link.springer.com Open in urlscan Pro
151.101.192.95  Public Scan

Submitted URL: https://doi.org/10.1007/s00894-022-05283-9
Effective URL: https://link.springer.com/article/10.1007/s00894-022-05283-9
Submission: On December 26 via api from HK — Scanned from CA

Form analysis 1 forms found in the DOM

GET //link.springer.com/search

<form method="GET" action="//link.springer.com/search" data-test="header-search" data-track="search" data-track-context="search from header" data-track-action="submit search form" data-track-category="unified header" data-track-label="form">
  <label for="eds-c-header-search" class="eds-c-header__search-label">Search by keyword or author</label>
  <div class="eds-c-header__search-container">
    <input id="eds-c-header-search" class="eds-c-header__search-input" autocomplete="off" name="query" type="search" value="" required="">
    <button class="eds-c-header__search-button" type="submit">
      <svg class="eds-c-header__icon" aria-hidden="true" focusable="false">
        <use xlink:href="#icon-eds-i-search-medium"></use>
      </svg>
      <span class="u-visually-hidden">Search</span>
    </button>
  </div>
</form>

Text Content

YOUR PRIVACY, YOUR CHOICE

We use essential cookies to make sure the site can function. We also use
optional cookies for advertising, personalisation of content, usage analysis,
and social media.

By accepting optional cookies, you consent to the processing of your personal
data - including transfers to third parties. Some third parties are outside of
the European Economic Area, with varying standards of data protection.

See our privacy policy for more information on the use of your personal data.

Manage preferences for further information and to change your choices.

Accept all cookies

Skip to main content

Log in
Menu
Find a journal Publish with us Track your research
Search
Cart


SEARCH

Search by keyword or author
Search


NAVIGATION

 * Find a journal
 * Publish with us
 * Track your research

 1. Home
 2. Journal of Molecular Modeling
 3. Article


HIGH ELECTRON MOBILITY DUE TO EXTRA Π-CONJUGATION IN THE END-CAPPED UNITS OF
NON-FULLERENE ACCEPTOR MOLECULES: A DFT/TD-DFT-BASED PREDICTION

 * Original Paper
 * Published: 26 August 2022

 * Volume 28, article number 278, (2022)
 * Cite this article


Journal of Molecular Modeling Aims and scope Submit manuscript
 * Malik Muhammad Asif Iqbal1,
 * Muhammad Yasir Mehboob  ORCID: orcid.org/0000-0002-7143-11291,
 * Talha Hassan1,
 * Muhammad Shahzeb Khan2 &
 * …
 * Muhammad Arshad3 

Show authors

 * 473 Accesses

 * 13 Citations

 * Explore all metrics




ABSTRACT

A combination of high open-circuit voltage (Voc) and short-circuit current
density (Jsc) typically creates effective organic solar cells (OSCs). To enhance
the open-circuit voltage, we have designed three new fullerene-free acceptor
molecules with elongated π-conjugation in the end-capped units. Y-series-based
newly designed molecules (CPSS-4F, CPSS-4Cl, CPSS-4CN) exhibited a narrow energy
bandgap with high electron mobility. Red shift in the absorption spectrum with
high intensities is also noted for designed molecules. Low binding and
excitation energies of designed molecules favor easy excitation of exciton in
the excited state. Further, CPSS-4F, CPSS-4Cl, and CPSS-4CN exhibited better
open-circuit voltage with favorable molecular orbitals contributions. Transition
density analysis (TDM) was also performed to locate the total transitions in the
designed molecules. Outcomes of all analyses suggested that designed molecules
are effective contributors to the active layer of organic solar cells.


GRAPHICAL ABSTRACT



This is a preview of subscription content, log in via an institution to check
access.


ACCESS THIS ARTICLE

Log in via an institution

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so
we can address the problem.

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6




SIMILAR CONTENT BEING VIEWED BY OTHERS


QUANTUM CHEMICAL DESIGNING OF NOVEL FULLERENE-FREE ACCEPTOR MOLECULES FOR
ORGANIC SOLAR CELL APPLICATIONS

Article 24 February 2022


MOLECULAR DESIGN OF D–Π–A–Π–D SMALL MOLECULE DONOR MATERIALS WITH NARROW ENERGY
GAP FOR ORGANIC SOLAR CELLS APPLICATIONS

Article 05 August 2023


AN EFFICIENT END-CAPPED ENGINEERING OF PYRROLE-BASED ACCEPTOR MOLECULES FOR
HIGH-PERFORMANCE ORGANIC SOLAR CELLS

Article 16 December 2023


DATA AVAILABILITY

The data of this finding is available on request and requests should be made to
corresponding author. In addition, optimized Cartesian coordinates of all
studied systems are present in supporting information file.


REFERENCES

 1.  Cheng P, Li G, Zhan X, Yang Y (2018) Next-generation organic photovoltaics
     based on non-fullerene acceptors. Nat Photonics 12:131–142
     
     Article  CAS  Google Scholar 

 2.  Hou J, Inganäs O, Friend RH, Gao F (2018) Organic solar cells based on
     non-fullerene acceptors. Nat Mater 17:119–128
     
     Article  CAS  PubMed  Google Scholar 

 3.  Yuan J, Huang T, Cheng P, Zou Y, Zhang H, Yang JL, Chang SY, Zhang Z, Huang
     W, Wang R (2019) Enabling low-voltage losses and high photocurrent in
     fullerene-free organic photovoltaics. Nat Commun 10:1–8
     
     CAS  Google Scholar 

 4.  Cheng P, Zhang M, Lau TK, Wu Y, Jia B, Wang J, Yan C, Qin M, Lu X, Zhan X
     (2017) Realizing small energy loss of 0.55 ev, high open‐circuit voltage >
     1 V and high efficiency > 10% in fullerene‐free polymer solar cells via
     energy driver. Adv Mater 29:1605216
     
     Article  CAS  Google Scholar 

 5.  Zhao W, Qian D, Zhang S, Li S, Inganäs O, Gao F, Hou J (2016)
     Fullerene-free polymer solar cells with over 11% efficiency and excellent
     thermal stability. Adv Mater 28:4734–4739
     
     Article  CAS  PubMed  Google Scholar 

 6.  Zhang S, Ye L, Hou J (2016) Breaking the 10% Efficiency barrier in organic
     photovoltaics: morphology and device optimization of well-known PBDTTT
     polymers. Adv Energy Mater 6:1502529
     
     Article  CAS  Google Scholar 

 7.  Liu J, Chen S, Qian D, Gautam B, Yang G, Zhao J, Bergqvist J, Zhang F, Ma
     W, Ade H (2016) Fast charge separation in a non-fullerene organic solar
     cell with a small driving force, Nature. Energy 1:1–7
     
     CAS  Google Scholar 

 8.  Ma X, Wang J, Gao J, Hu Z, Xu C, Zhang X, Zhang F (2020) Achieving 17.4%
     efficiency of ternary organic photovoltaics with two well-compatible
     nonfullerene acceptors for minimizing energy loss. Adv Energy Mater
     10:2001404
     
