program.pinokio.computer
Open in
urlscan Pro
18.192.231.252
Public Scan
Submitted URL: https://program.pinokio.computer/#/?id=windows
Effective URL: https://program.pinokio.computer/
Submission: On May 29 via manual from NG — Scanned from DE
Effective URL: https://program.pinokio.computer/
Submission: On May 29 via manual from NG — Scanned from DE
Form analysis
0 forms found in the DOMText Content
PINOKIO * Pinokio * Introduction * Features * Architecture * Install * Windows * Mac * Linux * Community Help * X (Twitter) * Discord * Quickstart * Pinokio File System * Hello world * Templates * Run in daemon mode * Run multiple commands * Install packages into venv * Run an app in venv * Download a file * Call a script from another script * Install, start, and stop remote scripts * Build UI with pinokio.js * Publish your script * Install script from any git url * List your script on the directory * Auto-generate app launchers * Gepeto * Gepeto Quickstart * Creating an empty project * Customizing the empty project * Creating a launcher for an existing project * Adding cross platform support * Downloading files with script * Porting huggingface spaces to local * Guides * Install Torch * Install Torch and Xformers * Build an App Launcher Instantly * File System * Home directory * Self-contained File System * Distributed File URI * Virtual Drive * Processor * Fetch * Decode * Execute * Memory * input * args * local * self * uri * cwd * platform * arch * gpus * gpu * current * next * kernel * _ * os * path * Script * fs * jump * gradio * local * log * net * notify * proxy * script * shell * UI * components * pinokio.js PINOKIO INTRODUCTION Pinokio is a browser that lets you locally install, run, and automate any AI on your computer. Everything you can run in your command line can be automated with Pinokio script, with a user-friendly UI. You can use Pinokio to automate anything, including: 1. Install AI apps and models 2. Manage and Run AI apps 3. Create workflows to orchestrate installed AI apps 4. Run any command to automate things on your machine 5. and more... FEATURES Here's what makes Pinokio special: 1. Local: Everything gets installed and runs locally. None of your data is stored on someone else's server. 2. Free: Pinokio is an open source application that is 100% free to use with no restriction. There is no one to pay for API access, since everything runs on your local machine. Play with AI as much as you want, for free forever. 3. Private: You don't need to worry about submitting private data just to run AI, everything runs 100% privately on your own machine. 4. User-friendly Interface: Pinokio provides a user-friendly GUI for running and automating anything that you would normally need to use the terminal for. 5. Batteries Included: Pinokio is a self-contained system. You do not need to install any other program. Pinokio can automate anything, including program/library installations. The only program you need is Pinokio. 6. Cross Platform: Pinokio works on ALL operating systems (Windows, Mac, Linux). 7. Save Storage and Resources: Pinokio has a lot of optimization features that will save you hundreds of gigabytes of disk space. Also, many other resource optimization features (such as memory) all possible with Pinokio. 8. Expressive Scripting Language: Pinokio script is a powerful automation scripting language with features like memory, dynamic templating, and extensible low level APIs. 9. Portable: Everything is stored under an isolated folder and everything exists as a file, which means you can easily back up everything or delete apps simply by deleting files. -------------------------------------------------------------------------------- ARCHITECTURE Pinokio takes inspiration from how traditional computers work. Just like how a computer can do all kinds of things thanks to its comprehensive architecture, Pinokio as a virtual computer is a comprehensive platform for running and automating anything you can imagine with AI. 1. File System: Where and how Pinokio stores files. 2. Processor: How pinokio runs tasks. 3. Memory: How pinokio implements a state machine using its built-in native memory. 4. Script: The programming language that operates pinokio. 5. UI: The UI (user interface) through which users access apps. -------------------------------------------------------------------------------- INSTALL > 1. Windows > 2. Mac > 3. Linux WINDOWS Make sure to follow ALL steps below! STEP 1. DOWNLOAD Download for Windows STEP 2. UNZIP Unzip the downloaded file and you will see a .exe installer file. STEP 3. INSTALL Run the installer file and you will be presented with the following Windows warning: This message shows up because the app was downloaded from the Web, and this is what Windows does for apps downloaded from the web. To bypass this, 1. Click "More Info" 2. Then click "Run anyway" -------------------------------------------------------------------------------- MAC Make sure to follow BOTH step 1 AND step 2. STEP 1. DOWNLOAD Download for M1/M2/M3 Mac Download for Intel Mac STEP 2. INSTALL (IMPORTANT!!) After downloading the dmg files, you MUST make a patch, as shown below: 1. Run the downloaded DMG installer file 2. Drag the "Pinokio" app to the Applications folder 3. Run the "patch.command" 4. Open the Pinokio app in the applications folder -------------------------------------------------------------------------------- LINUX For linux, you can download and install directly from the latest release on Github: Go to the Releases Page -------------------------------------------------------------------------------- COMMUNITY HELP To stay on top of all the new APIs and app integrations, X (TWITTER) > Follow @cocktailpeanut on X to stay updated on all the new scripts being > released and feature updates. DISCORD > Join the Pinokio discord to ask questions and get help. -------------------------------------------------------------------------------- QUICKSTART PINOKIO FILE SYSTEM Pinokio is a self-contained platform that lets you install apps in an isolated manner. 