spatstat.r-universe.dev
Open in
urlscan Pro
2a06:98c1:3120::3
Public Scan
Submitted URL: http://spatstat.r-universe.dev/
Effective URL: https://spatstat.r-universe.dev/builds
Submission: On December 13 via manual from US — Scanned from NL
Effective URL: https://spatstat.r-universe.dev/builds
Submission: On December 13 via manual from US — Scanned from NL
Form analysis
0 forms found in the DOMText Content
* GLOBAL Builds Articles Organizations Maintainers * METRICS Activity Dependencies System Libraries Citations * PARTICIPATE Setup * INFORMATION About Help Source R-UNIVERSE/SPATSTAT * Builds * Contributors * Packages * Articles * Badges * API * Feed * Viewer * Details No packages found for: spatstat Commit Package Version Maintainer Src R-4.3.x Build System Dependencies 2023-12-09spatstat.explore3.2-5.007Adrian Baddeley2023-12-092023-12-08spatstat.geom3.2-7.001Adrian Baddeley2023-12-082023-12-01spatstat.linnet3.1-3.003Adrian Baddeley2023-12-012023-11-29spatstat.random3.2-2Adrian Baddeley2023-11-29 c++ (12.3.0) 2023-10-30spatstat3.0-7Adrian Baddeley2023-11-292023-10-24spatstat.data3.0-3Adrian Baddeley2023-11-232023-10-24spatstat.utils3.0-4Adrian Baddeley2023-11-232023-10-24spatstat.sparse3.0-3Adrian Baddeley2023-11-272023-10-23spatstat.model3.2-8Adrian Baddeley2023-11-222022-05-24spatstat.core2.4-4.010Adrian Baddeley2023-11-302022-04-19RandomFieldsUtils1.2.5Martin Schlather2023-11-27 c++ (12.3.0) openblas (0.3.20) openmp (12.3.0) 2022-01-18RandomFields3.3.14Martin Schlather2023-12-02 c++ (12.3.0) openblas (0.3.20) openmp (12.3.0) SPATSTAT.EXPLORE: EXPLORATORY DATA ANALYSIS FOR THE 'SPATSTAT' FAMILY Functionality for exploratory data analysis and nonparametric analysis of spatial data, mainly spatial point patterns, in the 'spatstat' family of packages. (Excludes analysis of spatial data on a linear network, which is covered by the separate package 'spatstat.linnet'.) Methods include quadrat counts, K-functions and their simulation envelopes, nearest neighbour distance and empty space statistics, Fry plots, pair correlation function, kernel smoothed intensity, relative risk estimation with cross-validated bandwidth selection, mark correlation functions, segregation indices, mark dependence diagnostics, and kernel estimates of covariate effects. Formal hypothesis tests of random pattern (chi-squared, Kolmogorov-Smirnov, Monte Carlo, Diggle-Cressie-Loosmore-Ford, Dao-Genton, two-stage Monte Carlo) and tests for covariate effects (Cox-Berman-Waller-Lawson, Kolmogorov-Smirnov, ANOVA) are also supported. Last updated 5 days ago cluster-detectionconfidence-intervalshypothesis-testingk-functionroc-curvesscan-statisticssignificance-testingsimulation-envelopesspatial-analysisspatial-data-analysisspatial-sharpeningspatial-smoothingspatial-statistics 8.03 score 13 dependencies * * Adrian Baddeley SPATSTAT.LINNET: LINEAR NETWORKS FUNCTIONALITY OF THE 'SPATSTAT' FAMILY Defines types of spatial data on a linear network and provides functionality for geometrical operations, data analysis and modelling of data on a linear network, in the 'spatstat' family of packages. Contains definitions and support for linear networks, including creation of networks, geometrical measurements, topological connectivity, geometrical operations such as inserting and deleting vertices, intersecting a network with another object, and interactive editing of networks. Data types defined on a network include point patterns, pixel images, functions, and tessellations. Exploratory methods include kernel estimation of intensity on a network, K-functions and pair correlation functions on a network, simulation envelopes, nearest neighbour distance and empty space distance, relative risk estimation with cross-validated bandwidth selection. Formal hypothesis tests of random pattern (chi-squared, Kolmogorov-Smirnov, Monte Carlo, Diggle-Cressie-Loosmore-Ford, Dao-Genton, two-stage Monte Carlo) and tests for covariate effects (Cox-Berman-Waller-Lawson, Kolmogorov-Smirnov, ANOVA) are also supported. Parametric models can be fitted to point pattern data using the function lppm() similar to glm(). Only Poisson models are implemented so far. Models may involve dependence on covariates and dependence on marks. Models are fitted by maximum likelihood. Fitted point process models can be simulated, automatically. Formal hypothesis