     Article  CAS  Google Scholar 

 9.  Du X, Yuan Y, Zhou L, Lin H, Zheng C, Luo J, Chen Z, Tao S, Liao LS (2020)
     Delayed fluorescence emitter enables near 17% efficiency ternary organic
     solar cells with enhanced storage stability and reduced recombination
     energy loss. Adv Func Mater 30:1909837
     
     Article  CAS  Google Scholar 

 10. Cui Y, Yao H, Zhang J, Xian K, Zhang T, Hong L, Wang Y, Xu Y, Ma K, An C
     (2020) Single-junction organic photovoltaic cells with approaching 18%
     efficiency. Adv Mater 32:1908205
     
     Article  CAS  Google Scholar 

 11. Ye L, Weng K, Xu J, Du X, Chandrabose S, Chen K, Zhou J, Han G, Tan S, Xie
     Z (2020) Unraveling the influence of non-fullerene acceptor molecular
     packing on photovoltaic performance of organic solar cells. Nat Commun
     11:1–9
     
     Article  CAS  Google Scholar 

 12. Zhang Z, Yu J, Yin X, Hu Z, Jiang Y, Sun J, Zhou J, Zhang F, Russell TP,
     Liu F (2018) Conformation locking on fused-ring electron acceptor for
     high-performance nonfullerene organic solar cells. Adv Func Mater
     28:1705095
     
     Article  CAS  Google Scholar 

 13. Liu Z, Krückemeier L, Krogmeier B, Klingebiel B, Márquez JA, Levcenko S, Öz
     S, Mathur S, Rau U, Unold T (2018) Open-circuit voltages exceeding 1.26 V
     in planar methylammonium lead iodide perovskite solar cells. ACS energy
     lett 4:110–117
     
     Article  CAS  Google Scholar 

 14. Yoshikawa K, Kawasaki H, Yoshida W, Irie T, Konishi K, Nakano K, Uto T,
     Adachi D, Kanematsu M, Uzu H (2017) Silicon heterojunction solar cell with
     interdigitated back contacts for a photoconversion efficiency over 26%. Nat
     Energy 2:1–8
     
     Article  CAS  Google Scholar 

 15. Yao J, Kirchartz T, Vezie MS, Faist MA, Gong W, He Z, Wu H, Troughton J,
     Watson T, Bryant D (2015) Quantifying losses in open-circuit voltage in
     solution-processable solar cells. Phys Rev Appl 4:014020
     
     Article  CAS  Google Scholar 

 16. Hong L, Yao H, Wu Z, Cui Y, Zhang T, Xu Y, Yu R, Liao Q, Gao B, Xian K
     (2019) Eco-compatible solvent-processed organic photovoltaic cells with
     over 16% efficiency. Adv Mater 31:1903441
     
     Article  CAS  Google Scholar 

 17. Liu S, Yuan J, Deng W, Luo M, Xie Y, Liang Q, Zou Y, He Z, Wu H, Cao Y
     (2020) High-efficiency organic solar cells with low non-radiative
     recombination loss and low energetic disorder. Nat Photonics 14:300–305
     
     Article  CAS  Google Scholar 

 18. Wu H, Bian Q, Zhao B, Zhao H, Wang L, Wang W, Cong Z, Liu J, Ma W, Gao C
     (2020) Effects of the isomerized thiophene-fused ending groups on the
     performances of twisted non-fullerene acceptor-based polymer solar cells.
     ACS Appl Mater Interfaces 12:23904–23913
     
     Article  CAS  PubMed  Google Scholar 

 19. Cong Z, Zhao B, Chen Z, Wang W, Wu H, Liu J, Wang J, Wang L, Ma W, Gao C
     (2019) Efficient polymer solar cells having high open-circuit voltage and
     low energy loss enabled by a main-chain twisted small molecular acceptor.
     ACS Appl Mater Interfaces 11:16795–16803
     
     Article  CAS  PubMed  Google Scholar 

 20. Li S, Ye L, Zhao W, Zhang S, Mukherjee S, Ade H, Hou J (2016) Energy-level
     modulation of small-molecule electron acceptors to achieve over 12%
     efficiency in polymer solar cells. Adv Mater 28:9423–9429
     
     Article  CAS  PubMed  Google Scholar 

 21. Liu Y, Zhang Z, Feng S, Li M, Wu L, Hou R, Xu X, Chen X, Bo Z (2017)
     Exploiting noncovalently conformational locking as a design strategy for
     high performance fused-ring electron acceptor used in polymer solar cells.
     J Am Chem Soc 139:3356–3359
     
     Article  CAS  PubMed  Google Scholar 

 22. Yao Z, Liao X, Gao K, Lin F, Xu X, Shi X, Zuo L, Liu F, Chen Y, Jen AK-Y
     (2018) Dithienopicenocarbazole-based acceptors for efficient organic solar
     cells with optoelectronic response over 1000 nm and an extremely low energy
     loss. J Am Chem Soc 140:2054–2057
     
     Article  CAS  PubMed  Google Scholar 

 23. Wang Y, Qian D, Cui Y, Zhang H, Hou J, Vandewal K, Kirchartz T, Gao F
     (2018) Optical gaps of organic solar cells as a reference for comparing
     voltage losses. Adv Energy Mater 8:1801352
     
     Article  CAS  Google Scholar 

 24. Wang R, Yuan J, Wang R, Han G, Huang T, Huang W, Xue J, Wang HC, Zhang C,
     Zhu C (2019) Rational tuning of molecular interaction and energy level
     alignment enables high-performance organic photovoltaics. Adv Mater
     31:1904215
     
     Article  CAS  Google Scholar 

 25. Liang N, Jiang W, Hou J, Wang Z (2017) New developments in non-fullerene
     small molecule acceptors for polymer solar cells, Materials Chemistry.
     Frontiers 1:1291–1303
     
     CAS  Google Scholar 

 26. Yuan J, Zhang Y, Zhou L, Zhang G, Yip HL, Lau T-K, Lu X, Zhu C, Peng H,
     Johnson PA (2019) Single-junction organic solar cell with over 15%
     efficiency using fused-ring acceptor with electron-deficient core. Joule
     3:1140–1151
     
     Article  CAS  Google Scholar 

 27. Yuan J, Zhang Y, Zhou L, Zhang C, Lau TK, Zhang G, Lu X, Yip HL, So SK,
     Beaupré S (2019) Fused benzothiadiazole: a building block for n-type
     organic acceptor to achieve high-performance organic solar cells. Adv Mater
     31:1807577
     
     Article  CAS  Google Scholar 

 28. Qin R, Wang D, Zhou G, Yu Z-P, Li S, Li Y, Liu Z-X, Zhu H, Shi M, Lu X
     (2019) Tuning terminal aromatics of electron acceptors to achieve
     high-efficiency organic solar cells. J Mater Chem A 7:27632–27639
     
     Article  CAS  Google Scholar 

 29. Zhou Z, Liu W, Zhou G, Zhang M, Qian D, Zhang J, Chen S, Xu S, Yang C, Gao
     F (2020) Subtle molecular tailoring induces significant morphology
     optimization enabling over 16% efficiency organic solar cells with
     efficient charge generation. Adv Mater 32:1906324
     