1. Isolated Environment: no need to worry about messing up your global system configurations and environments 2. Batteries Included: no need to manually install required programs just to install something (such as ffpeg, node.js, visual studio, conda, python, pip, etc.). Pinokio takes care of it automatically. To achieve this, Pinokio stores everything under a single isolated folder ("pinokio home"), so it never has to rely on your system-wide configs and programs but runs everything in a self-contained manner. You can set the pinokio home folder when you first set up Pinokio, as well as later change it to a new location from the settings tab. So where are the files stored? Click the "Files" button from the home page: This will open Pinokio's home folder in your file explorer: Let's quickly go through what each folder does: 1. api: stores all the downloaded apps (scripts). * The folders inside this folder are displayed on your Pinokio's home. 2. bin: stores globally installed modules shared by multiple apps so you don't need to install them redundantly. * For example, ffmpeg, nodejs, python, etc. 3. cache: stores all the files automatically cached by apps you run. * When something doesn't work, deleting this folder and starting fresh may fix it. * It is OK to delete the cache folder as it will be re-populated by the apps you use as you start using apps. 4. drive: stores all the virtual drives created by the fs.link Pinokio API 5. logs: stores all the log files for each app. > You can learn more about the file system here -------------------------------------------------------------------------------- HELLO WORLD Let's write a script that clones a git repository. 1. Create a folder named helloworld under the Pinokio api folder. 2. Create a file named git.json under the the Pinokio api/helloworld folder. { "run": [{ "method": "shell.run", "params": { "message": "git clone https://github.com/pinokiocomputer/test" } }] } Now when you go back to Pinokio, you will see your helloworld repository show up. Navigate into it and click the git.json tab to run it: You will see that an api/helloworld/test folder has been cloned from the https://github.com/pinokiocomputer/test repository. -------------------------------------------------------------------------------- TEMPLATES We can also dynamically change what commmands to run, and how to run them, using templates. As an example, let's write a script that runs dir on windows, and ls on linux and mac. In your api/helloworld folder, create a file named files.json: { "run": [{ "method": "shell.run", "params": { "message": "{{platform === 'win32' ? 'dir' : 'ls'}}" } }] } 1. The {{ }} template expression contains a JavaScript expression 2. There are several variables available inside every template expression, and one of them is platform. 3. The value of platform is either darwin (mac), win32 (windows), or linux (linux). This means, on Windows, the above script is equivalent to: { "run": [{ "method": "shell.run", "params": { "message": "dir" } }] } Or if it's not windows (mac or linux), it's equivalent to: { "run": [{ "method": "shell.run", "params": { "message": "ls" } }] } > You can learn more about templates here -------------------------------------------------------------------------------- RUN IN DAEMON MODE When a Pinokio script finishes running, every shell session that was spawned through the script gets disposed of, and all the related processes get shut down. For example, let's try launching a local web server using http-server. Create a new folder named httpserver under the Pinokio api folder, and create a new script named index.json: { "run": [{ "method": "shell.run", "params": { "message": "npx -y http-server" } }] } Then go back to Pinokio and you'll see this app show up on the home page. Click through and click the index.json tab on the sidebar, and it will start this script, which should launch the web server using npx http-server. But the problem is, right after it launches the server it will immediately shut down and you won't be able to use the web server. This is because Pinokio automatically shuts down all processes associated with the script when it finishes running all the steps in the run array. To avoid this, you need to tell Pinokio this app should stay up even after all the steps have run. We simply need to add a daemon attribute: { "daemon": true, "run": [{ "method": "shell.run", "params": { "message": "npx -y http-server" } }] } Now retry starting the script, and you'll see that the web server starts running and does not shut down. The web server will serve all the files in the current folder (in this case just index.json), like this: You can stop the script by pressing the "stop" button at the top of the page. > Learn more about daemon mode here -------------------------------------------------------------------------------- RUN MULTIPLE COMMANDS You can also run multiple commands with one shell.run call. Let's try an example. We are going to install, initialize, and launch a documentation engine in one script. Things like this used to be not accessible for normal people (since you have to run these things in the terminal), but with Pinokio, it's as easy as one click. 