tests of a fitted model are supported (likelihood ratio test, analysis of deviance, Monte Carlo tests) along with basic tools for model selection (stepwise(), AIC()) and variable selection (sdr). Tools for validating the fitted model include simulation envelopes, residuals, residual plots and Q-Q plots, leverage and influence diagnostics, partial residuals, and added variable plots. Random point patterns on a network can be generated using a variety of models. Last updated 12 days ago density-estimationheat-equationkernel-density-estimationnetwork-analysispoint-processesspatial-data-analysisstatistical-analysisstatistical-inferencestatistical-models 6 stars 6.00 score 17 dependencies * * Adrian Baddeley SPATSTAT.RANDOM: RANDOM GENERATION FUNCTIONALITY FOR THE 'SPATSTAT' FAMILY Functionality for random generation of spatial data in the 'spatstat' family of packages. Generates random spatial patterns of points according to many simple rules (complete spatial randomness, Poisson, binomial, random grid, systematic, cell), randomised alteration of patterns (thinning, random shift, jittering), simulated realisations of random point processes including simple sequential inhibition, Matern inhibition models, Neyman-Scott cluster processes (using direct, Brix-Kendall, or hybrid algorithms), log-Gaussian Cox processes, product shot noise cluster processes and Gibbs point processes (using Metropolis-Hastings birth-death-shift algorithm, alternating Gibbs sampler, or coupling-from-the-past perfect simulation). Also generates random spatial patterns of line segments, random tessellations, and random images (random noise, random mosaics). Excludes random generation on a linear network, which is covered by the separate package 'spatstat.linnet'. Last updated 15 days ago point-processesrandom-generationsimulationspatial-samplingspatial-simulationc++ 4 stars 8.36 score 7 dependencies * * Adrian Baddeley SPATSTAT.DATA: DATASETS FOR 'SPATSTAT' FAMILY Contains all the datasets for the 'spatstat' family of packages. Last updated 2 months ago kernel-densitypoint-processspatial-analysisspatial-dataspatial-data-analysisspatstatstatistical-analysisstatistical-methodsstatistical-testsstatistics 5 stars 9.13 score 3 dependencies * * Adrian Baddeley SPATSTAT.SPARSE: SPARSE THREE-DIMENSIONAL ARRAYS AND LINEAR ALGEBRA UTILITIES Defines sparse three-dimensional arrays and supports standard operations on them. The package also includes utility functions for matrix calculations that are common in statistics, such as quadratic forms. Last updated 2 months ago arrayssparse-matrixsparse-representations 2 stars 7.99 score 5 dependencies * * Adrian Baddeley SPATSTAT.CORE: CORE FUNCTIONALITY OF THE 'SPATSTAT' FAMILY Functionality for data analysis and modelling of spatial data, mainly spatial point patterns, in the 'spatstat' family of packages. (Excludes analysis of spatial data on a linear network, which is covered by the separate package 'spatstat.linnet'.) Exploratory methods include quadrat counts, K-functions and their simulation envelopes, nearest neighbour distance and empty space statistics, Fry plots, pair correlation function, kernel smoothed intensity, relative risk estimation with cross-validated bandwidth selection, mark correlation functions, segregation indices, mark dependence diagnostics, and kernel estimates of covariate effects. Formal hypothesis tests of random pattern (chi-squared, Kolmogorov-Smirnov, Monte Carlo, Diggle-Cressie-Loosmore-Ford, Dao-Genton, two-stage Monte Carlo) and tests for covariate effects (Cox-Berman-Waller-Lawson, Kolmogorov-Smirnov, ANOVA) are also supported. Parametric models can be fitted to point pattern data using the functions ppm(), kppm(), slrm(), dppm() similar to glm(). Types of models include Poisson, Gibbs and Cox point processes, Neyman-Scott cluster processes, and determinantal point processes. Models may involve dependence on covariates, inter-point interaction, cluster formation and dependence on marks. Models are fitted by maximum likelihood, logistic regression, minimum contrast, and composite likelihood methods. A model can be fitted to a list of point patterns (replicated point pattern data) using the function mppm(). The model can include random effects and fixed effects depending on the experimental design, in addition to all the features listed