aip.scitation.org
Open in
urlscan Pro
104.18.19.170
Public Scan
Submitted URL: https://aip-info.org/1XPS-7SEGB-285JYW-4QTH6J-1/c.aspx
Effective URL: https://aip.scitation.org/doi/full/10.1063/5.0081049?Track=&utm_source=AIP%20Publishing&utm_medium=email&utm_campaign=1308...
Submission Tags: falconsandbox
Submission: On May 22 via api from US — Scanned from DE
Effective URL: https://aip.scitation.org/doi/full/10.1063/5.0081049?Track=&utm_source=AIP%20Publishing&utm_medium=email&utm_campaign=1308...
Submission Tags: falconsandbox
Submission: On May 22 via api from US — Scanned from DE
Form analysis
2 forms found in the DOMName: quickSearch — GET /action/doSearch
<form action="/action/doSearch" name="quickSearch" class="quickSearchForm search-open resQuickSearchForm default-search-container" title="Quick Search" method="get">
<div class="container">
<div class="searchNav-tabs">
<ul class="search-tabs-nav" role="tablist">
<li id="search-tab" role="presentation" aria-selected="true" aria-controls="search-panel" data-tab-panel="search-panel">
<a aria-selected="true" tabindex="0" role="tab">SEARCH</a>
</li>
<li id="citation-search-tab" role="presentation" aria-selected="false" aria-controls="citation-search-panel" data-tab-panel="citation-search-panel">
<a aria-hidden="false" tabindex="0" role="tab">CITATION SEARCH</a>
</li>
<li id="advance-search-tab" role="presentation" aria-selected="false">
<a aria-hidden="false" tabindex="0" role="tab" href="/search/advanced">ADVANCED SEARCH</a>
</li>
</ul>
</div>
<div class="tab-content"> <!-- tab-content open -->
<div id="search-panel" class="tab-pane active" role="tabpanel" aria-labelledby="search-tab" aria-hidden="false">
<span class="searchDropDownDivLeft">
<label for="searchHeaderInSelector" class="visuallyhidden">Search in:</label>
<select id="searchHeaderInSelector" name="SeriesKey" class="custom-dropdown js__searchInSelector">
<option value="apl" id="thisJournal" data-search-in="thisJournal"> This Publication </option>
<option value="false" data-search-in="default">Anywhere</option>
<option value="" data-search-in="thisPublisher"> This Publisher/Society </option>
</select>
</span>
</div>
<div id="citation-search-panel" aria-hidden="true" class="tab-pane clear hidden" role="tabpanel" aria-labelledby="citation-search-tab">
<div class="quicksearch-container">
<span class="citationSearchBoxContainer hidden">
<input name="quickLinkJournal" class="journalName mediumTextInput textIndent autocomplete" value="Applied Physics Letters" type="search" title="Journal" placeholder="Journal" autocomplete="off" autopopulate="true"
data-history-items-conf="3" data-publication-titles-conf="3" data-topics-conf="3" data-contributors-conf="3" data-auto-complete-target="title-auto-complete">
<input type="hidden" name="quickLink" value="true">
<input class="year smallTextInput" title="Year" type="search" name="quickLinkYear" value="" autocomplete="false" placeholder="Year" pattern="([0-9]){1,4}$">
<input class="volume smallTextInput" title="Volume" type="search" name="quickLinkVolume" value="" autocomplete="false" placeholder="Volume" pattern="^[a-zA-Z0-9]+$">
<input class="issue smallTextInput enable" title="Issue" type="search" name="quickLinkIssue" value="" autocomplete="false" placeholder="Issue" pattern="^[a-zA-Z0-9]+$">
<input class="page smallTextInput" title="Page" type="search" name="quickLinkPage" value="" autocomplete="false" placeholder="Page" pattern="^[a-zA-Z0-9]+$">
</span>
<span class="citationSearchBoxContainer hidden">
<button class="citation-mainSearchButton">
<span class="icon-search"></span>
</button>
</span>
</div>
</div>
</div> <!-- tab-content Close -->
<div class="quicksearch-container">
<div class="simpleSearchBoxContainer">
<input name="AllField" class="searchText magicsuggest main-search-field textIndent autocomplete" value="" type="search" id="searchText" title="Type search term here" placeholder="Enter words / phrases / DOI / ISBN / authors / keywords / etc."
autocomplete="off" data-history-items-conf="3" data-publication-titles-conf="3" data-group-titles-conf="3" data-publication-items-conf="3" data-topics-conf="3" data-contributors-conf="3" data-display-labels="true"
data-fuzzy-suggester="true" data-auto-complete-target="auto-complete">
<input name="ConceptID" value="" type="hidden">
<button class="mainSearchButton">
<span class="sr-only">search</span>
<span class="icon-search icon-search-btn"></span>
</button>
</div>
<div class="quicksearch-actions">
<a class="responsiveAdvanceSearch" href="/search/advanced" title="Advanced">
<span class="visible-sm visible-xs">
Advanced
</span>
<span class="hidden-xs hidden-sm icon-advanced_search"></span>
</a>
</div>
</div>
<div class="cluetips">
<a class="citationHelp cluetips fancy-tooltip hidden" title="This option allows users to search by Publication, Volume and Page">This option allows users to search by Publication, Volume and Page</a>
<a class="journalHelp cluetips fancy-tooltip" title="Selecting this option will search the current publication in context.">Selecting this option will search the current publication in context.</a>
<a class="bookHelp cluetips fancy-tooltip" title="Book Search tips">Book Search tips</a>
<a class="anywhereHelp cluetips fancy-tooltip hidden" title="Selecting this option will search all publications across the Scitation platform">Selecting this option will search all publications across the Scitation platform</a>
<a class="thisPublisherHelp cluetips fancy-tooltip hidden" title="Selecting this option will search all publications for the Publisher/Society in context">Selecting this option will search all publications for the Publisher/Society in context</a>
</div>
</div>
</form>
POST /action/doLogin
<form action="/action/doLogin" method="post">
<div class="login-form">
<input type="hidden" name="id" value="913494f4-bbf3-4bd3-90ce-dec60af6f5ed">
<input type="hidden" name="redirectUri"
value="/doi/full/10.1063/5.0081049?Track=&utm_source=AIP+Publishing&utm_medium=email&utm_campaign=13082411_APL_+Piezoelectric+Thin+Films+for+MEMS.+Thermal+Radiation+at+the+Nanoscale+and+Applications_CFP&dm_i=1XPS%2C7SEGB%2C285JYW%2CVRQS2%2C1">
<input type="hidden" name="popup" value="true">
<input type="hidden" name="alertPopupLogin" value="true">
<div class="login-form-inputs">
<div class="input-group">
<div class="label ">
