www.iqsdirectory.com Open in urlscan Pro
216.250.147.171  Public Scan

Submitted URL: https://nyl.as/t1/251/aoo5k98w127mamtzqo3c8aqmj/0/f03476d4f3860b7d141990ef630e927bec2c3f66ae29f701aff1aa3a9c18f99b
Effective URL: https://www.iqsdirectory.com/articles/plastic-material.html?msID=b741dd0b-fcdf-4690-ae9c-ad49e9bedc7f&msID=fe3eb38f-5b3d-4cee...
Submission Tags: falconsandbox
Submission: On March 04 via api from US — Scanned from DE

Form analysis 0 forms found in the DOM

Text Content

Editorial by Industrial Quick Search REQUEST FOR QUOTE


PLASTIC MATERIAL

Close


LEADING PLASTIC COMPANIES AND SUPPLIERS

Please fill out the following form to submit a Request for Quote to any of the
following companies listed on Plastics .



Close


GET YOUR COMPANY LISTED ON THIS POWER PAGE





INTRODUCTION

This article gives complete industry insights on plastic materials.

Read further to learn more about topics such as:

 * What is a plastic material?
 * Advantages of plastics
 * Production of raw plastics
 * Types of plastics
 * Plastic fabrication process
 * And much more...




CHAPTER 1: WHAT IS A PLASTIC MATERIAL?

Plastic materials are objects artificially made from organic compounds called
polymers along with other additive components. They possess excellent
formability, making them extremely versatile for many different fabrication and
manufacturing processes. The term "plastic" is widely used for materials that
are easily shaped or molded.


Previously, metals, glass, and wood were the common raw materials. Plastics
easily replaced these materials in several applications because of their
attractive inherent properties. Being highly formable, they are suitable for
manufacturing processes such as packaging materials and container production.
Aside from formability, plastics are generally known to be lightweight,
flexible, durable, corrosion-resistant, and cost-effective.


Plastics can also be engineered to have different properties—not only is their
physical shape easily manipulated; their intrinsic properties are as well.
Different chemical processing techniques yield varying degrees of strength,
toughness, resilience, hardness, heat resistance, and so on.


HISTORY OF PLASTICS

The invention of plastics came after several breakthroughs in the polymerization
process, the main chemical process for creating plastics. Key milestones and
precursors in the development of polymerization were achieved through the
accidental discovery of polystyrene by Eduard Simon, the invention of Shellac by
Critchlow and Peck, and the vulcanization of natural rubber by Charles Goodyear
to name a few.

The first man-made plastic can be traced back to 1855 when Alexander Parkes
patented Parkesine, a semi-synthetic celluloid plastic. This was considered the
birth of the plastics industry. Parkesine was created by reacting a naturally
occurring compound called cellulose with nitric acid, then dissolving the
product in alcohol. The result was an elastic material that was made formable
when heated and hardened when cooled.


Further advancement in technology led to the rise of fully synthetic plastic.
The first was Bakelite. It was created in 1907 by Leo Baekeland, who also used
the term "plastics". Bakelite was formed from the reaction of phenol with
formaldehyde. It was successfully mass-produced and was used as a raw material
for products such as sealants, lacquers, laminations, and moldable materials.

Throughout the 20th century, the emergence of different types of plastics
followed. Some of these plastics were polystyrene, polyester, PVC, polyethylene,
and nylon. Mass production experienced a boom when World War II began. Plastics
were extensively used in the military for producing synthetic silks, vehicle
parts, and containers. After the war, the surge in demand settled. In time,
production continued with the intent of satisfying the consumer goods market.
Since then, the plastics industry has grown exponentially.



CHAPTER 2: ADVANTAGES OF PLASTICS

Plastic materials were once considered a "wonder material." They surpass steel
in almost every aspect of engineering design. Plastics have many desirable
inherent characteristics that most metals do not possess. They are also cheaper
to produce, making them suitable for mass production. The only drawback in using
plastics is their threat to the environment.


Below are some of the advantages of plastics.


FORMABILITY:

Plastics are great materials when it comes to formability. Plastics can be
molded, cast, rolled, pressed, stamped, extruded, and so on. They can be formed
into complex shapes, including those that are difficult or impossible for other
materials to achieve. The dies and tools used to form plastics are also easier
to make.