above. Fitted point process models can be simulated, automatically. Formal hypothesis tests of a fitted model are supported (likelihood ratio test, analysis of deviance, Monte Carlo tests) along with basic tools for model selection (stepwise(), AIC()) and variable selection (sdr). Tools for validating the fitted model include simulation envelopes, residuals, residual plots and Q-Q plots, leverage and influence diagnostics, partial residuals, and added variable plots. Last updated 2 years ago model-checkingpoint-pattern-analysispoint-processrandom-generationrandom-samplingspatial-analysisspatial-dataspatstatstatistical-analysisstatistical-diagnosticsstatistical-inferencestatistical-modelsstatistical-tests 6 stars 1.08 score 15 dependencies * * Adrian Baddeley RANDOMFIELDS: SIMULATION AND ANALYSIS OF RANDOM FIELDS Methods for the inference on and the simulation of Gaussian fields are provided. Furthermore, methods for the simulation of extreme value random fields are provided. Main geostatistical parts are based among others on the books by Christian Lantuejoul <doi:10.1007/978-3-662-04808-5>. Last updated 2 years ago openblasc++openmp 6 stars 0.71 score 3 dependencies * * Martin Schlather SPATSTAT.GEOM: GEOMETRICAL FUNCTIONALITY OF THE 'SPATSTAT' FAMILY Defines spatial data types and supports geometrical operations on them. Data types include point patterns, windows (domains), pixel images, line segment patterns, tessellations and hyperframes. Capabilities include creation and manipulation of data (using command line or graphical interaction), plotting, geometrical operations (rotation, shift, rescale, affine transformation), convex hull, discretisation and pixellation, Dirichlet tessellation, Delaunay triangulation, pairwise distances, nearest-neighbour distances, distance transform, morphological operations (erosion, dilation, closing, opening), quadrat counting, geometrical measurement, geometrical covariance, colour maps, calculus on spatial domains, Gaussian blur, level sets of images, transects of images, intersections between objects, minimum distance matching. (Excludes spatial data on a network, which are supported by the package 'spatstat.linnet'.) Last updated 5 days ago classes-and-objectsdistance-calculationgeometrygeometry-processingimagesmensurationplottingpoint-patternsspatial-dataspatial-data-analysis 7 stars 9.15 score 6 dependencies * * Adrian Baddeley SPATSTAT: SPATIAL POINT PATTERN ANALYSIS, MODEL-FITTING, SIMULATION, TESTS Comprehensive open-source toolbox for analysing Spatial Point Patterns. Focused mainly on two-dimensional point patterns, including multitype/marked points, in any spatial region. Also supports three-dimensional point patterns, space-time point patterns in any number of dimensions, point patterns on a linear network, and patterns of other geometrical objects. Supports spatial covariate data such as pixel images. Contains over 3000 functions for plotting spatial data, exploratory data analysis, model-fitting, simulation, spatial sampling, model diagnostics, and formal inference. Data types include point patterns, line segment patterns, spatial windows, pixel images, tessellations, and linear networks. Exploratory methods include quadrat counts, K-functions and their simulation envelopes, nearest neighbour distance and empty space statistics, Fry plots, pair correlation function, kernel smoothed intensity, relative risk estimation with cross-validated bandwidth selection, mark correlation functions, segregation indices, mark dependence diagnostics, and kernel estimates of covariate effects. Formal hypothesis tests of random pattern (chi-squared, Kolmogorov-Smirnov, Monte Carlo, Diggle-Cressie-Loosmore-Ford, Dao-Genton, two-stage Monte Carlo) and tests for covariate effects (Cox-Berman-Waller-Lawson, Kolmogorov-Smirnov, ANOVA) are also supported. Parametric models can be fitted to point pattern data using the functions ppm(), kppm(), slrm(), dppm() similar to glm(). Types of models include Poisson, Gibbs and Cox point processes, Neyman-Scott cluster processes, and determinantal point processes. Models may involve dependence on covariates, inter-point interaction, cluster formation and dependence on marks. Models are fitted by maximum likelihood, logistic regression, minimum contrast, and composite likelihood methods. A model can be fitted