     Article  CAS  Google Scholar 

 30. Zhu C, Yuan J, Cai F, Meng L, Zhang H, Chen H, Li J, Qiu B, Peng H, Chen S
     (2020) Tuning the electron-deficient core of a non-fullerene acceptor to
     achieve over 17% efficiency in a single-junction organic solar cell. Energy
     Environ Sci 13:2459–2466
     
     Article  CAS  Google Scholar 

 31. Cui Y, Yao H, Zhang J, Zhang T, Wang Y, Hong L, Xian K, Xu B, Zhang S, Peng
     J (2019) Over 16% efficiency organic photovoltaic cells enabled by a
     chlorinated acceptor with increased open-circuit voltages. Nat Commun
     10:1–8
     
     Article  CAS  Google Scholar 

 32. Zhang M, Guo X, Ma W, Ade H, Hou J (2015) A large-bandgap conjugated
     polymer for versatile photovoltaic applications with high performance. Adv
     Mater 27:4655–4660
     
     Article  CAS  PubMed  Google Scholar 

 33. Ogliaro F, Bearpark M, Heyd J, Brothers E, Kudin K, Staroverov V, Kobayashi
     R, Normand J, Raghavachari K, Rendell A (2009) Gaussian 09, revision a. 02.
     gaussian, Inc.: Wallingford, CT

 34. Folorunso O, Hamam Y, Sadiku R, Ray SS, Adekoya GJ (2021) Investigation of
     graphene loaded polypyrrole for lithium-ion battery. Mater Today: Proc
     38:635–638
     
     CAS  Google Scholar 

 35. Adamo C, Barone V (1998) Exchange functional with improved long-range
     behavior and adiabatic connection methods without adjustable parameters:
     the m PW and m PW1PW models. J Chem Phys 108:664–675
     
     Article  CAS  Google Scholar 

 36. Finley JP (2004) Using the local density approximation and the LYP, BLYP
     and B3LYP functional within reference-state one-particle density-matrix
     theory. Mol Phys 102:627–639
     
     Article  CAS  Google Scholar 

 37. Beerepoot MT, Friese DH, List NH, Kongsted J, Ruud K (2015) Benchmarking
     two-photon absorption cross sections: performance of CC2 and CAM-B3LYP.
     Phys Chem Chem Phys 17:19306–19314
     
     Article  CAS  PubMed  Google Scholar 

 38. Zhao Y, Truhlar DG (2008) The M06 suite of density functional for main
     group thermochemistry, thermochemical kinetics, noncovalent interactions,
     excited states, and transition elements: two new functional and systematic
     testing of four M06-class functional and 12 other functional. Theoret Chem
     Acc 120:215–241
     
     Article  CAS  Google Scholar 

 39. Welsh TA, Laventure A, Welch GC (2018) Direct (Hetero) arylation for the
     synthesis of molecular materials: coupling Thieno [3, 4-c] pyrrole-4,
     6-dione with perylene diimide to yield novel non-fullerene acceptors for
     organic solar cells. Molecules 23:931
     
     Article  PubMed Central  CAS  Google Scholar 

 40. Ans M, Iqbal J, Eliasson B, Ayub K (2019) Opto-electronic properties of
     non-fullerene fused-undecacyclic electron acceptors for organic solar
     cells. Comput Mater Sci 159:150–159
     
     Article  CAS  Google Scholar 

 41. Tang S, Zhang J (2012) Design of donors with broad absorption regions and
     suitable frontier molecular orbitals to match typical acceptors via
     substitution on oligo (thienylenevinylene) toward solar cells. J Comput
     Chem 33:1353–1363
     
     Article  CAS  PubMed  Google Scholar 

 42. O’Boyle NM, Campbell CM, Hutchison GR (2011) Computational design and
     selection of optimal organic photovoltaic materials. J Phys Chem C
     115:16200–16210
     
     Article  CAS  Google Scholar 

 43. Wu L-N, Li M-Y, Sui M-Y, Huang J-C, Sun G-Y, Cheng L (2021) Achieve
     panchromatic absorption for all-small-molecule organic solar cells based on
     mono-porphyrin molecules by π-bridge modification. Mater Today Energy
     20:100658
     
     Article  CAS  Google Scholar 

 44. Pan J, Shi Y, Yu J, Zhang H, Liu Y, Zhang J, Gao F, Yu X, Lu K, Wei Z
     (2021) π-extended nonfullerene acceptors for efficient organic solar cells
     with a high open-circuit voltage of 0.94 V and a low energy loss of 0.49
     eV. ACS Appl Mater Interfaces 13:22531–22539
     
     Article  CAS  PubMed  Google Scholar 

 45. Iqbal MMA, Mehboob MY, Hussain R, Adnan M, Irshad Z (2021) Synergistic
     effects of fluorine, chlorine and bromine-substituted end-capped acceptor
     materials for highly efficient organic solar cells. Comput Theor Chem
     1202:113335
     
     Article  CAS  Google Scholar 

 46. Hussain R, Khan MU, Mehboob MY, Khalid M, Iqbal J, Ayub K, Adnan M, Ahmed
     M, Atiq K, Mahmood K (2020) Enhancement in photovoltaic properties of N
     N-diethylaniline based donor materials by bridging core modifications for
     efficient solar cells. ChemistrySelect 5:5022–5034
     
     Article  CAS  Google Scholar 

 47. Mehboob MY, Khan MU, Hussain R, Ayub K, Sattar A, Ahmad MK, Irshad Z, Adnan
     M (2021) Designing of benzodithiophene core-based small molecular acceptors
     for efficient non-fullerene organic solar cells. Spectrochim Acta Part A
     Mol Biomol Spectrosc 244:118873
     
     Article  CAS  Google Scholar 

 48. Mahmood A, Irfan A, Wang J-L (2022) Machine learning and molecular dynamics
     simulation-assisted evolutionary design and discovery pipeline to screen
     efficient small molecule acceptors for PTB7-Th-based organic solar cells
     with over 15% efficiency. J Mater Chem A 10:4170–4180
     
     Article  CAS  Google Scholar 

 49. Mahmood A, Irfan A, Ahmad F, Ramzan Saeed Ashraf Janjua M (2021) Quantum
     chemical analysis and molecular dynamics simulations to study the impact of
     electron-deficient substituents on electronic behavior of small molecule
     acceptors. Comput Theor Chem 1204:113387.
     https://doi.org/10.1016/j.comptc.2021.113387
     
     Article  CAS  Google Scholar 

 50. Mahmood A, Khan SU-D, urRehman F (2015) Assessing the quantum mechanical
     level of theory for prediction of UV/visible absorption spectra of some
     aminoazobenzene dyes. J Saudi Chem Soc 19:436–441.
     https://doi.org/10.1016/j.jscs.2014.06.001
     
