aip.scitation.org
Open in
urlscan Pro
104.18.19.170
Public Scan
Submitted URL: https://aip-info.org/1XPS-7SEGB-285JYW-4QTH6F-1/c.aspx
Effective URL: https://aip.scitation.org/doi/full/10.1063/5.0084696?Track=&utm_source=AIP%20Publishing&utm_medium=email&utm_campaign=1308...
Submission Tags: falconsandbox
Submission: On May 22 via api from US — Scanned from DE
Effective URL: https://aip.scitation.org/doi/full/10.1063/5.0084696?Track=&utm_source=AIP%20Publishing&utm_medium=email&utm_campaign=1308...
Submission Tags: falconsandbox
Submission: On May 22 via api from US — Scanned from DE
Form analysis
2 forms found in the DOMName: quickSearch — GET /action/doSearch
<form action="/action/doSearch" name="quickSearch" class="quickSearchForm search-open resQuickSearchForm default-search-container" title="Quick Search" method="get">
<div class="container">
<div class="searchNav-tabs">
<ul class="search-tabs-nav" role="tablist">
<li id="search-tab" role="presentation" aria-selected="true" aria-controls="search-panel" data-tab-panel="search-panel">
<a aria-selected="true" tabindex="0" role="tab">SEARCH</a>
</li>
<li id="citation-search-tab" role="presentation" aria-selected="false" aria-controls="citation-search-panel" data-tab-panel="citation-search-panel">
<a aria-hidden="false" tabindex="0" role="tab">CITATION SEARCH</a>
</li>
<li id="advance-search-tab" role="presentation" aria-selected="false">
<a aria-hidden="false" tabindex="0" role="tab" href="/search/advanced">ADVANCED SEARCH</a>
</li>
</ul>
</div>
<div class="tab-content"> <!-- tab-content open -->
<div id="search-panel" class="tab-pane active" role="tabpanel" aria-labelledby="search-tab" aria-hidden="false">
<span class="searchDropDownDivLeft">
<label for="searchHeaderInSelector" class="visuallyhidden">Search in:</label>
<select id="searchHeaderInSelector" name="SeriesKey" class="custom-dropdown js__searchInSelector jcf-hidden" sb="11215708" style="display: none;">
<option value="apl" id="thisJournal" data-search-in="thisJournal"> This Publication </option>
<option value="false" data-search-in="default">Anywhere</option>
<option value="" data-search-in="thisPublisher"> This Publisher/Society </option>
</select><span class="jcf-select jcf-unselectable jcf-select-custom-dropdown jcf-select-js__searchInSelector" style="display: none;"><span class="jcf-select-text"><span class=""> This Publication </span></span><span
class="jcf-select-opener"></span></span>
<div id="sbHolder_11215708" class="sbHolder"><a id="sbToggle_11215708" href="#" class="sbToggle"></a><a id="sbSelector_11215708" href="#" class="sbSelector">
This Publication
</a>
<ul id="sbOptions_11215708" class="sbOptions" style="display: none;">
<li><a href="#apl" rel="apl">
This Publication
</a></li>
<li><a href="#false" rel="false">Anywhere</a></li>
<li><a href="#" rel="">
This Publisher/Society
</a></li>
</ul>
</div>
</span>
</div>
<div id="citation-search-panel" aria-hidden="true" class="tab-pane clear hidden" role="tabpanel" aria-labelledby="citation-search-tab">
<div class="quicksearch-container">
<span class="citationSearchBoxContainer hidden">
<input name="quickLinkJournal" class="journalName mediumTextInput textIndent autocomplete ui-autocomplete-input" value="Applied Physics Letters" type="search" title="Journal" placeholder="Journal" autocomplete="off" autopopulate="true"
data-history-items-conf="3" data-publication-titles-conf="3" data-topics-conf="3" data-contributors-conf="3" data-auto-complete-target="title-auto-complete" disabled="disabled"><span role="status" aria-live="polite"
class="ui-helper-hidden-accessible"></span>
<input type="hidden" name="quickLink" value="true" disabled="disabled">
<input class="year smallTextInput" title="Year" type="search" name="quickLinkYear" value="" autocomplete="false" placeholder="Year" pattern="([0-9]){1,4}$" disabled="disabled">
<input class="volume smallTextInput" title="Volume" type="search" name="quickLinkVolume" value="" autocomplete="false" placeholder="Volume" pattern="^[a-zA-Z0-9]+$" disabled="disabled">
<input class="issue smallTextInput enable" title="Issue" type="search" name="quickLinkIssue" value="" autocomplete="false" placeholder="Issue" pattern="^[a-zA-Z0-9]+$" disabled="disabled">
<input class="page smallTextInput" title="Page" type="search" name="quickLinkPage" value="" autocomplete="false" placeholder="Page" pattern="^[a-zA-Z0-9]+$" disabled="disabled">
</span>
<span class="citationSearchBoxContainer hidden">
<button class="citation-mainSearchButton">
<span class="icon-search"></span>
</button>
</span>
</div>
</div>
</div> <!-- tab-content Close -->
<div class="quicksearch-container">
<div class="simpleSearchBoxContainer">
<input name="AllField" class="searchText magicsuggest main-search-field textIndent autocomplete ui-autocomplete-input" value="" type="search" id="searchText" title="Type search term here"
placeholder="Enter words / phrases / DOI / ISBN / authors / keywords / etc." autocomplete="off" data-history-items-conf="3" data-publication-titles-conf="3" data-group-titles-conf="3" data-publication-items-conf="3" data-topics-conf="3"
data-contributors-conf="3" data-display-labels="true" data-fuzzy-suggester="true" data-auto-complete-target="auto-complete"><span role="status" aria-live="polite" class="ui-helper-hidden-accessible"></span>
<input name="ConceptID" value="" type="hidden">
<button class="mainSearchButton">
<span class="sr-only">search</span>
<span class="icon-search icon-search-btn"></span>
</button>
</div>
<div class="quicksearch-actions">
<a class="responsiveAdvanceSearch" href="/search/advanced" title="Advanced">
<span class="visible-sm visible-xs">
Advanced
</span>
<span class="hidden-xs hidden-sm icon-advanced_search"></span>
</a>
</div>
</div>
<div class="cluetips">
<a class="citationHelp cluetips fancy-tooltip hidden" title="This option allows users to search by Publication, Volume and Page">This option allows users to search by Publication, Volume and Page</a>
<a class="journalHelp cluetips fancy-tooltip hidden" title="Selecting this option will search the current publication in context." style="display: inline;">Selecting this option will search the current publication in context.</a>
<a class="bookHelp cluetips fancy-tooltip hidden" title="Book Search tips">Book Search tips</a>
<a class="anywhereHelp cluetips fancy-tooltip hidden" title="Selecting this option will search all publications across the Scitation platform">Selecting this option will search all publications across the Scitation platform</a>
<a class="thisPublisherHelp cluetips fancy-tooltip hidden" title="Selecting this option will search all publications for the Publisher/Society in context">Selecting this option will search all publications for the Publisher/Society in context</a>
</div>
</div>
</form>
POST /action/doLogin
<form action="/action/doLogin" method="post">
<div class="login-form">
<input type="hidden" name="id" value="913494f4-bbf3-4bd3-90ce-dec60af6f5ed">
<input type="hidden" name="redirectUri"
value="/doi/full/10.1063/5.0084696?Track=&utm_source=AIP+Publishing&utm_medium=email&utm_campaign=13082411_APL_+Piezoelectric+Thin+Films+for+MEMS.+Thermal+Radiation+at+the+Nanoscale+and+Applications_CFP&dm_i=1XPS%2C7SEGB%2C285JYW%2CVRQS2%2C1">
<input type="hidden" name="popup" value="true">
<input type="hidden" name="alertPopupLogin" value="true">
<div class="login-form-inputs">
<div class="input-group">
<div class="label ">
<label for="login">Email</label>
</div>
<input id="login" class="login" type="text" name="login" value="" size="15" placeholder="">
<div class="actions">
</div>
</div>
<div class="input-group">
<div class="label ">
<label for="password">Password</label>
