aip.scitation.org Open in urlscan Pro
104.18.19.170  Public Scan

Submitted URL: https://aip-info.org/1XPS-7SEGB-285JYW-4QTH6F-1/c.aspx
Effective URL: https://aip.scitation.org/doi/full/10.1063/5.0084696?Track=&utm_source=AIP%20Publishing&utm_medium=email&utm_campaign=1308...
Submission Tags: falconsandbox
Submission: On May 22 via api from US — Scanned from DE

Form analysis 2 forms found in the DOM

Name: quickSearchGET /action/doSearch

<form action="/action/doSearch" name="quickSearch" class="quickSearchForm search-open resQuickSearchForm default-search-container" title="Quick Search" method="get">
  <div class="container">
    <div class="searchNav-tabs">
      <ul class="search-tabs-nav" role="tablist">
        <li id="search-tab" role="presentation" aria-selected="true" aria-controls="search-panel" data-tab-panel="search-panel">
          <a aria-selected="true" tabindex="0" role="tab">SEARCH</a>
        </li>
        <li id="citation-search-tab" role="presentation" aria-selected="false" aria-controls="citation-search-panel" data-tab-panel="citation-search-panel">
          <a aria-hidden="false" tabindex="0" role="tab">CITATION SEARCH</a>
        </li>
        <li id="advance-search-tab" role="presentation" aria-selected="false">
          <a aria-hidden="false" tabindex="0" role="tab" href="/search/advanced">ADVANCED SEARCH</a>
        </li>
      </ul>
    </div>
    <div class="tab-content"> <!-- tab-content open -->
      <div id="search-panel" class="tab-pane active" role="tabpanel" aria-labelledby="search-tab" aria-hidden="false">
        <span class="searchDropDownDivLeft">
          <label for="searchHeaderInSelector" class="visuallyhidden">Search in:</label>
          <select id="searchHeaderInSelector" name="SeriesKey" class="custom-dropdown js__searchInSelector jcf-hidden" sb="11215708" style="display: none;">
            <option value="apl" id="thisJournal" data-search-in="thisJournal"> This Publication </option>
            <option value="false" data-search-in="default">Anywhere</option>
            <option value="" data-search-in="thisPublisher"> This Publisher/Society </option>
          </select><span class="jcf-select jcf-unselectable jcf-select-custom-dropdown jcf-select-js__searchInSelector" style="display: none;"><span class="jcf-select-text"><span class=""> This Publication </span></span><span
              class="jcf-select-opener"></span></span>
          <div id="sbHolder_11215708" class="sbHolder"><a id="sbToggle_11215708" href="#" class="sbToggle"></a><a id="sbSelector_11215708" href="#" class="sbSelector">
                            This Publication
                        </a>
            <ul id="sbOptions_11215708" class="sbOptions" style="display: none;">
              <li><a href="#apl" rel="apl">
                            This Publication
                        </a></li>
              <li><a href="#false" rel="false">Anywhere</a></li>
              <li><a href="#" rel="">
                This Publisher/Society
            </a></li>
            </ul>
          </div>
        </span>
      </div>
      <div id="citation-search-panel" aria-hidden="true" class="tab-pane clear hidden" role="tabpanel" aria-labelledby="citation-search-tab">
        <div class="quicksearch-container">
          <span class="citationSearchBoxContainer hidden">
            <input name="quickLinkJournal" class="journalName mediumTextInput textIndent autocomplete ui-autocomplete-input" value="Applied Physics Letters" type="search" title="Journal" placeholder="Journal" autocomplete="off" autopopulate="true"
              data-history-items-conf="3" data-publication-titles-conf="3" data-topics-conf="3" data-contributors-conf="3" data-auto-complete-target="title-auto-complete" disabled="disabled"><span role="status" aria-live="polite"
              class="ui-helper-hidden-accessible"></span>
            <input type="hidden" name="quickLink" value="true" disabled="disabled">
            <input class="year smallTextInput" title="Year" type="search" name="quickLinkYear" value="" autocomplete="false" placeholder="Year" pattern="([0-9]){1,4}$" disabled="disabled">
            <input class="volume smallTextInput" title="Volume" type="search" name="quickLinkVolume" value="" autocomplete="false" placeholder="Volume" pattern="^[a-zA-Z0-9]+$" disabled="disabled">
            <input class="issue smallTextInput enable" title="Issue" type="search" name="quickLinkIssue" value="" autocomplete="false" placeholder="Issue" pattern="^[a-zA-Z0-9]+$" disabled="disabled">
            <input class="page smallTextInput" title="Page" type="search" name="quickLinkPage" value="" autocomplete="false" placeholder="Page" pattern="^[a-zA-Z0-9]+$" disabled="disabled">
          </span>
          <span class="citationSearchBoxContainer hidden">
            <button class="citation-mainSearchButton">
              <span class="icon-search"></span>
            </button>
          </span>
        </div>
      </div>
    </div> <!-- tab-content Close -->
    <div class="quicksearch-container">
      <div class="simpleSearchBoxContainer">
        <input name="AllField" class="searchText magicsuggest main-search-field textIndent autocomplete ui-autocomplete-input" value="" type="search" id="searchText" title="Type search term here"
          placeholder="Enter words / phrases / DOI / ISBN / authors / keywords / etc." autocomplete="off" data-history-items-conf="3" data-publication-titles-conf="3" data-group-titles-conf="3" data-publication-items-conf="3" data-topics-conf="3"
          data-contributors-conf="3" data-display-labels="true" data-fuzzy-suggester="true" data-auto-complete-target="auto-complete"><span role="status" aria-live="polite" class="ui-helper-hidden-accessible"></span>
        <input name="ConceptID" value="" type="hidden">
        <button class="mainSearchButton">
          <span class="sr-only">search</span>
          <span class="icon-search icon-search-btn"></span>
        </button>
      </div>
      <div class="quicksearch-actions">
        <a class="responsiveAdvanceSearch" href="/search/advanced" title="Advanced">
                            <span class="visible-sm visible-xs">
                                Advanced
                            </span>
                            <span class="hidden-xs hidden-sm icon-advanced_search"></span>
                        </a>
      </div>
    </div>
    <div class="cluetips">
      <a class="citationHelp cluetips fancy-tooltip hidden" title="This option allows users to search by Publication, Volume and Page">This option allows users to search by Publication, Volume and Page</a>
      <a class="journalHelp cluetips fancy-tooltip hidden" title="Selecting this option will search the current publication in context." style="display: inline;">Selecting this option will search the current publication in context.</a>
      <a class="bookHelp cluetips fancy-tooltip hidden" title="Book Search tips">Book Search tips</a>
      <a class="anywhereHelp cluetips fancy-tooltip hidden" title="Selecting this option will search all publications across the Scitation platform">Selecting this option will search all publications across the Scitation platform</a>
      <a class="thisPublisherHelp cluetips fancy-tooltip hidden" title="Selecting this option will search all publications for the Publisher/Society in context">Selecting this option will search all publications for the Publisher/Society in context</a>
    </div>
  </div>
</form>

POST /action/doLogin

<form action="/action/doLogin" method="post">
  <div class="login-form">
    <input type="hidden" name="id" value="913494f4-bbf3-4bd3-90ce-dec60af6f5ed">
    <input type="hidden" name="redirectUri"
      value="/doi/full/10.1063/5.0084696?Track=&amp;utm_source=AIP+Publishing&amp;utm_medium=email&amp;utm_campaign=13082411_APL_+Piezoelectric+Thin+Films+for+MEMS.+Thermal+Radiation+at+the+Nanoscale+and+Applications_CFP&amp;dm_i=1XPS%2C7SEGB%2C285JYW%2CVRQS2%2C1">
    <input type="hidden" name="popup" value="true">
    <input type="hidden" name="alertPopupLogin" value="true">
    <div class="login-form-inputs">
      <div class="input-group">
        <div class="label ">
          <label for="login">Email</label>
        </div>
        <input id="login" class="login" type="text" name="login" value="" size="15" placeholder="">
        <div class="actions">
        </div>
      </div>
      <div class="input-group">
        <div class="label ">
          <label for="password">Password</label>
        </div>
        <input id="password" class="password" type="password" name="password" value="" autocomplete="off" placeholder="">
        <span class="password-eye-icon icon-eye hidden"></span>
        <div class="actions">
          <a href="/action/requestResetPassword">Forgot password?</a>
        </div>
      </div>
      <div class="remember">
        <div class="keepMeLogin">
          <span class="label">Keep me logged in</span>
        </div>
        <div class="switch small-switch">
          <input id="913494f4-bbf3-4bd3-90ce-dec60af6f5ed-remember" class="cmn-toggle cmn-toggle-round-flat jcf-ignore" title="Keep Me Logged In" type="checkbox" name="remember" value="true">
          <label class="tgl-btn" for="913494f4-bbf3-4bd3-90ce-dec60af6f5ed-remember" title="Keep Me Logged In"></label>
        </div>
      </div>
    </div>
    <div class="footer-buttons">
      <input class="button submit primary" type="submit" name="submit" value="LOGIN" disabled="disabled">
    </div>
  </div>
</form>

