huggingface.co
Open in
urlscan Pro
2600:9000:261f:1000:17:b174:6d00:93a1
Public Scan
URL:
https://huggingface.co/MoritzLaurer/deberta-v3-large-zeroshot-v2.0
Submission: On October 09 via manual from CA — Scanned from CA
Submission: On October 09 via manual from CA — Scanned from CA
Form analysis
1 forms found in the DOM<form class="flex w-full max-w-full flex-col ">
<div class="mb-2 flex items-center justify-between font-semibold">
<div class="flex items-center text-lg"><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" focusable="false" role="img" class="-ml-1 mr-1 text-yellow-500" width="1em" height="1em"
preserveAspectRatio="xMidYMid meet" viewBox="0 0 24 24">
<path d="M11 15H6l7-14v8h5l-7 14v-8z" fill="currentColor"></path>
</svg> Inference API
<a target="_blank" href="https://huggingface.co/docs/hub/models-widgets#example-outputs"><svg class="ml-1.5 text-sm text-gray-400 hover:text-black dark:hover:text-gray-200" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" focusable="false" role="img" width="1em" height="1em" preserveAspectRatio="xMidYMid meet" viewBox="0 0 32 32"><path d="M17 22v-8h-4v2h2v6h-3v2h8v-2h-3z" fill="currentColor"></path><path d="M16 8a1.5 1.5 0 1 0 1.5 1.5A1.5 1.5 0 0 0 16 8z" fill="currentColor"></path><path d="M16 30a14 14 0 1 1 14-14a14 14 0 0 1-14 14zm0-26a12 12 0 1 0 12 12A12 12 0 0 0 16 4z" fill="currentColor"></path></svg></a>
</div>
<div class="relative "><button class=" " type="button">
<div slot="button" class="flex items-center gap-1 rounded-full px-1.5 py-0.5 text-sm capitalize bg-blue-500/10 hover:bg-blue-500/20 border !border-blue-500/15 text-blue-600 dark:text-blue-400"><svg xmlns="http://www.w3.org/2000/svg"
xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" focusable="false" role="img" class="text-blue-500 dark:text-blue-400" width="1em" height="1em" preserveAspectRatio="xMidYMid meet" viewBox="0 0 24 24" fill="none">
<path d="M11 15H6l7-14v8h5l-7 14v-8z" stroke="currentColor" stroke-width="2"></path>
</svg> cold <svg class="" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" role="img" width="1em" height="1em" preserveAspectRatio="xMidYMid meet" viewBox="0 0 24 24">
<path d="M16.293 9.293L12 13.586L7.707 9.293l-1.414 1.414L12 16.414l5.707-5.707z" fill="currentColor"></path>
</svg></div>
</button> </div>
</div>
<div class="mb-0.5 flex w-full max-w-full flex-wrap items-center text-sm text-gray-500">
<div class="mb-1.5 flex items-center gap-4">
<a href="/tasks/zero-shot-classification" target="_blank" title="Learn more about zero-shot-classification"><div class="inline-flex items-center hover:underline"><svg class="mr-1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" fill="currentColor" focusable="false" role="img" width="1em" height="1em" preserveAspectRatio="xMidYMid meet" viewBox="0 0 18 18"><path d="M16.7125 8.75625H9.64375V1.6875H8.55625V8.75625H1.4875V9.84375H8.55625V16.9125H9.64375V9.84375H16.7125V8.75625Z"></path><path d="M3.11875 16.9125C2.79612 16.9125 2.48073 16.8168 2.21247 16.6376C1.94421 16.4584 1.73513 16.2036 1.61167 15.9055C1.4882 15.6074 1.4559 15.2794 1.51884 14.963C1.58178 14.6466 1.73714 14.3559 1.96528 14.1278C2.19341 13.8997 2.48407 13.7443 2.8005 13.6814C3.11694 13.6184 3.44493 13.6507 3.743 13.7742C4.04107 13.8976 4.29584 14.1067 4.47508 14.375C4.65432 14.6432 4.75 14.9586 4.75 15.2813C4.74956 15.7138 4.57756 16.1284 4.27174 16.4343C3.96591 16.7401 3.55125 16.9121 3.11875 16.9125V16.9125ZM3.11875 14.7375C3.0112 14.7375 