     Article  Google Scholar 

 51. Mahmood A, HussainTahir M, Irfan A, Khalid B, Al-Sehemi AG (2015)
     Computational designing of triphenylamine dyes with broad and red-shifted
     absorption spectra for dye-sensitized solar cells using multi-thiophene
     rings in π-spacer. Bull Korean Chem Soc 36:2615–2620.
     https://doi.org/10.1002/bkcs.10526
     
     Article  CAS  Google Scholar 

 52. Mahmood A, Irfan A (2020) Computational analysis to understand the
     performance difference between two small-molecule acceptors differing in
     their terminal electron-deficient group. J Comput Electron 19:931–939.
     https://doi.org/10.1007/s10825-020-01494-6
     
     Article  CAS  Google Scholar 

 53. Mahmood A, Irfan A (2020) Effect of fluorination on exciton binding energy
     and electronic coupling in small molecule acceptors for organic solar
     cells. Comput Theor Chem 1179:112797.
     https://doi.org/10.1016/j.comptc.2020.112797
     
     Article  CAS  Google Scholar 

 54. Mahmood A, Khan SU-D, Rana UA, Tahir MH (2019) Red shifting of absorption
     maxima of phenothiazine based dyes by incorporating electron-deficient
     thiadiazole derivatives as π-spacer. Arab J Chem 12:1447–1453.
     https://doi.org/10.1016/j.arabjc.2014.11.007
     
     Article  CAS  Google Scholar 

 55. Mahmood A, Yang J, Hu J, Wang X, Tang A, Geng Y, Zeng Q, Zhou E (2018)
     Introducing four 1,1-dicyanomethylene-3-indanone end-capped groups as an
     alternative strategy for the design of small-molecular nonfullerene
     acceptors. J Phys Chem C 122:29122–29128.
     https://doi.org/10.1021/acs.jpcc.8b09336
     
     Article  CAS  Google Scholar 

 56. Khan MU, Ibrahim M, Khalid M, Jamil S, Al-Saadi AA, Janjua MRSA (2019)
     Quantum chemical designing of indolo[3,2,1-jk]carbazole-based dyes for
     highly efficient nonlinear optical properties. Chem Phys Lett 719:59–66.
     https://doi.org/10.1016/j.cplett.2019.01.043
     
     Article  CAS  Google Scholar 

 57. Haroon M, Janjua MRSA (2021) High-throughput designing and investigation of
     D-A−π–A -type donor materials for potential application in
     greenhouse-integrated solar cells. Energy Fuels 35:12461–12472.
     https://doi.org/10.1021/acs.energyfuels.1c01726
     
     Article  CAS  Google Scholar 

 58. Janjua MRSA (2021) Deciphering the role of invited guest bridges in
     non-fullerene acceptor materials for high performance organic solar cells.
     Synth Met 279:116865. https://doi.org/10.1016/j.synthmet.2021.116865
     
     Article  CAS  Google Scholar 

 59. Khan MU, Khalid M, Ibrahim M, Braga AAC, Safdar M, Al-Saadi AA, Janjua MRSA
     (2018) First theoretical framework of triphenylamine–dicyanovinylene-based
     nonlinear optical dyes: structural modification of π-linkers. J Phys Chem C
     122:4009–4018. https://doi.org/10.1021/acs.jpcc.7b12293
     
     Article  CAS  Google Scholar 

 60. Janjua MRSA (2021) Quantum chemical design of D–π–A-type donor materials
     for highly efficient, photostable, and vacuum-processed organic solar
     cells. Energy Technol 9:2100489. https://doi.org/10.1002/ente.202100489
     
     Article  CAS  Google Scholar 

 61. Janjua MRSA (2021) Theoretical understanding and role of guest π-bridges in
     triphenylamine-based donor materials for high-performance solar Cells.
     Energy Fuels 35:12451–12460.
     https://doi.org/10.1021/acs.energyfuels.1c01625
     
     Article  CAS  Google Scholar 

 62. Alwadai N, Elqahtani ZM, Khan SU, Pembere AMS, Badshah A, Mehboob MY, Nazar
     MF (2022) Impact of halogens on electronic and photovoltaic properties of
     organic semiconductors: a multiscale computational modeling. J Phys Org
     Chem. https://doi.org/10.1002/poc.4388
     
     Article  Google Scholar 

 63. Mehboob MY, Hussain R, Khan MU, Adnan M, Alvi MU, Yaqoob J, Khalid M (2022)
     Efficient designing of half-moon-shaped chalcogen heterocycles as
     non-fullerene acceptors for organic solar cells. J Mol Model 28:125.
     https://doi.org/10.1007/s00894-022-05116-9
     
     Article  CAS  PubMed  Google Scholar 

 64. Sattar A, Hussain R, Ishaq S, Assiri MA, Imran M, Hussain A, Yawer MA, Jan
     S, Hussain R, YasirMehboob M, Khalid M, Ayub K (2022) Nonfullerene
     near-infrared sensitive acceptors “octacyclic naphtho[1,2- b :5,6- b ]
     dithiophene core” for organic solar cell applications: in silico molecular
     engineering. ACS Omega 7:16716–16727.
     https://doi.org/10.1021/acsomega.2c01255
     
     Article  CAS  PubMed  PubMed Central  Google Scholar 

 65. Asif Iqbal MM, Mehboob MY, Hassan T (2022) Theoretical study of the
     structure-activity relationship of the S-shaped acceptor molecules for
     organic solar cell applications. Mater Sci Semicond Process 148:106763.
     https://doi.org/10.1016/j.mssp.2022.106763
     
     Article  CAS  Google Scholar 

 66. Irfan A, Hussien M, Mehboob MY, Ahmad A, Janjua MRSA (2022) Learning from
     fullerenes and predicting for Y6. Machine learning and high-throughput
     screening of small molecule donors for organic solar cells. Energy Technol.
     https://doi.org/10.1002/ente.202101096
     
     Article  Google Scholar 

 67. Asif Iqbal MM, Mehboob MY, Arshad M (2022) Quinoxaline based unfused
     non-fullerene acceptor molecules with PTB7-Th donor polymer for high
     performance organic solar cell applications. J Mol Graph Model 114:108181.
     https://doi.org/10.1016/j.jmgm.2022.108181
     
     Article  CAS  PubMed  Google Scholar 

 68. YasirMehboob M, Zaier R, Hussain R, Adnan M, Muhammad Asif Iqbal M, Irshad
     Z, Bilal I, Ramzan Saeed Ashraf Janjua M (2022) In silico modelling of
     acceptor materials by end-capped and π-linker modifications for
     high-performance organic solar cells: estimated PCE > 18%. Comput Theor
     Chem 1208:113555. https://doi.org/10.1016/j.comptc.2021.113555
     
     Article  CAS  Google Scholar 

 69. Khan MU, Hussain R, YasirMehboob M, Khalid M, Shafiq Z, Aslam M, Al-Saadi
     AA, Jamil S, Janjua MRSA (2020) In silico modeling of new “Y-series”-based
     near-infrared sensitive non-fullerene acceptors for efficient organic solar
     cells. ACS Omega 5:24125–24137. https://doi.org/10.1021/acsomega.0c03796
     
