link.springer.com
Open in
urlscan Pro
151.101.128.95
Public Scan
Submitted URL: https://click.exct.investorplace.com/?qs=370f648a19257a7c460f6a7e3e97f50594c9b6de3c01fe268e9702997ae11a4400921f5cd4b2b8d429f4c736366c...
Effective URL: https://link.springer.com/chapter/10.1007/978-3-319-05579-4_13
Submission: On September 30 via api from BE — Scanned from US
Effective URL: https://link.springer.com/chapter/10.1007/978-3-319-05579-4_13
Submission: On September 30 via api from BE — Scanned from US
Form analysis
7 forms found in the DOMGET //link.springer.com/search
<form method="GET" action="//link.springer.com/search" data-test="header-search" data-track="submit||search" data-track-context="search from header" data-track-action="submit search form" data-track-category="unified header" data-track-label="form">
<label for="eds-c-header-search" class="eds-c-header__search-label">Search by keyword or author</label>
<div class="eds-c-header__search-container">
<input id="eds-c-header-search" class="eds-c-header__search-input" autocomplete="off" name="query" type="search" value="" required="">
<button class="eds-c-header__search-button" type="submit">
<svg class="eds-c-header__icon" aria-hidden="true" focusable="false">
<use xlink:href="#icon-eds-i-search-medium"></use>
</svg>
<span class="u-visually-hidden">Search</span>
</button>
</div>
</form>
POST https://order.springer.com/public/cart
<form class="buying-option-form" action="https://order.springer.com/public/cart" method="post"><input type="hidden" name="type" value="chapter"> <input type="hidden" name="doi" value="10.1007/978-3-319-05579-4_13"> <input type="hidden" name="isxn"
value="978-3-319-05579-4"> <input type="hidden" name="contenttitle" value="Winning by Following the Winners: Mining the Behaviour of Stock Market Experts in Social Media"> <input type="hidden" name="copyrightyear" value="2014"> <input
type="hidden" name="year" value=""> <input type="hidden" name="authors" value="Wenhui Liao, Sameena Shah, Masoud Makrehchi"> <input type="hidden" name="title" value="Social Computing, Behavioral-Cultural Modeling and Prediction"> <input
type="hidden" name="mac" value="bc08b2d45131a4af2b93d2b49a2f7a7e">
<ul class="buying-option-usps">
<li>Available as PDF</li>
<li>Read on any device</li>
<li>Instant download</li>
<li>Own it forever</li>
</ul><button type="submit" class="u-button u-button--full-width u-button--secondary u-button--xsmall" value="Submit" data-track="click" data-track-prefer="click" data-track-action="buy pdf" data-track-label="buy chapter action"
onclick="dataLayer.push({"event":"addToCart","ecommerce":{"currencyCode":"USD","add":{"products":[{"name":"Winning by Following the Winners: Mining the Behaviour of Stock Market Experts in Social Media","id":"10.1007/978-3-319-05579-4_13","price":29.95,"brand":"Springer International Publishing","category":"Computers and Society","variant":"ppv-chapter","quantity":1}]}}});">Buy
Chapter <svg aria-hidden="true" focusable="false" width="16" height="16" class="u-icon">
<use xlink:href="#icon-eds-i-arrow-right-medium"></use>
</svg></button>
</form>
POST https://order.springer.com/public/cart
<form class="buying-option-form" action="https://order.springer.com/public/cart" method="post" hidden=""><input type="hidden" name="type" value="ebook"> <input type="hidden" name="doi" value="10.1007/978-3-319-05579-4"> <input type="hidden"
name="isxn" value="978-3-319-05579-4"> <input type="hidden" name="contenttitle" value="Social Computing, Behavioral-Cultural Modeling and Prediction"> <input type="hidden" name="mac" value="b7a4546f40610a6a6ab3533b1b433288">
<ul class="buying-option-usps">
<li>Available as PDF</li>
<li>Read on any device</li>
<li>Instant download</li>