<label for="login">Email</label>
</div>
<input id="login" class="login" type="text" name="login" value="" size="15" placeholder="">
<div class="actions">
</div>
</div>
<div class="input-group">
<div class="label ">
<label for="password">Password</label>
</div>
<input id="password" class="password" type="password" name="password" value="" autocomplete="off" placeholder="">
<span class="password-eye-icon icon-eye hidden"></span>
<div class="actions">
<a href="/action/requestResetPassword">Forgot password?</a>
</div>
</div>
<div class="remember">
<div class="keepMeLogin">
<span class="label">Keep me logged in</span>
</div>
<div class="switch small-switch">
<input id="913494f4-bbf3-4bd3-90ce-dec60af6f5ed-remember" class="cmn-toggle cmn-toggle-round-flat jcf-ignore" title="Keep Me Logged In" type="checkbox" name="remember" value="true">
<label class="tgl-btn" for="913494f4-bbf3-4bd3-90ce-dec60af6f5ed-remember" title="Keep Me Logged In"></label>
</div>
</div>
</div>
<div class="footer-buttons">
<input class="button submit primary" type="submit" name="submit" value="LOGIN">
</div>
</div>
</form>
Text Content
MENU SIGN IN Sign in/Register Enter words / phrases / DOI / ISBN / authors / keywords / etc. SEARCH CITATION SEARCH * SEARCH * CITATION SEARCH * ADVANCED SEARCH Search in: This Publication Anywhere This Publisher/Society search Advanced This option allows users to search by Publication, Volume and Page Selecting this option will search the current publication in context. Book Search tips Selecting this option will search all publications across the Scitation platform Selecting this option will search all publications for the Publisher/Society in context * Publishers * Books * Scilight * Conference Proceedings * Author Resources * Librarian Resources * Advertiser * Contact Us * FAQ * Help * * Publications View All Publications * Applied Physics Reviews * Applied Physics Letters * Journal of Applied Physics * The Journal of Chemical Physics * Physics Today * The Journal of the Acoustical Society of America * Review of Scientific Instruments * American Journal of Physics * Physics of Fluids * AIP Advances * View All Publications * Topics View All Topics * Acoustics * Biological Physics * Condensed Matter Physics * Energy * Materials Science * Mathematical Physics * Optics and Optical Physics * Physical Chemistry * Plasma Physics * Rheology and Fluid Dynamics * View All Topics Applied Physics Letters like and follow us Facebook * Most recent (RSS) * Most cited (RSS) SUBMIT YOUR ARTICLE * HOME * ISSUES * MORE * INFO * Overview * Editorial Board * News * FOR AUTHORS * Preparing Your Manuscript * Publication Charges * Author Resources * AIP Author Services * Submit * COLLECTIONS * Editor's Picks * Fast Track * Featured * Perspectives * Press Releases * Scilights * Special Topics * Upcoming Special Topics * ISSUES * INFO * Overview * Editorial Board * News * FOR AUTHORS * Preparing Your Manuscript * Publication Charges * Author Resources * AIP Author Services * Submit * COLLECTIONS * Editor's Picks * Fast Track * Featured * Perspectives * Press Releases * Scilights * Special Topics * Upcoming Special Topics SIGN UP FOR ALERTS THANK YOU FOR YOUR INTEREST IN APPLIED PHYSICS LETTERS To sign up for alerts, please log in first. If you need an account, please register here Email Password Forgot password? Keep me logged in SCALABLE WAYS TO BREAK THE EFFICIENCY LIMIT OF SINGLE-JUNCTION SOLAR CELLS * PDF * Tools * Download Citation * Add to favorites * Reprints and Permissions * Share E-mail Facebook Linkedin Twitter Reddit Mendeley Recommend to Librarians * Home > * Applied Physics Letters > * Volume 120, Issue 1 > * 10.1063/5.0081049 Prev Next RELATED ARTICLES Hydrogenated amorphous silicon oxide (a-SiOx:H) single junction solar cell with 8.8% initial efficiency by reducing parasitic absorptions Do Yun Kim, Erwin Guijt, René A. C. M. M. van Swaaij and Miro Zeman more... The efficiency limit of CH3NH3PbI3 perovskite solar cells Wei E. I. Sha, Xingang Ren, Luzhou Chen and Wallace C. H. Choy more... Enhanced external radiative efficiency for 20.8% efficient single-junction GaInP solar cells J. F. Geisz, M. A. Steiner, I. García, S. R. Kurtz and D. J. Friedman more... Triple-junction thin-film silicon solar cell fabricated on periodically textured substrate with a stabilized efficiency of 13.6% Hitoshi Sai (齋 均 ), Takuya Matsui (松井 卓矢 ), Takashi Koida (鯉田 崇 ), Koji Matsubara (松原 浩司 ), Michio Kondo (近藤 道雄 ), Shuichiro Sugiyama (杉山 秀一郎 ), Hirotaka Katayama (片山 博貴 ), Yoshiaki Takeuchi (竹内 良昭 ) and Isao Yoshida (吉田 功 ) more... Loss analysis for single junction concentrator solar cells Nicholas J. Ekins-Daukes, Anastasia Soeriyadi, Wenqi Zhao, Stephen Bremner and Andreas Pusch more... Multi-junction solar cells paving the way for super high-efficiency Masafumi Yamaguchi, Frank Dimroth, John F. Geisz and Nicholas J. Ekins-Daukes more... Stabilized 14.0%-efficient triple-junction thin-film silicon solar cell Hitoshi Sai (齋均 ), Takuya Matsui (松井卓矢 ) and Koji Matsubara (松原浩司 ) more... Investigation on high-efficiency Ga0.51In0.49P/In0.01Ga0.99As/Ge triple-junction solar cells for space applications Lei Zhang, Pingjuan Niu, Yuqiang Li, Minghui Song, Jianxin Zhang, Pingfan Ning and Peizhuan Chen more... Special topic on non-classical light emitters and single-photon detectors Christoph Becher, Sven Höfling, Jin Liu, Peter Michler, Wolfram Pernice and Costanza Toninelli more... A perspective on conducting domain walls and possibilities for ephemeral electronics J. M. Gregg more... A perspective on integrated atomo-photonic waveguide circuits Yuri B. Ovchinnikov more... MOCVD growth of MgGa2O4 thin films for high-performance solar-blind UV photodetectors Qichao Hou, Kewei Liu, Dongyang Han, Yongxue Zhu, Xing Chen, Binghui Li, Lei Liu and Dezhen Shen more... Free Submitted: 06 December 2021 Accepted: 06 December 2021 Published Online: 04 January 2022 * SCALABLE WAYS TO BREAK THE EFFICIENCY LIMIT OF SINGLE-JUNCTION SOLAR CELLS * Appl. Phys. Lett. 120, 010402 (2022); https://doi.org/10.1063/5.0081049 Bruno Ehrler1,a), Anita W. Y. Ho-Baillie2, Eline M. Hutter3, Jovana V. Milić4, Murad J. Y. Tayebjee5, and Mark W. B. Wilson6 more...View Affiliations * 1AMOLF, Center for Nanophotonics, Science Park 104, 1098 XG Amsterdam, The Netherlands * 2School of Physics and Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia * 3Inorganic Chemistry and Catalysis, Princetonlaan 8, 3584 CB Utrecht, The Netherlands * 4Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland * 5School of Photovoltaic and Renewable Engineering, UNSW Sydney, Kensington 2052, Australia * 6Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada * a)Author to whom correspondence should be addressed: ehrler@amolf.nl Note: This paper is part of the APL Special Collection on Scalable Ways to Break the Efficiency Limit of Single-Junction Solar Cells. View Contributors * Bruno Ehrler * Anita W. Y. Ho-Baillie * Eline M. Hutter * Jovana V. Milić * Murad J. Y. Tayebjee * Mark W. B. Wilson * PDF * CHORUS * First Page * Full Text * Figures * Tools * Download Citation * Add to Favorites * Reprints and Permissions * E-mail Facebook Linkedin Twitter Reddit Mendeley Recommend to Librarian * Share E-mail Facebook Linkedin Twitter Reddit Mendeley Recommend to Librarian metrics 2.7K Views * Topics * Special Topics * Scalable Ways to Break the Efficiency Limit of Single-Junction Solar Cells * Topics * Thin films * Solar cells * Photoluminescence spectroscopy * Heterostructures * Electronic transport * Excitons * Recombination reactions * Photovoltaics * Perovskites Solar photovoltaics will play a dominant role in the power generation of the zero-carbon future.11. Energy Watch Group, Global Energy System Based on 100% Renewable Energy ( Energy Watch Group, 2019). Today, the market of large-scale solar power generation is dominated by silicon solar cells, where high-performance lab-scale devices are reaching their detailed-balance efficiency limit.22. B. Ehrler, E. Alarcón-Lladó, S. W. Tabernig, T. Veeken, E. C. Garnett, and A. Polman, ACS Energy Lett. 5, 3029 (2020). https://doi.org/10.1021/acsenergylett.0c01790 With decreasing module prices,33. M. A. Green, Joule 3, 631 (2019). https://doi.org/10.1016/j.joule.2019.02.010 cell efficiency becomes more valuable as it becomes an increasingly important driver for further reductions in the levelized cost of electricity. The next generation of solar cells thus strives to surpass the efficiency limit of single-junction solar cells. Multi-junction solar cells, such as those based on III–V materials, are already very efficient, yet these materials have remained prohibitively expensive for large-scale deployment.44. A. Polman, M. Knight, E. C. Garnett, B. Ehrler, and W. C. Sinke, Science 352, 307 (2016). https://doi.org/10.1126/science.aad4424 In this special topic, we instead focus on nascent techniques and materials that offer the possibility to exceed the single-junction efficiency limit in a scalable (multi-km2) way in the future. The detailed-balance single-junction efficiency limit assumes that the solar cell consists of a single absorber layer, in which an incoming photon generates a single electron–hole pair that can be extracted to perform work.55. W. Shockley and H. J. Queisser, J. Appl. Phys. 32, 510 (1961). https://doi.org/10.1063/1.1736034 All common schemes that go beyond this limit break at least one of these assumptions: they use two or more absorber layers with different optical bandgaps or enable the generation of more than a single electron–hole pair, so that the broad solar spectrum can be used more efficiently. Broadly speaking, the resulting solar cells discussed in this special topic collection can be categorized into two main categories, namely, tandem solar cells and solar cells that make use of up- or downconversion (Fig. 1). Here, we bring together reports on scalable ways to overcome the limitations of single-junction solar cells using these approaches. FIG. 1. Working principle of a tandem solar cell (left) and an up- and downconversion-based solar cell (right). The tandem cell consists of two separate sub-cells, often the bottom cell is made of silicon and absorbs the low-energy part of the solar spectrum, and the top cell absorbs the higher-energy photons. The up- and downconversion cell often only consists of one solar cell junction, while the up- and downconversion layers transform the incident spectrum so that it can be better converted by the cell. * PPT | * High resolution A tandem solar cell consists of two individual sub-cells, each having its own bandgap and its own junction to aid electron-hole separation.66. S. M. Bedair, M. F. Lamorte, and J. R. Hauser, Appl. Phys. Lett. 34, 38 (1979). https://doi.org/10.1063/1.90576 There are different ways to connect the two sub-cells. For instance, they can be electrically independent and only optically connected (four-terminal cell, 4T), permitting the independent power developed by each cell to be combined externally. Alternatively, they can be connected electrically in series (two-terminal cell, 2T), where the voltages intrinsically sum, but the current needs to be matched. Other geometries, such as three-terminal cells, are less common. Tandem cells could be highly relevant in the fast deployment of solar PV in the near future. Solar PV technologies target the generation of electricity without the emission of significant greenhouse gasses; but to reach the goals of the Paris Agreement,77. J. Rogelj, D. Shindell, K. Jiang, S. Fifita, et al., “ Mitigation pathways compatible with 1.5 °C in the context of sustainable development” (published online 2018). the transition toward this low-carbon generation of electricity must be rapid.88. P. Friedlingstein, M. O'Sullivan, M. W. Jones, R. M. Andrew, J. Hauck, A. Olsen, G. P. Peters, W. Peters, J. Pongratz, S. Sitch, C. L. Quéré, J. G. Canadell, P. Ciais, R. B. Jackson, S. Alin, L. E. O. C. Aragão, A. Arneth, V. Arora, N. R. Bates, M. Becker, A. Benoit-Cattin, H. C. Bittig, L. Bopp, S. Bultan, N. Chandra, F. Chevallier, L. P. Chini, W. Evans, L. Florentie, P. M. Forster, T. Gasser, M. Gehlen, D. Gilfillan, T. Gkritzalis, L. Gregor, N. Gruber, I. Harris, K. Hartung, V. Haverd, R. A. Houghton, T. Ilyina, A. K. Jain, E. Joetzjer, K. Kadono, E. Kato, V. Kitidis, J. I. Korsbakken, P. Landschützer, N. Lefèvre, A. Lenton, S. Lienert, Z. Liu, D. Lombardozzi, G. Marland, N. Metzl, D. R. Munro, J. E. M. S. Nabel, S. I. Nakaoka, Y. Niwa, K. O'Brien, T. Ono, P. I. Palmer, D. Pierrot, B. Poulter, L. Resplandy, E. Robertson, C. Rödenbeck, J. Schwinger, R. Séférian, I. Skjelvan, A. J. P. Smith, A. J. Sutton, T. Tanhua, P. P. Tans, H. Tian, B. Tilbrook, G. Van