     Article  CAS  PubMed  PubMed Central  Google Scholar 

 70. Mehboob MY, Khan MU, Hussain R, Fatima R, Irshad Z, Adnan M (2020)
     Designing of near-infrared sensitive asymmetric small molecular donors for
     high-efficiency organic solar cells. J Theor Comput Chem 19:2050034
     
     Article  CAS  Google Scholar 

Download references


AUTHOR INFORMATION


AUTHORS AND AFFILIATIONS

 1. Department of Chemistry, University of Okara, Okara, 56300, Pakistan
    
    Malik Muhammad Asif Iqbal, Muhammad Yasir Mehboob & Talha Hassan

 2. Department of Chemistry and Technology of Functional Materials, Faculty of
    Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233,
    Gdansk, Poland
    
    Muhammad Shahzeb Khan

 3. Department of Chemistry, National Sun Yat-Sen University, 70 Lien-Hai Road,
    Kaohsiung, 80424, Taiwan
    
    Muhammad Arshad

Authors
 1. Malik Muhammad Asif Iqbal
    View author publications
    
    You can also search for this author in PubMed Google Scholar

 2. Muhammad Yasir Mehboob
    View author publications
    
    You can also search for this author in PubMed Google Scholar

 3. Talha Hassan
    View author publications
    
    You can also search for this author in PubMed Google Scholar

 4. Muhammad Shahzeb Khan
    View author publications
    
    You can also search for this author in PubMed Google Scholar

 5. Muhammad Arshad
    View author publications
    
    You can also search for this author in PubMed Google Scholar


CONTRIBUTIONS

Malik Muhammad Asif Iqbal: Validation, visualization, formal analysis,
writing—original draft. Muhammad Yasir Mehboob: Resources, supervision,
software. Talha Hassan: Software, investigation, writing—review and editing.


CORRESPONDING AUTHOR

Correspondence to Muhammad Yasir Mehboob.


ETHICS DECLARATIONS


CONFLICT OF INTEREST

The authors declare no competing interests.


ADDITIONAL INFORMATION


PUBLISHER'S NOTE

Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.


RIGHTS AND PERMISSIONS

Springer Nature or its licensor holds exclusive rights to this article under a
publishing agreement with the author(s) or other rightsholder(s); author
self-archiving of the accepted manuscript version of this article is solely
governed by the terms of such publishing agreement and applicable law.

Reprints and permissions


ABOUT THIS ARTICLE


CITE THIS ARTICLE

Iqbal, M.M.A., Mehboob, M.Y., Hassan, T. et al. High electron mobility due to
extra π-conjugation in the end-capped units of non-fullerene acceptor molecules:
a DFT/TD-DFT-based prediction. J Mol Model 28, 278 (2022).
https://doi.org/10.1007/s00894-022-05283-9

Download citation

 * Received: 12 April 2022

 * Accepted: 19 August 2022

 * Published: 26 August 2022

 * DOI: https://doi.org/10.1007/s00894-022-05283-9


SHARE THIS ARTICLE

Anyone you share the following link with will be able to read this content:

Get shareable link

Sorry, a shareable link is not currently available for this article.



Copy to clipboard

Provided by the Springer Nature SharedIt content-sharing initiative


KEYWORDS

 * Voc
 * PCE
 * Electron mobility
 * Active layer
 * OSCs




ACCESS THIS ARTICLE

Log in via an institution

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so
we can address the problem.

 * Sections
 * Figures
 * References

 * Abstract
 * Data availability
 * References
 * Author information
 * Ethics declarations
 * Additional information
 * Rights and permissions
 * About this article

Advertisement


 * Fig. 1
   
   View in article

 * Fig. 2
   
   View in article

 * Fig. 3
   
   View in article

 * Fig. 4
   
   View in article

 * Fig. 5
   
   View in article

 * Fig. 6
   
   View in article

 1.  Cheng P, Li G, Zhan X, Yang Y (2018) Next-generation organic photovoltaics
     based on non-fullerene acceptors. Nat Photonics 12:131–142
     
     Article CAS  Google Scholar 

 2.  Hou J, Inganäs O, Friend RH, Gao F (2018) Organic solar cells based on
     non-fullerene acceptors. Nat Mater 17:119–128
     
     Article CAS PubMed  Google Scholar 

 3.  Yuan J, Huang T, Cheng P, Zou Y, Zhang H, Yang JL, Chang SY, Zhang Z, Huang
     W, Wang R (2019) Enabling low-voltage losses and high photocurrent in
     fullerene-free organic photovoltaics. Nat Commun 10:1–8
     
     CAS  Google Scholar 

 4.  Cheng P, Zhang M, Lau TK, Wu Y, Jia B, Wang J, Yan C, Qin M, Lu X, Zhan X
     (2017) Realizing small energy loss of 0.55 ev, high open‐circuit voltage >
     1 V and high efficiency > 10% in fullerene‐free polymer solar cells via
     energy driver. Adv Mater 29:1605216
     
     Article CAS  Google Scholar 

 5.  Zhao W, Qian D, Zhang S, Li S, Inganäs O, Gao F, Hou J (2016)
     Fullerene-free polymer solar cells with over 11% efficiency and excellent
     thermal stability. Adv Mater 28:4734–4739
     
     Article CAS PubMed  Google Scholar 

 6.  Zhang S, Ye L, Hou J (2016) Breaking the 10% Efficiency barrier in organic
     photovoltaics: morphology and device optimization of well-known PBDTTT
     polymers. Adv Energy Mater 6:1502529
     
     Article CAS  Google Scholar 

 7.  Liu J, Chen S, Qian D, Gautam B, Yang G, Zhao J, Bergqvist J, Zhang F, Ma
     W, Ade H (2016) Fast charge separation in a non-fullerene organic solar
     cell with a small driving force, Nature. Energy 1:1–7
     
     CAS  Google Scholar 

 8.  Ma X, Wang J, Gao J, Hu Z, Xu C, Zhang X, Zhang F (2020) Achieving 17.4%
     efficiency of ternary organic photovoltaics with two well-compatible
     nonfullerene acceptors for minimizing energy loss. Adv Energy Mater
     10:2001404
     
     Article CAS  Google Scholar 

 9.  Du X, Yuan Y, Zhou L, Lin H, Zheng C, Luo J, Chen Z, Tao S, Liao LS (2020)
     Delayed fluorescence emitter enables near 17% efficiency ternary organic
     solar cells with enhanced storage stability and reduced recombination
     energy loss. Adv Func Mater 30:1909837
     
     Article CAS  Google Scholar 

 10. Cui Y, Yao H, Zhang J, Xian K, Zhang T, Hong L, Wang Y, Xu Y, Ma K, An C
     (2020) Single-junction organic photovoltaic cells with approaching 18%
     efficiency. Adv Mater 32:1908205
     
     Article CAS  Google Scholar 

 11. Ye L, Weng K, Xu J, Du X, Chandrabose S, Chen K, Zhou J, Han G, Tan S, Xie
     Z (2020) Unraveling the influence of non-fullerene acceptor molecular
     packing on photovoltaic performance of organic solar cells. Nat Commun
     11:1–9
     
