, D. Wagner. Adversarial examples are not easily detected:
      Bypassing ten detection methods. In Proceedings of the 10th ACM Workshop
      on Artificial Intelligence and Security, ACM, Dallas, USA, pp. 3–14, 2017.
      DOI: https://doi.org/10.1145/3128572.3140444.
      
      Chapter  Google Scholar 

 77.  P. Y. Chen, H. Zhang, Y. Sharma, J. F. Yi, C. J. Hsieh. ZOO: Zeroth order
      optimization based black-box attacks to deep neural networks without
      training substitute models. In Proceedings of the 10th ACM Workshop on
      Artificial Intelligence and Security, ACM, Dallas, USA, pp. 15–26, 2017.
      DOI: https://doi.org/10.1145/3128572.3140448.
      
      Chapter  Google Scholar 

 78.  A. Ilyas, L. Engstrom, A. Athalye, J. Lin. Black-box adversarial attacks
      with limited queries and information. In Proceedings of the 35th
      International Conference on Machine Learning, Stockholm, Sweden, pp.
      2137–2146, 2018.

 79.  D. Y. Meng, H. Chen. MagNet: A two-pronged defense against adversarial
      examples. In Proceedings of ACM SIGSAC Conference on Computer and
      Communications Security, ACM, Dallas, USA, pp. 135–147, 2017. DOI:
      https://doi.org/10.1145/3133956.3134057.
      
      Google Scholar 

 80.  S. M. Moosavi-Dezfooli, A. Fawzi, P. Frossard. Deep Fool: A simple and
      accurate method to fool deep neural networks. In Proceedings of the IEEE
      Conference on Computer Vision and Pattern Recognition, IEEE, Las Vegas,
      USA, pp. 2574–2582, 2016. DOI: https://doi.org/10.1109/CVPR.2016.282.
      
      Google Scholar 

 81.  N. Papernot, P. McDaniel, X. Wu, S. Jha, A. Swami. Distillation as a
      defense to adversarial perturbations against deep neural networks. In
      Proceedings of IEEE Symposium on Security and Privacy, IEEE, San Jose,
      USA, pp. 582–597, 2016. DOI: https://doi.org/10.1109/SP.2016.41.
      
      Google Scholar 

 82.  J. H. Metzen, T. Genewein, V. Fischer, B. Bischoff. On detecting
      adversarial perturbations. In Proceedings of the 5th International
      Conference on Learning Representations, Toulon, France, 2017.

 83.  K. Grosse, P. Manoharan, N. Papernot, M. Backes, P. McDaniel. On the
      (statistical) detection of adversarial examples. [Online], Available:
      https://arxiv.org/abs/1702.06280, 2017.

 84.  C. Fu, X. H. Zhang, S. L. Ji, J. Y. Chen, J. Z. Wu, S. Q. Guo, J. Zhou, A.
      X. Liu, T. Wang. Label inference attacks against vertical federated
      learning. In Proceedings of the 31st USENIX Security Symposium, USENIX
      Association, Boston, USA, 2022.
      
      Google Scholar 

 85.  Y. Liu, Z. H. Yi, T. J. Chen. Backdoor attacks and defenses in
      feature-partitioned collaborative learning. [Online], Available:
      https://arxiv.org/abs/2007.03608, 2020.

 86.  X. J. Luo, Y. C. Wu, X. K. Xiao, B. C. Ooi. Feature inference attack on
      model predictions in vertical federated learning. In Proceedings of the
      37th IEEE International Conference on Data Engineering, IEEE, Chania,
      Greece, pp. 181–192, 2021. DOI:
      https://doi.org/10.1109/ICDE51399.2021.00023.
      
      Google Scholar 

 87.  A. Pustozerova, R. Mayer. Information leaks in federated learning. In
      Proceedings of the Workshop on Decentralized IoT Systems and Security,
      DISS, San Diego, USA, 2020. DOI: https://doi.org/10.14722/diss.2020.23004.
      
      Google Scholar 

 88.  Y. Uchida, Y. Nagai, S. Sakazawa, S. Satoh. Embedding watermarks into deep
      neural networks. In Proceedings of ACM International Conference on
      Multimedia Retrieval, ACM, Bucharest, Romania, pp. 269–277, 2017. DOI:
      https://doi.org/10.1145/3078971.3078974.
      
      Google Scholar 

 89.  L. X. Fan, K. W. Ng, C. S. Chan, Q. Yang, DeepIP: Deep neural network
      intellectual property protection with passports. IEEE Transactions on
      Pattern Analysis and Machine Intelligence, to be published. DOI:
      https://doi.org/10.1109/TPAMI.2021.3088846.