<li>Own it forever</li>
</ul><button type="submit" class="u-button u-button--full-width u-button--secondary u-button--xsmall" value="Submit" data-track="click" data-track-prefer="click" data-track-label="buy ebook"
onclick="dataLayer.push({"event":"addToCart","ecommerce":{"currencyCode":"USD","add":{"products":[{"name":"Social Computing, Behavioral-Cultural Modeling and Prediction","id":"978-3-319-05579-4","price":39.99,"brand":"Springer International Publishing","category":"Computers and Society","variant":"ebo","quantity":1}]}}});">Buy
eBook <svg aria-hidden="true" focusable="false" width="16" height="16" class="u-icon">
<use xlink:href="#icon-eds-i-arrow-right-medium"></use>
</svg></button>
</form>
POST https://order.springer.com/public/cart
<form class="buying-option-form" action="https://order.springer.com/public/cart" method="post" hidden=""><input type="hidden" name="type" value="book"> <input type="hidden" name="doi" value="10.1007/978-3-319-05579-4"> <input type="hidden"
name="isxn" value="978-3-319-05578-7"> <input type="hidden" name="contenttitle" value="Social Computing, Behavioral-Cultural Modeling and Prediction"> <input type="hidden" name="mac" value="39e4ab97212e62fb6de4c58928c42058">
<ul class="buying-option-usps">
<li>Compact, lightweight edition</li>
<li>Dispatched in 3 to 5 business days</li>
<li>Free shipping worldwide - <a href="https://support.springernature.com/en/support/solutions/articles/6000233448-coronavirus-disease-covid-19-delivery-information" target="_blank">see info</a></li>
</ul><button type="submit" class="u-button u-button--full-width u-button--secondary u-button--xsmall" value="Submit" data-track="click" data-track-prefer="click" data-track-label="buy softcover"
onclick="dataLayer.push({"event":"addToCart","ecommerce":{"currencyCode":"USD","add":{"products":[{"name":"Social Computing, Behavioral-Cultural Modeling and Prediction","id":"978-3-319-05578-7","price":54.99,"brand":"Springer International Publishing","category":"Computers and Society","variant":"print","quantity":1}]}}});">Buy
Softcover Book <svg aria-hidden="true" focusable="false" width="16" height="16" class="u-icon">
<use xlink:href="#icon-eds-i-arrow-right-medium"></use>
</svg></button>
</form>
POST https://order.springer.com/public/cart
<form class="buying-option-form" action="https://order.springer.com/public/cart" method="post"><input type="hidden" name="type" value="chapter"> <input type="hidden" name="doi" value="10.1007/978-3-319-05579-4_13"> <input type="hidden" name="isxn"
value="978-3-319-05579-4"> <input type="hidden" name="contenttitle" value="Winning by Following the Winners: Mining the Behaviour of Stock Market Experts in Social Media"> <input type="hidden" name="copyrightyear" value="2014"> <input
type="hidden" name="year" value=""> <input type="hidden" name="authors" value="Wenhui Liao, Sameena Shah, Masoud Makrehchi"> <input type="hidden" name="title" value="Social Computing, Behavioral-Cultural Modeling and Prediction"> <input
type="hidden" name="mac" value="bc08b2d45131a4af2b93d2b49a2f7a7e">
<ul class="buying-option-usps">
<li>Available as PDF</li>
<li>Read on any device</li>
<li>Instant download</li>
<li>Own it forever</li>
</ul><button type="submit" class="u-button u-button--full-width u-button--secondary u-button--xsmall" value="Submit" data-track="click" data-track-prefer="click" data-track-action="buy pdf" data-track-label="buy chapter action"
onclick="dataLayer.push({"event":"addToCart","ecommerce":{"currencyCode":"USD","add":{"products":[{"name":"Winning by Following the Winners: Mining the Behaviour of Stock Market Experts in Social Media","id":"10.1007/978-3-319-05579-4_13","price":29.95,"brand":"Springer International Publishing","category":"Computers and Society","variant":"ppv-chapter","quantity":1}]}}});">Buy