     Article CAS  Google Scholar 

 12. Zhang Z, Yu J, Yin X, Hu Z, Jiang Y, Sun J, Zhou J, Zhang F, Russell TP,
     Liu F (2018) Conformation locking on fused-ring electron acceptor for
     high-performance nonfullerene organic solar cells. Adv Func Mater
     28:1705095
     
     Article CAS  Google Scholar 

 13. Liu Z, Krückemeier L, Krogmeier B, Klingebiel B, Márquez JA, Levcenko S, Öz
     S, Mathur S, Rau U, Unold T (2018) Open-circuit voltages exceeding 1.26 V
     in planar methylammonium lead iodide perovskite solar cells. ACS energy
     lett 4:110–117
     
     Article CAS  Google Scholar 

 14. Yoshikawa K, Kawasaki H, Yoshida W, Irie T, Konishi K, Nakano K, Uto T,
     Adachi D, Kanematsu M, Uzu H (2017) Silicon heterojunction solar cell with
     interdigitated back contacts for a photoconversion efficiency over 26%. Nat
     Energy 2:1–8
     
     Article CAS  Google Scholar 

 15. Yao J, Kirchartz T, Vezie MS, Faist MA, Gong W, He Z, Wu H, Troughton J,
     Watson T, Bryant D (2015) Quantifying losses in open-circuit voltage in
     solution-processable solar cells. Phys Rev Appl 4:014020
     
     Article CAS  Google Scholar 

 16. Hong L, Yao H, Wu Z, Cui Y, Zhang T, Xu Y, Yu R, Liao Q, Gao B, Xian K
     (2019) Eco-compatible solvent-processed organic photovoltaic cells with
     over 16% efficiency. Adv Mater 31:1903441
     
     Article CAS  Google Scholar 

 17. Liu S, Yuan J, Deng W, Luo M, Xie Y, Liang Q, Zou Y, He Z, Wu H, Cao Y
     (2020) High-efficiency organic solar cells with low non-radiative
     recombination loss and low energetic disorder. Nat Photonics 14:300–305
     
     Article CAS  Google Scholar 

 18. Wu H, Bian Q, Zhao B, Zhao H, Wang L, Wang W, Cong Z, Liu J, Ma W, Gao C
     (2020) Effects of the isomerized thiophene-fused ending groups on the
     performances of twisted non-fullerene acceptor-based polymer solar cells.
     ACS Appl Mater Interfaces 12:23904–23913
     
     Article CAS PubMed  Google Scholar 

 19. Cong Z, Zhao B, Chen Z, Wang W, Wu H, Liu J, Wang J, Wang L, Ma W, Gao C
     (2019) Efficient polymer solar cells having high open-circuit voltage and
     low energy loss enabled by a main-chain twisted small molecular acceptor.
     ACS Appl Mater Interfaces 11:16795–16803
     
     Article CAS PubMed  Google Scholar 

 20. Li S, Ye L, Zhao W, Zhang S, Mukherjee S, Ade H, Hou J (2016) Energy-level
     modulation of small-molecule electron acceptors to achieve over 12%
     efficiency in polymer solar cells. Adv Mater 28:9423–9429
     
     Article CAS PubMed  Google Scholar 

 21. Liu Y, Zhang Z, Feng S, Li M, Wu L, Hou R, Xu X, Chen X, Bo Z (2017)
     Exploiting noncovalently conformational locking as a design strategy for
     high performance fused-ring electron acceptor used in polymer solar cells.
     J Am Chem Soc 139:3356–3359
     
     Article CAS PubMed  Google Scholar 

 22. Yao Z, Liao X, Gao K, Lin F, Xu X, Shi X, Zuo L, Liu F, Chen Y, Jen AK-Y
     (2018) Dithienopicenocarbazole-based acceptors for efficient organic solar
     cells with optoelectronic response over 1000 nm and an extremely low energy
     loss. J Am Chem Soc 140:2054–2057
     
     Article CAS PubMed  Google Scholar 

 23. Wang Y, Qian D, Cui Y, Zhang H, Hou J, Vandewal K, Kirchartz T, Gao F
     (2018) Optical gaps of organic solar cells as a reference for comparing
     voltage losses. Adv Energy Mater 8:1801352
     
     Article CAS  Google Scholar 

 24. Wang R, Yuan J, Wang R, Han G, Huang T, Huang W, Xue J, Wang HC, Zhang C,
     Zhu C (2019) Rational tuning of molecular interaction and energy level
     alignment enables high-performance organic photovoltaics. Adv Mater
     31:1904215
     
     Article CAS  Google Scholar 

 25. Liang N, Jiang W, Hou J, Wang Z (2017) New developments in non-fullerene
     small molecule acceptors for polymer solar cells, Materials Chemistry.
     Frontiers 1:1291–1303
     
     CAS  Google Scholar 

 26. Yuan J, Zhang Y, Zhou L, Zhang G, Yip HL, Lau T-K, Lu X, Zhu C, Peng H,
     Johnson PA (2019) Single-junction organic solar cell with over 15%
     efficiency using fused-ring acceptor with electron-deficient core. Joule
     3:1140–1151
     
     Article CAS  Google Scholar 

 27. Yuan J, Zhang Y, Zhou L, Zhang C, Lau TK, Zhang G, Lu X, Yip HL, So SK,
     Beaupré S (2019) Fused benzothiadiazole: a building block for n-type
     organic acceptor to achieve high-performance organic solar cells. Adv Mater
     31:1807577
     
     Article CAS  Google Scholar 

 28. Qin R, Wang D, Zhou G, Yu Z-P, Li S, Li Y, Liu Z-X, Zhu H, Shi M, Lu X
     (2019) Tuning terminal aromatics of electron acceptors to achieve
     high-efficiency organic solar cells. J Mater Chem A 7:27632–27639
     
     Article CAS  Google Scholar 

 29. Zhou Z, Liu W, Zhou G, Zhang M, Qian D, Zhang J, Chen S, Xu S, Yang C, Gao
     F (2020) Subtle molecular tailoring induces significant morphology
     optimization enabling over 16% efficiency organic solar cells with
     efficient charge generation. Adv Mater 32:1906324
     
     Article CAS  Google Scholar 

 30. Zhu C, Yuan J, Cai F, Meng L, Zhang H, Chen H, Li J, Qiu B, Peng H, Chen S
     (2020) Tuning the electron-deficient core of a non-fullerene acceptor to
     achieve over 17% efficiency in a single-junction organic solar cell. Energy
     Environ Sci 13:2459–2466
     
     Article CAS  Google Scholar 

 31. Cui Y, Yao H, Zhang J, Zhang T, Wang Y, Hong L, Xian K, Xu B, Zhang S, Peng
     J (2019) Over 16% efficiency organic photovoltaic cells enabled by a
     chlorinated acceptor with increased open-circuit voltages. Nat Commun
     10:1–8
     