1. Create a folder named docsify under the Pinokio api folder 2. Create a file named index.json under the api/docsify folder. The index.json file should look like the following: { "daemon": true, "run": [{ "method": "shell.run", "params": { "message": [ "npx -y docsify-cli init docs", "npx -y docsify-cli serve docs" ] } }] } This example does 2 things: 1. Initialize a docsify Documentation project 2. Launch the docsify dev server When you click the dev server link from the Pinokio terminal, it will open the documentation page in a web browser: > Learn more ablut the shell.run API here -------------------------------------------------------------------------------- INSTALL PACKAGES INTO VENV One of the common use cases for Pinokio is to: 1. Create/activate a venv 2. Install dependencies into the activated venv Let's try a simple example. This example is a minimal gradio app from the official gradio tutorial First, create a folder named gradio_demo under Pinokio's api folder. Next, create a file named app.py in the api/gradio_demo folder. # app.py import gradio as gr def greet(name, intensity): return "Hello, " + name + "!" * int(intensity) demo = gr.Interface( fn=greet, inputs=["text", "slider"], outputs=["text"], ) demo.launch() We also need a requirements.txt file that looks like this: # requirements.txt gradio Finally, we need an install.json script that will install the dependencies from the requirements.txt file: { "run": [{ "method": "shell.run", "params": { "venv": "env", "message": "pip install -r requirements.txt" } }] } The folder structure will look like this: /PINOKIO_HOME /api /gradio_demo app.py requirements.txt install.json Go back to Pinokio and you'll see the gradio_demo app. Click into the UI and click the install.json tab, and it will: 1. Create a venv folder at path env 2. Activate the env environment 3. Run pip install -r requirements.txt, which will install the gradio dependency into the env envrionment. Here's what the installation process looks like (note that a new env folder has been created at the end): > Learn more about the venv API here -------------------------------------------------------------------------------- RUN AN APP IN VENV > continued from the last section. Now let's write a simple script that will launch the gradio server from the app.py from the last section. Create a file named start.json in the same folder: { "daemon": true, "run": [{ "method": "shell.run", "params": { "venv": "env", "message": "python app.py" } }] } Go back to Pinokio and you'll see that the start.json file now shows up on the sidebar as well. Click to start the start.json script. This will: 1. activate the env environment we created from the install step 2. run python app.py in daemon mode (daemon: true), which will launch the gradio server and keep it running. It will look something like this: > Learn more about the venv API here -------------------------------------------------------------------------------- DOWNLOAD A FILE Pinokio has a cross-platform API for downloading files easily and reliably (including automatic retries, etc.). Let's try writing a simple script that downloads a PDF. First create a folder named download under the Pinokio api folder, and then create a file named index.json: { "run": [{ "method": "fs.download", "params": { "uri": "https://arxiv.org/pdf/1706.03762.pdf", "dir": "pdf" } }] } This will download the file at https://arxiv.org/pdf/1706.03762.pdf to a folder named pdf (The fs.download API automatically creates a folder at the location if it doesn't already exist). Here's what it looks like: > Learn more about the fs.download API here -------------------------------------------------------------------------------- CALL A SCRIPT FROM ANOTHER SCRIPT In many cases you may want to call a script from another script. Some examples: 1. An orchestration script that spins up stable diffusion and then llama. 2. An agent that starts stable diffusion, and immediately makes a request to generate an image, and finally stops the stable diffusion server to save resources, automatically. 3. An agent that makes a request to a llama endpoint, and then feeds the response to a stable diffusion endpoint. We can achieve this using the script APIs: * script.start: Start a remote script (Download first if it doesn't exist yet) * script.return: If the current script was a child process, specify the return value, which will be made available in the next step of the caller script. Here's an example. Let's create a simple caller.json and callee.json: caller.json: { "run": [{ "method": "script.start", "params": { "uri": "callee.json", "params": { "a": 1, "b": 2 } } }, { "method": "log", "params": { "json2": "{{input}}" } }] } First step, the caller.json will call callee.json with the params { "a": 1, "b": 2 }. This params object will be passed into the callee.json as args: callee.json: { "run": [{ "method": "script.return", "params": { "ressponse": "{{args.a + args.b}}" } }] } The callee.json script immediately returns the value {{args.a + args.b}} with the script.return call. Finally, the caller.json will call the last step log, which will print the value {{input}}, which is the return value from callee.json. This will print 3: -------------------------------------------------------------------------------- INSTALL, START, AND STOP REMOTE SCRIPTS The last section explained how you can call a script from within the same repository. But what if you want to call scripts from other repositories? The script.start API can also download and run remote scripts on the fly. Create a folder named remotescript under Pinokio api folder and create a file named install.json under the api/remotescript: { "run": [{ "method": "script.start", "params": { "uri": "https://github.com/cocktailpeanutlabs/moondream2.git/install.js" } }, { "method": "script.start", "params": { "uri": "https://github.com/cocktailpeanutlabs/moondream2.git/start.js" } }, { "id": "run", "method": "gradio.predict", "params": { "uri": "{{kernel.script.local('https://github.com/cocktailpeanutlabs/moondream2.git/start.js').url}}", "path": "/answer_question_1", "params": [ { "path": "https://media.timeout.com/images/105795964/750/422/image.jpg" }, "Explain what is going on here" ] } }, { "method": "log", "params": { "json2": "{{input}}" } }, { "method": "script.stop", "params": { "uri": "https://github.com/cocktailpeanutlabs/moondream2.git/start.js" } }] } 1. The first step starts the script https://github.com/cocktailpeanutlabs/moondream2.git/install.js. * If the moondream2.git repository already exists on Pinokio, it will run the install.js script. * If it doesn't already exist, Pinokio automatically clones the https://github.com/cocktailpeanutlabs/moondream2.git repository first, and then starts the install.js script after that. 2. After the install has finished, it then launches the gradio app using the https://github.com/cocktailpeanutlabs/moondream2.git/start.js script. This script will return after the server has started. 3. Now we run gradio.predict, using the kernel.script.local() API to get the local variable object for the start.js script, and then getting its url value (which is programmatically set inside the moondream2.git/start.js script). * Basically, this step makes a request to the gradio endpoint to ask the LLM "Explain what is going on here", passing an image. 4. Next, the return value from the gradio.predict is logged to the terminal using the log API. 5. Finally, we stop the moondream2/start.js script to shut down the moondream gradio server using the script.stop API. * If we don't call the script.stop, the moondream2 app will keep running even after this script halts. Here's what it would look like: > The ability to run script.start, and then script.stop is very useful for > running AI on personal computers, because most personal computers do not have > unbounded memory, and your computer will quickly run out of memory if you > cannot shut down these AI engines programmatically. > > With script.stop you can start a script, get its response, and immediatley > shut it down once the task has finished, which will free up the system memory, > which you can use for running other subsequent AI tasks. -------------------------------------------------------------------------------- BUILD UI WITH PINOKIO.JS Pinokio apps have a simple structure: 1. shortcut: The app shortcut that shows up on Pinokio home. 2. app: The main UI layout for the app Shortcut App * Menu: The sidebar that displays all the links you can run (as well as their running status) * Window: The viewport that displays a web page, or a terminal that runs the scripts By default if you do not have a pinokio.js file in your project, * the shortcut displays the folder name as the title, and a default icon as the app's icon. * the menu displays all .js or .json files in your repository root. While this is convenient for getting started, it's not flexible enough: 1. You can't control what gets displayed in the menu bar 2. You can't control how the scripts are launched (by passing params for example) 3. You can't control how the app is displayed * The title of the app will be your folder name * There is no description * The icon will just show a default icon. To customize how your app itself behaves, you will want to write a UI script named pinokio.js. Let's try writing a minimal UI: 1. Create a folder named downloader in the /PINOKIO_HOME/api folder 2. Add any icon to the /PINOKIO_HOME/api/downloader folder and name it icon.png 3. Create a file named /PINOKIO_HOME/api/downloader/download.json 4. Create a file named /PINOKIO_HOME/api/downloader/pinokio.js /PINOKIO_HOME/api/downloader/icon.png /PINOKIO_HOME/api/downloader/download.json { "run": [{ "method": "shell.run", "params": { "message": "git clone {{input.url}}" } }] } /PINOKIO_HOME/api/downloader/pinokio.js module.exports = { title: "Download Anything", description: "Download a git repository", icon: "icon.png", menu: [{ text: "Start", href: "download.json", params: { url: "https://github.com/cocktailpeanut/dalai" } }] } The end result will look like this in your file explorer: Now go back to Pinokio and refresh, and you will see your app show up: * the title displays Download Anything * the description displays Download a git repository * the icon is the icon.png we've added Now when you click into the app, you will see the following: 1. You will see the menu item Start. 2. Click this to run the download.json which is specified by the href attribute. 3. Also note that the script is passing the value of https://github.com/cocktailpeanut/dalai as the params.url value. 4. The params passed to the download.json is made available as the input variable, so the git clone {{input.url}} will be instantiated as git clone https://github.com/cocktailpeanut/dalai. -------------------------------------------------------------------------------- PUBLISH YOUR SCRIPT Once you have a working script repository, you can publish to any git hosting service and share the URL, and anyone will be able to install and run your script. -------------------------------------------------------------------------------- INSTALL SCRIPT FROM ANY GIT URL You can install any pinokio script repository very easily: 1. Click the "Download from URL" button at the top of the Discover page. 2. Enter the git URL (You can optionally specify the branch as well). -------------------------------------------------------------------------------- LIST YOUR SCRIPT ON THE DIRECTORY If you published to github, you can tag your repository with "pinokio" to make it show up in the "latest" section of the Discover page. Now it will automatically show up on the "latest" section (at the bottom of the "Discover" page): > Pinokio constructs the "Latest" section automatically from GitHub > "/repositories" API at > https://api.github.com/search/repositories?q=topic:pinokio&sort=updated&direction=desc > > So if you tagged your repository as "pinokio" but doesn't show up, check in > the API result, and try to figure out why it's not included in there. -------------------------------------------------------------------------------- AUTO-GENERATE APP LAUNCHERS While it is important to understand how all this works, in most cases you may want a simple "launcher combo", which includes: 1. App install script: Installs the app dependencies 2. App Launch script: Starts the app 3. UI: Displays the launcher UI. 4. Reset script: Resets the app state when something goes wrong. 