Text Content

Öffnet in einem neuen Fenster Öffnet eine externe Website Öffnet eine externe
Website in einem neuen Fenster
<!---->Schließen Sie diesen Dialog<!---->
Diese Website speichert Informationen auf Ihrem Gerät und greift auf diese zu,
z. B. Cookies. Personenbezogene Daten wie Cookie-IDs, eindeutige Geräte-IDs und
Browserinformationen können verarbeitet werden. Dritte können Informationen auf
Ihrem Gerät speichern und darauf zugreifen und diese persönlichen Daten
verarbeiten. Sie können Ihre Einstellungen ändern oder zurückziehen, indem Sie
auf das Cookie-Symbol klicken. Infolgedessen werden möglicherweise keine
relevanten Anzeigen oder personalisierten Inhalte angezeigt. Sie können Ihre
Einstellungen jederzeit ändern oder die Standardeinstellungen übernehmen. Sie
können dieses Banner schließen, um nur mit essenziellen Cookies fortzufahren.
Datenschutz-Bestimmungen

Speichereinstellungen Dritte

   
 * Lager
   
   
 * Marketing
   
   
 * Personalisierung
   
   
 * Analyse
   

Speichern Alle akzeptieren Alles ablehnen



<!---->Schließen Sie die Cookie-Einstellungen<!---->


MENU
SIGN IN
Sign in/Register

Enter words / phrases / DOI / ISBN / authors / keywords / etc. SEARCH CITATION
SEARCH
 * SEARCH
 * CITATION SEARCH
 * ADVANCED SEARCH

Search in: This Publication Anywhere This Publisher/Society This Publication
This Publication
 * This Publication
 * Anywhere
 * This Publisher/Society


search
Advanced
This option allows users to search by Publication, Volume and Page Selecting
this option will search the current publication in context. Book Search tips
Selecting this option will search all publications across the Scitation platform
Selecting this option will search all publications for the Publisher/Society in
context



 * Publishers
 * Books
 * Scilight
 * Conference Proceedings
 * Author Resources
 * Librarian Resources
 * Advertiser
 * Contact Us
 * FAQ
 * Help

 * 

 * Publications View All Publications
   * Applied Physics Reviews
   * Applied Physics Letters
   * Journal of Applied Physics
   * The Journal of Chemical Physics
   * Physics Today
   * The Journal of the Acoustical Society of America
   * Review of Scientific Instruments
   * American Journal of Physics
   * Physics of Fluids
   * AIP Advances
   * View All Publications

 * Topics View All Topics
   * Acoustics
   * Biological Physics
   * Condensed Matter Physics
   * Energy
   * Materials Science
   * Mathematical Physics
   * Optics and Optical Physics
   * Physical Chemistry
   * Plasma Physics
   * Rheology and Fluid Dynamics
   * View All Topics



Applied Physics Letters
like and follow us
Facebook
 * Most recent (RSS)
 * Most cited (RSS)

SUBMIT YOUR ARTICLE
 * HOME
   
 * ISSUES
 * MORE
   * INFO
     * Overview
     * Editorial Board
     * News
   * FOR AUTHORS
     * Preparing Your Manuscript
     * Publication Charges
     * Author Resources
     * AIP Author Services
     * Submit
   * COLLECTIONS
     * Editor's Picks
     * Fast Track
     * Featured
     * Perspectives
     * Press Releases
     * Scilights
     * Special Topics
     * Upcoming Special Topics
   
 * ISSUES
 * INFO
   * Overview
   * Editorial Board
   * News
 * FOR AUTHORS
   * Preparing Your Manuscript
   * Publication Charges
   * Author Resources
   * AIP Author Services
   * Submit
 * COLLECTIONS
   * Editor's Picks
   * Fast Track
   * Featured
   * Perspectives
   * Press Releases
   * Scilights
   * Special Topics
   * Upcoming Special Topics

SIGN UP FOR ALERTS


THANK YOU

FOR YOUR INTEREST IN APPLIED PHYSICS LETTERS

To sign up for alerts, please log in first. If you need an account,
please register here

Email

Password
Forgot password?
Keep me logged in


 * DATA AVAILABILITY
 * REFERENCES

METASTRUCTURES: FROM PHYSICS TO APPLICATION

 * PDF
 * Tools
   * Download Citation
     
   * Add to favorites
   * Reprints and Permissions
 * Share
   E-mail
   Facebook
   Linkedin
   Twitter
   Reddit
   Mendeley
   Recommend to Librarians

 * Home >
 * Applied Physics Letters >
 * Volume 120, Issue 6 >
 * 10.1063/5.0084696

Next


RELATED


ARTICLES

Hybrid Metastructures Enabled by Dual-Frequency Liquid Crystals
Author Rafał Kowerdzi...
Left-handed properties dependence versus the interwire distance in Fe-based
microwires metastructures
Gabriel Ababei, Crist...
Left-handed metastructures with selective frequency transmission window for
gigahertz shielding applications
G. Ababei, C. S. Olar...
Labyrinthine acoustic metastructures enabling broadband sound absorption and
ventilation
Sanjay Kumar and Heow...
Broadband low-frequency sound absorbing metastructures based on impedance
matching coiled-up cavity
Yiyang Liu, Shuwei Re...
A perspective on elastic metastructures for energy harvesting
Zhihui Wen, Wan Wang,...
Biomolecular Sensing in Hybrid Chiral/Hyperbolic Metastructures
Authors Giovanna Pale...
Hybrid Flatland Metastructures
Editors Roberto Caput...
Perspective on III–V barrier detectors
Philip C. Klipstein m...
Extended many-body superradiance in diamond epsilon near-zero metamaterials
Olivia Mello, Yang Li...
Multicolor concentric ultrafast vortex beams with controllable orbital angular
momentum
Shunlin Huang, Peng W...
Improved hole injection for CsPbI3 nanocrystals based light-emitting diodes via
coevaporation of hole transport layer
Feisong Qin, Po Lu, S...

Free Submitted: 09 January 2022 Accepted: 10 January 2022 Published Online: 07
February 2022
 * METASTRUCTURES: FROM PHYSICS TO APPLICATION
 * 


Appl. Phys. Lett. 120, 060401 (2022); https://doi.org/10.1063/5.0084696
Filippo Capolino1,a), Mercedeh Khajavikhan2, and Andrea Alù3,4
more...View Affiliations
 * 1Department of Electrical Engineering and Computer Science, University of
   California, Irvine, California 92697, USA
 * 2Department of Electrical and Computer Engineering, University of Southern
   California, Los Angeles, California 90089, USA
 * 3Photonics Initiative, Advanced Science Research Center, New York, New York
   10031, USA
 * 4Department of Electrical Engineering, City College, City University of New
   York, New York, New York 10031, USA
 * a)Author to whom correspondence should be addressed: f.capolino@uci.edu

   Note: This Paper is part of the APL Special Collection on Metastructures:
   From Physics to Applications.

View Contributors
 * Filippo Capolino
 * Mercedeh Khajavikhan
 * Andrea Alù




 * PDF
   
   
 * CHORUS

 * First Page
 * Full Text
 * Figures
 * Tools
   * Download Citation
   * Add to Favorites
   * Reprints and Permissions
 * E-mail
   Facebook
   Linkedin
   Twitter
   Reddit
   Mendeley
   Recommend to Librarian
 * 

Share
E-mail
Facebook
Linkedin
Twitter
Reddit
Mendeley
Recommend to Librarian
metrics


3.3K

Views


 * Topics
   * Special Topics
     * Metastructures: From Physics to Application
   * Topics
     * Acoustics
     * 2D materials
     * Nonlinear optics
     * Telecommunications engineering
     * Photonics
     * Nanofabrication
     * Topological properties
     * Semiconductors
     * Electromagnetism
     * Metamaterials