Chapter <svg aria-hidden="true" focusable="false" width="16" height="16" class="u-icon">
<use xlink:href="#icon-eds-i-arrow-right-medium"></use>
</svg></button>
</form>
POST https://order.springer.com/public/cart
<form class="buying-option-form" action="https://order.springer.com/public/cart" method="post" hidden=""><input type="hidden" name="type" value="ebook"> <input type="hidden" name="doi" value="10.1007/978-3-319-05579-4"> <input type="hidden"
name="isxn" value="978-3-319-05579-4"> <input type="hidden" name="contenttitle" value="Social Computing, Behavioral-Cultural Modeling and Prediction"> <input type="hidden" name="mac" value="b7a4546f40610a6a6ab3533b1b433288">
<ul class="buying-option-usps">
<li>Available as PDF</li>
<li>Read on any device</li>
<li>Instant download</li>
<li>Own it forever</li>
</ul><button type="submit" class="u-button u-button--full-width u-button--secondary u-button--xsmall" value="Submit" data-track="click" data-track-prefer="click" data-track-label="buy ebook"
onclick="dataLayer.push({"event":"addToCart","ecommerce":{"currencyCode":"USD","add":{"products":[{"name":"Social Computing, Behavioral-Cultural Modeling and Prediction","id":"978-3-319-05579-4","price":39.99,"brand":"Springer International Publishing","category":"Computers and Society","variant":"ebo","quantity":1}]}}});">Buy
eBook <svg aria-hidden="true" focusable="false" width="16" height="16" class="u-icon">
<use xlink:href="#icon-eds-i-arrow-right-medium"></use>
</svg></button>
</form>
POST https://order.springer.com/public/cart
<form class="buying-option-form" action="https://order.springer.com/public/cart" method="post" hidden=""><input type="hidden" name="type" value="book"> <input type="hidden" name="doi" value="10.1007/978-3-319-05579-4"> <input type="hidden"
name="isxn" value="978-3-319-05578-7"> <input type="hidden" name="contenttitle" value="Social Computing, Behavioral-Cultural Modeling and Prediction"> <input type="hidden" name="mac" value="39e4ab97212e62fb6de4c58928c42058">
<ul class="buying-option-usps">
<li>Compact, lightweight edition</li>
<li>Dispatched in 3 to 5 business days</li>
<li>Free shipping worldwide - <a href="https://support.springernature.com/en/support/solutions/articles/6000233448-coronavirus-disease-covid-19-delivery-information" target="_blank">see info</a></li>
</ul><button type="submit" class="u-button u-button--full-width u-button--secondary u-button--xsmall" value="Submit" data-track="click" data-track-prefer="click" data-track-label="buy softcover"
onclick="dataLayer.push({"event":"addToCart","ecommerce":{"currencyCode":"USD","add":{"products":[{"name":"Social Computing, Behavioral-Cultural Modeling and Prediction","id":"978-3-319-05578-7","price":54.99,"brand":"Springer International Publishing","category":"Computers and Society","variant":"print","quantity":1}]}}});">Buy
Softcover Book <svg aria-hidden="true" focusable="false" width="16" height="16" class="u-icon">
<use xlink:href="#icon-eds-i-arrow-right-medium"></use>
</svg></button>
</form>
Text Content
YOUR PRIVACY, YOUR CHOICE We use essential cookies to make sure the site can function. We also use optional cookies for advertising, personalisation of content, usage analysis, and social media. By accepting optional cookies, you consent to the processing of your personal data - including transfers to third parties. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our privacy policy for more information on the use of your personal data. Manage preferences for further information and to change your choices. Accept all cookies Skip to main content Advertisement Log in Menu Find a journal Publish with us Track your research Search Cart SEARCH Search by keyword or author Search NAVIGATION * Find a journal * Publish with us * Track your research 1. Home 2. Social Computing, Behavioral-Cultural Modeling and Prediction 3. Conference paper WINNING BY FOLLOWING THE WINNERS: MINING THE BEHAVIOUR OF STOCK MARKET EXPERTS IN SOCIAL MEDIA * Conference paper * pp 103–110 * Cite this conference paper Social Computing, Behavioral-Cultural Modeling and Prediction (SBP 2014) * Wenhui Liao19, * Sameena Shah19 & * Masoud Makrehchi20 Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8393)) Included in the following conference series: * International Conference on Social Computing, Behavioral-Cultural Modeling, and Prediction * 4492 Accesses * 6 Citations * 2 Altmetric ABSTRACT We propose a novel yet simple method for creating a stock market trading strategy by following successful stock market expert in social media. The problem of “how and where to invest” is translated into “who to follow in my investment”. In other words, looking for stock market investment strategy is converted into stock market expert search. Fortunately, many stock market experts are active in social media and openly express their opinions about market. By analyzing their behavior, and mining their opinions and suggested actions in Twitter, and simulating their recommendations, we are able to score each expert based on his/her performance. Using this scoring system, experts with most successful trading are recommended. The main objective in this research is to identify traders that outperform market historically, and aggregate the opinions from such traders to recommend trades. This is a preview of subscription content, log in via an institution to check access. ACCESS THIS CHAPTER Log in via an institution SUBSCRIBE AND SAVE Springer+ Basic $34.99 /Month * Get 10 units per month * Download Article/Chapter or eBook * 1 Unit = 1 Article or 1 Chapter * Cancel anytime Subscribe now BUY NOW Chapter USD 29.95 Price excludes VAT (USA) * Available as PDF * Read on any device * Instant download * Own it forever Buy Chapter eBook USD 39.99 Price excludes VAT (USA) * Available as PDF * Read on any device * Instant download * Own it forever Buy eBook Softcover Book USD 54.99 Price excludes VAT (USA) * Compact, lightweight edition * Dispatched in 3 to 5 business days * Free shipping worldwide - see info Buy Softcover Book Tax calculation will be finalised at checkout Purchases are for personal use only Institutional subscriptions PREVIEW Unable to display preview. Download preview PDF. Unable to display preview. Download preview PDF. SIMILAR CONTENT BEING VIEWED BY OTHERS AIS - A METRIC FOR ASSESSING THE IMPACT OF AN INFLUENCER’S TWITTER ACTIVITY ON THE PRICE OF A CRYPTOCURRENCY Chapter © 2024 TWITTER SENTIMENT ANALYSIS: HOW TO HEDGE YOUR BETS IN THE STOCK MARKETS Chapter © 2014 TRACKING MULTIPLE SOCIAL MEDIA FOR STOCK MARKET EVENT PREDICTION Chapter © 2017 REFERENCES 1. Bandari, R., Asur, S., Huberman, B.A.: The pulse of news in social media: Forecasting popularity. CoRR (2012) Google Scholar 2. Bollena, J., Maoa, H., Zengb, X.: Twitter mood predicts the stock market. Journal of Computational Science (2011) Google Scholar 3. Gilbert, E., Karahalios, K.: Widespread worry and the stock market. In: Int. AAAI Conf. on Weblogs and Social Media (2010) Google Scholar 4. Hong, L., Dan, O., Davison, B.D.: Predicting popular messages in twitter. In: Int. Conf. Companion on WWW (2011) Google Scholar 5. Hsieh, C.