5. Update script: Updates the app to the latest version with 1 click. This use case is needed so often, that we've implemented a program that automatically generates these scripts instantly. It's called Gepeto. -------------------------------------------------------------------------------- GEPETO Gepeto is a program that lets you automatically generate Pinokio scripts, specifically for app launchers. Let's start by actually generating an app and its launcher in 1 minute. GEPETO QUICKSTART 1. INSTALL GEPETO ON PINOKIO If you don't have gepeto installed already, find it on Pinokio and install first. 2. GENERATE SCRIPTS WITH GEPETO You will see a simple web UI that lets you fill out a form. For simplicity, just enter Helloworld as the project name, and press submit. This will initialize a project. When you go back to Pinokio home, 1. You will see a new entry named Helloworld. Click into it and you'll see the launcher screen. 2. Also, check your /PINOKIO_HOME/api folder, you will find a new folder named Helloworld with some script files. 3. INSTALL AND START THE APP Now let's click the install button to install the app, and when it's over, click start to launch. You will see a minimal gradio app, where you can enter a prompt and it will generate an image using Stable Diffusion XL Turbo. So what just happened? We've just created an empty project, which comes with a minimal demo app. Let's take a look at each generated file in the next section. -------------------------------------------------------------------------------- CREATING AN EMPTY PROJECT Gepeto automatically generates a minimal set of scripts required for an app launcher. A typical app launcher has the following features: 1. Install: Install the dependencies required to run the app. (install.js) 2. Launch: Launch the app itself. (start.js) 3. Reset install: Reset all the installed dependencies in case you need to reinstall fresh. (reset.js) 4. Update: Update to the latest version when the project gets updated. (update.js) 5. GUI: The script that describes what the launcher will look like and behave on Pinokio home and as a sidebar menu. (pinokio.js) Here's what it looks like: Note that in addition to the scripts mentioned above, gepeto has generated some extra files: * app.py: A simple demo app. Replace this with your own code. * requirements.txt: declares all the required PIP dependencies for app.py. Replace with your own. * icon.png: A default icon file for the app. Replace with your own. * torch.js: The torch.js is a utility script that gets called from install.js. Since torch is used in almost all AI projects, and it's quite tricky to install them in a cross-platform manner, this script is included by default. You don't have to worry about this file, just understand that it's used by install.js. Do not touch. The notable files to look at are app.py and requirements.txt files: APP.PY import gradio as gr import torch from diffusers import DiffusionPipeline import devicetorch # Get the current device ("mps", "cuda", or "cpu") device = devicetorch.get(torch) # Create a diffusion pipeline pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo").to(device) # Run inference def generate_image(prompt): return pipe( prompt, num_inference_steps=2, strength=0.5, guidance_scale=0.0 ).images[0] # Create a text input + image output UI with Gradio app = gr.Interface(fn=generate_image, inputs="text", outputs="image") app.launch() REQUIREMENTS.TXT The below are the libraries required to run app.py. transformers accelerate diffusers gradio devicetorch So how are these files actually used? INSTALL.JS If you look inside install.js, you will see that it's running pip install -r requirements.txt to install the dependencies inside the file, like this: module.exports = { run: [ // Delete this step if your project does not use torch { method: "script.start", params: { uri: "torch.js", params: { venv: "env", // Edit this to customize the venv folder path // xformers: true // uncomment this line if your project requires xformers } } }, // Edit this step with your custom install commands { method: "shell.run", params: { venv: "env", // Edit this to customize the venv folder path message: [ "pip install -r requirements.txt" ], } }, // Uncomment this step to add automatic venv deduplication (Experimental) // { // method: "fs.link", // params: { // venv: "env" // } // }, { method: "notify", params: { html: "Click the 'start' tab to get started!" } } ] } 1. The first step runs script.start to call a script named torch.js. This installs torch. 