The exotic wave phenomena in metastructures and their wide applications are one
of the most researched subjects in electromagnetic waves and photonics, from
radio frequencies to optics, and extend into several other disciplines, such as
acoustics, mechanics, thermodynamics, materials science, condensed matter, etc.
One of the most exciting opportunities for wave engineering using metastructures
consists in the manipulation of wave–matter interactions involving nonlinear
optics, semiconductor physics, 2D materials, soft matter, quantum matter, etc.
What we have learned from the physics of metastructures, since the start of
research in metamaterials and metasurfaces,1–51. D. Sievenpiper, L. Zhang, R. F.
J. Broas, N. G. Alexopolous, and E. Yablonovitch, “ High-impedance
electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave
Theory Tech. 47(11), 2059–2074 (1999). https://doi.org/10.1109/22.7980012. J. B.
Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “ Magnetism from
conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech.
47(11), 2075–2084 (1999). https://doi.org/10.1109/22.7980023. J. B. Pendry, “
Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966 (2000).
https://doi.org/10.1103/PhysRevLett.85.39664. D. R. Smith, W. J. Padilla, D. C.
Vier, S. C. Nemat-Nasser, and S. Schultz, Phys. Rev. Lett. 84, 4184 (2000).
https://doi.org/10.1103/PhysRevLett.84.41845. N. Engheta and R. W. Ziolkowski,
Metamaterials: Physics and Engineering Explorations ( IEEE Press, 2006). has
been stimulating a much broader set of topics than originally thought; the
excellent papers published within this Special Topic in Applied Physics Letters
are a testament of that.6–526. K. Agata, S. Murai, and K. Tanaka, “
Stick-and-play metasurfaces for directional light outcoupling,” Appl. Phys.
Lett. 118, 021110 (2021). https://doi.org/10.1063/5.00341157. Z. Lin, C.
Roques-Carmes, R. E. Christiansen, M. Soljacic, and S. G. Johnson, “
Computational inverse design for ultra-compact single-piece metalenses free of
chromatic and angular aberration,” Appl. Phys. Lett. 118, 041104 (2021).
https://doi.org/10.1063/5.00354198. P. Ang, G. Xu, and G. Eleftheriades, “
Invisibility cloaking with passive and active Huygens' metasurfaces,” Appl.
Phys. Lett. 118, 071903 (2021). https://doi.org/10.1063/5.00419969. H. Bilge
Yağci and H. V. Demir, “ ‘Meta-atomless’ architecture based on an irregular
continuous fabric of coupling-tuned identical nanopillars enables highly
efficient and achromatic metasurfaces,” Appl. Phys. Lett. 118, 081105 (2021).
https://doi.org/10.1063/5.004036510. Q. Chen, F. Giusti, G. Valerio, F. Mesa,
and O. Quevedo-Teruel, “ Anisotropic glide-symmetric substrate-integrated-holey
metasurface for a compressed ultrawideband Luneburg lens,” Appl. Phys. Lett.
118, 084102 (2021). https://doi.org/10.1063/5.004158611. N. K. Paul and J.
Sebastián Gomez Diaz, “ Broadband and unidirectional plasmonic hyperlensing in
drift-biased graphene,” Appl. Phys. Lett. 118, 091107 (2021).
https://doi.org/10.1063/5.004258012. W. T. Chen and F. Capasso, “ Will flat
optics appear in everyday life anytime soon?,” Appl. Phys. Lett. 118, 100503
(2021). https://doi.org/10.1063/5.003988513. H. Zhang, Q. Cheng, H. Chu, O.
Christogeorgos, W. Wu, and Y. Hao, “ Hyperuniform disordered distribution
metasurface for scattering reduction,” Appl. Phys. Lett. 118, 101601 (2021).
https://doi.org/10.1063/5.004191114. P. del Hougne, J. Sol, F. Mortessagne, U.
Kuhl, O. Legrand, P. Besnier, and M. Davy, “ Diffuse field cross-correlation in
a programmable-metasurface-stirred reverberation chamber,” Appl. Phys. Lett.
118, 104101 (2021). https://doi.org/10.1063/5.003959615. O. Rabinovich and A.
Epstein, “ Nonradiative subdiffraction near-field patterns using metagratings,”
Appl. Phys. Lett. 118, 131105 (2021). https://doi.org/10.1063/5.004348416. S. A.
Kuznetsov, V. Lenets, M. Tumashov, A. Sayanskiy, P. A. Lazorskiy, P. Belov, J.
D. Baena, and S. Glybovski, “ Self-complementary metasurfaces for designing
terahertz deflecting circular-polarization beam splitters,” Appl. Phys. Lett.
118, 131601 (2021). https://doi.org/10.1063/5.004240317. J. B. Gros, G. Lerosey,
F. Mortessagne, U. Kuhl, and O. Legrand, “ Uncorrelated configurations and field
uniformity in reverberation chambers stirred by reconfigurable metasurfaces,”
Appl. Phys. Lett. 118, 144101 (2021). https://doi.org/10.1063/5.004183718. M.
Faenzi, D. G. Ovejero, and S. Maci, “ Overlapped and sequential metasurface
modulations for bi-chromatic beams generation,” Appl. Phys. Lett. 118, 181902
(2021). https://doi.org/10.1063/5.004898519. H. Q. Nguyen, Q. Wu, J. Chen, Y.
Yu, H. Chen, S. Tracy, and G. Huang, “ A broadband acoustic panel based on
double-layer membrane-type metamaterials,” Appl. Phys. Lett. 118, 184101 (2021).
https://doi.org/10.1063/5.004258420. J. Lundgren, M. Gustafsson, D. Sjöberg, and
M. Nilsson, “ IR and metasurface based mm-wave camera,” Appl. Phys. Lett. 118,
184104 (2021). https://doi.org/10.1063/5.004731521. D. Khmelevskaia, D. I.
Markina, V. Fedorov, G. A. Ermolaev, A. V. Arsenin, V. S. Volkov, A. S. Goltaev,
Y. M. Zadiranov, I. A. Tzibizov, A. P. Pushkarev, A. K. Samusev, A. A.
Shcherbakov, P. Belov, I. S. Mukhin, and S. Makarov, “ Directly grown
crystalline gallium phosphide on sapphire for nonlinear all-dielectric
nanophotonics,” Appl. Phys. Lett. 118, 201101 (2021).
https://doi.org/10.1063/5.004896922. P. Vabishchevich, A. Vaskin, N. Karl, J. L.
Reno, M. B. Sinclair, I. Staude, and I. Brener, “ Ultrafast all-optical
diffraction switching using semiconductor metasurfaces,” Appl. Phys. Lett. 118,
211105 (2021). https://doi.org/10.1063/5.004958523. A. Moreno-Peñarrubia, J.
Teniente, S. A. Kuznetsov, B. Orazbayev, and M. Beruete, “ Ultrathin and
high-efficiency Pancharatnam-Berry phase metalens for millimeter waves,” Appl.
Phys. Lett. 118, 221105 (2021). https://doi.org/10.1063/5.004890724. J. D.
Ortiz, J. D. Baena, R. Marques, A. Enemuo, J. N. Gollub, R. Akhmechet, B.
Penkov, C. Sarantos, and D. Crouse, “ Babinet's principle and saturation of the
resonance frequency of scaled-down complementary metasurfaces,” Appl. Phys.
Lett. 118, 221901 (2021). https://doi.org/10.1063/5.004896025. C. Yepes, M.
Faenzi, S. Maci, and E. Martini, “ Perfect non-specular reflection with
polarization control by using a locally passive metasurface sheet on a grounded
dielectric slab,” Appl. Phys. Lett. 118, 231601 (2021).
https://doi.org/10.1063/5.004897026. K. Manukyan, M. Z. Alam, C. Liu, K. Pang,
H. Song, Z. Zhao, M. Tur, R. W. Boyd, and A. E. Willner, “ Dependence of the
coupling properties between a plasmonic antenna array and a sub-wavelength
epsilon-near-zero film on structural and material parameters,” Appl. Phys. Lett.
118, 241102 (2021). https://doi.org/10.1063/5.004259927. D. Wei, C. Hu, M. Chen,
J. Shi, J. Luo, H. Wang, C. Xie, and X. Zhang, “ Light absorption and
nanofocusing on tapered magnetic metasurface,” Appl. Phys. Lett. 117, 243102
(2020). https://doi.org/10.1063/5.002607328. K. Rouhi, R. G. Marosi, T. Mealy,
A. Abdelshafy, A. Figotin, and F. Capolino, “ Exceptional degeneracies in
traveling wave tubes with dispersive slow-wave structure including space-charge
effect,” Appl. Phys. Lett. 118, 263506 (2021).
https://doi.org/10.1063/5.005146229. A. Abdelshafy, T. Mealy, E. Hafezi, A.
Nikzamir, and F. Capolino, “ Exceptional degeneracy in a waveguide periodically
loaded with discrete gain and radiation loss elements,” Appl. Phys. Lett. 118,
224102 (2021). https://doi.org/10.1063/5.005123830. D. Ramaccia, A. Alù, A.
Toscano, and F. Bilotti, “ Temporal multilayer structures for designing
higher-order transfer functions using time-varying metamaterials,” Appl. Phys.
Lett. 118, 101901 (2021). https://doi.org/10.1063/5.004256731. S. Guenneau, B.
Lombard, and C. Bellis, “ Time-domain investigation of an external cloak for
antiplane elastic waves,” Appl. Phys. Lett. 118, 191102 (2021).
https://doi.org/10.1063/5.004891032. S. Huang, E. Zhou, Z. Huang, P. Lei, Z.
Zhou, and Y. Li, “ Broadband sound attenuation by meta-liner under grazing