</div>
<input id="password" class="password" type="password" name="password" value="" autocomplete="off" placeholder="">
<span class="password-eye-icon icon-eye hidden"></span>
<div class="actions">
<a href="/action/requestResetPassword">Forgot password?</a>
</div>
</div>
<div class="remember">
<div class="keepMeLogin">
<span class="label">Keep me logged in</span>
</div>
<div class="switch small-switch">
<input id="913494f4-bbf3-4bd3-90ce-dec60af6f5ed-remember" class="cmn-toggle cmn-toggle-round-flat jcf-ignore" title="Keep Me Logged In" type="checkbox" name="remember" value="true">
<label class="tgl-btn" for="913494f4-bbf3-4bd3-90ce-dec60af6f5ed-remember" title="Keep Me Logged In"></label>
</div>
</div>
</div>
<div class="footer-buttons">
<input class="button submit primary" type="submit" name="submit" value="LOGIN" disabled="disabled">
</div>
</div>
</form>
Text Content
Öffnet in einem neuen Fenster Öffnet eine externe Website Öffnet eine externe Website in einem neuen Fenster <!---->Schließen Sie diesen Dialog<!----> Diese Website speichert Informationen auf Ihrem Gerät und greift auf diese zu, z. B. Cookies. Personenbezogene Daten wie Cookie-IDs, eindeutige Geräte-IDs und Browserinformationen können verarbeitet werden. Dritte können Informationen auf Ihrem Gerät speichern und darauf zugreifen und diese persönlichen Daten verarbeiten. Sie können Ihre Einstellungen ändern oder zurückziehen, indem Sie auf das Cookie-Symbol klicken. Infolgedessen werden möglicherweise keine relevanten Anzeigen oder personalisierten Inhalte angezeigt. Sie können Ihre Einstellungen jederzeit ändern oder die Standardeinstellungen übernehmen. Sie können dieses Banner schließen, um nur mit essenziellen Cookies fortzufahren. Datenschutz-Bestimmungen Speichereinstellungen Dritte * Lager * Marketing * Personalisierung * Analyse Speichern Alle akzeptieren Alles ablehnen <!---->Schließen Sie die Cookie-Einstellungen<!----> MENU SIGN IN Sign in/Register Enter words / phrases / DOI / ISBN / authors / keywords / etc. SEARCH CITATION SEARCH * SEARCH * CITATION SEARCH * ADVANCED SEARCH Search in: This Publication Anywhere This Publisher/Society This Publication This Publication * This Publication * Anywhere * This Publisher/Society search Advanced This option allows users to search by Publication, Volume and Page Selecting this option will search the current publication in context. Book Search tips Selecting this option will search all publications across the Scitation platform Selecting this option will search all publications for the Publisher/Society in context * Publishers * Books * Scilight * Conference Proceedings * Author Resources * Librarian Resources * Advertiser * Contact Us * FAQ * Help * * Publications View All Publications * Applied Physics Reviews * Applied Physics Letters * Journal of Applied Physics * The Journal of Chemical Physics * Physics Today * The Journal of the Acoustical Society of America * Review of Scientific Instruments * American Journal of Physics * Physics of Fluids * AIP Advances * View All Publications * Topics View All Topics * Acoustics * Biological Physics * Condensed Matter Physics * Energy * Materials Science * Mathematical Physics * Optics and Optical Physics * Physical Chemistry * Plasma Physics * Rheology and Fluid Dynamics * View All Topics Applied Physics Letters like and follow us Facebook * Most recent (RSS) * Most cited (RSS) SUBMIT YOUR ARTICLE * HOME * ISSUES * MORE * INFO * Overview * Editorial Board * News * FOR AUTHORS * Preparing Your Manuscript * Publication Charges * Author Resources * AIP Author Services * Submit * COLLECTIONS * Editor's Picks * Fast Track * Featured * Perspectives * Press Releases * Scilights * Special Topics * Upcoming Special Topics * ISSUES * INFO * Overview * Editorial Board * News * FOR AUTHORS * Preparing Your Manuscript * Publication Charges * Author Resources * AIP Author Services * Submit * COLLECTIONS * Editor's Picks * Fast Track * Featured * Perspectives * Press Releases * Scilights * Special Topics * Upcoming Special Topics SIGN UP FOR ALERTS THANK YOU FOR YOUR INTEREST IN APPLIED PHYSICS LETTERS To sign up for alerts, please log in first. If you need an account, please register here Email Password Forgot password? Keep me logged in * DATA AVAILABILITY * REFERENCES METASTRUCTURES: FROM PHYSICS TO APPLICATION * PDF * Tools * Download Citation * Add to favorites * Reprints and Permissions * Share E-mail Facebook Linkedin Twitter Reddit Mendeley Recommend to Librarians * Home > * Applied Physics Letters > * Volume 120, Issue 6 > * 10.1063/5.0084696 Next RELATED ARTICLES Hybrid Metastructures Enabled by Dual-Frequency Liquid Crystals Author Rafał Kowerdzi... Left-handed properties dependence versus the interwire distance in Fe-based microwires metastructures Gabriel Ababei, Crist... Left-handed metastructures with selective frequency transmission window for gigahertz shielding applications G. Ababei, C. S. Olar... Labyrinthine acoustic metastructures enabling broadband sound absorption and ventilation Sanjay Kumar and Heow... Broadband low-frequency sound absorbing metastructures based on impedance matching coiled-up cavity Yiyang Liu, Shuwei Re... A perspective on elastic metastructures for energy harvesting Zhihui Wen, Wan Wang,... Biomolecular Sensing in Hybrid Chiral/Hyperbolic Metastructures Authors Giovanna Pale... Hybrid Flatland Metastructures Editors Roberto Caput... Perspective on III–V barrier detectors Philip C. Klipstein m... Extended many-body superradiance in diamond epsilon near-zero metamaterials Olivia Mello, Yang Li... Multicolor concentric ultrafast vortex beams with controllable orbital angular momentum Shunlin Huang, Peng W... Improved hole injection for CsPbI3 nanocrystals based light-emitting diodes via coevaporation of hole transport layer Feisong Qin, Po Lu, S... Free Submitted: 09 January 2022 Accepted: 10 January 2022 Published Online: 07 February 2022 * METASTRUCTURES: FROM PHYSICS TO APPLICATION * Appl. Phys. Lett. 120, 060401 (2022); https://doi.org/10.1063/5.0084696 Filippo Capolino1,a), Mercedeh Khajavikhan2, and Andrea Alù3,4 more...View Affiliations * 1Department of Electrical Engineering and Computer Science, University of California, Irvine, California 92697, USA * 2Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California 90089, USA * 3Photonics Initiative, Advanced Science Research Center, New York, New York 10031, USA * 4Department of Electrical Engineering, City College, City University of New York, New York, New York 10031, USA * a)Author to whom correspondence should be addressed: f.capolino@uci.edu Note: This Paper is part of the APL Special Collection on Metastructures: From Physics to Applications. View Contributors * Filippo Capolino * Mercedeh Khajavikhan * Andrea Alù * PDF * CHORUS * First Page * Full Text * Figures * Tools * Download Citation * Add to Favorites * Reprints and Permissions * E-mail Facebook Linkedin Twitter Reddit Mendeley Recommend to Librarian * Share E-mail Facebook Linkedin Twitter Reddit Mendeley Recommend to Librarian metrics 3.3K Views * Topics * Special Topics * Metastructures: From Physics to Application * Topics * Acoustics * 2D materials * Nonlinear optics * Telecommunications engineering * Photonics * Nanofabrication * Topological properties * Semiconductors * Electromagnetism * Metamaterials The exotic wave phenomena in metastructures and their wide applications are one of the most researched subjects in electromagnetic waves and photonics, from radio frequencies to optics, and extend into several other disciplines, such as acoustics, mechanics, thermodynamics, materials science, condensed matter, etc. One of the most exciting opportunities for wave engineering using metastructures consists in the manipulation of wave–matter interactions involving nonlinear optics, semiconductor physics, 2D materials, soft matter, quantum matter, etc. What we have learned from the physics of metastructures, since the start of research in metamaterials and metasurfaces,1–51. D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, “ High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory Tech. 47(11), 2059–2074 (1999). https://doi.org/10.1109/22.7980012. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “ Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47(11), 2075–2084 (1999). https://doi.org/10.1109/22.7980023. J. B. Pendry, “ Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966 (2000). https://doi.org/10.1103/PhysRevLett.85.39664. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Phys. Rev. Lett. 84, 4184 (2000). https://doi.org/10.1103/PhysRevLett.84.41845. N. Engheta and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations ( IEEE Press, 2006). has been stimulating a much broader set of topics than originally thought; the excellent papers published within this Special Topic in Applied Physics Letters are a testament of that.6–526. K. Agata, S. Murai, and K. Tanaka, “ Stick-and-play metasurfaces for directional light outcoupling,” Appl. Phys. Lett. 118, 021110 (2021). https://doi.org/10.1063/5.00341157. Z. Lin, C. Roques-Carmes, R. E. Christiansen, M. Soljacic, and S. G. Johnson, “ Computational inverse design for ultra-compact single-piece metalenses free of chromatic and angular aberration,” Appl. Phys. Lett. 118, 041104 (2021). https://doi.org/10.1063/5.00354198. P. Ang, G. Xu, and G. Eleftheriades, “ Invisibility cloaking with passive and active Huygens' metasurfaces,” Appl. Phys. Lett. 118, 071903 (2021). https://doi.org/10.1063/5.00419969. H. Bilge Yağci and H. V. Demir, “ ‘Meta-atomless’ architecture based on an irregular continuous fabric of coupling-tuned identical nanopillars enables highly efficient and achromatic metasurfaces,” Appl. Phys. Lett. 118, 081105 (2021). https://doi.org/10.1063/5.004036510. Q. Chen, F. Giusti, G. Valerio, F. Mesa, and O. Quevedo-Teruel, “ Anisotropic glide-symmetric substrate-integrated-holey metasurface for a compressed ultrawideband Luneburg lens,” Appl. Phys. Lett. 118, 084102 (2021). https://doi.org/10.1063/5.004158611. N. K. Paul and J. Sebastián Gomez Diaz, “ Broadband and unidirectional plasmonic hyperlensing in drift-biased graphene,” Appl. Phys. Lett. 118, 091107 (2021). https://doi.org/10.1063/5.004258012. W. T. Chen and F. Capasso, “ Will flat optics appear in everyday life anytime soon?,” Appl. Phys. Lett. 118, 100503 (2021). https://doi.org/10.1063/5.003988513. H. Zhang, Q. Cheng, H. Chu, O. Christogeorgos, W. Wu, and Y. Hao, “ Hyperuniform disordered distribution metasurface for scattering reduction,” Appl. Phys. Lett. 118, 101601 (2021). https://doi.org/10.1063/5.004191114. P. del Hougne, J. Sol, F. Mortessagne, U. Kuhl, O. Legrand, P. Besnier, and M. Davy, “ Diffuse field cross-correlation in a programmable-metasurface-stirred reverberation chamber,” Appl. Phys. Lett. 118, 104101 (2021). https://doi.org/10.1063/5.003959615. O. Rabinovich and A. Epstein, “ Nonradiative subdiffraction near-field patterns using metagratings,” Appl. Phys. Lett. 118, 131105 (2021). https://doi.org/10.1063/5.004348416. S. A. Kuznetsov, V. Lenets, M. Tumashov, A. Sayanskiy, P. A. Lazorskiy, P. Belov, J. D. Baena, and S. Glybovski, “ Self-complementary metasurfaces for designing terahertz deflecting circular-polarization beam splitters,” Appl. Phys. Lett. 118, 131601 (2021). https://doi.org/10.1063/5.004240317. J. B. Gros, G. Lerosey, F. Mortessagne, U. Kuhl, and O. Legrand, “ Uncorrelated configurations and field uniformity in reverberation chambers stirred by reconfigurable metasurfaces,” Appl. Phys. Lett. 118, 144101 (2021). https://doi.org/10.1063/5.004183718. M. Faenzi, D. G. Ovejero, and S. Maci, “ Overlapped and sequential metasurface modulations for bi-chromatic beams generation,” Appl. Phys. Lett. 118, 181902 (2021). https://doi.org/10.1063/5.004898519. H. Q. Nguyen, Q. Wu, J. Chen, Y. Yu, H. Chen, S. Tracy, and G. Huang, “ A broadband acoustic panel based on double-layer membrane-type metamaterials,” Appl. Phys. Lett. 118, 184101 (2021). https://doi.org/10.1063/5.004258420. J. Lundgren, M. Gustafsson, D. Sjöberg, and M. Nilsson, “ IR and metasurface based mm-wave camera,” Appl. Phys. Lett. 118, 184104 (2021). https://doi.org/10.1063/5.004731521. D. Khmelevskaia, D. I. Markina, V. Fedorov, G. A. Ermolaev, A. V. Arsenin, V. S. Volkov, A. S. Goltaev, Y. M. Zadiranov, I. A. Tzibizov, A. P. Pushkarev, A. K. Samusev, A. A. Shcherbakov, P. Belov, I. S. Mukhin, and S. Makarov, “ Directly grown crystalline gallium phosphide on sapphire for nonlinear all-dielectric nanophotonics,” Appl. Phys. Lett. 118, 201101 (2021). https://doi.org/10.1063/5.004896922. P. Vabishchevich, A. Vaskin, N. Karl, J. L. Reno, M. B. Sinclair, I. Staude, and I. Brener, “ Ultrafast all-optical diffraction switching using semiconductor metasurfaces,” Appl. Phys. Lett. 118, 211105 (2021). https://doi.org/10.1063/5.004958523. A. Moreno-Peñarrubia, J. Teniente, S. A. Kuznetsov, B. Orazbayev, and M. Beruete, “ Ultrathin and high-efficiency Pancharatnam-Berry phase metalens for millimeter waves,” Appl. Phys. Lett. 118, 221105 (2021). https://doi.org/10.1063/5.004890724. J. D. Ortiz, J. D. Baena, R. Marques, A. Enemuo, J. N. Gollub, R. Akhmechet, B. Penkov, C. Sarantos, and D. Crouse, “ Babinet's principle and saturation of the resonance frequency of scaled-down complementary metasurfaces,” Appl. Phys. Lett. 118, 221901 (2021). https://doi.org/10.1063/5.004896025. C. Yepes, M. Faenzi, S. Maci, and E. Martini, “ Perfect non-specular reflection with polarization control by using a locally passive metasurface sheet on a grounded dielectric slab,” Appl. Phys. Lett. 118, 231601 (2021). https://doi.org/10.1063/5.004897026. K. Manukyan, M. Z. Alam, C. Liu, K. Pang, H. Song, Z. Zhao, M. Tur, R. W. Boyd, and A. E. Willner, “ Dependence of the coupling properties between a plasmonic antenna array and a sub-wavelength epsilon-near-zero film on structural and material parameters,” Appl. Phys. Lett. 118, 241102 (2021). https://doi.org/10.1063/5.004259927. D. Wei, C. Hu, M. Chen, J. Shi, J. Luo, H. Wang, C. Xie, and X. Zhang, “ Light absorption and nanofocusing on tapered magnetic metasurface,” Appl. Phys. Lett. 117, 243102 (2020). https://doi.org/10.1063/5.002607328. K. Rouhi, R. G. Marosi, T. Mealy, A. Abdelshafy, A. Figotin, and F. Capolino, “ Exceptional degeneracies in traveling wave tubes with dispersive slow-wave structure including space-charge effect,” Appl. Phys. Lett. 118, 263506 (2021). https://doi.org/10.1063/5.005146229. A. Abdelshafy, T. Mealy, E. Hafezi, A. Nikzamir, and F. Capolino, “ Exceptional degeneracy in a waveguide periodically loaded with discrete gain and radiation loss elements,” Appl. Phys. Lett. 118, 224102 (2021). https://doi.org/10.1063/5.005123830. D. Ramaccia, A. Alù, A. Toscano, and F. Bilotti, “ Temporal multilayer structures for designing higher-order transfer functions using time-varying metamaterials,” Appl. Phys. Lett. 118, 101901 (2021). https://doi.org/10.1063/5.004256731. S. Guenneau, B. Lombard, and C. Bellis, “ Time-domain investigation of an external cloak for antiplane elastic waves,” Appl. Phys. Lett. 118, 191102 (2021). https://doi.org/10.1063/5.004891032. S. Huang, E. Zhou, Z. Huang, P. Lei, Z. Zhou, and Y. Li, “ Broadband sound attenuation by meta-liner under grazing flow,” Appl. Phys. Lett. 118, 063504 (2021). https://doi.org/10.1063/5.004222833. O. R. Bilal, C. H. Yee, J. Rys, C. Schumacher, and C. Daraio, “ Experimental realization of phonon demultiplexing in three-dimensions,” Appl. Phys. Lett. 118, 091901 (2021). https://doi.org/10.1063/5.003083034. G. Fujii, M. Takahashi, and Y. Akimoto, “ Acoustic cloak designed by topology optimization for acoustic-elastic-coupled systems,” Appl. Phys. Lett. 118, 101102 (2021). https://doi.org/10.1063/5.004091135. Z.