2.90607 14.7694 2.81665 14.8291C2.72724 14.8889 2.65754 14.9738 2.61639 15.0732C2.57523 15.1725 2.56446 15.2819 2.58544 15.3873C2.60642 15.4928 2.65821 15.5897 2.73426 15.6657C2.8103 15.7418 2.90719 15.7936 3.01267 15.8146C3.11814 15.8355 3.22747 15.8248 3.32683 15.7836C3.42619 15.7425 3.51111 15.6728 3.57086 15.5834C3.63061 15.4939 3.6625 15.3888 3.6625 15.2813C3.66235 15.1371 3.60502 14.9989 3.50308 14.8969C3.40113 14.795 3.26291 14.7377 3.11875 14.7375Z"></path><path d="M4.75 4.95C4.42737 4.95 4.11198 4.85433 3.84372 4.67509C3.57547 4.49584 3.36639 4.24107 3.24292 3.943C3.11945 3.64493 3.08715 3.31694 3.15009 3.00051C3.21303 2.68408 3.3684 2.39342 3.59653 2.16528C3.82466 1.93715 4.11533 1.78179 4.43176 1.71884C4.74819 1.6559 5.07618 1.68821 5.37425 1.81167C5.67232 1.93514 5.92709 2.14422 6.10633 2.41248C6.28558 2.68073 6.38125 2.99612 6.38125 3.31875C6.38082 3.75125 6.20881 4.16592 5.90299 4.47174C5.59716 4.77757 5.1825 4.94957 4.75 4.95ZM4.75 2.775C4.64245 2.775 4.53733 2.80689 4.44791 2.86664C4.35849 2.92639 4.28879 3.01131 4.24764 3.11067C4.20648 3.21002 4.19572 3.31935 4.2167 3.42483C4.23768 3.53031 4.28946 3.62719 4.36551 3.70324C4.44155 3.77928 4.53844 3.83107 4.64392 3.85205C4.7494 3.87303 4.85873 3.86227 4.95808 3.82111C5.05744 3.77995 5.14236 3.71026 5.20211 3.62084C5.26186 3.53142 5.29375 3.42629 5.29375 3.31875C5.2936 3.17458 5.23627 3.03636 5.13433 2.93442C5.03239 2.83248 4.89417 2.77514 4.75 2.775Z"></path><path d="M12.3625 7.66875C12.0399 7.66875 11.7245 7.57308 11.4562 7.39384C11.188 7.21459 10.9789 6.95982 10.8554 6.66175C10.732 6.36368 10.6996 6.03569 10.7626 5.71926C10.8255 5.40283 10.9809 5.11217 11.209 4.88403C11.4372 4.6559 11.7278 4.50054 12.0443 4.43759C12.3607 4.37465 12.6887 4.40696 12.9867 4.53042C13.2848 4.65389 13.5396 4.86297 13.7188 5.13123C13.8981 5.39948 13.9937 5.71487 13.9937 6.0375C13.9933 6.47 13.8213 6.88467 13.5155 7.19049C13.2097 7.49632 12.795 7.66832 12.3625 7.66875ZM12.3625 5.49375C12.255 5.49375 12.1498 5.52564 12.0604 5.58539C11.971 5.64514 11.9013 5.73006 11.8601 5.82942C11.819 5.92877 11.8082 6.0381 11.8292 6.14358C11.8502 6.24906 11.902 6.34595 11.978 6.42199C12.0541 6.49803 12.1509 6.54982 12.2564 6.5708C12.3619 6.59178 12.4712 6.58102 12.5706 6.53986C12.6699 6.4987 12.7549 6.42901 12.8146 6.33959C12.8744 6.25017 12.9062 6.14504 12.9062 6.0375C12.9061 5.89333 12.8488 5.75511 12.7468 5.65317C12.6449 5.55123 12.5067 5.49389 12.3625 5.49375Z"></path><path d="M6.38125 7.66876C6.98186 7.66876 7.46875 7.18187 7.46875 6.58126C7.46875 5.98065 6.98186 5.49376 6.38125 5.49376C5.78064 5.49376 5.29375 5.98065 5.29375 6.58126C5.29375 7.18187 5.78064 7.66876 6.38125 7.66876Z"></path><path d="M6.38125 13.1063C6.98186 13.1063 7.46875 12.6194 7.46875 12.0188C7.46875 11.4181 6.98186 10.9313 6.38125 10.9313C5.78064 10.9313 5.29375 11.4181 5.29375 12.0188C5.29375 12.6194 5.78064 13.1063 6.38125 13.1063Z"></path><path d="M11.8187 13.1063C12.4194 13.1063 12.9062 12.6194 12.9062 12.0188C12.9062 11.4181 12.4194 10.9313 11.8187 10.9313C11.2181 10.9313 10.7312 11.4181 10.7312 12.0188C10.7312 12.6194 11.2181 13.1063 11.8187 13.1063Z"></path><path d="M12.3625 16.9125C12.9631 16.9125 13.45 16.4256 13.45 15.825C13.45 15.2244 12.9631 14.7375 12.3625 14.7375C11.7619 14.7375 11.275 15.2244 11.275 15.825C11.275 16.4256 11.7619 16.9125 12.3625 16.9125Z"></path><path d="M15.625 14.7375C16.2256 14.7375 16.7125 14.2506 16.7125 13.65C16.7125 13.0494 16.2256 12.5625 15.625 12.5625C15.0244 12.5625 