Der Werf, N. Vuichard, A. P. Walker, R. Wanninkhof, A. J. Watson, D. Willis, A. J. Wiltshire, W. Yuan, X. Yue, and S. Zaehle, Earth Syst. Sci. Data 12, 3269 (2020). https://doi.org/10.5194/essd-12-3269-2020 This gives a deployment advantage to new technologies that are compatible with existing technologies, production facilities, and markets. Kamaraki et al. show that perovskite/silicon tandem solar cells fulfill many of these requirements.99. C. Kamaraki, M. T. Klug, T. Green, L. Miranda Perez, and C. Case, Appl. Phys. Lett. 119, 070501 (2021). https://doi.org/10.1063/5.0054086 The authors work for the company Oxford PV, which is commercializing the technology. They claim that the most commercially viable tandem cell is a 2T configuration, because the 4T cells would require doubling the number of inverters, which is cost-prohibitive in the current market. Si solar cells are chosen as the most promising bottom cell because of their current dominance, proven long-lasting performance, and low cost. For the top cell, it is not enough to be efficient or low-cost, but the cell must be both—particularly of comparable efficiency to the bottom cell. Thus, they describe how a metal halide perovskite top cell potentially fulfills these requirements since high-quality films can be formed by a variety of simple, low-cost deposition techniques. In addition, the technological compatibility of perovskite cells with the existing and highly developed Si industry allows these tandems to leverage the decades of development in Si cells and module fabrication, as well as systems and business development. An important commercial consideration is that perovskite/Si tandem modules offer a higher efficiency than traditional Si-only modules, which allows the producer to charge a premium in applications where space is limited such as in rooftop systems. After market introduction, they emphasize that the learning curve of the tandem cells needs to keep pace with Si-only cells to remain competitive. They are optimistic that large efficiency potential and the connection to the established, large-scale Si industry should make this possible. There are still several materials challenges to overcome before perovskite-based tandem cells become a reality. Several of these are addressed in this special topic collection. A high photoluminescence quantum yield (PLQY) is critical for all solar cell materials. Perovskites often show high PLQY, but it can be diminished by sample morphology and material purity. Screening material compositions and fabrication techniques, therefore, requires a rapid method to study the PLQY of a perovskite sample. Akhundova et al. show that the spectral shape of the photoluminescence (PL) from wide-bandgap perovskites correlates with the PLQY of a sample.1010. F. Akhundova, L. Lüer, A. Osvet, J. Hauch, I. M. Peters, K. Forberich, N. Li, and C. Brabec, Appl. Phys. Lett. 118, 243903 (2021). https://doi.org/10.1063/5.0049010 The authors assign this correlation to the observation both the PLQY and the spectral shape reflect the domain size dispersion because of its role in the funneling of carriers into trap sites. The size dispersion is greatly affected by processing parameters such as annealing conditions, and these results highlight the importance of carefully controlling fabrication. The fabrication of perovskite thin films needs to be scalable without compromising luminescence efficiency. Ishteev et al. demonstrate a new deposition technique for all-inorganic, large-bandgap perovskite thin films.1111. A. Ishteev, L. Luchnikov, D. S. Muratov, M. Voronova, A. Forde, T. Inerbaev, V. Vanyushin, D. Saranin, K. Yusupov, D. Kuznetsov, and A. Di Carlo, Appl. Phys. Lett. 119, 071901 (2021). https://doi.org/10.1063/5.0055993 They fabricate the precursors, CsBr and PbBr2, by dry, mechanical milling before deposition in a single-source CVD process under mild vacuum (0.02–1.00 mBar). All these techniques are, in principle, scalable, and the authors are able to vary the ratio between the precursors (i.e., CsBr:PbBr2) to search for the most luminescent composition. They observe greatest brightness from a 35:65 ratio, a composition that forms both the CsPb2Br5 and CsPbBr3 perovskites. They demonstrate that this technique can be used to conformally coat textured surfaces but identify that the stability and PLQY will require further improvements. For the full device stack, perovskite tandem cells require transparent electrodes (4T) and interconnection layers (2T). These layers have received considerable attention because of their importance for the overall performance. The interconnection layer between the two subcells of a 2T tandem cell ideally offers good recombination properties, while transmitting all low-energy light. Koç et al. calculate the optical transmission of an interconnection layer consisting of thin Ag between two transport layers in a perovskite-perovskite tandem cell.1212. M. Koc, M. Ameri, and S. Yerci, Appl. Phys. Lett. 119, 021102 (2021). https://doi.org/10.1063/5.0048780 They report transfer matrix calculations that explore the transmission of light into the low-bandgap bottom cell when the thicknesses of the silver layer and the adjacent transport layers are varied. They find two tradeoffs. First, the refractive index of the transfer layers is important to the transmission of light. Ideally, the index would be larger than 1.9; however, by the Kramers–Kronig relationship, these high indices will also lead to larger parasitic absorption. Second, the silver layer should be as thin as possible for good light transmission (even 3 nm already reduces the photocurrent from the bottom cell), but thicker layers lead to larger lateral conductivity. For 4T tandem cells, the top cell needs to be fully transparent to below-bandgap light. However, the transparent conductive electrode required induces large parasitic absorption and often used indium-tin oxide (ITO) is too brittle to be implemented in flexible solar cells. As in the previous example for interconnection layers, thin metal layers can also perform as excellent transparent conductive electrodes. Spinelli et al. sandwich a sputtered layer of Ag or co-sputtered Ag/Cu between two layers of ITO, and these ITO-Cu/Ag-ITO electrodes