flow,” Appl. Phys. Lett. 118, 063504 (2021).
https://doi.org/10.1063/5.004222833. O. R. Bilal, C. H. Yee, J. Rys, C.
Schumacher, and C. Daraio, “ Experimental realization of phonon demultiplexing
in three-dimensions,” Appl. Phys. Lett. 118, 091901 (2021).
https://doi.org/10.1063/5.003083034. G. Fujii, M. Takahashi, and Y. Akimoto, “
Acoustic cloak designed by topology optimization for acoustic-elastic-coupled
systems,” Appl. Phys. Lett. 118, 101102 (2021).
https://doi.org/10.1063/5.004091135. Z.-M. Gu, X. Fang, T. Liu, H. Gao, S.
Liang, Y. Li, B. Liang, J.-C. Cheng, and J. Zhu, “ Tunable asymmetric acoustic
transmission via binary metasurface and zero-index metamaterials,” Appl. Phys.
Lett. 118, 113501 (2021). https://doi.org/10.1063/5.004675636. Y. Mi, W. Zhai,
L. Cheng, C. Xi, and X. Yu, “ Wave trapping by acoustic black hole: Simultaneous
reduction of sound reflection and transmission,” Appl. Phys. Lett. 118, 114101
(2021). https://doi.org/10.1063/5.004251437. R. Zaccherini, A. Palermo, A.
Marzani, A. Colombi, V. Dertimanis, and E. Chatzi, “ Mitigation of Rayleigh-like
waves in granular media via multi-layer resonant metabarriers,” Appl. Phys.
Lett. 117, 254103 (2020). https://doi.org/10.1063/5.003111338. J. K. Asane, M.
Golam Rabbani Chowdhury, K. M. Khabir, V. A. Podolskiy, and M. A. Noginov, “
Stimulated emission in vicinity of the critical angle,” Appl. Phys. Lett. 119,
031102 (2021). https://doi.org/10.1063/5.005190139. U. Meriç Gür, M. Mattes, S.
Arslanagić, and N. Gregersen, “ Elliptical micropillar cavity design for highly
efficient polarized emission of single photons,” Appl. Phys. Lett. 118, 061101
(2021). https://doi.org/10.1063/5.004156540. P. Tonkaev, S. Anoshkin, A. P.
Pushkarev, R. Malureanu, M. Masharin, P. Belov, A. V. Lavrinenko, and S.
Makarov, “ Acceleration of radiative recombination in quasi-2D perovskite films
on hyperbolic metamaterials,” Appl. Phys. Lett. 118, 091104 (2021).
https://doi.org/10.1063/5.004255741. B. A. Webb and R. W. Ziolkowski, “
Metamaterial-inspired multilayered structures optimized to enable wireless
communications through a plasmasonic region,” Appl. Phys. Lett. 118, 094102
(2021). https://doi.org/10.1063/5.004119642. I. Liberal and R. W. Ziolkowski, “
Nonperturbative decay dynamics in metamaterial waveguides,” Appl. Phys. Lett.
118, 111103 (2021). https://doi.org/10.1063/5.004410343. M. Jeannin, T. Bonazzi,
D. Gacemi, A. Vasanelli, S. Suffit, L. Li, A. G. Davies, E. H. Linfield, C.
Sirtori, and Y. Todorov, “ High temperature metamaterial terahertz quantum
detector,” Appl. Phys. Lett. 117, 251102 (2020).
https://doi.org/10.1063/5.003336744. L. Yu, H. Xue, and B. Zhang, “ Topological
slow light via coupling chiral edge modes with flat bands,” Appl. Phys. Lett.
118, 071102 (2021). https://doi.org/10.1063/5.003983945. M. Proctor, M. Blanco
De Paz, D. Bercioux, A. Garcia-Etxarri, and P. Arroyo Huidobro, “ Higher-order
topology in plasmonic Kagome lattices,” Appl. Phys. Lett. 118, 091105 (2021).
https://doi.org/10.1063/5.004095546. S. Kandil and D. F. Sievenpiper, “ C-shaped
chiral waveguide for spin-dependent unidirectional propagation,” Appl. Phys.
Lett. 118, 101104 (2021). https://doi.org/10.1063/5.004258347. R. J. Davis, D.
J. Bisharat, and D. F. Sievenpiper, “ Classical-to-topological transmission line
couplers,” Appl. Phys. Lett. 118, 131102 (2021).
https://doi.org/10.1063/5.004105548. M. I. Nora Rosa, Y. Guo, and M. Ruzzene, “
Exploring topology of 1D quasiperiodic metastructures through modulated LEGO
resonators,” Appl. Phys. Lett. 118, 131901 (2021).
https://doi.org/10.1063/5.004229449. J. Feis, C. J. Stevens, and E. Shamonina, “
Wireless power transfer through asymmetric topological edge states in diatomic
chains of coupled meta-atoms,” Appl. Phys. Lett. 117, 134106 (2020).
https://doi.org/10.1063/5.002407750. Z. Yue, D. Liao, Z. Zhang, W. Xiong, Y.
Cheng, and X. J. Liu, “ Experimental demonstration of a reconfigurable acoustic
second-order topological insulator using condensed soda cans array,” Appl. Phys.
Lett. 118, 203501 (2021). https://doi.org/10.1063/5.004903051. Y. Kawaguchi, M.
Li, K. Chen, V. M. Menon, A. Alù, and A. B. Khanikaev, “ Optical isolator based
on chiral light-matter interactions in a ring resonator integrating a dichroic
magneto-optical material,” Appl. Phys. Lett. 118, 241104 (2021).
https://doi.org/10.1063/5.005755852. X. Shi, C. Jin, and W. Mi, “ Inversion of
angular-dependent planar magnetoresistance in epitaxial Pt/γ′-Fe4N bilayers,”
Appl. Phys. Lett. 118, 111601 (2021). https://doi.org/10.1063/5.0040980 Despite
focusing on different topics, all the papers within this Special Topic
collection share the same point of view: we can push the boundaries of wave
physics for a broad range of applications, and we can engineer novel and
on-demand physical properties to enhance current devices and even conceive new
functionalities. Indeed, an important aspect of all research activities spanning
the general area of metamaterials is its interdisciplinary nature, covering a
wide range of expertise, in fundamental and applied physics, engineering,
materials science, and beyond.
The idea of this Special Topic originated in the context of the 2020
International Congress on Artificial Materials for Novel Wave Phenomena, which,
indeed, has been bringing together a wide range of scientists and expertise to
facilitate these interdisciplinary discussions and interactions. The area of
metastructures is much broader than it was years ago, and it has been growing
since researchers in various disciplines are now mastering nanofabrication and
applying concepts from quantum mechanics and condensed matter physics to
conceive newer wave phenomena. Indeed, a large portion of the research presented
in this Special Topic would not have happened without the growing progress in
nanofabrication techniques, allowing the control of materials and, hence, field
manipulation at nanoscale. Even electrically large structures like metasurfaces
benefit from nanoscale fabrication methods because of the control of the field
and its gradient at nanoscale.
This Special Topic in Applied Physics Letters collects recent advances in the
broad area of metastructures. Though it is difficult to address the specific
achievements, in particular, individual areas, since the field is broad, we will
provide here highlights of some of the papers in this collection. We list them
here, grouped within broad areas of interest.
Metasurfaces and gradient metastructures have been showing extreme opportunities
for the manipulation of the reflected/transmitted wavefront, to realize
ultrathin photonic devices and very flexible and versatile radio frequency
reflectors. The contributed papers are Refs. 6–276. K. Agata, S. Murai, and K.
Tanaka, “ Stick-and-play metasurfaces for directional light outcoupling,” Appl.
Phys. Lett. 118, 021110 (2021). https://doi.org/10.1063/5.00341157. Z. Lin, C.
Roques-Carmes, R. E. Christiansen, M. Soljacic, and S. G. Johnson, “
Computational inverse design for ultra-compact single-piece metalenses free of
chromatic and angular aberration,” Appl. Phys. Lett. 118, 041104 (2021).
https://doi.org/10.1063/5.00354198. P. Ang, G. Xu, and G. Eleftheriades, “
Invisibility cloaking with passive and active Huygens' metasurfaces,” Appl.
Phys. Lett. 118, 071903 (2021). https://doi.org/10.1063/5.00419969. H. Bilge
Yağci and H. V. Demir, “ ‘Meta-atomless’ architecture based on an irregular
continuous fabric of coupling-tuned identical nanopillars enables highly
efficient and achromatic metasurfaces,” Appl. Phys. Lett. 118, 081105 (2021).
https://doi.org/10.1063/5.004036510. Q. Chen, F. Giusti, G. Valerio, F. Mesa,
and O. Quevedo-Teruel, “ Anisotropic glide-symmetric substrate-integrated-holey
metasurface for a compressed ultrawideband Luneburg lens,” Appl. Phys. Lett.
118, 084102 (2021). https://doi.org/10.1063/5.004158611. N. K. Paul and J.
Sebastián Gomez Diaz, “ Broadband and unidirectional plasmonic hyperlensing in
drift-biased graphene,” Appl. Phys. Lett. 118, 091107 (2021).
https://doi.org/10.1063/5.004258012. W. T. Chen and F. Capasso, “ Will flat