RESISTANT TO DEGRADATION FROM CHEMICALS AND WATER:

Plastics do not corrode or degrade the same way as metals. Metals develop rust,
which weakens the structural integrity of the product. Rust also poses a threat
of product contamination, especially for food and pharmaceutical products.


LIGHTWEIGHT

Plastics have densities around 0.8 to 1.5 times that of water. Steels have
densities of around 7.8 times that of water, while glass and ceramics are around
2 to 3 times the density of water. This shows that plastics are significantly
lighter than metals and glass, and we know they can be used for many of the same
applications. Moreover, some plastics are engineered to have a high
strength-to-mass ratio.



ACAN BE MADE EXTREMELY FLEXIBLE OR HIGH STRENGTH:

Each type of plastic has its inherent mechanical properties. These properties
are modified by compounding special additives that can improve their flexibility
and strength. Examples of these additives are glass and carbon fibers. Adding
fibers into a plastic matrix creates a composite material with better tensile
and flexural strength.


HIGH IMPACT AND TEAR RESISTANCE:

Plastics are made from long, chained molecules that arrange themselves in
crystalline structures or amorphous structures. Their structure gives them their
inherent elasticity. Plastics do not fail easily through brittle fracture and
cracking. Tearing is an issue that is resolved by including additives or by
using a polymer base with high tensile strength.


GOOD AESTHETICS AND SURFACE CHARACTERISTICS:

Plastic can be made into clear, translucent, or fully opaque products. They can
also be made into different colors by adding pigments. When it comes to surface
characteristics, plastics possess a variety of finishes and textures, negating
the need for expensive secondary operations.



LONG SERVICE LIFE:

Because of its chemical and wear resistance, plastic does not degrade easily
under normal conditions. This gives them a long service life. Some plastic
additives further enhance their durability by imparting resistance to oxidation
and ultraviolet radiation. However, the downside of their long life is their
negative impact on the environment. When not managed properly, they can quickly
accumulate and harm ecosystems.


RECYCLABILITY

Like glass and metals, some varieties of plastics can be recycled.
Traditionally, plastics are recycled through heating and melting. Through
heating, plastics are melted and formed into raw materials for manufacturing new
plastic products. However, melting is only applicable to thermoplastics.
Advanced processes are also being developed for processing other types. In
general, these methods chemically convert plastics into monomers that are used
as fuels for power generation.



LOW PRODUCTION COST

Plastics are easy to form. They require less energy to produce than metal and
glass. When heated, plastics are easily shaped; shaping requires only a moderate
amount of pressure. Plastics can even be formed by compressed air. The
temperature in their melted state is not as high as that of metals and glass.
Plastics in this state can be injected and molded without the need for expensive
dies and tools.

GET YOUR COMPANY LISTED BELOW


LEADING PLASTIC COMPANIES AND SUPPLIERS

All Plastics and Fiberglass, Inc.Petro Extrusion Technologies, Inc.Diversified
Plastics & Packaging, Inc.Custom Poly PackagingCS Hyde CompanyPolytec Plastics,
Inc.
Contact these Companies


CHAPTER 3: PRODUCTION OF RAW PLASTICS

The manufacture of plastic goods starts with the production of raw plastics. Raw
plastics are materials containing the basic properties of the polymer from which
they were made. They are produced in petrochemical plants where petrochemical
feedstocks are converted into raw plastics through a chemical process known as
polymerization. Raw plastics are supplied to manufacturing and fabrication shops
typically in liquid, powder, or pellet form. There, they are further processed
to create a final product.


Polymerization is the process of forming macromolecules called polymers by
joining hundreds to thousands of unit molecules called monomers. Polymerization
is made possible by the fact that organic compounds contain double-bonds and
active functional groups to form long-chained molecules.

Different polymerization processes exist to produce a specific type of polymer.
Examples of such processes are bulk, solution, suspension, and emulsion
polymerization. Each process has different chemical mechanisms to carry out the
reaction.

Polymerization can also be done with one or more types of monomer feedstocks.
Combining two or more types of monomers is a common way to give raw plastics
better characteristics. Polymers made from more than one monomer are called
copolymers.


After polymerization, plastics are further processed by blending an initial set
of additives. Additives such as stabilizers and antioxidants prevent the raw
plastic from degrading when exposed to air, light, or heat. This stabilizes the
raw plastic so that it can endure further processing and storage.