show a NIR transmission similar to ITO when the layer thicknesses are optimized.1313. P. Spinelli, R. Fuentes Pineda, M. Scigaj, T. Ahmad, and K. Wojciechowski, Appl. Phys. Lett. 118, 241110 (2021). https://doi.org/10.1063/5.0052209 They perform this using transfer-matrix modeling, identifying an optimal transmission for thicknesses of 40 nm for the first ITO layer, 5 nm for the metal, and 65 nm for the second ITO layer. The layers were then processed in a full device stack with a large-bandgap perovskite as the active layer and performed slightly better than the same device with an ITO contact. In addition, they find that the initial sheet resistance of the ITO-metal-ITO contact is about half that of pure ITO (200 nm), and it retains this value upon repeated bending cycles, while the ITO resistance doubles after about 1000 cycles. The authors work for Saule Technologies, a company commercializing perovskite solar cell products, and they are confident that this contact architecture can provide a scalable and efficient solution for applications. While perovskite/silicon and perovskite/perovskite tandem cells receive significant attention from the research community because of their potential for implementation at scale in large-area photovoltaics, different tandem configurations offer interesting properties for other applications. For example, III–V semiconductor/Si tandem solar cells combine a low-cost and well-established Si bottom cell with a highly efficient III–V top cell. While too expensive for large-area applications, these cells might suit the high-performance end of the market, for example, for vehicle-integrated PV. Whitehead et al. fabricate a 4T GaAs/Si tandem cell that is mechanically stacked by combining various thicknesses of GaAs with a Si cell that features interdigitated back contacts.1414. R. C. Whitehead, K. T. VanSant, E. L. Warren, J. Buencuerpo, M. Rienäcker, R. Peibst, J. F. Geisz, and A. C. Tamboli, Appl. Phys. Lett. 118, 183902 (2021). https://doi.org/10.1063/5.0049097 The 4T configuration is necessary here, because the bandgap of GaAs is too low for a current-matched 2T combination with Si. The back-contacted silicon cell makes the stacking and contacting easier. The authors find that the tandem cell efficiency does not depend too heavily on the GaAs thickness as long as it is thicker than 1.9 μm. All tandem cells show excellent performance with >30% power conversion efficiency, and their cell with 2.8 μm GaAs shows the highest tandem efficiency (32.57%). The performance for the various layer thicknesses is confirmed with transfer matrix modeling for the optical transmission and absorption, Lambertian light-trapping for the Si cell, and the Hovel method to study the effect of photon recycling. The low refractive index of the glass interlayer ensures that the GaAs cell benefits from the effect of photon recycling by trapping the emitted light inside the top cell. Like tandem solar cells, two or more effective bandgaps are also required for the up- and downconversion schemes. However, only one of them needs to form a semiconductor junction to extract charge. The other bandgap can then be used to down-convert the energy if the bandgap is higher than the one that forms the junction or upconvert if it is lower. There are several mechanisms for both up- and downconversion. In this special topic collection, we find contributions on singlet fission and multiple exciton generation as downconversion processes, and triplet–triplet annihilation and intermediate-gap solar cells as upconversion processes. Singlet fission is a process that can be used in photon downconversion, and the most thoroughly studied materials are crystalline, conjugated small molecules such as the linear acenes. Photon absorption in these materials initially generates spin-singlet excitons. These are converted by fission into pairs of lower-energy spin-correlated triplet excitons.1515. M. B. Smith and J. Michl, Chem. Rev. 110, 6891 (2010). https://doi.org/10.1021/cr1002613 The process is spin-allowed and is, hence, can be rapid and efficient in materials where it is energetically favorable.1616. M. W. B. Wilson, A. Rao, B. Ehrler, and R. H. Friend, Acc. Chem. Res. 46, 1330 (2013). https://doi.org/10.1021/ar300345h In that respect, singlet fission appears to be an ideal downconversion mechanism when combined with a low-bandgap solar cell. In practice, however, multiple challenges arise when implementing these organic materials in a practical solar cell architecture. Cheung and Kaake investigate the effect of the exciton binding energy and endothermicity on the potential solar cell efficiency.1717. J. C. F. Cheung and L. G. Kaake, Appl. Phys. Lett. 119, 013301 (2021). https://doi.org/10.1063/5.0047964 The binding energy comes from the Coulombic interaction between the electron and hole of the exciton. The endothermicity, also called entropic gain, is observed in many singlet fission materials and stems from the greater number of microstates possible when one singlet exciton converts into two triplet excitons.1818. N. V. Korovina, C. H. Chang, and J. C. Johnson, Nat. Chem. 12, 391 (2020). https://doi.org/10.1038/s41557-020-0422-7 The authors use both the optical gaps of the singlet fission material and the low-bandgap solar cell as free parameters in a detailed-balance based efficiency calculation and assume charge transfer from the triplet exciton to generate current. They find that in simple two-bandgap systems, the efficiency drop from the exciton binding energy can be partially recovered by the endothermicity. However, at high exciton binding energies (e.g., 0.5 eV), the maximum achievable efficiency drops from 43.9% to 31.0% even assuming an effective endothermicity of 0.25 eV. Then, a double heterojunction is introduced with a bridge molecule that serves to accept electrons from the triplet excitons, much like in ternary blend organic solar cells.1919. W. Xu and F. Gao, Mater. Horiz. 