-C., Moghbel, C., Fang, J., Cho, J.: Experts vs the crowd: Examining popular news prediction performance on twitter. In: Int. Conf. on WWW (2013) Google Scholar 6. Kumar, S., Morstatter, F., Zafarani, R., Liu, H.: Whom should I follow? Identifying relevant users during crisis. In: ACM Conf. on Hypertext and Social Media (2013) Google Scholar 7. Lehmann, J., Castillo, C., Lalmas, M., Zuckerman, E.: Finding news curators in twitter. In: Int. Conf. on WWW Companion, pp. 863–870 (2013) Google Scholar 8. Makrehchi, M., Shah, S., Liao, W.: Stock prediction using event-based sentiment analysis. In: IEEE/WIC/ACM Int. Conf. on Web Intelligence (2013) Google Scholar 9. McNair, D., Heuchert, J.P., Shilony, E.: Profile of mood states. Bibliography, 1964–2002 (2003) Google Scholar 10. Oh, C., Sheng, O.: Investigating predictive power of stock micro blog sentiment in forecasting future stock price directional movement. In: ICIS, pp. 57–58 (2011) Google Scholar 11. Ruiz, E.J., Hristidis, V., Castillo, C., Gionis, A., Jaimes, A.: Correlating financial time series with micro-blogging activity. In: Int. Conf. on Web Search and Data Mining, WSDM 2012, pp. 513–522 (2012) Google Scholar 12. Sharma, N.K., Ghosh, S., Benevenuto, F., Ganguly, N., Gummadi, K.: Inferring who-is-who in the twitter social network. SIGCOMM Comput. Commun. Rev. 42(4), 533–538 (2012) Article Google Scholar 13. Wilson, T., Hoffmann, P., Somasundaran, S., Kessler, J., Wiebe, J., Choi, Y., Cardie, C., Riloff, E., Patwardhan, S.: Opinionfinder: a system for subjectivity analysis. In: HLT/EMNLP on Interactive Demonstrations, HLT-Demo 2005, pp. 34–35 (2005) Google Scholar 14. Zhang, X., Fuehres, H., Gloor, P.A.: Predicting stock market indicators through twitter “I hope it is not as bad as I fear”. In: Innovation Networks Conference- COINs 2010 (2010) Google Scholar Download references AUTHOR INFORMATION AUTHORS AND AFFILIATIONS 1. Thomson Reuters, USA Wenhui Liao & Sameena Shah 2. University of Ontario Institute of Technology, Canada Masoud Makrehchi Authors 1. Wenhui Liao View author publications You can also search for this author in PubMed Google Scholar 2. Sameena Shah View author publications You can also search for this author in PubMed Google Scholar 3. Masoud Makrehchi View author publications You can also search for this author in PubMed Google Scholar EDITOR INFORMATION EDITORS AND AFFILIATIONS 1. Center for Social Complexity and Department of Computational Social Science, George Mason University, 4400 University Drive, MS 6B2, 22030-4400, Fairfax, VA, USA William G. Kennedy 2. University of Arkansas at Little Rock, 2801 South University Avenue, EIT Building, Room 553, 72204, Little Rock, AR, USA Nitin Agarwal 3. Department of Computer Engineering, Rochester Institute of Technology, 83 Lomb Memorial Drive, Bldg 09, 14623-5603, Rochester, NY, USA Shanchieh Jay Yang RIGHTS AND PERMISSIONS Reprints and permissions COPYRIGHT INFORMATION © 2014 Springer International Publishing Switzerland ABOUT THIS PAPER CITE THIS PAPER Liao, W., Shah, S., Makrehchi, M. (2014). Winning by Following the Winners: Mining the Behaviour of Stock Market Experts in Social Media. In: Kennedy, W.G., Agarwal, N., Yang, S.J. (eds) Social Computing, Behavioral-Cultural Modeling and Prediction. SBP 2014. Lecture Notes in Computer Science, vol 8393. Springer, Cham. https://doi.org/10.1007/978-3-319-05579-4_13 DOWNLOAD CITATION * .RIS * .ENW * .BIB * DOI: https://doi.org/10.1007/978-3-319-05579-4_13 * Publisher Name: Springer, Cham * Print ISBN: 978-3-319-05578-7 * Online ISBN: 978-3-319-05579-4 * eBook Packages: Computer ScienceComputer Science (R0) SHARE THIS PAPER Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative PUBLISH WITH US Policies and ethics ACCESS THIS CHAPTER Log in via an institution SUBSCRIBE AND SAVE Springer+ Basic $34.99 /Month * Get 10 units per month * Download Article/Chapter or