14.5375 13.0494 14.5375 13.65C14.5375 14.2506 15.0244 14.7375 15.625 14.7375Z"></path><path d="M2.575 7.66876C3.17561 7.66876 3.6625 7.18187 3.6625 6.58126C3.6625 5.98065 3.17561 5.49376 2.575 5.49376C1.97439 5.49376 1.4875 5.98065 1.4875 6.58126C1.4875 7.18187 1.97439 7.66876 2.575 7.66876Z"></path><path d="M15.625 3.8625C16.2256 3.8625 16.7125 3.37561 16.7125 2.775C16.7125 2.17439 16.2256 1.6875 15.625 1.6875C15.0244 1.6875 14.5375 2.17439 14.5375 2.775C14.5375 3.37561 15.0244 3.8625 15.625 3.8625Z"></path></svg> <span>Zero-Shot Classification</span></div></a>
</div>
<div class="ml-auto flex gap-2">
<div class="flex gap-x-1 peer:">
<div class="relative mb-1.5 ">
<div class="inline-flex w-32 justify-between rounded-md border border-gray-100 px-4 py-1">
<div class="truncate text-sm">Examples</div> <svg class="-mr-1 ml-2 h-5 w-5 transition ease-in-out transform false" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 20 20" fill="currentColor" aria-hidden="true">
<path fill-rule="evenodd" d="M5.293 7.293a1 1 0 011.414 0L10 10.586l3.293-3.293a1 1 0 111.414 1.414l-4 4a1 1 0 01-1.414 0l-4-4a1 1 0 010-1.414z" clip-rule="evenodd"></path>
</svg>
</div>
</div>
</div>
</div>
</div>
<div class="flex flex-col space-y-2"><span class="inline-block w-full"><span class="contents"><label class="block "> <span
class="block w-full resize-y overflow-auto px-3 py-2 min-h-[42px] inline-block max-h-[500px] whitespace-pre-wrap rounded-lg border border-gray-200 shadow-inner outline-none focus:shadow-inner focus:ring focus:ring-blue-200 dark:bg-gray-925 svelte-1wfa7x9"
role="textbox" style="--placeholder: 'Text to classify...';" spellcheck="false" dir="auto" contenteditable="">Last week I upgraded my iOS version and ever since then my phone has been overheating whenever I use your
app.</span></label></span> </span> <span class="inline-block w-full"><span class="contents"><label class="block "> <span class="text-sm text-gray-500">Possible class names (comma-separated)</span> <input
class="mt-1.5 form-input-alt block w-full" placeholder="Possible class names..." type="text"></label></span> </span> <label class="block inline-flex items-center "><input
class="mr-2 cursor-pointer rounded border-transparent bg-gray-200 text-blue-500 checked:bg-blue-500 focus:ring-1 focus:ring-blue-200 focus:ring-offset-2 dark:bg-gray-700 dark:checked:bg-blue-500 dark:focus:ring-gray-500 dark:focus:ring-offset-gray-925"
type="checkbox"> <span class="text-sm text-gray-500">Allow multiple true classes</span> </label> <span class="inline-block "><span class="contents"><button class="btn-widget h-10 w-24 px-5 " type="submit">Compute</button></span> </span>
</div>
<div class="mt-2">
<div class="text-sm text-gray-400"></div>
</div>
<div class="mt-1 flex items-center text-sm text-gray-500"><button class="flex items-center" type="button"><svg class="mr-1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" focusable="false"
role="img" width="1em" height="1em" preserveAspectRatio="xMidYMid meet" viewBox="0 0 32 32" style="transform: rotate(360deg);">
<path d="M31 16l-7 7l-1.41-1.41L28.17 16l-5.58-5.59L24 9l7 7z" fill="currentColor"></path>
<path d="M1 16l7-7l1.41 1.41L3.83 16l5.58 5.59L8 23l-7-7z" fill="currentColor"></path>
<path d="M12.419 25.484L17.639 6l1.932.518L14.35 26z" fill="currentColor"></path>
</svg> View Code</button>
<div class="ml-auto"><span class="inline-block "><span class="contents"><button class="flex items-center" type="button"><svg class="mr-1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true"