5, 206 (2018). https://doi.org/10.1039/C7MH00958E This bridge molecule reduces recombination and aids charge separation. The result is that the maximum achievable solar cell performance remains high even at high exciton binding energies. Revisiting the example mentioned previously, with 0.5 eV exciton binding energy and 0.25 eV endothermicity, they show that the bridge molecules would lift the efficiency potential from 31.0% to well above 40%. While charge separation from singlet fission-generated triplet excitons may lead to high efficiency,2020. B. Daiber, K. Van Den Hoven, M. H. Futscher, and B. Ehrler, ACS Energy Lett. 6, 2800 (2021). https://doi.org/10.1021/acsenergylett.1c00972 the most promising experimental realizations with singlet fission and silicon cells so far rely on energy transfer.2121. M. Einzinger, T. Wu, J. F. Kompalla, H. L. Smith, C. F. Perkinson, L. Nienhaus, S. Wieghold, D. N. Congreve, A. Kahn, M. G. Bawendi, and M. A. Baldo, Nature 571, 90–94 (2019). https://doi.org/10.1038/s41586-019-1339-4 Many downconversion processes are technically multiple-exciton generation processes, but conventionally the term multiple exciton generation (MEG) refers to the inverse Auger process in inorganic semiconductors that generates two or more band edge electron–hole pairs from one high-energy photoexcitation. This process is inefficient in bulk materials both energetically and in terms of quantum yield, but prospects are improved in colloidal quantum dots due to factors that include improved momentum matching.2222. J. Gao, A. F. Fidler, and V. I. Klimov, Nat. Commun. 6, 8185 (2015). https://doi.org/10.1038/ncomms9185 Solar cells utilizing MEG to achieve greater-than-unity photon-to-carrier yield at select wavelengths have been demonstrated2323. O. E. Semonin, J. M. Luther, S. Choi, H.-Y. Chen, J. Gao, A. J. Nozik, and M. C. Beard, Science 334, 1530 (2011). https://doi.org/10.1126/science.1209845 but have not yet reached high energy-conversion efficiencies. Writing in this collection, Pusch et al. show that equilibrium-only models are insufficient in assessing the efficiency potential of such cells, because of the voltage dependence of the inverse process of MEG, Auger recombination.2424. A. Pusch, S. P. Bremner, M. J. Y. Tayebjee, and N. J. E. Daukes, Appl. Phys. Lett. 118, 151103 (2021). https://doi.org/10.1063/5.0049120 As voltage increases, Auger recombination starts to play a larger role. In contrast, all relevant processes in conventional solar cells are well separated in time. In these conventional cases, the external quantum efficiency measured at short circuit can be used to calculate the photocurrent, and the superposition principle applies. However, when the efficiency potential of MEG solar cells is assessed, microscopic reversibility must be explicitly considered to properly treat the interplay between MEG and Auger recombination. Pusch et al. devise a model that incorporates these considerations for a quantum dot-based device assuming equidistant, discrete energy levels. This model reproduces experimentally observed EQE curves, and they show that the quasi-Fermi level splitting varies across the device due to the microscopic reversibility. The MEG process, thus, depends on the applied voltage, and as a result, the calculated IV curves show a lower open-circuit voltage compared to a model that assumes equilibrium conditions. Inclusion of trion states to the Auger recombination rate further reduces the efficiency potential, so preventing these charged states in devices will be critical to achieve significant efficiency gains over single-junction solar cells. MEG and singlet fission both harness high-energy photons to generate multiple excitons of lower energy. In principle, direct extraction of the energy of hot carriers is also possible. There are major challenges, however, which are in part related to the generally rapid relaxation of hot carriers to the band edge. Esmaielpour et al. investigate the hot-carrier relaxation in type-II InAs/AlAsSb multi-quantum well structures.2525. H. Esmaielpour, B. K. Durant, K. R. Dorman, V. R. Whiteside, J. Garg, T. D. Mishima, M. B. Santos, I. R. Sellers, J. F. Guillemoles, and D. Suchet, Appl. Phys. Lett. 118, 213902 (2021). https://doi.org/10.1063/5.0052600 They study the effect of different barrier thicknesses on hot carrier relaxation by measuring the PL spectrum at different excitation intensities. By measuring the excess temperature from the PL spectrum for different barrier layer thicknesses, they find that the barrier layer thickness has an effect of the effective temperature because of changes in the cooling rates. The authors explain this difference by a difference in phonon scattering rates. Supported by DFT calculations, they find that the larger barrier layers (higher InAs/AlSb ratio) show a reduced phonon density of states, which leads to an increase in the phonon scattering time. While all the previous examples aim to make better use of the high-energy part of the solar spectrum, upconversion does the opposite. In such schemes, below-bandgap photons are absorbed in an upconverter material and transformed into higher-energy photons or excitations. An attractive strategy for incoherent photon upconversion efficiencies is based on triplet-triplet annihilation (TTA), also known as triplet fusion, where pairs of spin-triplet excitons are combined to form a higher-energy, emissive spin-singlet exciton. The most efficient schemes have relied on external sensitizers that absorb incident light and then transfer this energy to annihilator/emitter molecules. Traditionally, these schemes relied on metal-organic complexes to serve as sensitizers,2626. T. N. Singh-Rachford and F. N. Castellano, Coord. Chem. Rev. 254, 2560 (2010). https://doi.org/10.1016/j.ccr.2010.01.003 and more recently colloidal quantum dots27,2827. Z. Huang, X. Li, M. Mahboub, K. M. Hanson, V. M. Nichols, H. Le, M. L. Tang, and C. J. Bardeen, Nano Lett. 15, 5552 (2015). https://doi.org/10.1021/acs.nanolett.5b0213028. M. Wu, D. N. Congreve, M. W. B. Wilson, J. Jean, N. Geva, M. Welborn, T. Van Voorhis, V. Bulovi, M. G. Bawendi, and M. A. Baldo, Nat. Photonics 10, 31 (2016). https://doi.org/10.1038/nphoton.2015.226 and lanthanide-doped nanoparticles sensitizers combined with organic emitters.2929. S. Han, R. Deng, Q. Gu, L. Ni, U. Huynh, J. Zhang, Z. Yi, B. Zhao, H. Tamura, A. Pershin, H. Xu, Z. Huang, S. Ahmad, M. Abdi-Jalebi, A. Sadhanala, M. L. Tang, A. Bakulin, D. Beljonne, X. Liu, and A. Rao, Nature 587, 594 (2020). https://doi.org/10.1038/s41586-020-2932-2 With the rise of perovskites as the dominant thin-film semiconductor (at least in the research community), perovskite nanocrystals3030. X. Luo, Y. Han, Z. Chen, Y. Li, G. Liang, X. Liu, T. Ding, C. Nie, M. Wang, F. N. Castellano, and K. Wu, Nat. Commun. 