To produce a commodity plastic with desired properties, they are further blended
and compounded. Specific formulations impart a specific set of physical,
mechanical, electrical, and chemical properties to the plastic. Aside from the
previously mentioned stabilizers and antioxidants, plastic additives include
processing aids, performance enhancers, and aesthetic modifiers.

Another set of additives such as pigments, fillers, and reinforcing materials
are added to the plastic in manufacturing plants and fabrication shops. These
additives give the plastic its final specifications according to the
manufacturer‘s standards to suit an end-use.


CHAPTER 4: TYPES OF PLASTIC MATERIALS

Plastic polymers can be broadly classified as thermoplastic and thermosetting
polymers.


THERMOPLASTIC POLYMERS

Thermoplastic polymers or thermoplastics have polymer molecules that can be
repeatedly rearranged by heating and cooling. Heating thermoplastics liquifies
or softens them. No chemical change takes place during this process. This is
because of the absence of crosslinking that is evident in thermosetting
polymers. Subsequent cooling returns the material to its solid-state. This
heating and cooling process allows the plastic to be formed into different
shapes.



THERMOSETTING POLYMERS

Plastics made from these types of polymers have functional groups that form the
crosslinks between the molecules. Thermosetting polymers or thermosets cannot be
softened through heating. Once heated, they undergo a chemical reaction that
permanently changes their properties. Processing thermosets includes an
additional process called curing. Curing is the process of creating crosslinks
between polymer chains. This finalizes the properties of the plastic.


In addition to being classified as thermosetting or thermoplastic, plastics are
divided according to the type of polymer used in producing the raw resin.


POLYETHYLENE (PE):

Polyethylene is the most extensively used plastic material. PE has many
desirable characteristics such as easy processability, toughness, and
flexibility, which are all retained even at low temperatures. PE is odor and
toxin-free and has excellent clarity, good water barrier properties, good
electrical insulation properties, and a low cost. It has two main types:
high-density polyethylene (HDPE) and low-density polyethylene (LDPE).


HIGH-DENSITY POLYETHYLENE (HDPE)

Among the types of polyethylene, HDPE is the more dominant raw material in terms
of market share. Its molecular structure is linear with little branching,
resulting in higher intermolecular forces. This gives HDPE its high specific
strength.

LOW-DENSITY POLYETHYLENE (LDPE)

LDPE has a branched polymer chain that has weak intermolecular forces. This
results in lower tensile strength and barrier properties. Nevertheless, it has
better impact strength and resilience than HDPE.


POLYPROPYLENE (PP):

PP is a polymer that can have a wide range of properties, which depend on its
molecular weight, morphology, crystalline structure, additives, and
copolymerization. It can be made into polymers with a high degree of
crystallinity, resulting in higher tensile strength and hardness, which is
comparable to HDPE. Moreover, it can withstand higher temperatures without loss
of strength or degradation. The disadvantage of using PP is its susceptibility
to UV degradation and oxidation.



POLYURETHANE (PU)

PU is produced from polyester or polyether polyols, diisocyanate compounds,
curatives, and additives. They are suitable for making high-performance,
engineering-grade products. Their mechanical properties can vary from soft and
flexible to hard and rigid.



POLYVINYL CHLORIDE (PVC)

PVC is a plastic that can be formulated with different stabilizers,
plasticizers, impact modifiers, processing aids, and other additives. It can be
made into rigid or flexible plastic by modifying the amount of plasticizers.
Moreover, they offer better clarity than other versatile plastics. However, PVCs
have the potential to release harmful pollutants, acids, and toxins during
processing or degradation. Its compounding ingredients are now being regulated
by FDA, EPA, and other organizations.



POLYETHYLENE TEREPHTHALATE (PET):

PET, specifically, biaxially oriented PET, is known for its low permeability to
moisture, carbon dioxide, and alcohol. It also has an excellent intrinsic
viscosity. The downside of using PET, however, is its affinity for water. It
tends to absorb water, which makes processing difficult as the resin needs to be
dried before extrusion.



POLYSTYRENE (PS)

PS is another versatile plastic modified by copolymerization and the addition of
additives. They can be made into flexible, rigid, or cellular (foam) plastic
forms. PS is generally prone to oxidation. Thus, repeated recycling is not
recommended. Furthermore, their sensitivity to oxidation causes their color to
become yellowish.