focusable="false" role="img" width="1em" height="1em" preserveAspectRatio="xMidYMid meet" viewBox="0 0 32 32">
<path d="M22 16h2V8h-8v2h6v6z" fill="currentColor"></path>
<path d="M8 24h8v-2h-6v-6H8v8z" fill="currentColor"></path>
<path d="M26 28H6a2.002 2.002 0 0 1-2-2V6a2.002 2.002 0 0 1 2-2h20a2.002 2.002 0 0 1 2 2v20a2.002 2.002 0 0 1-2 2zM6 6v20h20.001L26 6z" fill="currentColor"></path>
</svg> Maximize</button></span> </span></div>
</div>
</form>
Text Content
Hugging Face * Models * Datasets * Spaces * Posts * Docs * Solutions * Pricing * * -------------------------------------------------------------------------------- * Log In * Sign Up MORITZLAURER / DEBERTA-V3-LARGE-ZEROSHOT-V2.0 LIKE 78 Zero-Shot Classification Transformers ONNX Safetensors English deberta-v2 text-classification Inference Endpoints arxiv: 2312.17543 License: mit Model card Files Files and versions Community 5 Train Deploy Use this model Edit model card * Model description: deberta-v3-large-zeroshot-v2.0 * zeroshot-v2.0 series of models * Training data * How to use the models * Metrics * When to use which model * Reproduction * Limitations and bias * License * Citation * Ideas for cooperation or questions? * Flexible usage and "prompting" MODEL DESCRIPTION: DEBERTA-V3-LARGE-ZEROSHOT-V2.0 ZEROSHOT-V2.0 SERIES OF MODELS Models in this series are designed for efficient zeroshot classification with the Hugging Face pipeline. These models can do classification without training data and run on both GPUs and CPUs. An overview of the latest zeroshot classifiers is available in my Zeroshot Classifier Collection. The main update of this zeroshot-v2.0 series of models is that several models are trained on fully commercially-friendly data for users with strict license requirements. These models can do one universal classification task: determine whether a hypothesis is "true" or "not true" given a text (entailment vs. not_entailment). This task format is based on the Natural Language Inference task (NLI). The task is so universal that any classification task can be reformulated into this task by the Hugging Face pipeline. TRAINING DATA Models with a "-c" in the name are trained on two types of fully commercially-friendly data: 1. Synthetic data generated with Mixtral-8x7B-Instruct-v0.1. I first created a list of 500+ diverse text classification tasks for 25 professions in conversations with Mistral-large. The data was manually curated. I then used this as seed data to generate several hundred thousand texts for these tasks with Mixtral-8x7B-Instruct-v0.1. The final dataset used is available in the synthetic_zeroshot_mixtral_v0.1 dataset in the subset mixtral_written_text_for_tasks_v4. Data curation was done in multiple iterations and will be improved in future iterations. 2. Two commercially-friendly NLI datasets: (MNLI, FEVER-NLI). These datasets were added to increase generalization. 