to a list of point patterns (replicated point pattern data) using the function mppm(). The model can include random effects and fixed effects depending on the experimental design, in addition to all the features listed above. Fitted point process models can be simulated, automatically. Formal hypothesis tests of a fitted model are supported (likelihood ratio test, analysis of deviance, Monte Carlo tests) along with basic tools for model selection (stepwise(), AIC()) and variable selection (sdr). Tools for validating the fitted model include simulation envelopes, residuals, residual plots and Q-Q plots, leverage and influence diagnostics, partial residuals, and added variable plots. Last updated 2 months ago cluster-processcox-point-processgibbs-processkernel-densitynetwork-analysispoint-processpoisson-processspatial-analysisspatial-dataspatial-data-analysisspatial-statisticsspatstatstatistical-methodsstatistical-modelsstatistical-testsstatistics 172 stars 7.01 score 18 dependencies * * Adrian Baddeley SPATSTAT.UTILS: UTILITY FUNCTIONS FOR 'SPATSTAT' Contains utility functions for the 'spatstat' family of packages which may also be useful for other purposes. Last updated 2 months ago spatial-analysisspatial-dataspatstat 5 stars 9.18 score 0 dependencies * * Adrian Baddeley SPATSTAT.MODEL: PARAMETRIC STATISTICAL MODELLING AND INFERENCE FOR THE 'SPATSTAT' FAMILY Functionality for parametric statistical modelling and inference for spatial data, mainly spatial point patterns, in the 'spatstat' family of packages. (Excludes analysis of spatial data on a linear network, which is covered by the separate package 'spatstat.linnet'.) Supports parametric modelling, formal statistical inference, and model validation. Parametric models include Poisson point processes, Cox point processes, Neyman-Scott cluster processes, Gibbs point processes and determinantal point processes. Models can be fitted to data using maximum likelihood, maximum pseudolikelihood, maximum composite likelihood and the method of minimum contrast. Fitted models can be simulated and predicted. Formal inference includes hypothesis tests (quadrat counting tests, Cressie-Read tests, Clark-Evans test, Berman test, Diggle-Cressie-Loosmore-Ford test, scan test, studentised permutation test, segregation test, ANOVA tests of fitted models, adjusted composite likelihood ratio test, envelope tests, Dao-Genton test, balanced independent two-stage test), confidence intervals for parameters, and prediction intervals for point counts. Model validation techniques include leverage, influence, partial residuals, added variable plots, diagnostic plots, pseudoscore residual plots, model compensators and Q-Q plots. Last updated 2 months ago analysis-of-variancecluster-processconfidence-intervalscox-processdeterminantal-point-processesgibbs-processinfluenceleveragemodel-diagnosticsneyman-scottparameter-estimationpoisson-processspatial-analysisspatial-modellingspatial-point-processesstatistical-inference 4 stars 6.11 score 16 dependencies * * Adrian Baddeley RANDOMFIELDSUTILS: UTILITIES FOR THE SIMULATION AND ANALYSIS OF RANDOM FIELDS AND GENETIC DATA Various utilities are provided that might be used in spatial statistics and elsewhere. It delivers a method for solving linear equations that checks the sparsity of the matrix before any algorithm is used. Last updated 2 years ago openblasc++openmp 0.71 score 0 dependencies * * Martin Schlather No packages found for: spatstat Loading articles... PACKAGES API Open Information about packages in this universe All packages RandomFieldsRandomFieldsUtilsspatstatspatstat.corespatstat.dataspatstat.explorespatstat.geomspatstat.linnetspatstat.modelspatstat.randomspatstat.sparsespatstat.utils DATASETS API Download Export datasets to various formats spatstat.data::Kovesi (hyperframe)spatstat.data::amacrine (ppp)spatstat.data::anemones (ppp)spatstat.data::ants (ppp)spatstat.data::ants.extra (list)spatstat.data::austates (tess)spatstat.data::bdspots (ppplist)spatstat.data::bei (ppp)spatstat.data::bei.extra (imlist)spatstat.data::betacells (ppp)spatstat.data::bramblecanes (ppp)spatstat.data::bronzefilter (ppp)spatstat.data::btb (ppp)spatstat.data::btb.extra (ppplist)spatstat.data::cells (ppp)spatstat.data::cetaceans (hyperframe)spatstat.data::cetaceans.extra (list)spatstat.data::chicago (lpp)spatstat.data::chorley (ppp)spatstat.data::chorley.extra (list)spatstat.data::clmfires (ppp)spatstat.data::clmfires.extra (list)spatstat.data::concrete (ppp)spatstat.data::copper (list)spatstat.data::demohyper (hyperframe)spatstat.data::demopat (ppp)spatstat.data::dendrite (lpp)spatstat.data::finpines (ppp)spatstat.data::flu (hyperframe)spatstat.data::ganglia (ppp)spatstat.data::gordon (ppp)spatstat.data::gorillas (ppp)spatstat.data::gorillas.extra (imlist)spatstat.data::hamster (ppp)spatstat.data::heather (solist)spatstat.data::humberside (ppp)spatstat.data::humberside.convex (ppp)spatstat.data::hyytiala (ppp)spatstat.data::japanesepines (ppp)spatstat.data::lansing (ppp)spatstat.data::letterR (owin)spatstat.data::longleaf (ppp)spatstat.data::mucosa (ppp)spatstat.data::mucosa.subwin (owin)spatstat.data::murchison (solist)spatstat.data::nbfires (ppp)spatstat.data::nbfires.extra (solist)spatstat.data::nbw.rect (owin)spatstat.data::nbw.seg (psp)spatstat.data::nztrees (ppp)spatstat.data::osteo (hyperframe)spatstat.data::paracou (ppp)spatstat.data::ponderosa (ppp)spatstat.data::ponderosa.extra (list)spatstat.data::pyramidal (hyperframe)spatstat.data::redwood (ppp)spatstat.data::redwood3 (ppp)spatstat.data::redwoodfull (ppp)spatstat.data::redwoodfull.extra (list)spatstat.data::residualspaper (list)spatstat.data::shapley (ppp)spatstat.data::shapley.extra (list)spatstat.data::simba (hyperframe)spatstat.data::simdat (ppp)spatstat.data::simplenet (linnet)spatstat.data::spiders (lpp)spatstat.data::sporophores (ppp)spatstat.data::spruces (ppp)spatstat.data::stonetools (ppp)spatstat.data::swedishpines (ppp)spatstat.data::urkiola (ppp)spatstat.data::vesicles (ppp)spatstat.data::vesicles.extra (solist)spatstat.data::waka (ppp)spatstat.data::waterstriders (ppplist)RandomFields::ca20.df (geodata.frame)RandomFields::soil (data.frame)RandomFields::weather (matrix) csv xlsx json ndjson RData rds SNAPSHOT API Download Download a full copy of the cran-like repository with docs to mirror or backup. Optional filters (defaults include everything): Source packages Windows binaries MacOS binaries Linux binaries WebAssembly binaries Package docs Binaries for R-4.3 Binaries for R-4.2 RandomFieldsRandomFieldsUtilsspatstatspatstat.corespatstat.dataspatstat.explorespatstat.geomspatstat.linnetspatstat.modelspatstat.randomspatstat.sparsespatstat.utils Badges can be customized with color, scale, and style, parameters from badgen. For example: https://ropensci.r-universe.dev/badges/:total?scale=2&color=pink&style=flat URL Preview Markdown https://spatstat.r-universe.dev/badges/:namehttps://spatstat.r-universe.dev/badges/:registryhttps://spatstat.r-universe.dev/badges/:total https://spatstat.r-universe.dev/badges/spatstat.explorehttps://spatstat.r-universe.dev/badges/spatstat.geomhttps://spatstat.r-universe.dev/badges/spatstat.linnethttps://spatstat.r-universe.dev/badges/spatstat.randomhttps://spatstat.r-universe.dev/badges/spatstathttps://spatstat.r-universe.dev/badges/spatstat.datahttps://spatstat.r-universe.dev/badges/spatstat.utilshttps://spatstat.r-universe.dev/badges/spatstat.sparsehttps://spatstat.r-universe.dev/badges/spatstat.modelhttps://spatstat.r-universe.dev/badges/spatstat.corehttps://spatstat.r-universe.dev/badges/RandomFieldsUtilshttps://spatstat.r-universe.dev/badges/RandomFields Authored by: ... in .... Source: ..., Vignette: .... Last updated: 2021-03-14. Loading article... Loading package data... Citation Readme and manuals Reference manual Help page Topics Development and contributors Usage by other packages THE SPATSTAT TEAM * r-universe/spatstat * * * * * 12 packages * 6 articles * 61 datasets * 14 contributors * 14 followers Links to spatstat * Adrian Baddeley * Martin Schlather : Authors: | ✨ (API) # Install in R: install.packages('', repos = c('https://spatstat.r-universe.dev', 'https://cloud.r-project.org')) The latest version of this package failed to build. Look at the build logs for more information. Peer review: Bug tracker: Uses libs: Datasets: On CRAN: This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available. Last updated ?? from: Exports: Dependencies: Articles and/or reference manual for this package failed to build, some documents may be unavailable. Please inspect the build logs for more information. Rendered from using on . : Last updated ?? * * × csv xlsx json ndjson rda rds