optics appear in everyday life anytime soon?,” Appl. Phys. Lett. 118, 100503
(2021). https://doi.org/10.1063/5.003988513. H. Zhang, Q. Cheng, H. Chu, O.
Christogeorgos, W. Wu, and Y. Hao, “ Hyperuniform disordered distribution
metasurface for scattering reduction,” Appl. Phys. Lett. 118, 101601 (2021).
https://doi.org/10.1063/5.004191114. P. del Hougne, J. Sol, F. Mortessagne, U.
Kuhl, O. Legrand, P. Besnier, and M. Davy, “ Diffuse field cross-correlation in
a programmable-metasurface-stirred reverberation chamber,” Appl. Phys. Lett.
118, 104101 (2021). https://doi.org/10.1063/5.003959615. O. Rabinovich and A.
Epstein, “ Nonradiative subdiffraction near-field patterns using metagratings,”
Appl. Phys. Lett. 118, 131105 (2021). https://doi.org/10.1063/5.004348416. S. A.
Kuznetsov, V. Lenets, M. Tumashov, A. Sayanskiy, P. A. Lazorskiy, P. Belov, J.
D. Baena, and S. Glybovski, “ Self-complementary metasurfaces for designing
terahertz deflecting circular-polarization beam splitters,” Appl. Phys. Lett.
118, 131601 (2021). https://doi.org/10.1063/5.004240317. J. B. Gros, G. Lerosey,
F. Mortessagne, U. Kuhl, and O. Legrand, “ Uncorrelated configurations and field
uniformity in reverberation chambers stirred by reconfigurable metasurfaces,”
Appl. Phys. Lett. 118, 144101 (2021). https://doi.org/10.1063/5.004183718. M.
Faenzi, D. G. Ovejero, and S. Maci, “ Overlapped and sequential metasurface
modulations for bi-chromatic beams generation,” Appl. Phys. Lett. 118, 181902
(2021). https://doi.org/10.1063/5.004898519. H. Q. Nguyen, Q. Wu, J. Chen, Y.
Yu, H. Chen, S. Tracy, and G. Huang, “ A broadband acoustic panel based on
double-layer membrane-type metamaterials,” Appl. Phys. Lett. 118, 184101 (2021).
https://doi.org/10.1063/5.004258420. J. Lundgren, M. Gustafsson, D. Sjöberg, and
M. Nilsson, “ IR and metasurface based mm-wave camera,” Appl. Phys. Lett. 118,
184104 (2021). https://doi.org/10.1063/5.004731521. D. Khmelevskaia, D. I.
Markina, V. Fedorov, G. A. Ermolaev, A. V. Arsenin, V. S. Volkov, A. S. Goltaev,
Y. M. Zadiranov, I. A. Tzibizov, A. P. Pushkarev, A. K. Samusev, A. A.
Shcherbakov, P. Belov, I. S. Mukhin, and S. Makarov, “ Directly grown
crystalline gallium phosphide on sapphire for nonlinear all-dielectric
nanophotonics,” Appl. Phys. Lett. 118, 201101 (2021).
https://doi.org/10.1063/5.004896922. P. Vabishchevich, A. Vaskin, N. Karl, J. L.
Reno, M. B. Sinclair, I. Staude, and I. Brener, “ Ultrafast all-optical
diffraction switching using semiconductor metasurfaces,” Appl. Phys. Lett. 118,
211105 (2021). https://doi.org/10.1063/5.004958523. A. Moreno-Peñarrubia, J.
Teniente, S. A. Kuznetsov, B. Orazbayev, and M. Beruete, “ Ultrathin and
high-efficiency Pancharatnam-Berry phase metalens for millimeter waves,” Appl.
Phys. Lett. 118, 221105 (2021). https://doi.org/10.1063/5.004890724. J. D.
Ortiz, J. D. Baena, R. Marques, A. Enemuo, J. N. Gollub, R. Akhmechet, B.
Penkov, C. Sarantos, and D. Crouse, “ Babinet's principle and saturation of the
resonance frequency of scaled-down complementary metasurfaces,” Appl. Phys.
Lett. 118, 221901 (2021). https://doi.org/10.1063/5.004896025. C. Yepes, M.
Faenzi, S. Maci, and E. Martini, “ Perfect non-specular reflection with
polarization control by using a locally passive metasurface sheet on a grounded
dielectric slab,” Appl. Phys. Lett. 118, 231601 (2021).
https://doi.org/10.1063/5.004897026. K. Manukyan, M. Z. Alam, C. Liu, K. Pang,
H. Song, Z. Zhao, M. Tur, R. W. Boyd, and A. E. Willner, “ Dependence of the
coupling properties between a plasmonic antenna array and a sub-wavelength
epsilon-near-zero film on structural and material parameters,” Appl. Phys. Lett.
118, 241102 (2021). https://doi.org/10.1063/5.004259927. D. Wei, C. Hu, M. Chen,
J. Shi, J. Luo, H. Wang, C. Xie, and X. Zhang, “ Light absorption and
nanofocusing on tapered magnetic metasurface,” Appl. Phys. Lett. 117, 243102
(2020). https://doi.org/10.1063/5.0026073.
As exemplary results within this topic, Chen and Capasso1212. W. T. Chen and F.
Capasso, “ Will flat optics appear in everyday life anytime soon?,” Appl. Phys.
Lett. 118, 100503 (2021). https://doi.org/10.1063/5.0039885 talk about
metasurface-based components consisting of regular arrays of sub-wavelength
dielectric nanostructures, providing also an outlook on future trends. They
discuss that metasurface concepts are not only leading to a reduction in size
and complexity of optical components, but also bring new functionalities, like a
full-Stokes metasurface camera and a metasurface depth sensor. Zhang et al.1313.
H. Zhang, Q. Cheng, H. Chu, O. Christogeorgos, W. Wu, and Y. Hao, “ Hyperuniform
disordered distribution metasurface for scattering reduction,” Appl. Phys. Lett.
118, 101601 (2021). https://doi.org/10.1063/5.0041911 investigate the effects of
using a hyperuniform disordered distribution of metasurface elements to enlarge
the operating bandwidth, with a significant reduction in radar cross section of
the surface. This research shows that moving away from strictly periodic unit
cells (with a gradient distribution) is a promising direction for possible
future investigations. The paper by Kuznetsov et al.1616. S. A. Kuznetsov, V.
Lenets, M. Tumashov, A. Sayanskiy, P. A. Lazorskiy, P. Belov, J. D. Baena, and
S. Glybovski, “ Self-complementary metasurfaces for designing terahertz
deflecting circular-polarization beam splitters,” Appl. Phys. Lett. 118, 131601
(2021). https://doi.org/10.1063/5.0042403 elaborates and experimentally
demonstrates on a single-layer metasurface whose elements are based on pairs of
complementary structures to manipulate circular wavefronts, yielding an
effective approach to manipulate the optical wavefront. The paper by Faenzi et
al.1818. M. Faenzi, D. G. Ovejero, and S. Maci, “ Overlapped and sequential
metasurface modulations for bi-chromatic beams generation,” Appl. Phys. Lett.
118, 181902 (2021). https://doi.org/10.1063/5.0048985 discusses metasurfaces as
radiators, which has been a topic of intense investigation in the past decade.
In this paper, the authors describe the generation of directive beams at two
different frequencies within the same metasurface antenna based on surface wave
excitation. Previously, metasurface antennas could generate tailored beams of
radiation at a single frequency. The paper by Lundgren et al.2020. J. Lundgren,
M. Gustafsson, D. Sjöberg, and M. Nilsson, “ IR and metasurface based mm-wave
camera,” Appl. Phys. Lett. 118, 184104 (2021). https://doi.org/10.1063/5.0047315
discusses and demonstrates the concept of a metasurface absorbing a radio
frequency field generated by an external device, that is then imaged using an
infrared camera, hence using heat to image electromagnetic fields. Vabishchevich
et al.2222. P. Vabishchevich, A. Vaskin, N. Karl, J. L. Reno, M. B. Sinclair, I.
Staude, and I. Brener, “ Ultrafast all-optical diffraction switching using
semiconductor metasurfaces,” Appl. Phys. Lett. 118, 211105 (2021).
https://doi.org/10.1063/5.0049585 demonstrate ultrafast all-optical on/off
switching using semiconductor metasurfaces made of resonators that support both
dipolar and quadrupolar Mie resonances. The authors show that multipole
engineering with lattice diffraction opens design pathways for tunable
metasurface-based integrated devices. Moreno-Peñarrubia et al.2323. A.
Moreno-Peñarrubia, J. Teniente, S. A. Kuznetsov, B. Orazbayev, and M. Beruete, “
Ultrathin and high-efficiency Pancharatnam-Berry phase metalens for millimeter
waves,” Appl. Phys. Lett. 118, 221105 (2021). https://doi.org/10.1063/5.0048907
demonstrate an ultrathin and high-efficiency Pancharatnam–Berry phase metalens
for millimeter waves using meta-atoms made of H shaped (i.e., dogbone shaped)
pairs of conductors. The metalens focuses the wavefront of a circularly
polarized incident wave and converts its handedness within an ultrathin profile
composed of just two layers of patterned metals.
Another topic of recent interest in the area of metastructures is non-Hermitian
electromagnetics and exceptional points, concepts that have been leading to