 90.  Y. Adi, C. Baum, M. Cisse, B. Pinkas, J. Keshet. Turning your weakness
      into a strength: Watermarking deep neural networks by backdooring. In
      Proceedings of the 27th USENIX Conference on Security Symposium, ACM,
      Baltimore, USA, pp. 1615–1631, 2018. DOI:
      https://doi.org/10.5555/3277203.3277324.
      
      Google Scholar 

 91.  B. G. A. Tekgul, Y. X. Xia, S. Marchal, N. Asokan. WAFFLE: Watermarking in
      federated learning. In Proceedings of the 40th International Symposium on
      Reliable Distributed Systems, IEEE, Chicago, USA, pp. 310–320, 2021. DOI:
      https://doi.org/10.1109/SRDS53918.2021.00038.
      
      Google Scholar 

 92.  B. W. Li, L. X. Fan, H. L. Gu, J. Li, Q. Yang. FedIPR: Ownership
      verification for federated deep neural network models. [Online],
      Available: https://arxiv.org/abs/2109.13236, 2022.

 93.  E. M. El Mhamdi, R. Guerraoui, S. Rouault. The hidden vulnerability of
      distributed learning in Byzantium. In Proceedings of the 35th
      International Conference on Machine Learning, Stockholm, Sweden, pp.
      3521–3530, 2018.

 94.  Y. He, N. Yu, M. Keuper, M. Fritz. Beyond the spectrum: Detecting
      Deepfakes via re-synthesis. In Proceedings of the 30th International Joint
      Conference on Artificial Intelligence, Beijing, China, pp. 2534–2541,
      2021. DOI: https://doi.org/10.24963/ijcai.2021/349.

 95.  L. Chai, D. Bau, S. N. Lim, P. Isola. What makes fake images detectable?
      Understanding properties that generalize. In Proceedings of the 16th
      European Conference on Computer Vision, Springer, Glasgow, UK, pp.
      103–120, 2020. DOI: https://doi.org/10.1007/978-3-030-58574-7_7.
      
      Google Scholar 

 96.  Z. Z. Liu, X. J. Qi, P. H. S. Torr. Global texture enhancement for fake
      face detection in the wild. In Proceedings of IEEE/CVF Conference on
      Computer Vision and Pattern Recognition, IEEE, Seattle, USA, pp.
      8057–8066, 2020. DOI: https://doi.org/10.1109/CVPR42600.2020.00808.
      
      Google Scholar 

 97.  E. Nezhadarya, Z. J. Wang, R. K. Ward. Robust image watermarking based on
      multiscale gradient direction quantization. IEEE Transactions on
      Information Forensics and Security, vol. 6, no. 4, pp. 1200–1213, 2011.
      DOI: https://doi.org/10.1109/TIFS.2011.2163627.
      
      Article  Google Scholar 

 98.  H. Fang, W. M. Zhang, H. Zhou, H. Cui, N. H. Yu. Screen-shooting resilient
      watermarking. IEEE Transactions on Information Forensics and Security,
      vol. 14, no. 6, pp. 1403–1418, 2019. DOI:
      https://doi.org/10.1109/TIFS.2018.2878541.
      
      Article  Google Scholar 

 99.  H. Mareen, J. De Praeter, G. Van Wallendael, P. Lambert. A scalable
      architecture for uncompressed-domain watermarked videos. IEEE Transactions
      on Information Forensics and Security, vol. 14, no. 6, pp. 1432–1444,
      2019. DOI: https://doi.org/10.1109/TIFS.2018.2879301.
      
      Article  Google Scholar 

 100. M. Asikuzzaman, M. R. Pickering. An overview of digital video
      watermarking. IEEE Transactions on Circuits and Systems for Video
      Technology, vol. 28, no. 9, pp. 2131–2153, 2018. DOI:
      https://doi.org/10.1109/TCSVT.2017.2712162.
      
      Article  Google Scholar 

 101. M. J. Hwang, J. Lee, M. Lee, H. G. Kang. SVD-based adaptive QIM
      watermarking on stereo audio signals. IEEE Transactions on Multimedia,
      vol. 20, no. 1, pp. 45–54, 2018. DOI:
      https://doi.org/10.1109/TMM.2017.2721642.
      
      Article  Google Scholar 

 102. Y. Erfani, R. Pichevar, J. Rouat. Audio watermarking using spikegram and a
      two-dictionary approach. IEEE Transactions on Information Forensics and
      Security, vol. 12, no. 4, pp. 840–852, 2017. DOI:
      https://doi.org/10.1109/TIFS.2016.2636094.
      