3. Models without a "-c" in the name also included a broader mix of training data with a broader mix of licenses: ANLI, WANLI, LingNLI, and all datasets in this list where used_in_v1.1==True. HOW TO USE THE MODELS #!pip install transformers[sentencepiece] from transformers import pipeline text = "Angela Merkel is a politician in Germany and leader of the CDU" hypothesis_template = "This text is about {}" classes_verbalized = ["politics", "economy", "entertainment", "environment"] zeroshot_classifier = pipeline("zero-shot-classification", model="MoritzLaurer/deberta-v3-large-zeroshot-v2.0") # change the model identifier here output = zeroshot_classifier(text, classes_verbalized, hypothesis_template=hypothesis_template, multi_label=False) print(output) multi_label=False forces the model to decide on only one class. multi_label=True enables the model to choose multiple classes. METRICS The models were evaluated on 28 different text classification tasks with the f1_macro metric. The main reference point is facebook/bart-large-mnli which is, at the time of writing (03.04.24), the most used commercially-friendly 0-shot classifier. facebook/bart-large-mnli roberta-base-zeroshot-v2.0-c roberta-large-zeroshot-v2.0-c deberta-v3-base-zeroshot-v2.0-c deberta-v3-base-zeroshot-v2.0 (fewshot) deberta-v3-large-zeroshot-v2.0-c deberta-v3-large-zeroshot-v2.0 (fewshot) bge-m3-zeroshot-v2.0-c bge-m3-zeroshot-v2.0 (fewshot) all datasets mean 0.497 0.587 0.622 0.619 0.643 (0.834) 0.676 0.673 (0.846) 0.59 (0.803) amazonpolarity (2) 0.937 0.924 0.951 0.937 0.943 (0.961) 0.952 0.956 (0.968) 0.942 (0.951) imdb (2) 0.892 0.871 0.904 0.893 0.899 (0.936) 0.923 0.918 (0.958) 0.873 (0.917) appreviews (2) 0.934 0.913 0.937 0.938 0.945 (0.948) 0.943 0.949 (0.962) 0.932 (0.954) yelpreviews (2) 0.948 0.953 0.977 0.979 0.975 (0.989) 0.988 0.985 (0.994) 0.973 (0.978) rottentomatoes (2) 0.83 0.802 0.841 0.84 0.86 (0.902) 0.869 0.868 (0.908) 0.813 (0.866) emotiondair (6) 0.455 0.482 0.486 0.459 0.495 (0.748) 0.499 0.484 (0.688) 0.453 (0.697) emocontext (4) 0.497 0.555 0.63 0.59 0.592 (0.799) 0.699 0.676 (0.81) 0.61 (0.798) empathetic (32) 0.371 0.374 0.404 0.378 0.405 (0.53) 0.447 0.478 (0.555) 0.387 (0.455) financialphrasebank (3) 0.465 0.562 0.455 0.714 0.669 (0.906) 0.691 0.582 (0.913) 0.504 (0.895) banking77 (72) 0.312 0.124 0.29 0.421 0.446 (0.751) 0.513 0.567 (0.766) 0.387 (0.715) massive (59) 0.43 0.428 0.543 0.512 0.52 (0.755) 0.526 0.518 (0.789) 0.414 (0.692) wikitoxic_toxicaggreg (2) 0.547 0.751 0.766 0.751 0.769 (0.904) 0.741 0.787 (0.911) 0.736 (0.9) wikitoxic_obscene (2) 0.713 0.817 0.854 0.853 0.869 (0.922) 0.883 0.893 (0.933) 0.783 (0.914) wikitoxic_threat (2) 0.295 0.71 0.817 0.813 0.87 (0.946) 0.827 0.879 (0.952) 0.68 (0.947) wikitoxic_insult (2) 0.372 0.724 0.798 0.759 0.811 (0.912) 0.77 0.779 (0.924) 0.783 (0.915) wikitoxic_identityhate (2) 0.473 0.774 0.798 0.774 0.765 (0.938) 0.797 0.806 (0.948) 0.761 (0.931) hateoffensive (3) 0.161 0.352 0.29 0.315 0.371 (0.862) 0.47 0.461 (0.847) 0.291 (0.823) hatexplain (3) 0.239 0.396 0.314 0.376 0.369 (0.765) 0.378 0.389 (0.764) 0.29 (0.729) biasframes_offensive (2) 0.336 0.571 0.583 0.544 0.601 (0.867) 0.644 0.656 (0.883) 0.541 (0.855) biasframes_sex (2) 0.263 0.617 0.835 0.741 0.809 (0.922) 0.846 0.815 (0.946) 0.748 (0.905) biasframes_intent (2) 0.616 0.531 0.635 0.554 0.61 (0.881) 0.696 0.687 (0.891) 0.467 (0.868) agnews (4) 0.703 0.758 0.745 0.68 0.742 (0.898) 0.819 0.771 (0.898) 0.687 (0.892) yahootopics (10) 0.299 0.543 0.62 0.578 0.564 (0.722) 0.621 0.613 (0.738) 0.587 (0.711) trueteacher (2) 0.491 0.469 0.402 0.431 0.479 (0.82) 0.459 0.538 (0.846) 0.471 (0.518) spam (2) 0.505 0.528 0.504 0.507 0.464 (0.973) 0.74 0.597 (0.983) 0.441 (0.978) wellformedquery (2) 0.407 0.333 0.333 0.335 0.491 (0.769) 0.334 0.429 (0.815) 0.361 (0.718) manifesto (56) 0.084 0.102 0.182 0.17 0.187 (0.376) 0.258 0.256 (0.408) 0.147 (0.331) capsotu (21) 0.34 0.479 0.523 0.502 0.477 (0.664) 0.603 0.502 (0.686) 