POLYAMIDE (PA)

PA is considered an engineering plastic characterized by its high toughness,
high impact strength, resistance to solvents, abrasion resistance, and ability
to be modified to possess heat resistance. PA production mostly goes into the
manufacture of fibers. Only about 10% of PA production volume is used in plastic
forming processes.



ACRYLONITRILE BUTADIENE STYRENE (ABS)

ABS is a common plastic material characterized by good hardness and rigidity
with some degree of toughness. Protective coatings are usually applied due to
the material‘s poor resistance to UV and merely adequate resistance to most
acids and alkalis.



POLYCARBONATE (PC):

PC is easily processed by different molding methods, with injection molding and
sheet extrusion being the most common. Polycarbonates are known for their high
impact strength, heat resistance, good electrical insulation, transparency, good
water barrier properties, and inherent flame retarding properties.



POLYTETRAFLUOROETHYLENE (PTFE):

PTFE is one of the most common types of fluorocarbon polymers. It has many
desirable characteristics such as low coefficient of friction, self-lubrication,
chemical resistance, and hydrophobicity. This makes PTFE desirable as a coating
material. Its hydrophobic property also prevents the growth of microbes, which
further extends its applications to food and drug manufacture.



POLYMETHYL METHACRYLATE (PMMA):

This type of plastic is also known as acrylic. It is a type of thermoplastic
known to have distinctive properties such as superb transparency, lightness,
tensile and flexural strength, and UV resistance. They are commonly used as a
substitute for transparent glass. Examples of their applications are windows,
lenses, safety barriers, and screens.



CHAPTER 5: PLASTIC FABRICATION PROCESSES

Because of their excellent formability, different fabrication methods for
plastics have been developed. Plastics can easily be molded, cast, extruded,
stretched, and spun. They tend to flow according to the profile of the mold or
die without the need for extreme heat and pressure. After undergoing the primary
fabrication processes, their mechanical properties allow them to undergo
secondary processes such as trimming, cutting, grinding, drilling, gluing, and
welding similar to that of metals.

Enumerated below are the primary fabrication processes for plastic materials.


INJECTION MOLDING

Injection molding is one of the most common plastic forming processes. It
involves injecting molten plastic into a closed chamber or mold. This process
has four main operations:

 1. Heating and grinding the plastic until it flows under pressure.
 2. Injecting the plastic inside the mold.
 3. Cooling the molded plastic.
 4. Opening the mold to eject the product.


Injection molding is limited to producing plastic parts that are open on one
side. By itself, injection molding is not suited for producing closed, hollow
products such as plastic bottles. To produce these products, an inert gas is
released into the mold partially filled with molten plastic. This pushes the
plastic on the surface of the mold creating a hollow part. This process is known
as gas-assisted injection molding.


CASTING

Casting is the basic process of pouring liquid plastic into a mold without the
help of pressure. This process is used in processing both thermosets and
thermoplastics.

Casting involves:

 1. Liquefying and blending the resin. Some resins are already in liquid form.
    For solid or viscous plastics, heat is applied.
 2. Pouring the liquid resin into the mold.
 3. Removing trapped air bubbles using a vacuum.
 4. Hardening and cooling the molded plastic. Curing is required to harden
    thermosets.
 5. Mold opening and releasing the product.

Similar to injection molding, casting is not suitable for producing hollow
parts. This process is limited to producing simple, solid shapes. Moreover,
additional machining processes are required to remove flashes and extra material
from gates, risers, and runners.


BLOW MOLDING

Blow molding forms plastic hollow products by inflating a softened plastic
compound inside a mold. The main operations of blow molding are:

 1. Heating the plastic and forming it into a tube called a parison or preform.
 2. Enclosing and clamping the preform between two dies.
 3. Inflating the preform.
 4. Cooling and ejecting the product.


Blow molding can be categorized into two main types: extrusion blow molding and
injection blow molding. Extrusion blow molding extrudes the preform into a
hollow tube suspended on one end. Injection blow molding, on the other hand,
creates the preform by injecting plastic into a mold with a core for air supply.
Both processes use air to shape the preform against the mold.