      Article  Google Scholar 

 103. A. Nadeau, G. Sharma. An audio watermark designed for efficient and robust
      resynchronization after Analog playback. IEEE Transactions on Information
      Forensics and Security, vol. 12, no. 6, pp. 1393–1405, 2017. DOI:
      https://doi.org/10.1109/TIFS.2017.2661724.
      
      Article  Google Scholar 

 104. Z. X. Lin, F. Peng, M. Long. A low-distortion reversible watermarking for
      2D engineering graphics based on region nesting. IEEE Transactions on
      Information Forensics and Security, vol. 13, no. 9, pp. 2372–2382, 2018.
      DOI: https://doi.org/10.1109/TIFS.2018.2819122.
      
      Article  Google Scholar 

 105. J. Zhang, D. D. Chen, J. Liao, W. M. Zhang, G. Hua, N. H. Yu.
      Passport-aware normalization for deep model protection. In Proceedings of
      the 34th International Conference on Neural Information Processing
      Systems, ACM, Vancouver, Canada, Article number 1896, 2020. DOI:
      https://doi.org/10.5555/3495724.3497620.
      
      Google Scholar 

 106. H. Chen, B. D. Rohani, F. Koushanfar. DeepMarks: A digital fingerprinting
      framework for deep neural networks. [Online], Available:
      https://arxiv.org/abs/1804.03648, 2018.

 107. B. D. Rohani, H. L. Chen, F. Koushanfar. DeepSigns: A generic watermarking
      framework for IP protection of deep learning models. [Online], Available:
      https://arxiv.org/abs/1804.00750, 2018.

 108. E. Le Merrer, P. Pérez, G. Trédan. Adversarial frontier stitching for
      remote neural network watermarking. Neural Computing and Applications,
      vol. 32, no. 13, pp. 9233–9244, 2020. DOI:
      https://doi.org/10.1007/s00521-019-04434-z.
      
      Article  Google Scholar 

 109. D. S. Ong, C. S. Chan, K. W. Ng, L. X. Fan, Q. Yang. Protecting
      intellectual property of generative adversarial networks from ambiguity
      attacks. In Proceedings of the IEEE/CVF Conference on Computer Vision and
      Pattern Recognition, IEEE, Nashville, USA, pp. 3629–3638, 2021. DOI:
      https://doi.org/10.1109/CVPR46437.2021.00363.
      
      Google Scholar 

 110. J. H. Lim, C. S. Chan, K. W. Ng, L. X. Fan, Q. Yang. Protect, show, attend
      and tell: Empowering image captioning models with ownership protection.
      Pattern Recognition, vol. 122, pp. 108285. DOI:
      https://doi.org/10.1016/j.patcog.2021.108285.

 111. A. Radford, L. Metz, S. Chintala. Unsupervised representation learning
      with deep convolutional generative adversarial networks. In Proceedings of
      the 4th International Conference on Learning Representations, San Juan,
      Puerto Rico, 2016.

 112. C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, A.
      Aitken, A. Tejani, J. Totz, Z. H. Wang, W. Z. Shi. Photo-realistic single
      image super-resolution using a generative adversarial network. In
      Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,
      IEEE, Honolulu, USA, pp. 105–114. DOI:
      https://doi.org/10.1109/CVPR.2017.19.

 113. J. Y. Zhu, T. Park, P. Isola, A. A. Efros. Unpaired image-to-image
      translation using cycle-consistent adversarial networks. In Proceedings of
      IEEE International Conference on Computer Vision, IEEE, Venice, Italy, pp.
      2242–2251, 2017. DOI: https://doi.org/10.1109/ICCV.2017.244.
      
      Google Scholar 

 114. F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, T. Ristenpart. Stealing
      machine learning models via prediction APIs. In Proceedings of the 25th
      USENIX Conference on Security Symposium, ACM, Austin, USA, pp. 601–618,
      2016. DOI: https://doi.org/10.5555/3241094.3241142.
      
      Google Scholar 

 115. T. Orekondy, B. Schiele, M. Fritz. Knockoff nets: Stealing functionality
      of black-box models. In Proceedings of the IEEE/CVF Conference on Computer
      Vision and Pattern Recognition, IEEE, Long Beach, USA, pp. 4949–4958,
      2019. DOI: https://doi.org/10.1109/CVPR.2019.00509.
      
      Google Scholar 

 116. N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, A. Swami.
      Practical black-box attacks against machine learning. In Proceedings of
      ACM on Asia Conference on Computer and Communications Security, ACM, Abu
      Dhabi, UAE, pp. 506–519, 2017. DOI:
      https://doi.org/10.1145/3052973.3053009.
      
      Google Scholar 

 117. WeBank AI Department (2020-03-07). Federated AI Technology Enabler (FATE),
      2020-03-07. [Online], Available: https://github.com/FederatedAI/FATE.