0.472 (0.644) These numbers indicate zeroshot performance, as no data from these datasets was added in the training mix. Note that models without a "-c" in the title were evaluated twice: one run without any data from these 28 datasets to test pure zeroshot performance (the first number in the respective column) and the final run including up to 500 training data points per class from each of the 28 datasets (the second number in brackets in the column, "fewshot"). No model was trained on test data. Details on the different datasets are available here: https://github.com/MoritzLaurer/zeroshot-classifier/blob/main/v1_human_data/datasets_overview.csv WHEN TO USE WHICH MODEL * deberta-v3-zeroshot vs. roberta-zeroshot: deberta-v3 performs clearly better than roberta, but it is a bit slower. roberta is directly compatible with Hugging Face's production inference TEI containers and flash attention. These containers are a good choice for production use-cases. tl;dr: For accuracy, use a deberta-v3 model. If production inference speed is a concern, you can consider a roberta model (e.g. in a TEI container and HF Inference Endpoints). * commercial use-cases: models with "-c" in the title are guaranteed to be trained on only commercially-friendly data. Models without a "-c" were trained on more data and perform better, but include data with non-commercial licenses. Legal opinions diverge if this training data affects the license of the trained model. For users with strict legal requirements, the models with "-c" in the title are recommended. * Multilingual/non-English use-cases: use bge-m3-zeroshot-v2.0 or bge-m3-zeroshot-v2.0-c. Note that multilingual models perform worse than English-only models. You can therefore also first machine translate your texts to English with libraries like EasyNMT and then apply any English-only model to the translated data. Machine translation also facilitates validation in case your team does not speak all languages in the data. * context window: The bge-m3 models can process up to 8192 tokens. The other models can process up to 512. Note that longer text inputs both make the mode slower and decrease performance, so if you're only working with texts of up to 400~ words / 1 page, use e.g. a deberta model for better performance. * The latest updates on new models are always available in the Zeroshot Classifier Collection. REPRODUCTION Reproduction code is available in the v2_synthetic_data directory here: https://github.com/MoritzLaurer/zeroshot-classifier/tree/main LIMITATIONS AND BIAS The model can only do text classification tasks. Biases can come from the underlying foundation model, the human NLI training data and the synthetic data generated by Mixtral. LICENSE The foundation model was published under the MIT license. The licenses of the training data vary depending on the model, see above. CITATION This model is an extension of the research described in this paper. If you use this model academically, please cite: @misc{laurer_building_2023, title = {Building {Efficient} {Universal} {Classifiers} with {Natural} {Language} {Inference}}, url = {http://arxiv.org/abs/2312.17543}, doi = {10.48550/arXiv.2312.17543}, abstract = {Generative Large Language Models (LLMs) have become the mainstream choice for fewshot and zeroshot learning thanks to the universality of text generation. Many users, however, do not need the broad capabilities of generative LLMs when they only want to automate a