ROTATIONAL MOLDING

Rotational molding, commonly referred to as "roto molding," is a plastic casting
technique used to produce hollow and seamless plastic products. This process
does not use high pressures for melt extrusion or injection. Instead, it forms
the container by spreading the plastic melt on the inner surfaces of the mold
through rotation. Its operation is summarized as follows:

 1. Loading the powdered plastic resin into the mold.
 2. Heating and melting the plastic while rotating the mold.
 3. Cooling the molded plastic.
 4. Demolding and unloading the product.


Since there are no high pressures involved, the molds used for rotational
molding are inexpensive. This allows the fabrication of larger products with
minimal investment. Rotational molding can also produce double-walled parts
without any secondary processing.


COMPRESSION MOLDING

Compression molding shapes the plastic resin by pressing it against two molds.
This process is preferred when forming large thermosetting plastics products.
The process is summarized below.

 1. Placing a compounded plastic charge with predefined mass onto the lower
    mold.
 2. Compressing the plastic by lowering the upper mold.
 3. Curing of the plastic resin.
 4. Cooling and removing the product from the mold.


Typically, the compression press is downward closing. Upward closing compression
presses are also available. The mold has internal heating elements that soften
the plastic charge. This allows the plastic to flow according to the shape of
the mold. The heat also cures the plastic. During curing, some plastic may
release gases that are vented through an additional phase called degassing.


EXTRUSION:

Plastic extrusion is the process of forcing molten plastic through a die,
producing a product with a continuous shape. This is a common method of
producing films, sheets, rods, and tubes. Extrusion is also combined with other
processes such as blow molding where the plastic is first processed and fed by
an extruder, followed by a molding process. The operations involved in plastic
extrusion are outlined below.

 1. Feeding the powdered or granular plastic resin into the extruder.
 2. Heating, kneading, compounding, conveying, and pressurizing the resin as it
    passes the extruder.
 3. Introducing the pressurized molten plastic against the die.
 4. Curing and cooling the final product.

Plastic extrusion covers different types of related processes based on the
product. Examples are sheet and blown-film extrusion. Extrusion is also employed
for applying coatings and jacketing to wires and cables.


RAM EXTRUSION:

The traditional method of extrusion includes the use of a hopper, throat, and
screw or auger as a means of feeding resin or pellets down the barrel to the die
or profile. This has become the standard and widely accepted method of
extrusion. The original form of extrusion did not include a screw or auger but
used a ram. This process is still used today to extrude certain types of
plastics, such as PTFE and UHMW, to produce sleeves, rods, blocks, tubing, and
lining sheet bars. Unlike traditional extruding, ram extrusion uses a powder as
its raw material that is fed by gravity into the extruding chamber where it is
sintered before being pushed by a hydraulic ram to the die. The remaining
aspects of the process are similar to traditional extrusion.

The two forms of ram extrusion are horizontal and vertical. Each of the forms
follow the use of a powder being forced by a ram through the die. Like powder
metallurgy, the quality of the final products depends on the design of the
extruder, the properties of the powder, the extrusion rate, amount of pressure,
and sintering temperature.


CALENDERING:

Calendering is a forming process that involves heating and rolling a plastic
mass into films, sheets, or lamination coatings. This process is widely used in
processing rubbers but is now being adopted in the fabrication of
thermoplastics. It consists of the following stages:

 1. Heating of the plastic mass.
 2. Squeezing the mass through an initial set of rolls, forming a continuous
    sheet.
 3. Progressive rolling to produce the desired thickness and surface qualities.
 4. Passing the plastic sheets into cooling rolls and a thickness gauge for
    final dimension checking.

Calendering is most suitable for producing multilayered products. Textile or
paper are examples of materials that are fed into the final rolling stages
together with the plastic sheet or film. This process creates a double-ply
product that combines the strength of the main material and the surface and
barrier properties of plastic.


THERMOFORMING:

Thermoforming is the process of heating thin plastic sheets to their forming
temperature and stretching them over a mold. It is a secondary plastic forming
process. It does not use raw plastic resin for compounding. Rather, it uses a
plastic sheet or film produced from preliminary processes such as extrusion or
calendering. The steps involved in thermoforming are:

 1. Heating the plastic sheet.
 2. Forming the plastic sheet using mechanical or pneumatic action to give its
    three-dimensional shape.
 3. Trimming the formed part from the rest of the sheet.