interesting new wave phenomena. In particular, it has been shown that the effect
of a perturbation on the eigenvalues of a system is not linearly proportional to
the amount of perturbation, but rather to its square root (for an exceptional
point of order two), as discussed in Ref. 2828. K. Rouhi, R. G. Marosi, T.
Mealy, A. Abdelshafy, A. Figotin, and F. Capolino, “ Exceptional degeneracies in
traveling wave tubes with dispersive slow-wave structure including space-charge
effect,” Appl. Phys. Lett. 118, 263506 (2021).
https://doi.org/10.1063/5.0051462. The concept of having a waveguide with
distributed gain and radiating antennas, leading to a distributed coherent
radiating oscillator operating at an exceptional point, is presented in Ref.
2929. A. Abdelshafy, T. Mealy, E. Hafezi, A. Nikzamir, and F. Capolino, “
Exceptional degeneracy in a waveguide periodically loaded with discrete gain and
radiation loss elements,” Appl. Phys. Lett. 118, 224102 (2021).
https://doi.org/10.1063/5.0051238.
Ramaccia et al.3030. D. Ramaccia, A. Alù, A. Toscano, and F. Bilotti, “ Temporal
multilayer structures for designing higher-order transfer functions using
time-varying metamaterials,” Appl. Phys. Lett. 118, 101901 (2021).
https://doi.org/10.1063/5.0042567 discuss the extension to temporal interfaces
of filter engineering, realizing wave manipulation by time-switching a uniform
material. This approach appears to be very exciting for the prospects of
metamaterials, introducing a temporal dimension to metamaterial design. In this
same broad area, Guenneau et al.3131. S. Guenneau, B. Lombard, and C. Bellis, “
Time-domain investigation of an external cloak for antiplane elastic waves,”
Appl. Phys. Lett. 118, 191102 (2021). https://doi.org/10.1063/5.0048910 discuss
the temporal evolution of a metamaterial cloak response in the context of
elastic waves. Also Fujii et al.3434. G. Fujii, M. Takahashi, and Y. Akimoto, “
Acoustic cloak designed by topology optimization for acoustic-elastic-coupled
systems,” Appl. Phys. Lett. 118, 101102 (2021).
https://doi.org/10.1063/5.0040911 discuss cloaking mechanisms for acoustic and
elastic waves, opening to the next important topic featured in this Special
Topic collection.
In the context of acoustic, elastic, and mechanical waves, our Special Topic
features several exciting papers, since this is an area of growing interest in
the community of engineered materials. Huang et al.3232. S. Huang, E. Zhou, Z.
Huang, P. Lei, Z. Zhou, and Y. Li, “ Broadband sound attenuation by meta-liner
under grazing flow,” Appl. Phys. Lett. 118, 063504 (2021).
https://doi.org/10.1063/5.0042228 as well as Mi et al.3636. Y. Mi, W. Zhai, L.
Cheng, C. Xi, and X. Yu, “ Wave trapping by acoustic black hole: Simultaneous
reduction of sound reflection and transmission,” Appl. Phys. Lett. 118, 114101
(2021). https://doi.org/10.1063/5.0042514 and Zaccherini et al.3737. R.
Zaccherini, A. Palermo, A. Marzani, A. Colombi, V. Dertimanis, and E. Chatzi, “
Mitigation of Rayleigh-like waves in granular media via multi-layer resonant
metabarriers,” Appl. Phys. Lett. 117, 254103 (2020).
https://doi.org/10.1063/5.0031113 discuss various metamaterial geometries
supporting broadband absorption exploiting sophisticated sound-matter
interactions. Bilal et al.3333. O. R. Bilal, C. H. Yee, J. Rys, C. Schumacher,
and C. Daraio, “ Experimental realization of phonon demultiplexing in
three-dimensions,” Appl. Phys. Lett. 118, 091901 (2021).
https://doi.org/10.1063/5.0030830 introduce a complex metamaterial geometry to
realize multiplexing and de-multiplexing for sound.
Metastructures have been found very promising in the manipulation and
enhancement of wave–matter interaction at classical and quantum levels. For
example, Tonkaev et al.4040. P. Tonkaev, S. Anoshkin, A. P. Pushkarev, R.
Malureanu, M. Masharin, P. Belov, A. V. Lavrinenko, and S. Makarov, “
Acceleration of radiative recombination in quasi-2D perovskite films on
hyperbolic metamaterials,” Appl. Phys. Lett. 118, 091104 (2021).
https://doi.org/10.1063/5.0042557 show how to accelerate photoluminescence with
smart engineering of photonic density of states by depositing a perovskite film
on a hyperbolic metamaterial. The authors experimentally confirm the
acceleration of radiative recombination by almost three times. Liberal and
Ziolkowski4242. I. Liberal and R. W. Ziolkowski, “ Nonperturbative decay
dynamics in metamaterial waveguides,” Appl. Phys. Lett. 118, 111103 (2021).
https://doi.org/10.1063/5.0044103 analyze the wealth of decay dynamics phenomena
that can be observed in metamaterial waveguides that have a complex dispersion
profile. They explore the nonperturbative decay dynamics of a quantum emitter
coupled to a composite right-/left-handed transmission line, including a
“mu-near-zero band edge” and an “epsilon-near-zero band edge.” The decay rates
associated with the spectral features are related to branch cut singularities
that contribute with fractional decay dynamics.
Another broad area of research interest in metamaterials focuses on topological
phenomena. The main idea, borrowed from condensed matter physics, is that the
nontrivial topological features of the band diagram of a metamaterial can be
translated into an unusually robust boundary propagation of waves, of great
interest for various applications from microwaves, photonics to acoustics.
Several exciting works on this topic are featured in this collection. For
instance, Yu et al.4444. L. Yu, H. Xue, and B. Zhang, “ Topological slow light
via coupling chiral edge modes with flat bands,” Appl. Phys. Lett. 118, 071102
(2021). https://doi.org/10.1063/5.0039839 exploit resonant coupling to realize
broadband slow light within a topological bandgap, with important implications
for photonic technologies. Proctor et al.4545. M. Proctor, M. Blanco De Paz, D.
Bercioux, A. Garcia-Etxarri, and P. Arroyo Huidobro, “ Higher-order topology in
plasmonic Kagome lattices,” Appl. Phys. Lett. 118, 091105 (2021).
https://doi.org/10.1063/5.0040955 discuss a metamaterial geometry supporting
higher-order topological states, which implies localization of states within a
topological bandgap at higher dimensions. Kandil and Sievenpiper4646. S. Kandil
and D. F. Sievenpiper, “ C-shaped chiral waveguide for spin-dependent
unidirectional propagation,” Appl. Phys. Lett. 118, 101104 (2021).
https://doi.org/10.1063/5.0042583 investigate spin-dependent unidirectional
propagation in a waveguide consisting of C-shaped metallic particles
characterized by extrinsic chirality and strong transverse spin, and the
unidirectionality sensitivity to various defects in the chiral waveguide that
flips the spin direction of the wave. Nora Rosa et al.4848. M. I. Nora Rosa, Y.
Guo, and M. Ruzzene, “ Exploring topology of 1D quasiperiodic metastructures
through modulated LEGO resonators,” Appl. Phys. Lett. 118, 131901 (2021).
https://doi.org/10.1063/5.0042294 demonstrate an elegant and simple
implementation of quasi-periodic one-dimensional metamaterials using LEGO
blocks, reporting nontrivial topological features.
These and several other papers in this Special Topic collection (we could not
discuss all of them for the sake of brevity) demonstrate the rich opportunities
emerging from applying interdisciplinary topics to the field of engineered
materials.
This Special Topic collection provides an opportunity for the broad readership
of Applied Physics Letters to get a glimpse of the recent advances in the area
of metastructures and their applications. We hope that this selected collection
of articles may serve as a platform to further stimulate researchers to expand
their horizon beyond the classical fields of research in electromagnetics,
photonics, and wave physics in general and, thus, further advance the potential
advantages of metastructures for future applications.
The authors thank Lesley Cohen, Editor-in-Chief, for her constant guidance, Emma
Nicholson Van Burns, Journal Manager, and Jessica Trudeau, Editorial Assistant,
for their technical assistance with publishing.
DATA AVAILABILITY