2. The second step runs pip install -r requirements.txt file to install everything in that file. START.JS And if you look inside start.js, you will see that it's running python app.py to start the app: module.exports = { daemon: true, run: [ // Edit this step to customize your app's launch command { method: "shell.run", params: { venv: "env", // Edit this to customize the venv folder path env: { }, // Edit this to customize environment variables (see documentation) message: [ "python app.py", // Edit with your custom commands ], on: [{ // The regular expression pattern to monitor. // When this pattern occurs in the shell terminal, the shell will return, // and the script will go onto the next step. "event": "/http:\/\/\\S+/", // "done": true will move to the next step while keeping the shell alive. // "kill": true will move to the next step after killing the shell. "done": true }] } }, // This step sets the local variable 'url'. // This local variable will be used in pinokio.js to display the "Open WebUI" tab when the value is set. { method: "local.set", params: { // the input.event is the regular expression match object from the previous step url: "{{input.event[0]}}" } }, // Uncomment this step to enable local wifi sharing (access the app from devices on the same network) // { // method: "proxy.start", // params: { // uri: "{{local.url}}", // name: "Local Sharing" // } // } ] } 1. The first step starts a shell (shell.run), activates a venv environment at env path, and runs the command python app.py. It then monitors the shell terminal for any regular expression matching the pattern /http:\/\/[0-9.:]+/, and goes to the next step (without terminating the shell). 2. The next step sets the local variable url as using the regular expression match from the previous step. And that's all there is to it! -------------------------------------------------------------------------------- CUSTOMIZING THE EMPTY PROJECT Just to make sure we get the point across, let's try modifying the auto-generated code to customize the app: Open the app.py and just replace it with something even simpler: import gradio as gr def square(num): return num * num app = gr.Interface(fn=square, inputs="number", outputs="number") app.launch() Also you can get rid of everything but gradio in the requirements.txt file: gradio Now restart the app. It's an app that takes a number and displays its square value: -------------------------------------------------------------------------------- CREATING A LAUNCHER FOR AN EXISTING PROJECT So far we've seen "how to start from scratch". But what if you want to take an EXISTING project and simply write a launcher for it? For example: 1. Write a local launcher for ComfyUI 2. Write a local launcher for FaceFusion 3. Write a local launcher for HuggingFace Spaces 4. so on. In this case, you just need to enter the git repository URL of the project you're trying to install, when you first run gepeto. As an example, let's build a launcher for Devika, an AI agent application. 1. Enter devika-launcher in the Project Name field. 2. Enter https://raw.githubusercontent.com/stitionai/devika/main/.assets/devika-avatar.png in the Icon URL field. 3. Enter https://github.com/stitionai/devika in the Git URL field. and press Submit. Gepeto will generate the launcher. Go to Pinokio home, you'll find the generated launcher: Click into it and click the Files tab to view the generated folder: The generated folder looks like this: > Note that there are no app.py and requirements.txt files. Since we entered a > git URL, Gepeto assumes that the actual app logic will be in that repository > and therefore doesn't generate these two files in this case. INSTALL.JS Let's take a look at install.js. This is the default script gepeto has generated: module.exports = { run: [ // Edit this step to customize the git repository to use { method: "shell.run", params: { message: [ "git clone https://github.com/stitionai/devika app", ] } }, // Delete this step if your project does not use torch { method: "script.start", params: { uri: "torch.js", params: { venv: "env", // Edit this to customize the venv folder path path: "app", // Edit this to customize the path to start the shell from // xformers: true // uncomment this line if your project requires xformers } } }, // Edit this step with your custom install commands { method: "shell.run", params: { venv: "env", // Edit this to customize the venv folder path path: "app", // Edit this to customize the path to start the shell from message: [ "pip install gradio devicetorch", "pip install -r requirements.txt" ] } }, // Uncomment this step to add automatic venv deduplication (Experimental) // { // method: "fs.link", // params: { // venv: "env" // } // }, { method: "notify", params: { html: "Click the 'start' tab to get started!" } } ] } This is the default install script generated by Gepeto. 1. Run git clone https://github.com/stitionai/devika app to download the git repository to app folder. 2. Call torch.js script, which automatically installs the correct version of Pytorch for the current system. 3. Run pip install gradio devicetorch and then pip install -r requirements.txt, to install dependencies. This script assumes that the installation for this Devika project is done by running pip install -r requirements.txt. Normally this works in many cases, but often you have to do some more. Let's take a look at Devika README.md: Looks like we need to do some more: 1. In addition to pip install -r requirements.txt we also need to install Playwright. 2. Also we need to install the NPM dependencies with bun install. Let's edit the install.js to reflect this: module.exports = { run: [ // Edit this step to customize the git repository to use { method: "shell.run", params: { message: [ "git clone https://github.com/stitionai/devika app", ] } }, // Delete this step if your project does not use torch { method: "script.start", params: { uri: "torch.js", params: { venv: "env", // Edit this to customize the venv folder path path: "app", // Edit this to customize the path to start the shell from // xformers: true // uncomment this line if your project requires xformers } } }, // Edit this step with your custom install commands { method: "shell.run", params: { venv: "env", // Edit this to customize the venv folder path path: "app", // Edit this to customize the path to start the shell from message: [ "pip install gradio devicetorch", "pip install -r requirements.txt", "playwright install --with-deps" ] } }, { method: "shell.run", params: { path: "app/ui", message: "npm install" } }, // Uncomment this step to add automatic venv deduplication (Experimental) // { // method: "fs.link", // params: { // venv: "env" // } // }, { method: "notify", params: { html: "Click the 'start' tab to get started!" } } ] } 1. Just notice the third step: we've added the additional command playwright install --with-deps 2. Additionally, the fourth step has been added, where we run npm install (We use npm install instead of the proposed bun install since it's effectively the same and NPM is included in Pinokio by default) START.JS Now, what about actually launching the app? The start.js script takes care of this. Let's take a look at the generated file: module.exports = { daemon: true, run: [ { method: "shell.run", params: { venv: "env", // Edit this to customize the venv folder path env: { }, // Edit this to customize environment variables (see documentation) path: "app", // Edit this to customize the path to start the shell from message: [ "python app.py", // Edit with your custom commands ], on: [{ // The regular expression pattern to monitor. // When this pattern occurs in the shell terminal, the shell will return, // and the script will go onto the next step. "event": "/http:\/\/\\S+/", // "done": true will move to the next step while keeping the shell alive. // "kill": true will move to the next step after killing the shell. "done": true }] } }, { // This step sets the local variable 'url'. // This local variable will be used in pinokio.js to display the "Open WebUI" tab when the value is set. method: "local.set", params: { // the input.event is the regular expression match object from the previous step url: "{{input.event[0]}}" } }, // Uncomment this step to enable local wifi sharing (access the app from devices on the same network) // { // method: "proxy.start", // params: { // uri: "{{local.url}}", // name: "Local Sharing" // } // } ] } The generated script runs the default command python app.py. But again, we need to make some changes to the commands. Let's take a look at the README.md file https://github.com/stitionai/devika?tab=readme-ov-file#installation: 1. We need to run python devika.py for the backend 2. We need to then run bun run start for the frontend (or npm run start) Here's what the updated start.js script looks like: module.exports = { daemon: true, run: [ { method: "shell.run", params: { venv: "env", // Edit this to customize the venv folder path env: { }, // Edit this to customize environment variables (see documentation) path: "app", // Edit this to customize the path to start the shell from message: [ "python devika.py", ], on: [{ "event": "/Devika is up and running/i", // wait until the terminal prints this message "done": true }] } }, { method: "shell.run", params: { path: "app/ui", message: "npm run start", on: [{ "event": "/http:\/\/\\S+/", "done": true }] } }, { // This step sets the local variable 'url'. // This local variable will be used in pinokio.js to display the "Open WebUI" tab when the value is set. method: "local.set", params: { // the input.event is the regular expression match object from the previous step url: "{{input.event[0]}}" } }, // Uncomment this step to enable local wifi sharing (access the app from devices on the same network) // { // method: "proxy.start", // params: { // uri: "{{local.url}}", // name: "Local Sharing" // } // } ] } Here are the changes: 1. instead of python app.py, now we have the python devika.py command. 2. The python devika.py command waits until the terminal encounters the regulare expression pattern /Devika is up and running/i. This ensures that it doesn't move onto the next step until the server has fully started. 3. Also, we have a new step that runs npm run start 4. The npm run start waits until the terminal encounters the pattern /http:\/\/\\S+/. This takes advantage of the fact that the app prints the endpoint URL at the end of the launch. After we've updated both the install.js and start.js files, let's go back to Pinokio and try installing and starting: -------------------------------------------------------------------------------- ADDING CROSS PLATFORM SUPPORT Often we encounter projects that DO NOT support cross platform out of the box. (For example only support CUDA--Nvidia GPUs--and not Macs). > Normally you can find out very quickly whether an app supports cross platform, > simply by searching for cuda in the app code. > > If there's any part of the code that hardcodes "cuda" as a device, that means > it only works for CUDA. > > We can fix this by simply finding all these occurrences and replace the > hardcoded "cuda" with the correct device value for the user's platform. Let's walk through the process step by step: 1. Create a copy of the original project (so you can edit the code). 2. Update the app code to support cross platform 3. Use this copy repository (instead of the original project) when running gepeto. 1. CREATE A COPY Most open source AI projects are hosted on GitHub or HuggingFace. Before you make changes to the code, you need to create your own copy fork the original project to create your own version. HUGGINGFACE SPACES On HuggingFace Spaces, you need to duplicate the space. Make sure to set it to public. GITHUB On GitHub, you need to fork a repository. 2. CLONE THE REPOSITORY TO YOUR MACHINE Now that you have your own copy, you can clone the git repository to your local machine to start editing the code. Let's say your repository is https://huggingface.co/spaces/cocktailpeanut/cosxl You can clone it from terminal using: git lfs install git clone https://huggingface.co/spaces/cocktailpeanut/cosxl The git lfs install is for allowing large files, which happens often when the repository contains large files. Now you are ready to edit the files to add cross platform support. 