-M. Gu, X. Fang, T. Liu, H. Gao, S. Liang, Y. Li, B. Liang, J.-C. Cheng, and J. Zhu, “ Tunable asymmetric acoustic transmission via binary metasurface and zero-index metamaterials,” Appl. Phys. Lett. 118, 113501 (2021). https://doi.org/10.1063/5.004675636. Y. Mi, W. Zhai, L. Cheng, C. Xi, and X. Yu, “ Wave trapping by acoustic black hole: Simultaneous reduction of sound reflection and transmission,” Appl. Phys. Lett. 118, 114101 (2021). https://doi.org/10.1063/5.004251437. R. Zaccherini, A. Palermo, A. Marzani, A. Colombi, V. Dertimanis, and E. Chatzi, “ Mitigation of Rayleigh-like waves in granular media via multi-layer resonant metabarriers,” Appl. Phys. Lett. 117, 254103 (2020). https://doi.org/10.1063/5.003111338. J. K. Asane, M. Golam Rabbani Chowdhury, K. M. Khabir, V. A. Podolskiy, and M. A. Noginov, “ Stimulated emission in vicinity of the critical angle,” Appl. Phys. Lett. 119, 031102 (2021). https://doi.org/10.1063/5.005190139. U. Meriç Gür, M. Mattes, S. Arslanagić, and N. Gregersen, “ Elliptical micropillar cavity design for highly efficient polarized emission of single photons,” Appl. Phys. Lett. 118, 061101 (2021). https://doi.org/10.1063/5.004156540. P. Tonkaev, S. Anoshkin, A. P. Pushkarev, R. Malureanu, M. Masharin, P. Belov, A. V. Lavrinenko, and S. Makarov, “ Acceleration of radiative recombination in quasi-2D perovskite films on hyperbolic metamaterials,” Appl. Phys. Lett. 118, 091104 (2021). https://doi.org/10.1063/5.004255741. B. A. Webb and R. W. Ziolkowski, “ Metamaterial-inspired multilayered structures optimized to enable wireless communications through a plasmasonic region,” Appl. Phys. Lett. 118, 094102 (2021). https://doi.org/10.1063/5.004119642. I. Liberal and R. W. Ziolkowski, “ Nonperturbative decay dynamics in metamaterial waveguides,” Appl. Phys. Lett. 118, 111103 (2021). https://doi.org/10.1063/5.004410343. M. Jeannin, T. Bonazzi, D. Gacemi, A. Vasanelli, S. Suffit, L. Li, A. G. Davies, E. H. Linfield, C. Sirtori, and Y. Todorov, “ High temperature metamaterial terahertz quantum detector,” Appl. Phys. Lett. 117, 251102 (2020). https://doi.org/10.1063/5.003336744. L. Yu, H. Xue, and B. Zhang, “ Topological slow light via coupling chiral edge modes with flat bands,” Appl. Phys. Lett. 118, 071102 (2021). https://doi.org/10.1063/5.003983945. M. Proctor, M. Blanco De Paz, D. Bercioux, A. Garcia-Etxarri, and P. Arroyo Huidobro, “ Higher-order topology in plasmonic Kagome lattices,” Appl. Phys. Lett. 118, 091105 (2021). https://doi.org/10.1063/5.004095546. S. Kandil and D. F. Sievenpiper, “ C-shaped chiral waveguide for spin-dependent unidirectional propagation,” Appl. Phys. Lett. 118, 101104 (2021). https://doi.org/10.1063/5.004258347. R. J. Davis, D. J. Bisharat, and D. F. Sievenpiper, “ Classical-to-topological transmission line couplers,” Appl. Phys. Lett. 118, 131102 (2021). https://doi.org/10.1063/5.004105548. M. I. Nora Rosa, Y. Guo, and M. Ruzzene, “ Exploring topology of 1D quasiperiodic metastructures through modulated LEGO resonators,” Appl. Phys. Lett. 118, 131901 (2021). https://doi.org/10.1063/5.004229449. J. Feis, C. J. Stevens, and E. Shamonina, “ Wireless power transfer through asymmetric topological edge states in diatomic chains of coupled meta-atoms,” Appl. Phys. Lett. 117, 134106 (2020). https://doi.org/10.1063/5.002407750. Z. Yue, D. Liao, Z. Zhang, W. Xiong, Y. Cheng, and X. J. Liu, “ Experimental demonstration of a reconfigurable acoustic second-order topological insulator using condensed soda cans array,” Appl. Phys. Lett. 118, 203501 (2021). https://doi.org/10.1063/5.004903051. Y. Kawaguchi, M. Li, K. Chen, V. M. Menon, A. Alù, and A. B. Khanikaev, “ Optical isolator based on chiral light-matter interactions in a ring resonator integrating a dichroic magneto-optical material,” Appl. Phys. Lett. 118, 241104 (2021). https://doi.org/10.1063/5.005755852. X. Shi, C. Jin, and W. Mi, “ Inversion of angular-dependent planar magnetoresistance in epitaxial Pt/γ′-Fe4N bilayers,” Appl. Phys. Lett. 118, 111601 (2021). https://doi.org/10.1063/5.0040980 Despite focusing on different topics, all the papers within this Special Topic collection share the same point of view: we can push the boundaries of wave physics for a broad range of applications, and we can engineer novel and on-demand physical properties to enhance current devices and even conceive new functionalities. Indeed, an important aspect of all research activities spanning the general area of metamaterials is its interdisciplinary nature, covering a wide range of expertise, in fundamental and applied physics, engineering, materials science, and beyond. The idea of this Special Topic originated in the context of the 2020 International Congress on Artificial Materials for Novel Wave Phenomena, which, indeed, has been bringing together a wide range of scientists and expertise to facilitate these interdisciplinary discussions and interactions. The area of metastructures is much broader than it was years ago, and it has been growing since researchers in various disciplines are now mastering nanofabrication and applying concepts from quantum mechanics and condensed matter physics to conceive newer wave phenomena. Indeed, a large portion of the research presented in this Special Topic would not have happened without the growing progress in nanofabrication techniques, allowing the control of materials and, hence, field manipulation at nanoscale. Even electrically large structures like metasurfaces benefit from nanoscale fabrication methods because of the control of the field and its gradient at nanoscale. This Special Topic in Applied Physics Letters collects recent advances in the broad area of metastructures. Though it is difficult to address the specific achievements, in particular, individual areas, since the field is broad, we will provide here highlights of some of the papers in this collection. We list them here, grouped within broad areas of interest. Metasurfaces and gradient metastructures have been showing extreme opportunities for the manipulation of the reflected/transmitted wavefront, to realize ultrathin photonic devices and very flexible and versatile radio frequency reflectors. The contributed papers are Refs. 6–276. K. Agata, S. Murai, and K. Tanaka, “ Stick-and-play metasurfaces for directional light outcoupling,” Appl. Phys. Lett. 118, 021110 (2021). https://doi.org/10.1063/5.00341157. Z. Lin, C. Roques-Carmes, R. E. Christiansen, M. Soljacic, and S. G. Johnson, “ Computational inverse design for ultra-compact single-piece metalenses free of chromatic and angular aberration,” Appl. Phys. Lett. 118, 041104 (2021). https://doi.org/10.1063/5.00354198. P. Ang, G. Xu, and G. Eleftheriades, “ Invisibility cloaking with passive and active Huygens' metasurfaces,” Appl. Phys. Lett. 118, 071903 (2021). https://doi.org/10.1063/5.00419969. H. Bilge Yağci and H. V. Demir, “ ‘Meta-atomless’ architecture based on an irregular continuous fabric of coupling-tuned identical nanopillars enables highly efficient and achromatic metasurfaces,” Appl. Phys. Lett. 118, 081105 (2021). https://doi.org/10.1063/5.004036510. Q. Chen, F. Giusti, G. Valerio, F. Mesa, and