     Article CAS  Google Scholar 

 32. Zhang M, Guo X, Ma W, Ade H, Hou J (2015) A large-bandgap conjugated
     polymer for versatile photovoltaic applications with high performance. Adv
     Mater 27:4655–4660
     
     Article CAS PubMed  Google Scholar 

 33. Ogliaro F, Bearpark M, Heyd J, Brothers E, Kudin K, Staroverov V, Kobayashi
     R, Normand J, Raghavachari K, Rendell A (2009) Gaussian 09, revision a. 02.
     gaussian, Inc.: Wallingford, CT

 34. Folorunso O, Hamam Y, Sadiku R, Ray SS, Adekoya GJ (2021) Investigation of
     graphene loaded polypyrrole for lithium-ion battery. Mater Today: Proc
     38:635–638
     
     CAS  Google Scholar 

 35. Adamo C, Barone V (1998) Exchange functional with improved long-range
     behavior and adiabatic connection methods without adjustable parameters:
     the m PW and m PW1PW models. J Chem Phys 108:664–675
     
     Article CAS  Google Scholar 

 36. Finley JP (2004) Using the local density approximation and the LYP, BLYP
     and B3LYP functional within reference-state one-particle density-matrix
     theory. Mol Phys 102:627–639
     
     Article CAS  Google Scholar 

 37. Beerepoot MT, Friese DH, List NH, Kongsted J, Ruud K (2015) Benchmarking
     two-photon absorption cross sections: performance of CC2 and CAM-B3LYP.
     Phys Chem Chem Phys 17:19306–19314
     
     Article CAS PubMed  Google Scholar 

 38. Zhao Y, Truhlar DG (2008) The M06 suite of density functional for main
     group thermochemistry, thermochemical kinetics, noncovalent interactions,
     excited states, and transition elements: two new functional and systematic
     testing of four M06-class functional and 12 other functional. Theoret Chem
     Acc 120:215–241
     
     Article CAS  Google Scholar 

 39. Welsh TA, Laventure A, Welch GC (2018) Direct (Hetero) arylation for the
     synthesis of molecular materials: coupling Thieno [3, 4-c] pyrrole-4,
     6-dione with perylene diimide to yield novel non-fullerene acceptors for
     organic solar cells. Molecules 23:931
     
     Article PubMed Central CAS  Google Scholar 

 40. Ans M, Iqbal J, Eliasson B, Ayub K (2019) Opto-electronic properties of
     non-fullerene fused-undecacyclic electron acceptors for organic solar
     cells. Comput Mater Sci 159:150–159
     
     Article CAS  Google Scholar 

 41. Tang S, Zhang J (2012) Design of donors with broad absorption regions and
     suitable frontier molecular orbitals to match typical acceptors via
     substitution on oligo (thienylenevinylene) toward solar cells. J Comput
     Chem 33:1353–1363
     
     Article CAS PubMed  Google Scholar 

 42. O’Boyle NM, Campbell CM, Hutchison GR (2011) Computational design and
     selection of optimal organic photovoltaic materials. J Phys Chem C
     115:16200–16210
     
     Article CAS  Google Scholar 

 43. Wu L-N, Li M-Y, Sui M-Y, Huang J-C, Sun G-Y, Cheng L (2021) Achieve
     panchromatic absorption for all-small-molecule organic solar cells based on
     mono-porphyrin molecules by π-bridge modification. Mater Today Energy
     20:100658
     
     Article CAS  Google Scholar 

 44. Pan J, Shi Y, Yu J, Zhang H, Liu Y, Zhang J, Gao F, Yu X, Lu K, Wei Z
     (2021) π-extended nonfullerene acceptors for efficient organic solar cells
     with a high open-circuit voltage of 0.94 V and a low energy loss of 0.49
     eV. ACS Appl Mater Interfaces 13:22531–22539
     
     Article CAS PubMed  Google Scholar 

 45. Iqbal MMA, Mehboob MY, Hussain R, Adnan M, Irshad Z (2021) Synergistic
     effects of fluorine, chlorine and bromine-substituted end-capped acceptor
     materials for highly efficient organic solar cells. Comput Theor Chem
     1202:113335
     
     Article CAS  Google Scholar 

 46. Hussain R, Khan MU, Mehboob MY, Khalid M, Iqbal J, Ayub K, Adnan M, Ahmed
     M, Atiq K, Mahmood K (2020) Enhancement in photovoltaic properties of N
     N-diethylaniline based donor materials by bridging core modifications for
     efficient solar cells. ChemistrySelect 5:5022–5034
     
     Article CAS  Google Scholar 

 47. Mehboob MY, Khan MU, Hussain R, Ayub K, Sattar A, Ahmad MK, Irshad Z, Adnan
     M (2021) Designing of benzodithiophene core-based small molecular acceptors
     for efficient non-fullerene organic solar cells. Spectrochim Acta Part A
     Mol Biomol Spectrosc 244:118873
     
     Article CAS  Google Scholar 

 48. Mahmood A, Irfan A, Wang J-L (2022) Machine learning and molecular dynamics
     simulation-assisted evolutionary design and discovery pipeline to screen
     efficient small molecule acceptors for PTB7-Th-based organic solar cells
     with over 15% efficiency. J Mater Chem A 10:4170–4180
     
     Article CAS  Google Scholar 

 49. Mahmood A, Irfan A, Ahmad F, Ramzan Saeed Ashraf Janjua M (2021) Quantum
     chemical analysis and molecular dynamics simulations to study the impact of
     electron-deficient substituents on electronic behavior of small molecule
     acceptors. Comput Theor Chem 1204:113387.
     https://doi.org/10.1016/j.comptc.2021.113387
     
     Article CAS  Google Scholar 

 50. Mahmood A, Khan SU-D, urRehman F (2015) Assessing the quantum mechanical
     level of theory for prediction of UV/visible absorption spectra of some
     aminoazobenzene dyes. J Saudi Chem Soc 19:436–441.
     https://doi.org/10.1016/j.jscs.2014.06.001
     
     Article  Google Scholar 

 51. Mahmood A, HussainTahir M, Irfan A, Khalid B, Al-Sehemi AG (2015)
     Computational designing of triphenylamine dyes with broad and red-shifted
     absorption spectra for dye-sensitized solar cells using multi-thiophene
     rings in π-spacer. Bull Korean Chem Soc 36:2615–2620.
     https://doi.org/10.1002/bkcs.10526
     
     Article CAS  Google Scholar 

 52. Mahmood A, Irfan A (2020) Computational analysis to understand the
     performance difference between two small-molecule acceptors differing in
     their terminal electron-deficient group. J Comput Electron 19:931–939.
     https://doi.org/10.1007/s10825-020-01494-6
     
     Article CAS  Google Scholar 

 53. Mahmood A, Irfan A (2020) Effect of fluorination on exciton binding energy
     and electronic coupling in small molecule acceptors for organic solar
     cells. Comput Theor Chem 1179:112797.
     https://doi.org/10.1016/j.comptc.2020.112797
     