11, 28 (2020). https://doi.org/10.1038/s41467-019-13951-3 and films3131. L. Nienhaus, J. P. Correa-Baena, S. Wieghold, M. Einzinger, T. A. Lin, K. E. Shulenberger, N. D. Klein, M. Wu, V. Bulović, T. Buonassisi, M. A. Baldo, and M. G. Bawendi, ACS Energy Lett. 4, 888 (2019). https://doi.org/10.1021/acsenergylett.9b00283 have also now been used as sensitizers for TTA upconversion. Surprisingly, even bulk perovskites performed very efficiently thanks to their high charge carrier mobility and long charge carrier lifetimes. For applications in solar cells, these upconversion systems need to work efficiently at sub-solar fluxes and under continuous illumination. Writing in this collection, Vanorman et al. study the effect of illumination on the efficiency of a (MAFA)PbI3 perovskite/rubrene upconversion bilayer.3232. Z. A. Vanorman, J. Lackner, S. Wieghold, K. Nienhaus, G. U. Nienhaus, and L. Nienhaus, Appl. Phys. Lett. 118, 203903 (2021). https://doi.org/10.1063/5.0050185 They show that the continued illumination improves the upconversion efficiency, which correlates with an increase in the total perovskite PL that is associated with the relative suppression of short-lifetime decay channels. This is consistent with trap filling within the perovskite layer, because populating the triplet excitons in rubrene by the perovskite excitations competes with trapping within the perovskite and at the interface. Under continued illumination, they observe that the upconversion PL from rubrene rises more rapidly following additional pulsed excitation, providing further evidence that the transfer of energy into the rubrene triplet state is improved. The works highlights that the upconversion efficiency reported in these systems strongly depends on not only the incident power but also the illumination history of the sample. A theoretically elegant but technically challenging way to overcome the efficiency limit of single-junction solar cells is the concept of intermediate-gap solar cells.33,3433. A. Luque and A. Martí, Phys. Rev. Lett. 78, 5014 (1997). https://doi.org/10.1103/PhysRevLett.78.501434. Y. Okada, N. J. Ekins-Daukes, T. Kita, R. Tamaki, M. Yoshida, A. Pusch, O. Hess, C. C. Phillips, D. J. Farrell, K. Yoshida, N. Ahsan, Y. Shoji, T. Sogabe, and J. F. Guillemoles, Appl. Phys. Rev. 2, 021302 (2015). https://doi.org/10.1063/1.4916561 Here, a state within the bandgap of the absorber layer is used to provide a second absorption gap. The intrinsic challenge in this architecture is that the reciprocity of absorption and emission processes mean that charges in the intermediate gap typically recombine faster than photons can be absorbed at solar flux to generate excitations across the bandgap. This issue can be overcome by “parking” electrons in a second level slightly lower than the intermediate gap to prolong their lifetime. Huang et al. investigate theoretically such a system where a bilayer of Sn-doped AgAlTe2 and LiInTe2 is also used to aid charge separation in a type-II heterojunction.3535. D. Huang, L. Ding, Y. Xue, J. Guo, Y. J. Zhao, and C. Persson, Appl. Phys. Lett. 118, 043901 (2021). https://doi.org/10.1063/5.0034852 They calculate the band structure of both pure materials and those doped with various group-IV metals. The combination of the Sn-doped materials provides good lattice matching and maintains the type-II heterojunctions of the undoped materials. Overall, this special topic collection shows the breadth of studies, the novelty, and the creativity that the research community is applying to circumvent the single-junction efficiency limit for solar cells. While some concepts, such as perovskite/silicon tandems, are close to market entry, others, while demonstrated, are not yet commercially viable for large-scale terrestrial applications, such as the III–V based technologies. The up- and downconversion technologies, on the other hand, have enormous potential both for high efficiency and for low cost but are further away from commercial implementation. We embrace this wide range of technologies at different stages of research, and we see a bright future for high-efficiency, large-scale solar cell applications. We would like to thank all the authors that have contributed and the editors of APL Maria Antonietta Loi and Lesley Cohen as well as Emma Nicholson van Burns and Jessica Trudeau for their assistance. The work of B.E. was part of the Dutch Research Council (NWO) and was performed at the research institute AMOLF. The work of J.V.M. is part of the Swiss National Science Foundation (SNSF) PRIMA project performed at the Adolphe Merkle Institute. A.H.-B. would like to acknowledge the support of the Australian Government through the Australian Research Council Future Fellowship (No. FT210100210) and through Australian Renewable Energy Agency (ARENA)-2020/RND001 and 2020/RND003 projects. DATA AVAILABILITY Data sharing is not applicable to this article as no new data were created or analyzed in this study. REFERENCES 1. 1. Energy Watch Group, Global Energy System Based on 100% Renewable Energy ( Energy Watch Group, 2019). Google Scholar 2. 2. B. Ehrler, E. Alarcón-Lladó, S. W. Tabernig, T. Veeken, E. C. Garnett, and A. Polman, ACS Energy Lett. 5, 3029 (2020). https://doi.org/10.1021/acsenergylett.0c01790, Google ScholarCrossref 3. 3. M. A. Green, Joule 3, 631 (2019). https://doi.org/10.1016/j.joule.2019.02.010, Google ScholarCrossref 4. 4. A. Polman, M. Knight, E. C. Garnett, B. Ehrler, and W. C. Sinke, Science 352, 307 (2016). https://doi.org/10.1126/science.aad4424, Google ScholarCrossref 5. 5. W. Shockley and H. J. Queisser, J. Appl. Phys. 32, 510 (1961). https://doi.org/10.1063/1.1736034, Google ScholarScitation, ISI 6. 6. S. M. Bedair, M. F. Lamorte, and J. R. Hauser, Appl. Phys. Lett. 34, 38 (1979). https://doi.org/10.1063/1.90576, Google ScholarScitation, ISI 7. 7. J. Rogelj, D. Shindell, K. Jiang, S. Fifita, et al., “ Mitigation pathways compatible with 1.5 °C in the context of sustainable development” (published online 2018). Google Scholar 8. 