O. Quevedo-Teruel, “ Anisotropic glide-symmetric substrate-integrated-holey metasurface for a compressed ultrawideband Luneburg lens,” Appl. Phys. Lett. 118, 084102 (2021). https://doi.org/10.1063/5.004158611. N. K. Paul and J. Sebastián Gomez Diaz, “ Broadband and unidirectional plasmonic hyperlensing in drift-biased graphene,” Appl. Phys. Lett. 118, 091107 (2021). https://doi.org/10.1063/5.004258012. W. T. Chen and F. Capasso, “ Will flat optics appear in everyday life anytime soon?,” Appl. Phys. Lett. 118, 100503 (2021). https://doi.org/10.1063/5.003988513. H. Zhang, Q. Cheng, H. Chu, O. Christogeorgos, W. Wu, and Y. Hao, “ Hyperuniform disordered distribution metasurface for scattering reduction,” Appl. Phys. Lett. 118, 101601 (2021). https://doi.org/10.1063/5.004191114. P. del Hougne, J. Sol, F. Mortessagne, U. Kuhl, O. Legrand, P. Besnier, and M. Davy, “ Diffuse field cross-correlation in a programmable-metasurface-stirred reverberation chamber,” Appl. Phys. Lett. 118, 104101 (2021). https://doi.org/10.1063/5.003959615. O. Rabinovich and A. Epstein, “ Nonradiative subdiffraction near-field patterns using metagratings,” Appl. Phys. Lett. 118, 131105 (2021). https://doi.org/10.1063/5.004348416. S. A. Kuznetsov, V. Lenets, M. Tumashov, A. Sayanskiy, P. A. Lazorskiy, P. Belov, J. D. Baena, and S. Glybovski, “ Self-complementary metasurfaces for designing terahertz deflecting circular-polarization beam splitters,” Appl. Phys. Lett. 118, 131601 (2021). https://doi.org/10.1063/5.004240317. J. B. Gros, G. Lerosey, F. Mortessagne, U. Kuhl, and O. Legrand, “ Uncorrelated configurations and field uniformity in reverberation chambers stirred by reconfigurable metasurfaces,” Appl. Phys. Lett. 118, 144101 (2021). https://doi.org/10.1063/5.004183718. M. Faenzi, D. G. Ovejero, and S. Maci, “ Overlapped and sequential metasurface modulations for bi-chromatic beams generation,” Appl. Phys. Lett. 118, 181902 (2021). https://doi.org/10.1063/5.004898519. H. Q. Nguyen, Q. Wu, J. Chen, Y. Yu, H. Chen, S. Tracy, and G. Huang, “ A broadband acoustic panel based on double-layer membrane-type metamaterials,” Appl. Phys. Lett. 118, 184101 (2021). https://doi.org/10.1063/5.004258420. J. Lundgren, M. Gustafsson, D. Sjöberg, and M. Nilsson, “ IR and metasurface based mm-wave camera,” Appl. Phys. Lett. 118, 184104 (2021). https://doi.org/10.1063/5.004731521. D. Khmelevskaia, D. I. Markina, V. Fedorov, G. A. Ermolaev, A. V. Arsenin, V. S. Volkov, A. S. Goltaev, Y. M. Zadiranov, I. A. Tzibizov, A. P. Pushkarev, A. K. Samusev, A. A. Shcherbakov, P. Belov, I. S. Mukhin, and S. Makarov, “ Directly grown crystalline gallium phosphide on sapphire for nonlinear all-dielectric nanophotonics,” Appl. Phys. Lett. 118, 201101 (2021). https://doi.org/10.1063/5.004896922. P. Vabishchevich, A. Vaskin, N. Karl, J. L. Reno, M. B. Sinclair, I. Staude, and I. Brener, “ Ultrafast all-optical diffraction switching using semiconductor metasurfaces,” Appl. Phys. Lett. 118, 211105 (2021). https://doi.org/10.1063/5.004958523. A. Moreno-Peñarrubia, J. Teniente, S. A. Kuznetsov, B. Orazbayev, and M. Beruete, “ Ultrathin and high-efficiency Pancharatnam-Berry phase metalens for millimeter waves,” Appl. Phys. Lett. 118, 221105 (2021). https://doi.org/10.1063/5.004890724. J. D. Ortiz, J. D. Baena, R. Marques, A. Enemuo, J. N. Gollub, R. Akhmechet, B. Penkov, C. Sarantos, and D. Crouse, “ Babinet's principle and saturation of the resonance frequency of scaled-down complementary metasurfaces,” Appl. Phys. Lett. 118, 221901 (2021). https://doi.org/10.1063/5.004896025. C. Yepes, M. Faenzi, S. Maci, and E. Martini, “ Perfect non-specular reflection with polarization control by using a locally passive metasurface sheet on a grounded dielectric slab,” Appl. Phys. Lett. 118, 231601 (2021). https://doi.org/10.1063/5.004897026. K. Manukyan, M. Z. Alam, C. Liu, K. Pang, H. Song, Z. Zhao, M. Tur, R. W. Boyd, and A. E. Willner, “ Dependence of the coupling properties between a plasmonic antenna array and a sub-wavelength epsilon-near-zero film on structural and material parameters,” Appl. Phys. Lett. 118, 241102 (2021). https://doi.org/10.1063/5.004259927. D. Wei, C. Hu, M. Chen, J. Shi, J. Luo, H. Wang, C. Xie, and X. Zhang, “ Light absorption and nanofocusing on tapered magnetic metasurface,” Appl. Phys. Lett. 117, 243102 (2020). https://doi.org/10.1063/5.0026073. As exemplary results within this topic, Chen and Capasso1212. W. T. Chen and F. Capasso, “ Will flat optics appear in everyday life anytime soon?,” Appl. Phys. Lett. 118, 100503 (2021). https://doi.org/10.1063/5.0039885 talk about metasurface-based components consisting of regular arrays of sub-wavelength dielectric nanostructures, providing also an outlook on future trends. They discuss that metasurface concepts are not only leading to a reduction in size and complexity of optical components, but also bring new functionalities, like a full-Stokes metasurface camera and a metasurface depth sensor. Zhang et al.1313. H. Zhang, Q. Cheng, H. Chu, O. Christogeorgos, W. Wu, and Y. Hao, “ Hyperuniform disordered distribution metasurface for scattering reduction,” Appl. Phys. Lett. 118, 101601 (2021). https://doi.org/10.1063/5.0041911 investigate the effects of using a hyperuniform disordered distribution of metasurface elements to enlarge the operating bandwidth, with a significant reduction in radar cross section of the surface. This research shows that moving away from strictly periodic unit cells (with a gradient distribution) is a promising direction for possible future investigations. The paper by Kuznetsov et al.1616. S. A. Kuznetsov, V. Lenets, M. Tumashov, A. Sayanskiy, P. A. Lazorskiy, P. Belov, J. D. Baena, and S. Glybovski, “ Self-complementary metasurfaces for designing terahertz deflecting circular-polarization beam splitters,” Appl. Phys. Lett. 118, 131601 (2021). https://doi.org/10.1063/5.0042403 elaborates and experimentally demonstrates on a single-layer metasurface whose elements are based on pairs of complementary structures to manipulate circular wavefronts, yielding an effective approach to manipulate the optical wavefront. The paper by Faenzi et al.1818. M. Faenzi, D. G. Ovejero, and S. Maci, “ Overlapped and sequential metasurface modulations for bi-chromatic beams generation,” Appl. Phys. Lett. 118, 181902 (2021). https://doi.org/10.1063/5.0048985 discusses metasurfaces as radiators, which has been a topic of intense investigation in the past decade. In this paper, the authors describe the generation of directive beams at two different frequencies within the same metasurface antenna based on surface wave excitation. Previously, metasurface antennas could generate tailored beams of radiation at a single frequency. The paper by Lundgren et al.2020. J. Lundgren, M. Gustafsson, D. Sjöberg, and M. Nilsson, “ IR and metasurface based mm-wave camera,” Appl. Phys. Lett. 118, 184104 (2021). https://doi.org/10.1063/5.0047315 discusses and demonstrates the concept of a metasurface absorbing a radio frequency field generated by an external device, that is then imaged using an infrared camera, hence using heat to image electromagnetic fields. Vabishchevich et al.2222. P. Vabishchevich, A. Vaskin, N. Karl, J. L. Reno, M. B. Sinclair, I. Staude, and I. Brener, “ Ultrafast all-optical diffraction switching using semiconductor metasurfaces,” Appl. Phys. Lett. 118, 211105 (2021). https://doi.org/10.1063/5.0049585 demonstrate ultrafast all-optical on/off switching using semiconductor metasurfaces made of resonators that support both dipolar and quadrupolar Mie resonances. The authors show that multipole engineering with lattice diffraction opens design