     Article CAS  Google Scholar 

 54. Mahmood A, Khan SU-D, Rana UA, Tahir MH (2019) Red shifting of absorption
     maxima of phenothiazine based dyes by incorporating electron-deficient
     thiadiazole derivatives as π-spacer. Arab J Chem 12:1447–1453.
     https://doi.org/10.1016/j.arabjc.2014.11.007
     
     Article CAS  Google Scholar 

 55. Mahmood A, Yang J, Hu J, Wang X, Tang A, Geng Y, Zeng Q, Zhou E (2018)
     Introducing four 1,1-dicyanomethylene-3-indanone end-capped groups as an
     alternative strategy for the design of small-molecular nonfullerene
     acceptors. J Phys Chem C 122:29122–29128.
     https://doi.org/10.1021/acs.jpcc.8b09336
     
     Article CAS  Google Scholar 

 56. Khan MU, Ibrahim M, Khalid M, Jamil S, Al-Saadi AA, Janjua MRSA (2019)
     Quantum chemical designing of indolo[3,2,1-jk]carbazole-based dyes for
     highly efficient nonlinear optical properties. Chem Phys Lett 719:59–66.
     https://doi.org/10.1016/j.cplett.2019.01.043
     
     Article CAS  Google Scholar 

 57. Haroon M, Janjua MRSA (2021) High-throughput designing and investigation of
     D-A−π–A -type donor materials for potential application in
     greenhouse-integrated solar cells. Energy Fuels 35:12461–12472.
     https://doi.org/10.1021/acs.energyfuels.1c01726
     
     Article CAS  Google Scholar 

 58. Janjua MRSA (2021) Deciphering the role of invited guest bridges in
     non-fullerene acceptor materials for high performance organic solar cells.
     Synth Met 279:116865. https://doi.org/10.1016/j.synthmet.2021.116865
     
     Article CAS  Google Scholar 

 59. Khan MU, Khalid M, Ibrahim M, Braga AAC, Safdar M, Al-Saadi AA, Janjua MRSA
     (2018) First theoretical framework of triphenylamine–dicyanovinylene-based
     nonlinear optical dyes: structural modification of π-linkers. J Phys Chem C
     122:4009–4018. https://doi.org/10.1021/acs.jpcc.7b12293
     
     Article CAS  Google Scholar 

 60. Janjua MRSA (2021) Quantum chemical design of D–π–A-type donor materials
     for highly efficient, photostable, and vacuum-processed organic solar
     cells. Energy Technol 9:2100489. https://doi.org/10.1002/ente.202100489
     
     Article CAS  Google Scholar 

 61. Janjua MRSA (2021) Theoretical understanding and role of guest π-bridges in
     triphenylamine-based donor materials for high-performance solar Cells.
     Energy Fuels 35:12451–12460.
     https://doi.org/10.1021/acs.energyfuels.1c01625
     
     Article CAS  Google Scholar 

 62. Alwadai N, Elqahtani ZM, Khan SU, Pembere AMS, Badshah A, Mehboob MY, Nazar
     MF (2022) Impact of halogens on electronic and photovoltaic properties of
     organic semiconductors: a multiscale computational modeling. J Phys Org
     Chem. https://doi.org/10.1002/poc.4388
     
     Article  Google Scholar 

 63. Mehboob MY, Hussain R, Khan MU, Adnan M, Alvi MU, Yaqoob J, Khalid M (2022)
     Efficient designing of half-moon-shaped chalcogen heterocycles as
     non-fullerene acceptors for organic solar cells. J Mol Model 28:125.
     https://doi.org/10.1007/s00894-022-05116-9
     
     Article CAS PubMed  Google Scholar 

 64. Sattar A, Hussain R, Ishaq S, Assiri MA, Imran M, Hussain A, Yawer MA, Jan
     S, Hussain R, YasirMehboob M, Khalid M, Ayub K (2022) Nonfullerene
     near-infrared sensitive acceptors “octacyclic naphtho[1,2- b :5,6- b ]
     dithiophene core” for organic solar cell applications: in silico molecular
     engineering. ACS Omega 7:16716–16727.
     https://doi.org/10.1021/acsomega.2c01255
     
     Article CAS PubMed PubMed Central  Google Scholar 

 65. Asif Iqbal MM, Mehboob MY, Hassan T (2022) Theoretical study of the
     structure-activity relationship of the S-shaped acceptor molecules for
     organic solar cell applications. Mater Sci Semicond Process 148:106763.
     https://doi.org/10.1016/j.mssp.2022.106763
     
     Article CAS  Google Scholar 

 66. Irfan A, Hussien M, Mehboob MY, Ahmad A, Janjua MRSA (2022) Learning from
     fullerenes and predicting for Y6. Machine learning and high-throughput
     screening of small molecule donors for organic solar cells. Energy Technol.
     https://doi.org/10.1002/ente.202101096
     
     Article  Google Scholar 

 67. Asif Iqbal MM, Mehboob MY, Arshad M (2022) Quinoxaline based unfused
     non-fullerene acceptor molecules with PTB7-Th donor polymer for high
     performance organic solar cell applications. J Mol Graph Model 114:108181.
     https://doi.org/10.1016/j.jmgm.2022.108181
     
     Article CAS PubMed  Google Scholar 

 68. YasirMehboob M, Zaier R, Hussain R, Adnan M, Muhammad Asif Iqbal M, Irshad
     Z, Bilal I, Ramzan Saeed Ashraf Janjua M (2022) In silico modelling of
     acceptor materials by end-capped and π-linker modifications for
     high-performance organic solar cells: estimated PCE > 18%. Comput Theor
     Chem 1208:113555. https://doi.org/10.1016/j.comptc.2021.113555
     
     Article CAS  Google Scholar 

 69. Khan MU, Hussain R, YasirMehboob M, Khalid M, Shafiq Z, Aslam M, Al-Saadi
     AA, Jamil S, Janjua MRSA (2020) In silico modeling of new “Y-series”-based
     near-infrared sensitive non-fullerene acceptors for efficient organic solar
     cells. ACS Omega 5:24125–24137. https://doi.org/10.1021/acsomega.0c03796
     
     Article CAS PubMed PubMed Central  Google Scholar 

 70. Mehboob MY, Khan MU, Hussain R, Fatima R, Irshad Z, Adnan M (2020)
     Designing of near-infrared sensitive asymmetric small molecular donors for
     high-efficiency organic solar cells. J Theor Comput Chem 19:2050034
     
     Article CAS  Google Scholar 


DISCOVER CONTENT

 * Journals A-Z
 * Books A-Z


PUBLISH WITH US

 * Journal finder
 * Publish your research
 * Open access publishing


PRODUCTS AND SERVICES

 * Our products
 * Librarians
 * Societies
 * Partners and advertisers


OUR IMPRINTS

 * Springer
 * Nature Portfolio
 * BMC
 * Palgrave Macmillan
 * Apress

 * Your privacy choices/Manage cookies
 * Your US state privacy rights
 * Accessibility statement
 * Terms and conditions
 * Privacy policy
 * Help and support
 * Cancel contracts here

167.114.209.103

Not affiliated

© 2024 Springer Nature