Data sharing is not applicable to this article as no new data were created or
analyzed in this study.

REFERENCES

 1.  1. D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E.
     Yablonovitch, “ High-impedance electromagnetic surfaces with a forbidden
     frequency band,” IEEE Trans. Microwave Theory Tech. 47(11), 2059–2074
     (1999). https://doi.org/10.1109/22.798001, Google ScholarCrossref
 2.  2. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “
     Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans.
     Microwave Theory Tech. 47(11), 2075–2084 (1999).
     https://doi.org/10.1109/22.798002, Google ScholarCrossref, ISI
 3.  3. J. B. Pendry, “ Negative refraction makes a perfect lens,” Phys. Rev.
     Lett. 85, 3966 (2000). https://doi.org/10.1103/PhysRevLett.85.3966, Google
     ScholarCrossref
 4.  4. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S.
     Schultz, Phys. Rev. Lett. 84, 4184 (2000).
     https://doi.org/10.1103/PhysRevLett.84.4184, Google ScholarCrossref, ISI
 5.  5. N. Engheta and R. W. Ziolkowski, Metamaterials: Physics and Engineering
     Explorations ( IEEE Press, 2006). Google ScholarCrossref
 6.  6. K. Agata, S. Murai, and K. Tanaka, “ Stick-and-play metasurfaces for
     directional light outcoupling,” Appl. Phys. Lett. 118, 021110 (2021).
     https://doi.org/10.1063/5.0034115, Google ScholarScitation, ISI
 7.  7. Z. Lin, C. Roques-Carmes, R. E. Christiansen, M. Soljacic, and S. G.
     Johnson, “ Computational inverse design for ultra-compact single-piece
     metalenses free of chromatic and angular aberration,” Appl. Phys. Lett.
     118, 041104 (2021). https://doi.org/10.1063/5.0035419, Google
     ScholarScitation, ISI
 8.  8. P. Ang, G. Xu, and G. Eleftheriades, “ Invisibility cloaking with
     passive and active Huygens' metasurfaces,” Appl. Phys. Lett. 118, 071903
     (2021). https://doi.org/10.1063/5.0041996, Google ScholarScitation, ISI
 9.  9. H. Bilge Yağci and H. V. Demir, “ ‘Meta-atomless’ architecture based on
     an irregular continuous fabric of coupling-tuned identical nanopillars
     enables highly efficient and achromatic metasurfaces,” Appl. Phys. Lett.
     118, 081105 (2021). https://doi.org/10.1063/5.0040365, Google
     ScholarScitation
 10. 10. Q. Chen, F. Giusti, G. Valerio, F. Mesa, and O. Quevedo-Teruel, “
     Anisotropic glide-symmetric substrate-integrated-holey metasurface for a
     compressed ultrawideband Luneburg lens,” Appl. Phys. Lett. 118, 084102
     (2021). https://doi.org/10.1063/5.0041586, Google ScholarScitation, ISI
 11. 11. N. K. Paul and J. Sebastián Gomez Diaz, “ Broadband and unidirectional
     plasmonic hyperlensing in drift-biased graphene,” Appl. Phys. Lett. 118,
     091107 (2021). https://doi.org/10.1063/5.0042580, Google ScholarScitation,
     ISI
 12. 12. W. T. Chen and F. Capasso, “ Will flat optics appear in everyday life
     anytime soon?,” Appl. Phys. Lett. 118, 100503 (2021).
     https://doi.org/10.1063/5.0039885, Google ScholarScitation, ISI
 13. 13. H. Zhang, Q. Cheng, H. Chu, O. Christogeorgos, W. Wu, and Y. Hao, “
     Hyperuniform disordered distribution metasurface for scattering reduction,”
     Appl. Phys. Lett. 118, 101601 (2021). https://doi.org/10.1063/5.0041911,
     Google ScholarScitation, ISI
 14. 14. P. del Hougne, J. Sol, F. Mortessagne, U. Kuhl, O. Legrand, P. Besnier,
     and M. Davy, “ Diffuse field cross-correlation in a
     programmable-metasurface-stirred reverberation chamber,” Appl. Phys. Lett.
     118, 104101 (2021). https://doi.org/10.1063/5.0039596, Google
     ScholarScitation, ISI
 15. 15. O. Rabinovich and A. Epstein, “ Nonradiative subdiffraction near-field
     patterns using metagratings,” Appl. Phys. Lett. 118, 131105 (2021).
     https://doi.org/10.1063/5.0043484, Google ScholarScitation, ISI
 16. 16. S. A. Kuznetsov, V. Lenets, M. Tumashov, A. Sayanskiy, P. A. Lazorskiy,
     P. Belov, J. D. Baena, and S. Glybovski, “ Self-complementary metasurfaces
     for designing terahertz deflecting circular-polarization beam splitters,”
     Appl. Phys. Lett. 118, 131601 (2021). https://doi.org/10.1063/5.0042403,
     Google ScholarScitation, ISI
 17. 17. J. B. Gros, G. Lerosey, F. Mortessagne, U. Kuhl, and O. Legrand, “
     Uncorrelated configurations and field uniformity in reverberation chambers
     stirred by reconfigurable metasurfaces,” Appl. Phys. Lett. 118, 144101
     (2021). https://doi.org/10.1063/5.0041837, Google ScholarScitation, ISI
 18. 18. M. Faenzi, D. G. Ovejero, and S. Maci, “ Overlapped and sequential
     metasurface modulations for bi-chromatic beams generation,” Appl. Phys.
     Lett. 118, 181902 (2021). https://doi.org/10.1063/5.0048985, Google
     ScholarScitation
 19. 19. H. Q. Nguyen, Q. Wu, J. Chen, Y. Yu, H. Chen, S. Tracy, and G. Huang, “
     A broadband acoustic panel based on double-layer membrane-type
     metamaterials,” Appl. Phys. Lett. 118, 184101 (2021).
     https://doi.org/10.1063/5.0042584, Google ScholarScitation, ISI
 20. 20. J. Lundgren, M. Gustafsson, D. Sjöberg, and M. Nilsson, “ IR and
     metasurface based mm-wave camera,” Appl. Phys. Lett. 118, 184104 (2021).
     https://doi.org/10.1063/5.0047315, Google ScholarScitation
 21. 21. D. Khmelevskaia, D. I. Markina, V. Fedorov, G. A. Ermolaev, A. V.
     Arsenin, V. S. Volkov, A. S. Goltaev, Y. M. Zadiranov, I. A. Tzibizov, A.
     P. Pushkarev, A. K. Samusev, A. A. Shcherbakov, P. Belov, I. S. Mukhin, and
     S. Makarov, “ Directly grown crystalline gallium phosphide on sapphire for
     nonlinear all-dielectric nanophotonics,” Appl. Phys. Lett. 118, 201101
     (2021). https://doi.org/10.1063/5.0048969, Google ScholarScitation, ISI
 22. 22. P. Vabishchevich, A. Vaskin, N. Karl, J. L. Reno, M. B. Sinclair, I.
     Staude, and I. Brener, “ Ultrafast all-optical diffraction switching using
     semiconductor metasurfaces,” Appl. Phys. Lett. 118, 211105 (2021).
     https://doi.org/10.1063/5.0049585, Google ScholarScitation
 23. 23. A. Moreno-Peñarrubia, J. Teniente, S. A. Kuznetsov, B. Orazbayev, and
     M. Beruete, “ Ultrathin and high-efficiency Pancharatnam-Berry phase
     metalens for millimeter waves,” Appl. Phys. Lett. 118, 221105 (2021).
     https://doi.org/10.1063/5.0048907, Google ScholarScitation
 24. 24. J. D. Ortiz, J. D. Baena, R. Marques, A. Enemuo, J. N. Gollub, R.
     Akhmechet, B. Penkov, C. Sarantos, and D. Crouse, “ Babinet's principle and
     saturation of the resonance frequency of scaled-down complementary
     metasurfaces,” Appl. Phys. Lett. 118, 221901 (2021).
     https://doi.org/10.1063/5.0048960, Google ScholarScitation
 25. 25. C. Yepes, M. Faenzi, S. Maci, and E. Martini, “ Perfect non-specular
     reflection with polarization control by using a locally passive metasurface
     sheet on a grounded dielectric slab,” Appl. Phys. Lett. 118, 231601 (2021).
     https://doi.org/10.1063/5.0048970, Google ScholarScitation
 26. 26. K. Manukyan, M. Z. Alam, C. Liu, K. Pang, H. Song, Z. Zhao, M. Tur, R.
     W. Boyd, and A. E. Willner, “ Dependence of the coupling properties between
     a plasmonic antenna array and a sub-wavelength epsilon-near-zero film on
     structural and material parameters,” Appl. Phys. Lett. 118, 241102 (2021).
     https://doi.org/10.1063/5.0042599, Google ScholarScitation, ISI
 27. 27. D. Wei, C. Hu, M. Chen, J. Shi, J. Luo, H. Wang, C. Xie, and X. Zhang,
     “ Light absorption and nanofocusing on tapered magnetic metasurface,” Appl.
     Phys. Lett. 117, 243102 (2020). https://doi.org/10.1063/5.0026073, Google