There are four different methods to create the three-dimensional shape of a
thermoformed product. These are vacuum, pressure, mechanical, and twin sheet
forming. Each method differs in how pressure is applied to create the
thermoform. Vacuum, pressure, and twin sheet processes all use compressed air to
press the plastic sheet against the mold. Mechanical thermoforming has two dies
that press against each other to deform the plastic.

Thermoforming is limited to producing parts with relatively thin walls.
Moreover, the process is prone to defects such as inconsistent thickness,
webbing, and warping.


SPINNING:

Spinning, in plastic fabrication, refers to the method of twisting and
stretching short strands into fibers with continuous lengths. The product is a
synthetic fiber that can be used for making synthetic textiles, ropes, and
cables. A typical spinning process involves:
 1. Liquefying the solid plastic resins.
 2. Pumping the molten polymer or polymer solution.
 3. Filtering and spinning the polymer into fibers.
 4. Solidification and cooling of fibers.

The steps mentioned above are the general operations for plastic fiber spinning.
Spinning can be further divided into three main types: melt, dry and wet
spinning. These processes differ in how the dimensional stability of the fiber
is attained.


CONCLUSION

 * Plastic materials are highly formable materials that are artificially made
   from organic compounds called polymers along with additive components.
 * Aside from formability, plastics are generally known to be lightweight,
   flexible, durable, corrosion-resistant, and cost-effective.
 * Polymerization is the process of converting petrochemical feedstocks into raw
   plastic resins. Production of raw plastic resins is done in a petrochemical
   plant.
 * Plastic polymers can be broadly classified as thermoplastic and thermosetting
   polymers. They can further be divided according to their main polymer.
 * Several fabrication processes for plastics include injection molding,
   casting, blow molding, rotational molding, compression molding, extrusion,
   calendering, thermoforming, and spinning.

GET YOUR COMPANY LISTED BELOW


LEADING PLASTIC COMPANIES AND SUPPLIERS

All Plastics and Fiberglass, Inc.Petro Extrusion Technologies, Inc.Diversified
Plastics & Packaging, Inc.Custom Poly PackagingCS Hyde CompanyPolytec Plastics,
Inc.
Contact these Companies

Be the first to know!

We will email you with updates when we release new content

Name
Count Me In!



Terms




TABLE OF CONTENTS

Chapter 1: What is a Plastic Material?

Chapter 2: Advantages of Plastics

Chapter 3: Production of Raw Plastics

Chapter 4: Types of Plastic Materials

Chapter 5: Plastic Fabrication Processes

VIEW MANUFACTURERS

 * IQS Homepage
 * All Articles
 * GET YOUR COMPANY LISTED


RELATED POSTS


PLASTIC FABRICATION

Plastic fabrication is the process of designing, manufacturing, and assembling a
product made out of plastic material or composites that contain plastic. There
are numerous plastic fabrication methods known today, considering the wide
variety of products made out of plastic...


BLOW MOLDING

Blow molding is a type of plastic forming process for creating hollow plastic
products made from thermoplastic materials. The process involves heating and
inflating a plastic tube known as a parison or preform. The parison is placed
between two dies that contain the desired shape of the product...


PLASTIC BOTTLES

Plastic bottles are bottles made of high or low-density plastic, such as
polyethylene terephthalate (PET), polyethylene (PE), polypropylene (PP),
polycarbonate (PC), or polyvinyl chloride (PVC). Each of the materials mentioned
has...


PLASTIC CHANNEL

Plastic channels are plastic products that have linear extruded profiles. They
have a constant cross-sectional shape across their axis. They are long and
narrow structures, and their depth is relatively short. These products serve a
variety of functions and uses...


PLASTIC EXTRUSION

Plastic extrusion, also known as plasticating extrusion, is a continuous high
volume manufacturing process in which a thermoplastic material -- in a form of
powder, pellets or granulates -- is homogeneously melted and then forced out of
the shaping die by means of pressure...


ROTATIONAL MOLDING

Rotational molding, commonly referred to as "rotomolding", is a plastic casting
technique used to produce hollow, seamless, and double-walled parts. It uses a
hollow mold tool wherein the thermoplastic powdered resin is heated while being
rotated and cooled to solidify...

© IQS Directory 2022. All Rights Reserved.

Toggle