 118. K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. In-german, V. Ivanov,
      C. Kiddon, J. Konečný, S. Mazzocchi, B. McMahan, T. Van Overveldt, D.
      Petrou, D. Ramage, J. Roselander. Towards federated learning at scale:
      System design. In Proceedings of the 2nd SysML Conference, Stanford, USA,
      2019.

 119. Google. Tensorflow Federated (TFF), [Online], Available:
      https://tensorflow.google.cn/federated.

 120. OpenMined. PySyft, [Online], Available: https://github.com/OpenMined.

 121. T. Ryffel, A. Trask, M. Dahl, B. Wagner, J. Mancuso, D. Rueckert, J.
      Passerat-Palmbach. A generic framework for privacy preserving deep
      learning. [Online], Available: https://arxiv.org/abs/1811.04017, 2018.

 122. G. A. Reina, A. Gruzdev, P. Foley, O. Perepelkina, M. Sharma, I. Davidyuk,
      I. Trushkin, M. Radionov, A. Mokrov, D. Agapov, J. Martin, B. Edwards, M.
      J. Sheller, S. Pati, P. N. Moorthy, S. H. Wang, P. Shah, S. Bakas. OpenFL:
      An open-source framework for federated learning. [Online], Available:
      https://arxiv.org/abs/2105.06413, 2021.

 123. Intel. OpenFL — An open-source framework for federated learning, [Online],
      Available: https://github.com/intel/openfl.

 124. H. Ludwig, N. Baracaldo, G. Thomas, Y. Zhou, A. Anwar, S. Rajamoni, Y.
      Ong, J. Radhakrishnan, A. Verma, M. Sinn, M. Purcell, A. Rawat, T. Minh,
      N. Holohan, S. Chakraborty, S. Whitherspoon, D. Steuer, L. Wynter, H.
      Hassan, S. Laguna, M. Yurochkin, M. Agarwal, E. Chuba, A. Abay. IBM
      federated learning: An enterprise framework white paper V0.1. [Online],
      Available: https://arxiv.org/abs/2007.10987, 2020.

 125. Nvidia. Nvidia Clara, [Online], Available:
      https://developer.nvidia.com/clara.

 126. C. Y. He, S. Z. Li, J. So, X. Zeng, M. Zhang, H. Y. Wang, X. Y. Wang, P.
      Vepakomma, A. Singh, H. Qiu, X. H. Zhu, J. Z. Wang, L. Shen, P. L. Zhao,
      Y. Kang, Y. Liu, R. Raskar, Q. Yang, M. Annavaram, S. Avestimehr. Fed-ML:
      A research library and benchmark for federated machine learning. [Online],
      Available: https://arxiv.org/abs/2007.13518, 2020.

 127. FedML-AI. FedML, [Online], Available: https://github.com/FedML-AI/FedML.

 128. Bytedance. Fedlearner, [Online], Available:
      https://github.com/bytedance/fedlearner.

 129. D. J. Beutel, T. Topal, A. Mathur, X. C. Qiu, J. Fernandez-Marques, Y.
      Gao, L. Sani, K. H. Li, T. Parcollet, P. P. B. de Gusmão, N. D. Lane.
      Flower: A friendly federated learning research framework. [Online],
      Available: https://arxiv.org/abs/2007.14390, 2020.

 130. PaddlePaddle. PaddleFL, [Online], Available:
      https://github.com/PaddlePaddle/PaddleFL.

 131. Tencent. Angel PowerFL, [Online], Available:
      https://cloud.tencent.com/solution/powerfl.

 132. S. Caldas, S. M. K. Duddu, P. Wu, T. Li, J. Konečný, H. B. McMahan, V.
      Smith, A. Talwalkar. LEAF: A benchmark for federated settings. [Online],
      Available: https://arxiv.org/abs/1812.01097, 2018.

 133. Sherpa.ai. Sherpa.ai, [Online], Available: https://sherpa.ai/.

 134. D. Romanini, A. J. Hall, P. Papadopoulos, T. Titcombe, A. Ismail, T.
      Cebere, R. Sandmann, R. Roehm, M. A. Hoeh. PyVertical: A vertical
      federated learning framework for multi-headed splitNN. [Online],
      Available: https://arxiv.org/abs/2104.00489, 2021.

Over 10 million scientific documents at your fingertips

Switch Edition
 * Academic Edition
 * Corporate Edition

 * Home
 * Impressum
 * Legal information
 * Privacy statement
 * California Privacy Statement
 * How we use cookies
 * Manage cookies/Do not sell my data
 * Accessibility
 * FAQ
 * Contact us
 * Affiliate program

Not logged in - 80.255.7.102

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.