     ScholarScitation, ISI
 28. 28. K. Rouhi, R. G. Marosi, T. Mealy, A. Abdelshafy, A. Figotin, and F.
     Capolino, “ Exceptional degeneracies in traveling wave tubes with
     dispersive slow-wave structure including space-charge effect,” Appl. Phys.
     Lett. 118, 263506 (2021). https://doi.org/10.1063/5.0051462, Google
     ScholarScitation
 29. 29. A. Abdelshafy, T. Mealy, E. Hafezi, A. Nikzamir, and F. Capolino, “
     Exceptional degeneracy in a waveguide periodically loaded with discrete
     gain and radiation loss elements,” Appl. Phys. Lett. 118, 224102 (2021).
     https://doi.org/10.1063/5.0051238, Google ScholarScitation
 30. 30. D. Ramaccia, A. Alù, A. Toscano, and F. Bilotti, “ Temporal multilayer
     structures for designing higher-order transfer functions using time-varying
     metamaterials,” Appl. Phys. Lett. 118, 101901 (2021).
     https://doi.org/10.1063/5.0042567, Google ScholarScitation, ISI
 31. 31. S. Guenneau, B. Lombard, and C. Bellis, “ Time-domain investigation of
     an external cloak for antiplane elastic waves,” Appl. Phys. Lett. 118,
     191102 (2021). https://doi.org/10.1063/5.0048910, Google ScholarScitation,
     ISI
 32. 32. S. Huang, E. Zhou, Z. Huang, P. Lei, Z. Zhou, and Y. Li, “ Broadband
     sound attenuation by meta-liner under grazing flow,” Appl. Phys. Lett. 118,
     063504 (2021). https://doi.org/10.1063/5.0042228, Google ScholarScitation,
     ISI
 33. 33. O. R. Bilal, C. H. Yee, J. Rys, C. Schumacher, and C. Daraio, “
     Experimental realization of phonon demultiplexing in three-dimensions,”
     Appl. Phys. Lett. 118, 091901 (2021). https://doi.org/10.1063/5.0030830,
     Google ScholarScitation, ISI
 34. 34. G. Fujii, M. Takahashi, and Y. Akimoto, “ Acoustic cloak designed by
     topology optimization for acoustic-elastic-coupled systems,” Appl. Phys.
     Lett. 118, 101102 (2021). https://doi.org/10.1063/5.0040911, Google
     ScholarScitation, ISI
 35. 35. Z.-M. Gu, X. Fang, T. Liu, H. Gao, S. Liang, Y. Li, B. Liang, J.-C.
     Cheng, and J. Zhu, “ Tunable asymmetric acoustic transmission via binary
     metasurface and zero-index metamaterials,” Appl. Phys. Lett. 118, 113501
     (2021). https://doi.org/10.1063/5.0046756, Google ScholarScitation, ISI
 36. 36. Y. Mi, W. Zhai, L. Cheng, C. Xi, and X. Yu, “ Wave trapping by acoustic
     black hole: Simultaneous reduction of sound reflection and transmission,”
     Appl. Phys. Lett. 118, 114101 (2021). https://doi.org/10.1063/5.0042514,
     Google ScholarScitation, ISI
 37. 37. R. Zaccherini, A. Palermo, A. Marzani, A. Colombi, V. Dertimanis, and
     E. Chatzi, “ Mitigation of Rayleigh-like waves in granular media via
     multi-layer resonant metabarriers,” Appl. Phys. Lett. 117, 254103 (2020).
     https://doi.org/10.1063/5.0031113, Google ScholarScitation, ISI
 38. 38. J. K. Asane, M. Golam Rabbani Chowdhury, K. M. Khabir, V. A. Podolskiy,
     and M. A. Noginov, “ Stimulated emission in vicinity of the critical
     angle,” Appl. Phys. Lett. 119, 031102 (2021).
     https://doi.org/10.1063/5.0051901, Google ScholarScitation
 39. 39. U. Meriç Gür, M. Mattes, S. Arslanagić, and N. Gregersen, “ Elliptical
     micropillar cavity design for highly efficient polarized emission of single
     photons,” Appl. Phys. Lett. 118, 061101 (2021).
     https://doi.org/10.1063/5.0041565, Google ScholarScitation
 40. 40. P. Tonkaev, S. Anoshkin, A. P. Pushkarev, R. Malureanu, M. Masharin, P.
     Belov, A. V. Lavrinenko, and S. Makarov, “ Acceleration of radiative
     recombination in quasi-2D perovskite films on hyperbolic metamaterials,”
     Appl. Phys. Lett. 118, 091104 (2021). https://doi.org/10.1063/5.0042557,
     Google ScholarScitation, ISI
 41. 41. B. A. Webb and R. W. Ziolkowski, “ Metamaterial-inspired multilayered
     structures optimized to enable wireless communications through a
     plasmasonic region,” Appl. Phys. Lett. 118, 094102 (2021).
     https://doi.org/10.1063/5.0041196, Google ScholarScitation, ISI
 42. 42. I. Liberal and R. W. Ziolkowski, “ Nonperturbative decay dynamics in
     metamaterial waveguides,” Appl. Phys. Lett. 118, 111103 (2021).
     https://doi.org/10.1063/5.0044103, Google ScholarScitation, ISI
 43. 43. M. Jeannin, T. Bonazzi, D. Gacemi, A. Vasanelli, S. Suffit, L. Li, A.
     G. Davies, E. H. Linfield, C. Sirtori, and Y. Todorov, “ High temperature
     metamaterial terahertz quantum detector,” Appl. Phys. Lett. 117, 251102
     (2020). https://doi.org/10.1063/5.0033367, Google ScholarScitation, ISI
 44. 44. L. Yu, H. Xue, and B. Zhang, “ Topological slow light via coupling
     chiral edge modes with flat bands,” Appl. Phys. Lett. 118, 071102 (2021).
     https://doi.org/10.1063/5.0039839, Google ScholarScitation, ISI
 45. 45. M. Proctor, M. Blanco De Paz, D. Bercioux, A. Garcia-Etxarri, and P.
     Arroyo Huidobro, “ Higher-order topology in plasmonic Kagome lattices,”
     Appl. Phys. Lett. 118, 091105 (2021). https://doi.org/10.1063/5.0040955,
     Google ScholarScitation, ISI
 46. 46. S. Kandil and D. F. Sievenpiper, “ C-shaped chiral waveguide for
     spin-dependent unidirectional propagation,” Appl. Phys. Lett. 118, 101104
     (2021). https://doi.org/10.1063/5.0042583, Google ScholarScitation, ISI
 47. 47. R. J. Davis, D. J. Bisharat, and D. F. Sievenpiper, “
     Classical-to-topological transmission line couplers,” Appl. Phys. Lett.
     118, 131102 (2021). https://doi.org/10.1063/5.0041055, Google
     ScholarScitation, ISI
 48. 48. M. I. Nora Rosa, Y. Guo, and M. Ruzzene, “ Exploring topology of 1D
     quasiperiodic metastructures through modulated LEGO resonators,” Appl.
     Phys. Lett. 118, 131901 (2021). https://doi.org/10.1063/5.0042294, Google
     ScholarScitation
 49. 49. J. Feis, C. J. Stevens, and E. Shamonina, “ Wireless power transfer
     through asymmetric topological edge states in diatomic chains of coupled
     meta-atoms,” Appl. Phys. Lett. 117, 134106 (2020).
     https://doi.org/10.1063/5.0024077, Google ScholarScitation, ISI
 50. 50. Z. Yue, D. Liao, Z. Zhang, W. Xiong, Y. Cheng, and X. J. Liu, “
     Experimental demonstration of a reconfigurable acoustic second-order
     topological insulator using condensed soda cans array,” Appl. Phys. Lett.
     118, 203501 (2021). https://doi.org/10.1063/5.0049030, Google
     ScholarScitation
 51. 51. Y. Kawaguchi, M. Li, K. Chen, V. M. Menon, A. Alù, and A. B. Khanikaev,
     “ Optical isolator based on chiral light-matter interactions in a ring
     resonator integrating a dichroic magneto-optical material,” Appl. Phys.
     Lett. 118, 241104 (2021). https://doi.org/10.1063/5.0057558, Google
     ScholarScitation
 52. 52. X. Shi, C. Jin, and W. Mi, “ Inversion of angular-dependent planar
     magnetoresistance in epitaxial Pt/γ′-Fe4N bilayers,” Appl. Phys. Lett. 118,
     111601 (2021). https://doi.org/10.1063/5.0040980, Google ScholarScitation,
     ISI

 1. © 2022 Author(s). Published under an exclusive license by AIP Publishing.







ARTICLE METRICS

Views
3,299
Citations
Crossref 0
Web of Science
ISI 0

ALTMETRIC



Please Note: The number of views represents the full text views from December
2016 to date. Article views prior to December 2016 are not included.






RESOURCES

 * AUTHOR
 * LIBRARIAN
 * ADVERTISER

GENERAL INFORMATION

 * ABOUT
 * CONTACT
 * HELP

 

 * PRIVACY POLICY
 * TERMS OF USE
 * FOLLOW AIP PUBLISHING:

Website © 2022 AIP Publishing LLC. Article copyright remains as specified within
the article.




ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_~

x