eBook * 1 Unit = 1 Article or 1 Chapter * Cancel anytime Subscribe now BUY NOW Chapter USD 29.95 Price excludes VAT (USA) * Available as PDF * Read on any device * Instant download * Own it forever Buy Chapter eBook USD 39.99 Price excludes VAT (USA) * Available as PDF * Read on any device * Instant download * Own it forever Buy eBook Softcover Book USD 54.99 Price excludes VAT (USA) * Compact, lightweight edition * Dispatched in 3 to 5 business days * Free shipping worldwide - see info Buy Softcover Book Tax calculation will be finalised at checkout Purchases are for personal use only Institutional subscriptions * Sections * References * Abstract * Preview * References * Author information * Editor information * Rights and permissions * Copyright information * About this paper * Publish with us 1. Bandari, R., Asur, S., Huberman, B.A.: The pulse of news in social media: Forecasting popularity. CoRR (2012) Google Scholar 2. Bollena, J., Maoa, H., Zengb, X.: Twitter mood predicts the stock market. Journal of Computational Science (2011) Google Scholar 3. Gilbert, E., Karahalios, K.: Widespread worry and the stock market. In: Int. AAAI Conf. on Weblogs and Social Media (2010) Google Scholar 4. Hong, L., Dan, O., Davison, B.D.: Predicting popular messages in twitter. In: Int. Conf. Companion on WWW (2011) Google Scholar 5. Hsieh, C.-C., Moghbel, C., Fang, J., Cho, J.: Experts vs the crowd: Examining popular news prediction performance on twitter. In: Int. Conf. on WWW (2013) Google Scholar 6. Kumar, S., Morstatter, F., Zafarani, R., Liu, H.: Whom should I follow? Identifying relevant users during crisis. In: ACM Conf. on Hypertext and Social Media (2013) Google Scholar 7. Lehmann, J., Castillo, C., Lalmas, M., Zuckerman, E.: Finding news curators in twitter. In: Int. Conf. on WWW Companion, pp. 863–870 (2013) Google Scholar 8. Makrehchi, M., Shah, S., Liao, W.: Stock prediction using event-based sentiment analysis. In: IEEE/WIC/ACM Int. Conf. on Web Intelligence (2013) Google Scholar 9. McNair, D., Heuchert, J.P., Shilony, E.: Profile of mood states. Bibliography, 1964–2002 (2003) Google Scholar 10. Oh, C., Sheng, O.: Investigating predictive power of stock micro blog sentiment in forecasting future stock price directional movement. In: ICIS, pp. 57–58 (2011) Google Scholar 11. Ruiz, E.J., Hristidis, V., Castillo, C., Gionis, A., Jaimes, A.: Correlating financial time series with micro-blogging activity. In: Int. Conf. on Web Search and Data Mining, WSDM 2012, pp. 513–522 (2012) Google Scholar 12. Sharma, N.K., Ghosh, S., Benevenuto, F., Ganguly, N., Gummadi, K.: Inferring who-is-who in the twitter social network. SIGCOMM Comput. Commun. Rev. 42(4), 533–538 (2012) Article Google Scholar 13. Wilson, T., Hoffmann, P., Somasundaran, S., Kessler, J., Wiebe, J., Choi, Y., Cardie, C., Riloff, E., Patwardhan, S.: Opinionfinder: a system for subjectivity analysis. In: HLT/EMNLP on Interactive Demonstrations, HLT-Demo 2005, pp. 34–35 (2005) Google Scholar 14. Zhang, X., Fuehres, H., Gloor, P.A.: Predicting stock market indicators through twitter “I hope it is not as bad as I fear”. In: Innovation Networks Conference- COINs 2010 (2010) Google Scholar DISCOVER CONTENT * Journals A-Z * Books A-Z PUBLISH WITH US * Journal finder * Publish your research * Open access publishing PRODUCTS AND SERVICES * Our products * Librarians * Societies * Partners and advertisers OUR IMPRINTS * Springer * Nature Portfolio * BMC * Palgrave Macmillan * Apress * Your privacy choices/Manage cookies * Your US state privacy rights * Accessibility statement * Terms and conditions * Privacy policy * Help and support * Cancel contracts here 5.181.234.134 Not affiliated © 2024 Springer Nature