pathways for tunable metasurface-based integrated devices. Moreno-Peñarrubia et al.2323. A. Moreno-Peñarrubia, J. Teniente, S. A. Kuznetsov, B. Orazbayev, and M. Beruete, “ Ultrathin and high-efficiency Pancharatnam-Berry phase metalens for millimeter waves,” Appl. Phys. Lett. 118, 221105 (2021). https://doi.org/10.1063/5.0048907 demonstrate an ultrathin and high-efficiency Pancharatnam–Berry phase metalens for millimeter waves using meta-atoms made of H shaped (i.e., dogbone shaped) pairs of conductors. The metalens focuses the wavefront of a circularly polarized incident wave and converts its handedness within an ultrathin profile composed of just two layers of patterned metals. Another topic of recent interest in the area of metastructures is non-Hermitian electromagnetics and exceptional points, concepts that have been leading to interesting new wave phenomena. In particular, it has been shown that the effect of a perturbation on the eigenvalues of a system is not linearly proportional to the amount of perturbation, but rather to its square root (for an exceptional point of order two), as discussed in Ref. 2828. K. Rouhi, R. G. Marosi, T. Mealy, A. Abdelshafy, A. Figotin, and F. Capolino, “ Exceptional degeneracies in traveling wave tubes with dispersive slow-wave structure including space-charge effect,” Appl. Phys. Lett. 118, 263506 (2021). https://doi.org/10.1063/5.0051462. The concept of having a waveguide with distributed gain and radiating antennas, leading to a distributed coherent radiating oscillator operating at an exceptional point, is presented in Ref. 2929. A. Abdelshafy, T. Mealy, E. Hafezi, A. Nikzamir, and F. Capolino, “ Exceptional degeneracy in a waveguide periodically loaded with discrete gain and radiation loss elements,” Appl. Phys. Lett. 118, 224102 (2021). https://doi.org/10.1063/5.0051238. Ramaccia et al.3030. D. Ramaccia, A. Alù, A. Toscano, and F. Bilotti, “ Temporal multilayer structures for designing higher-order transfer functions using time-varying metamaterials,” Appl. Phys. Lett. 118, 101901 (2021). https://doi.org/10.1063/5.0042567 discuss the extension to temporal interfaces of filter engineering, realizing wave manipulation by time-switching a uniform material. This approach appears to be very exciting for the prospects of metamaterials, introducing a temporal dimension to metamaterial design. In this same broad area, Guenneau et al.3131. S. Guenneau, B. Lombard, and C. Bellis, “ Time-domain investigation of an external cloak for antiplane elastic waves,” Appl. Phys. Lett. 118, 191102 (2021). https://doi.org/10.1063/5.0048910 discuss the temporal evolution of a metamaterial cloak response in the context of elastic waves. Also Fujii et al.3434. G. Fujii, M. Takahashi, and Y. Akimoto, “ Acoustic cloak designed by topology optimization for acoustic-elastic-coupled systems,” Appl. Phys. Lett. 118, 101102 (2021). https://doi.org/10.1063/5.0040911 discuss cloaking mechanisms for acoustic and elastic waves, opening to the next important topic featured in this Special Topic collection. In the context of acoustic, elastic, and mechanical waves, our Special Topic features several exciting papers, since this is an area of growing interest in the community of engineered materials. Huang et al.3232. S. Huang, E. Zhou, Z. Huang, P. Lei, Z. Zhou, and Y. Li, “ Broadband sound attenuation by meta-liner under grazing flow,” Appl. Phys. Lett. 118, 063504 (2021). https://doi.org/10.1063/5.0042228 as well as Mi et al.3636. Y. Mi, W. Zhai, L. Cheng, C. Xi, and X. Yu, “ Wave trapping by acoustic black hole: Simultaneous reduction of sound reflection and transmission,” Appl. Phys. Lett. 118, 114101 (2021). https://doi.org/10.1063/5.0042514 and Zaccherini et al.3737. R. Zaccherini, A. Palermo, A. Marzani, A. Colombi, V. Dertimanis, and E. Chatzi, “ Mitigation of Rayleigh-like waves in granular media via multi-layer resonant metabarriers,” Appl. Phys. Lett. 117, 254103 (2020). https://doi.org/10.1063/5.0031113 discuss various metamaterial geometries supporting broadband absorption exploiting sophisticated sound-matter interactions. Bilal et al.3333. O. R. Bilal, C. H. Yee, J. Rys, C. Schumacher, and C. Daraio, “ Experimental realization of phonon demultiplexing in three-dimensions,” Appl. Phys. Lett. 118, 091901 (2021). https://doi.org/10.1063/5.0030830 introduce a complex metamaterial geometry to realize multiplexing and de-multiplexing for sound. Metastructures have been found very promising in the manipulation and enhancement of wave–matter interaction at classical and quantum levels. For example, Tonkaev et al.4040. P. Tonkaev, S. Anoshkin, A. P. Pushkarev, R. Malureanu, M. Masharin, P. Belov, A. V. Lavrinenko, and S. Makarov, “ Acceleration of radiative recombination in quasi-2D perovskite films on hyperbolic metamaterials,” Appl. Phys. Lett. 118, 091104 (2021). https://doi.org/10.1063/5.0042557 show how to accelerate photoluminescence with smart engineering of photonic density of states by depositing a perovskite film on a hyperbolic metamaterial. The authors experimentally confirm the acceleration of radiative recombination by almost three times. Liberal and Ziolkowski4242. I. Liberal and R. W. Ziolkowski, “ Nonperturbative decay dynamics in metamaterial waveguides,” Appl. Phys. Lett. 118, 111103 (2021). https://doi.org/10.1063/5.0044103 analyze the wealth of decay dynamics phenomena that can be observed in metamaterial waveguides that have a complex dispersion profile. They explore the nonperturbative decay dynamics of a quantum emitter coupled to a composite right-/left-handed transmission line, including a “mu-near-zero band edge” and an “epsilon-near-zero band edge.” The decay rates associated with the spectral features are related to branch cut singularities that contribute with fractional decay dynamics. Another broad area of research interest in metamaterials focuses on topological phenomena. The main idea, borrowed from condensed matter physics, is that the nontrivial topological features of the band diagram of a metamaterial can be translated into an unusually robust boundary propagation of waves, of great interest for various applications from microwaves, photonics to acoustics. Several exciting works on this topic are featured in this collection. For instance, Yu et al.4444. L. Yu, H. Xue, and B. Zhang, “ Topological slow light via coupling chiral edge modes with flat bands,” Appl. Phys. Lett. 118, 071102 (2021). https://doi.org/10.1063/5.0039839 exploit resonant coupling to realize broadband slow light within a topological bandgap, with important implications for photonic technologies. Proctor et al.4545. M. Proctor, M. Blanco De Paz, D. Bercioux, A. Garcia-Etxarri, and P. Arroyo Huidobro, “ Higher-order topology in plasmonic Kagome lattices,” Appl. Phys. Lett. 118, 091105 (2021). https://doi.org/10.1063/5.0040955 discuss a metamaterial geometry supporting higher-order topological states, which implies localization of states within a topological bandgap at higher dimensions. Kandil and Sievenpiper4646. S. Kandil and D. F. Sievenpiper, “ C-shaped chiral waveguide for spin-dependent unidirectional propagation,” Appl. Phys. Lett. 118, 101104 (2021). https://doi.org/10.1063/5.0042583 investigate spin-dependent unidirectional propagation in a waveguide consisting of C-shaped metallic particles characterized by extrinsic chirality and strong transverse spin, and the unidirectionality sensitivity to various defects in the chiral waveguide that flips the spin direction of the wave. Nora Rosa et al.4848. M. I. Nora Rosa, Y. Guo, and M. Ruzzene, “ Exploring topology of 1D quasiperiodic metastructures through