8. P. Friedlingstein, M. O'Sullivan, M. W. Jones, R. M. Andrew, J. Hauck, A. Olsen, G. P. Peters, W. Peters, J. Pongratz, S. Sitch, C. L. Quéré, J. G. Canadell, P. Ciais, R. B. Jackson, S. Alin, L. E. O. C. Aragão, A. Arneth, V. Arora, N. R. Bates, M. Becker, A. Benoit-Cattin, H. C. Bittig, L. Bopp, S. Bultan, N. Chandra, F. Chevallier, L. P. Chini, W. Evans, L. Florentie, P. M. Forster, T. Gasser, M. Gehlen, D. Gilfillan, T. Gkritzalis, L. Gregor, N. Gruber, I. Harris, K. Hartung, V. Haverd, R. A. Houghton, T. Ilyina, A. K. Jain, E. Joetzjer, K. Kadono, E. Kato, V. Kitidis, J. I. Korsbakken, P. Landschützer, N. Lefèvre, A. Lenton, S. Lienert, Z. Liu, D. Lombardozzi, G. Marland, N. Metzl, D. R. Munro, J. E. M. S. Nabel, S. I. Nakaoka, Y. Niwa, K. O'Brien, T. Ono, P. I. Palmer, D. Pierrot, B. Poulter, L. Resplandy, E. Robertson, C. Rödenbeck, J. Schwinger, R. Séférian, I. Skjelvan, A. J. P. Smith, A. J. Sutton, T. Tanhua, P. P. Tans, H. Tian, B. Tilbrook, G. Van Der Werf, N. Vuichard, A. P. Walker, R. Wanninkhof, A. J. Watson, D. Willis, A. J. Wiltshire, W. Yuan, X. Yue, and S. Zaehle, Earth Syst. Sci. Data 12, 3269 (2020). https://doi.org/10.5194/essd-12-3269-2020, Google ScholarCrossref 9. 9. C. Kamaraki, M. T. Klug, T. Green, L. Miranda Perez, and C. Case, Appl. Phys. Lett. 119, 070501 (2021). https://doi.org/10.1063/5.0054086, Google ScholarScitation 10. 10. F. Akhundova, L. Lüer, A. Osvet, J. Hauch, I. M. Peters, K. Forberich, N. Li, and C. Brabec, Appl. Phys. Lett. 118, 243903 (2021). https://doi.org/10.1063/5.0049010, Google ScholarScitation 11. 11. A. Ishteev, L. Luchnikov, D. S. Muratov, M. Voronova, A. Forde, T. Inerbaev, V. Vanyushin, D. Saranin, K. Yusupov, D. Kuznetsov, and A. Di Carlo, Appl. Phys. Lett. 119, 071901 (2021). https://doi.org/10.1063/5.0055993, Google ScholarScitation 12. 12. M. Koc, M. Ameri, and S. Yerci, Appl. Phys. Lett. 119, 021102 (2021). https://doi.org/10.1063/5.0048780, Google ScholarScitation 13. 13. P. Spinelli, R. Fuentes Pineda, M. Scigaj, T. Ahmad, and K. Wojciechowski, Appl. Phys. Lett. 118, 241110 (2021). https://doi.org/10.1063/5.0052209, Google ScholarScitation 14. 14. R. C. Whitehead, K. T. VanSant, E. L. Warren, J. Buencuerpo, M. Rienäcker, R. Peibst, J. F. Geisz, and A. C. Tamboli, Appl. Phys. Lett. 118, 183902 (2021). https://doi.org/10.1063/5.0049097, Google ScholarScitation 15. 15. M. B. Smith and J. Michl, Chem. Rev. 110, 6891 (2010). https://doi.org/10.1021/cr1002613, Google ScholarCrossref, ISI 16. 16. M. W. B. Wilson, A. Rao, B. Ehrler, and R. H. Friend, Acc. Chem. Res. 46, 1330 (2013). https://doi.org/10.1021/ar300345h, Google ScholarCrossref, ISI 17. 17. J. C. F. Cheung and L. G. Kaake, Appl. Phys. Lett. 119, 013301 (2021). https://doi.org/10.1063/5.0047964, Google ScholarScitation, ISI 18. 18. N. V. Korovina, C. H. Chang, and J. C. Johnson, Nat. Chem. 12, 391 (2020). https://doi.org/10.1038/s41557-020-0422-7, Google ScholarCrossref 19. 19. W. Xu and F. Gao, Mater. Horiz. 5, 206 (2018). https://doi.org/10.1039/C7MH00958E, Google ScholarCrossref 20. 20. B. Daiber, K. Van Den Hoven, M. H. Futscher, and B. Ehrler, ACS Energy Lett. 6, 2800 (2021). https://doi.org/10.1021/acsenergylett.1c00972, Google ScholarCrossref 21. 21. M. Einzinger, T. Wu, J. F. Kompalla, H. L. Smith, C. F. Perkinson, L. Nienhaus, S. Wieghold, D. N. Congreve, A. Kahn, M. G. Bawendi, and M. A. Baldo, Nature 571, 90–94 (2019). https://doi.org/10.1038/s41586-019-1339-4, Google ScholarCrossref, ISI 22. 22. J. Gao, A. F. Fidler, and V. I. Klimov, Nat. Commun. 6, 8185 (2015). https://doi.org/10.1038/ncomms9185, Google ScholarCrossref 23. 23. O. E. Semonin, J. M. Luther, S. Choi, H.-Y. Chen, J. Gao, A. J. Nozik, and M. C. Beard, Science 334, 1530 (2011). https://doi.org/10.1126/science.1209845, Google ScholarCrossref 24. 24. A. Pusch, S. P. Bremner, M. J. Y. Tayebjee, and N. J. E. Daukes, Appl. Phys. Lett. 118, 151103 (2021). https://doi.org/10.1063/5.0049120, Google ScholarScitation, ISI 25. 25. H. Esmaielpour, B. K. Durant, K. R. Dorman, V. R. Whiteside, J. Garg, T. D. Mishima, M. B. Santos, I. R. Sellers, J. F. Guillemoles, and D. Suchet, Appl. Phys. Lett. 118, 213902 (2021). https://doi.org/10.1063/5.0052600, Google ScholarScitation 26. 26. T. N. Singh-Rachford and F. N. Castellano, Coord. Chem. Rev. 254, 2560 (2010). https://doi.org/10.1016/j.ccr.2010.01.003, Google ScholarCrossref 27. 27. Z. Huang, X. Li, M. Mahboub, K. M. Hanson, V. M. Nichols, H. Le, M. L. Tang, and C. J. Bardeen, Nano Lett. 15, 5552 (2015). https://doi.org/10.1021/acs.nanolett.5b02130, Google ScholarCrossref 28. 28. M. Wu, D. N. Congreve, M. W. B. Wilson, J. Jean, N. Geva, M. Welborn, T. Van Voorhis, V. Bulovi, M. G. Bawendi, and M. A. Baldo, Nat. Photonics 10, 31 (2016). https://doi.org/10.1038/nphoton.2015.226, Google ScholarCrossref 29. 29. S. Han, R. Deng, Q. Gu, L. Ni, U. Huynh, J. Zhang, Z. Yi, B. Zhao, H. Tamura, A. Pershin, H. Xu, Z. Huang, S. Ahmad, M. Abdi-Jalebi, A. Sadhanala, M. L. Tang, A. Bakulin, D. Beljonne, X. Liu, and A. Rao, Nature 587, 594 (2020). https://doi.org/10.1038/s41586-020-2932-2, Google ScholarCrossref 30. 30. X. Luo, Y. Han, Z. Chen, Y. Li, G. Liang, X. Liu, T. Ding, C. Nie, M. Wang, F. N. Castellano, and K. Wu, Nat. Commun. 11, 28 (2020). https://doi.org/10.1038/s41467-019-13951-3, Google ScholarCrossref 31. 31. L. Nienhaus, J. P. Correa-Baena, S. Wieghold, M. Einzinger, T. A. Lin, K. E. Shulenberger, N. D. Klein, M. Wu, V. Bulović, T. Buonassisi, M. A. Baldo, and M. G. Bawendi, ACS Energy Lett. 4, 888 (2019). https://doi.org/10.1021/acsenergylett.9b00283, Google ScholarCrossref 32. 32. Z. A. Vanorman, J. Lackner, S. Wieghold, K. Nienhaus, G. U. Nienhaus, and L. Nienhaus, Appl. Phys. Lett. 118, 203903 (2021). https://doi.org/10.1063/5.0050185, Google ScholarScitation 33. 33. A. Luque and A. Martí, Phys. Rev. Lett. 78, 5014 (1997). https://doi.org/10.1103/PhysRevLett.78.5014, Google ScholarCrossref, ISI 34. 34. Y. Okada, N. J. Ekins-Daukes, T. Kita, R. Tamaki, M. Yoshida, A. Pusch, O. Hess, C. C. Phillips, D. J. Farrell, K. Yoshida, N. Ahsan, Y. Shoji, T. Sogabe, and J. F. Guillemoles, Appl. Phys. Rev. 2, 021302 (2015). https://doi.org/10.1063/1.4916561, Google ScholarScitation, ISI 35. 35. D. Huang, L. Ding, Y. Xue, J. Guo, Y. J. Zhao, and C. Persson, Appl. Phys. Lett. 118, 043901 (2021). https://doi.org/10.1063/5.0034852, Google ScholarScitation, ISI 1. © 2022 Author(s). Published under an exclusive license by AIP Publishing.