classification task. Smaller BERT-like models can also learn universal tasks, which allow them to do any text classification task without requiring fine-tuning (zeroshot classification) or to learn new tasks with only a few examples (fewshot), while being significantly more efficient than generative LLMs. This paper (1) explains how Natural Language Inference (NLI) can be used as a universal classification task that follows similar principles as instruction fine-tuning of generative LLMs, (2) provides a step-by-step guide with reusable Jupyter notebooks for building a universal classifier, and (3) shares the resulting universal classifier that is trained on 33 datasets with 389 diverse classes. Parts of the code we share has been used to train our older zeroshot classifiers that have been downloaded more than 55 million times via the Hugging Face Hub as of December 2023. Our new classifier improves zeroshot performance by 9.4\%.}, urldate = {2024-01-05}, publisher = {arXiv}, author = {Laurer, Moritz and van Atteveldt, Wouter and Casas, Andreu and Welbers, Kasper}, month = dec, year = {2023}, note = {arXiv:2312.17543 [cs]}, keywords = {Computer Science - Artificial Intelligence, Computer Science - Computation and Language}, } IDEAS FOR COOPERATION OR QUESTIONS? If you have questions or ideas for cooperation, contact me at moritz{at}huggingface{dot}co or LinkedIn FLEXIBLE USAGE AND "PROMPTING" You can formulate your own hypotheses by changing the hypothesis_template of the zeroshot pipeline. Similar to "prompt engineering" for LLMs, you can test different formulations of your hypothesis_template and verbalized classes to improve performance. from transformers import pipeline text = "Angela Merkel is a politician in Germany and leader of the CDU" # formulation 1 hypothesis_template = "This text is about {}" classes_verbalized = ["politics", "economy", "entertainment", "environment"] # formulation 2 depending on your use-case hypothesis_template = "The topic of this text is {}" classes_verbalized = ["political activities", "economic policy", "entertainment or music", "environmental protection"] # test different formulations zeroshot_classifier = pipeline("zero-shot-classification", model="MoritzLaurer/deberta-v3-large-zeroshot-v2.0") # change the model identifier here output = zeroshot_classifier(text, classes_verbalized, hypothesis_template=hypothesis_template, multi_label=False) print(output) Downloads last month61,519 Safetensors Model size 435M params Tensor type FP16 ยท Inference API cold Zero-Shot Classification Examples Last week I upgraded my iOS version and ever since then my phone has been overheating whenever I use your app. Possible class names (comma-separated) Allow multiple true classes Compute View Code Maximize MODEL TREE FOR MORITZLAURER/DEBERTA-V3-LARGE-ZEROSHOT-V2.0 Base model microsoft/deberta-v3-large Quantized (3) this model Adapters 2 models Finetunes 2 models SPACES USING MORITZLAURER/DEBERTA-V3-LARGE-ZEROSHOT-V2.0 4 ๐ AISimplyExplained/deberta_api ๐ sarangs/students-feedback-analysis ๐ sitammeur/ClassyText ๐จ cnealex/demo COLLECTION INCLUDING MORITZLAURER/DEBERTA-V3-LARGE-ZEROSHOT-V2.0 ZEROSHOT CLASSIFIERS Collection These are my current best zeroshot classifiers. Some of my older models are downloaded more often, but the models in this collection are newer/better. โข 11 items โข Updated Apr 3 โข 107 Company ยฉ Hugging Face TOS Privacy About Jobs Website Models Datasets Spaces Pricing Docs