modulated LEGO resonators,” Appl. Phys. Lett. 118, 131901 (2021). https://doi.org/10.1063/5.0042294 demonstrate an elegant and simple implementation of quasi-periodic one-dimensional metamaterials using LEGO blocks, reporting nontrivial topological features. These and several other papers in this Special Topic collection (we could not discuss all of them for the sake of brevity) demonstrate the rich opportunities emerging from applying interdisciplinary topics to the field of engineered materials. This Special Topic collection provides an opportunity for the broad readership of Applied Physics Letters to get a glimpse of the recent advances in the area of metastructures and their applications. We hope that this selected collection of articles may serve as a platform to further stimulate researchers to expand their horizon beyond the classical fields of research in electromagnetics, photonics, and wave physics in general and, thus, further advance the potential advantages of metastructures for future applications. The authors thank Lesley Cohen, Editor-in-Chief, for her constant guidance, Emma Nicholson Van Burns, Journal Manager, and Jessica Trudeau, Editorial Assistant, for their technical assistance with publishing. DATA AVAILABILITY Data sharing is not applicable to this article as no new data were created or analyzed in this study. REFERENCES 1. 1. D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, “ High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory Tech. 47(11), 2059–2074 (1999). https://doi.org/10.1109/22.798001, Google ScholarCrossref 2. 2. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “ Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47(11), 2075–2084 (1999). https://doi.org/10.1109/22.798002, Google ScholarCrossref, ISI 3. 3. J. B. Pendry, “ Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966 (2000). https://doi.org/10.1103/PhysRevLett.85.3966, Google ScholarCrossref 4. 4. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Phys. Rev. Lett. 84, 4184 (2000). https://doi.org/10.1103/PhysRevLett.84.4184, Google ScholarCrossref, ISI 5. 5. N. Engheta and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations ( IEEE Press, 2006). Google ScholarCrossref 6. 6. K. Agata, S. Murai, and K. Tanaka, “ Stick-and-play metasurfaces for directional light outcoupling,” Appl. Phys. Lett. 118, 021110 (2021). https://doi.org/10.1063/5.0034115, Google ScholarScitation, ISI 7. 7. Z. Lin, C. Roques-Carmes, R. E. Christiansen, M. Soljacic, and S. G. Johnson, “ Computational inverse design for ultra-compact single-piece metalenses free of chromatic and angular aberration,” Appl. Phys. Lett. 118, 041104 (2021). https://doi.org/10.1063/5.0035419, Google ScholarScitation, ISI 8. 8. P. Ang, G. Xu, and G. Eleftheriades, “ Invisibility cloaking with passive and active Huygens' metasurfaces,” Appl. Phys. Lett. 118, 071903 (2021). https://doi.org/10.1063/5.0041996, Google ScholarScitation, ISI 9. 9. H. Bilge Yağci and H. V. Demir, “ ‘Meta-atomless’ architecture based on an irregular continuous fabric of coupling-tuned identical nanopillars enables highly efficient and achromatic metasurfaces,” Appl. Phys. Lett. 118, 081105 (2021). https://doi.org/10.1063/5.0040365, Google ScholarScitation 10. 10. Q. Chen, F. Giusti, G. Valerio, F. Mesa, and O. Quevedo-Teruel, “ Anisotropic glide-symmetric substrate-integrated-holey metasurface for a compressed ultrawideband Luneburg lens,” Appl. Phys. Lett. 118, 084102 (2021). https://doi.org/10.1063/5.0041586, Google ScholarScitation, ISI 11. 11. N. K. Paul and J. Sebastián Gomez Diaz, “ Broadband and unidirectional plasmonic hyperlensing in drift-biased graphene,” Appl. Phys. Lett. 118, 091107 (2021). https://doi.org/10.1063/5.0042580, Google ScholarScitation, ISI 12. 12. W. T. Chen and F. Capasso, “ Will flat optics appear in everyday life anytime soon?,” Appl. Phys. Lett. 118, 100503 (2021). https://doi.org/10.1063/5.0039885, Google ScholarScitation, ISI 13. 13. H. Zhang, Q. Cheng, H. Chu, O. Christogeorgos, W. Wu, and Y. Hao, “ Hyperuniform disordered distribution metasurface for scattering reduction,” Appl. Phys. Lett. 118, 101601 (2021). https://doi.org/10.1063/5.0041911, Google ScholarScitation, ISI 14. 14. P. del Hougne, J. Sol, F. Mortessagne, U. Kuhl, O. Legrand, P. Besnier, and M. Davy, “ Diffuse field cross-correlation in a programmable-metasurface-stirred reverberation chamber,” Appl. Phys. Lett. 118, 104101 (2021). https://doi.org/10.1063/5.0039596, Google ScholarScitation, ISI 15. 15. O. Rabinovich and A. Epstein, “ Nonradiative subdiffraction near-field patterns using metagratings,” Appl. Phys. Lett. 118, 131105 (2021). https://doi.org/10.1063/5.0043484, Google ScholarScitation, ISI 16. 16. S. A. Kuznetsov, V. Lenets, M. Tumashov, A. Sayanskiy, P. A. Lazorskiy, P. Belov, J. D. Baena, and S. Glybovski, “ Self-complementary metasurfaces for designing terahertz deflecting circular-polarization beam splitters,” Appl. Phys. Lett. 118, 131601 (2021). https://doi.org/10.1063/5.0042403, Google ScholarScitation, ISI 17. 17. J. B. Gros, G. Lerosey, F. Mortessagne, U. Kuhl, and O. Legrand, “ Uncorrelated configurations and field uniformity in reverberation chambers stirred by reconfigurable metasurfaces,” Appl. Phys. Lett. 118, 144101 (2021). https://doi.org/10.1063/5.0041837, Google ScholarScitation, ISI 18. 18. M. Faenzi, D. G. Ovejero, and S. Maci, “ Overlapped and sequential metasurface modulations for bi-chromatic beams generation,” Appl. Phys. Lett. 118, 181902 (2021). https://doi.org/10.1063/5.0048985, Google ScholarScitation 19. 19. H. Q. Nguyen, Q. Wu, J. Chen, Y. Yu, H. Chen, S. Tracy, and G. Huang, “ A broadband acoustic panel based on double-layer membrane-type metamaterials,” Appl. Phys. Lett. 118, 184101 (2021). https://doi.org/10.1063/5.0042584, Google ScholarScitation, ISI 20. 20. J. Lundgren, M. Gustafsson, D. Sjöberg, and M. Nilsson, “ IR and metasurface based mm-wave camera,” Appl. Phys. Lett. 118, 184104 (2021). https://doi.org/10.1063/5.0047315, Google ScholarScitation 21. 21. D. Khmelevskaia, D. I. Markina, V. Fedorov, G. A. Ermolaev, A. V. Arsenin, V. S. Volkov, A. S. Goltaev, Y. M. Zadiranov, I. A. Tzibizov, A. P. Pushkarev, A. K. Samusev, A. A. Shcherbakov, P. Belov, I. S. Mukhin, and S. Makarov, “ Directly grown crystalline gallium phosphide on sapphire for nonlinear all-dielectric nanophotonics,” Appl. Phys. Lett. 118, 201101 (2021). https://doi.org/10.1063/5.0048969, Google ScholarScitation, ISI 22. 22. P. Vabishchevich, A. Vaskin, N. Karl, J. L. Reno, M. B. Sinclair, I. Staude, and I. Brener, “ Ultrafast all-optical diffraction switching using semiconductor metasurfaces,” Appl. Phys. Lett. 118, 211105 (2021). https://doi.org/10.1063/5.0049585, Google ScholarScitation 23. 23. A. Moreno-Peñarrubia, J. Teniente, S. A. Kuznetsov, B. Orazbayev, and M. Beruete, “ Ultrathin and high-efficiency Pancharatnam-Berry phase metalens for millimeter waves,” Appl. Phys. Lett. 118, 221105 (2021). https://doi.org/10.1063/5.0048907, Google ScholarScitation 24. 24. J. D. Ortiz, J. D. Baena, R. Marques, A. Enemuo, J. N. Gollub, R. Akhmechet, B. Penkov, C. Sarantos, and D. Crouse, “ Babinet's principle and saturation of the resonance frequency of scaled-down complementary metasurfaces,” Appl. Phys. Lett. 118, 221901 (2021). https://doi.org/10.1063/5.0048960, Google ScholarScitation 25. 25. C. Yepes, M. Faenzi, S. Maci, and E. Martini, “ Perfect non-specular reflection with polarization control by using a locally passive metasurface sheet on a grounded dielectric slab,” Appl. Phys. Lett. 118, 231601 (2021). https://doi.org/10.1063/5.0048970, Google ScholarScitation 26. 26. K. Manukyan, M. Z. Alam, C. Liu, K. Pang, H. Song, Z. Zhao, M. Tur, R. W. Boyd, and A. E. Willner, “ Dependence of the coupling properties between a plasmonic antenna array and a sub-wavelength epsilon-near-zero film on structural and material parameters,” Appl. Phys. Lett. 118, 241102 (2021). https://doi.org/10.1063/5.0042599, Google ScholarScitation, ISI 27. 27. D. Wei, C. Hu, M. Chen, J. Shi, J. Luo, H. Wang, C. Xie, and X. Zhang, “ Light absorption and nanofocusing on tapered magnetic metasurface,” Appl. Phys. Lett. 117, 243102 (2020). https://doi.org/10.1063/5.0026073, Google ScholarScitation, ISI 28. 28. K. Rouhi, R. G. Marosi, T. Mealy, A. Abdelshafy, A. Figotin, and F. Capolino, “ Exceptional degeneracies in traveling wave tubes with dispersive slow-wave structure including space-charge effect,” Appl. Phys. Lett. 118, 263506 (2021). https://doi.org/10.1063/5.0051462, Google ScholarScitation 29. 29. A. Abdelshafy, T. Mealy, E. Hafezi, A. Nikzamir, and F. Capolino, “ Exceptional degeneracy in a waveguide periodically loaded with discrete gain and radiation loss elements,” Appl. Phys. Lett. 118, 224102 (2021). https://doi.org/10.1063/5.0051238, Google ScholarScitation 30. 30. D. Ramaccia, A. Alù, A. Toscano, and F. Bilotti, “ Temporal multilayer structures for designing higher-order transfer functions using time-varying metamaterials,” Appl. Phys. Lett. 118, 101901 (2021). https://doi.org/10.1063/5.0042567, Google ScholarScitation, ISI 31. 31. S. Guenneau, B. Lombard, and C. Bellis, “ Time-domain investigation of an external cloak for antiplane elastic waves,” Appl. Phys. Lett. 118, 191102 (2021). https://doi.org/10.1063/5.0048910, Google ScholarScitation, ISI 32. 32. S. Huang, E. Zhou, Z. Huang, P. Lei, Z. Zhou, and Y. Li, “ Broadband sound attenuation by meta-liner under grazing flow,” Appl. Phys. Lett. 118, 063504 (2021). https://doi.org/10.1063/5.0042228, Google ScholarScitation, ISI 33. 33. O. R. Bilal, C. H. Yee, J. Rys, C. Schumacher, and C. Daraio, “ Experimental realization of phonon demultiplexing in three-dimensions,” Appl. Phys. Lett. 118, 091901 (2021). https://doi.org/10.1063/5.0030830, Google ScholarScitation, ISI 34. 34. G. Fujii, M. Takahashi, and Y. Akimoto, “ Acoustic cloak designed by topology optimization for acoustic-elastic-coupled systems,” Appl. Phys. Lett. 118, 101102 (2021). https://doi.org/10.1063/5.0040911, Google ScholarScitation, ISI 35. 35. Z.-M. Gu, X. Fang, T. Liu, H. Gao, S. Liang, Y. Li, B. Liang, J.-C. Cheng, and J. Zhu, “ Tunable asymmetric acoustic transmission via binary metasurface and zero-index metamaterials,” Appl. Phys. Lett. 118, 113501 (2021). https://doi.org/10.1063/5.0046756, Google ScholarScitation, ISI 36. 36. Y. Mi, W. Zhai, L. Cheng, C. Xi, and X. Yu, “ Wave trapping by acoustic black hole: Simultaneous reduction of sound reflection and transmission,” Appl. Phys. Lett. 118, 114101 (2021). https://doi.org/10.1063/5.0042514, Google ScholarScitation, ISI 37. 37. R. Zaccherini, A. Palermo, A. Marzani, A. Colombi, V. Dertimanis, and E. Chatzi, “ Mitigation of Rayleigh-like waves in granular media via multi-layer resonant metabarriers,” Appl. Phys. Lett. 117, 254103 (2020). https://doi.org/10.1063/5.0031113, Google ScholarScitation, ISI 38. 38. J. K. Asane, M. Golam Rabbani Chowdhury, K. M. Khabir, V. A. Podolskiy, and M. A. Noginov, “ Stimulated emission in vicinity of the critical angle,” Appl. Phys. Lett. 119, 031102 (2021). https://doi.org/10.1063/5.0051901, Google ScholarScitation 39. 39. U. Meriç Gür, M. Mattes, S. Arslanagić, and N. Gregersen, “ Elliptical micropillar cavity design for highly efficient polarized emission of single photons,” Appl. Phys. Lett. 118, 061101 (2021). https://doi.org/10.1063/5.0041565, Google ScholarScitation 40. 40. P. Tonkaev, S. Anoshkin, A. P. Pushkarev, R. Malureanu, M. Masharin, P. Belov, A. V. Lavrinenko, and S. Makarov, “ Acceleration of radiative recombination in quasi-2D perovskite films on hyperbolic metamaterials,” Appl. Phys. Lett. 118, 091104 (2021). https://doi.org/10.1063/5.0042557, Google ScholarScitation, ISI 41. 41. B. A. Webb and R. W. Ziolkowski, “ Metamaterial-inspired multilayered structures optimized to enable wireless communications through a plasmasonic region,” Appl. Phys. Lett. 118, 094102 (2021). https://doi.org/10.1063/5.0041196, Google ScholarScitation, ISI 42. 42. I. Liberal and R. W. Ziolkowski, “ Nonperturbative decay dynamics in metamaterial waveguides,” Appl. Phys. Lett. 118, 111103 (2021). https://doi.org/10.1063/5.0044103, Google ScholarScitation, ISI 43. 43. M. Jeannin, T. Bonazzi, D. Gacemi, A. Vasanelli, S. Suffit, L. Li, A. G. Davies, E. H. Linfield, C. Sirtori, and Y. Todorov, “ High temperature metamaterial terahertz quantum detector,” Appl. Phys. Lett. 117, 251102 (2020). https://doi.org/10.1063/5.0033367, Google ScholarScitation, ISI 44. 44. L. Yu, H. Xue, and B. Zhang, “ Topological slow light via coupling chiral edge modes with flat bands,” Appl. Phys. Lett. 118, 071102 (2021). https://doi.org/10.1063/5.0039839, Google ScholarScitation, ISI 45. 45. M. Proctor, M. Blanco De Paz, D. Bercioux, A. Garcia-Etxarri, and P. Arroyo Huidobro, “ Higher-order topology in plasmonic Kagome lattices,” Appl. Phys. Lett. 118, 091105 (2021). https://doi.org/10.1063/5.0040955, Google ScholarScitation, ISI 46. 46. S. Kandil and D. F. Sievenpiper, “ C-shaped chiral waveguide for spin-dependent unidirectional propagation,” Appl. Phys. Lett. 118, 101104 (2021). https://doi.org/10.1063/5.0042583, Google ScholarScitation, ISI 47. 47. R. J. Davis, D. J. Bisharat, and D. F. Sievenpiper, “ Classical-to-topological transmission line couplers,” Appl. Phys. Lett. 118, 131102 (2021). https://doi.org/10.1063/5.0041055, Google ScholarScitation, ISI 48. 48. M. I. Nora Rosa, Y. Guo, and M. Ruzzene, “ Exploring topology of 1D quasiperiodic metastructures through modulated LEGO resonators,” Appl. Phys. Lett. 118, 131901 (2021). https://doi.org/10.1063/5.0042294, Google ScholarScitation 49. 49. J. Feis, C. J. Stevens, and E. Shamonina, “ Wireless power transfer through asymmetric topological edge states in diatomic chains of coupled meta-atoms,” Appl. Phys. Lett. 117, 134106 (2020). https://doi.org/10.1063/5.0024077, Google ScholarScitation, ISI 50. 50. Z. Yue, D. Liao, Z. Zhang, W. Xiong, Y. Cheng, and X. J. Liu, “ Experimental demonstration of a reconfigurable acoustic second-order topological insulator using condensed soda cans array,” Appl. Phys. Lett. 118, 203501 (2021). https://doi.org/10.1063/5.0049030, Google ScholarScitation 51. 51. Y. Kawaguchi, M. Li, K. Chen, V. M. Menon, A. Alù, and A. B. Khanikaev, “ Optical isolator based on chiral light-matter interactions in a ring resonator integrating a dichroic magneto-optical material,” Appl. Phys. Lett. 118, 241104 (2021). https://doi.org/10.1063/5.0057558, Google ScholarScitation 52. 52. X. Shi, C. Jin, and W. Mi, “ Inversion of angular-dependent planar magnetoresistance in epitaxial Pt/γ′-Fe4N bilayers,” Appl. Phys. Lett. 118, 111601 (2021). https://doi.org/10.1063/5.0040980, Google ScholarScitation, ISI 1. © 2022 Author(s). Published under an exclusive license by AIP Publishing. ARTICLE METRICS Views 3,299 Citations Crossref 0 Web of Science ISI 0 ALTMETRIC Please Note: The number of views represents the full text views from December 2016 to date. Article views prior to December 2016 are not included. RESOURCES * AUTHOR * LIBRARIAN * ADVERTISER GENERAL INFORMATION * ABOUT * CONTACT * HELP * PRIVACY POLICY * TERMS OF USE * FOLLOW AIP PUBLISHING: Website © 2022 AIP Publishing LLC. Article copyright remains as specified within the article. ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_~ x