3. ADD DEVICE SUPPORT FOR TORCH Many projects only support CUDA devices (Nvidia GPU). To make sure apps support non-CUDA devices, we need to: 1. Find all occurrences of "cuda" in the app code (for example app.py) 2. Replace all those occurrences with a variable named device 3. Make sure the device variable is correctly set Let's take a look at an example: # app.py import torch ... pipe_edit = CosStableDiffusionXLInstructPix2PixPipeline.from_single_file(edit_file, num_in_channels=8) pipe_edit.scheduler = EDMEulerScheduler(sigma_min=0.002, sigma_max=120.0, sigma_data=1.0, prediction_type="v_prediction") pipe_edit.to("cuda") pipe_normal = StableDiffusionXLPipeline.from_single_file(normal_file, torch_dtype=torch.float16) pipe_normal.scheduler = EDMEulerScheduler(sigma_min=0.002, sigma_max=120.0, sigma_data=1.0, prediction_type="v_prediction") pipe_normal.to("cuda") This python code has "cuda" hardcoded in two places: * pipe_edit.to("cuda") * pipe_normal.to("cuda") In this case we need to replace these "cuda" strings with the user's actual device. We can do this by using a minimal library called devicetorch. First add a line in requirements.txt to include devicetorch: # requirements.txt devicetorch Next, import devicetorch and call devicetorch.get(torch) to get the actual device name: # app.py import torch import devicetorch ... # Dynamically get the current device name: will return either "cuda", "mps", or "cpu". device = devicetorch.get(torch) pipe_edit = CosStableDiffusionXLInstructPix2PixPipeline.from_single_file(edit_file, num_in_channels=8) pipe_edit.scheduler = EDMEulerScheduler(sigma_min=0.002, sigma_max=120.0, sigma_data=1.0, prediction_type="v_prediction") pipe_edit.to(device) pipe_normal = StableDiffusionXLPipeline.from_single_file(normal_file, torch_dtype=torch.float16) pipe_normal.scheduler = EDMEulerScheduler(sigma_min=0.002, sigma_max=120.0, sigma_data=1.0, prediction_type="v_prediction") pipe_normal.to(device) There are some cases where it's much more complicated and this method doesn't work (In these cases I recommend asking the original project author to officially support MPS). But in most cases, above approach is enough to add cross platform support for any AI app. 4. MORE TORCH HANDLING Often when you do the "cuda" check (as mentioned above), you will ALSO account cuda specific code snippets like this: torch.cuda.empty_cache() Again, this code assumes that it will only run on CUDA devices, and it will FAIL if you run the code on an MPS (Mac) device. The devicetorch library also has a utility method named devicetorch.empty_cache(torch) to take care of this. Just comment out the existing code and replace it with devicetorch.empty_cache(torch) #torch.cuda.empty_cache() devicetorch.empty_cache(torch) This will automatically run: * torch.cuda.empty_cache() if the device is CUDA. * torch.mps.empty_cache() if the device is MPS. 4. RUN GEPETO Now push the updates back to your copy repository. We will be using THIS repository to install the app (not the original repository). When you run gepeto, you'll see the Git URL field: Enter YOUR repository url, and press "Submit". That's all! Try installing with the generated script! -------------------------------------------------------------------------------- DOWNLOADING FILES WITH SCRIPT Sometimes, the project will tell you you need to download certain files and place them inside certain folder paths. For example, it may say: > Download > https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/resolve/main/sd_xl_base_1.0.safetensors > to models/checkpoints > > Download > https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0/resolve/main/sd_xl_refiner_1.0.safetensors > to models/checkpoints We can actually use the built-in fs.download API to download these files: { "run": [{ ... }, { "method": "fs.download", "params": { "url": "https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/resolve/main/sd_xl_base_1.0.safetensors", "dir": "app/models/checkpoints" } }, { "method": "fs.download", "params": { "url": "https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0/resolve/main/sd_xl_refiner_1.0.safetensors", "dir": "app/models/checkpoints" } }] } This will download the files into those directories. If the folder doesn't exist, it will create the folders first automatically. -------------------------------------------------------------------------------- PORTING HUGGINGFACE SPACES TO LOCAL 1. Create a copy 2. Use the app.py and requirements.txt files 3. Remove the spaces Sometimes an app may have some additional changes. 1. Huggingface spaces: When trying to make a localized version of a Huggingface space that utilizes Zero GPU, you will need to comment out the @spaces.GPU declarations. 2. Environment variables: When the code makes use of environment variables (Search for os.environ.get(...), this means the app is expecting an environment variable. 1. HANDLING HUGGINGFACE SPACE Some huggingface spaces make use of a feature called Zero GPU, which dynamically assigns GPU to each app based on demand. These are Huggingface-specific feature, and is not required when running locally. Here's an example usage: import spaces from diffusers import DiffusionPipeline pipe = DiffusionPipeline.from_pretrained(...) pipe.to('cuda') @spaces.GPU def generate(prompt): return pipe(prompt).images gr.Interface(fn=generate, inputs=gr.Text(), outputs=gr.Gallery()).launch() Because we don't use the spaces feature, we can comment out these spaces related lines: * import spaces * @spaces.GPU The result: #import spaces from diffusers import DiffusionPipeline pipe = DiffusionPipeline.from_pretrained(...) pipe.to('cuda') #@spaces.GPU def generate(prompt): return pipe(prompt).images gr.Interface(fn=generate, inputs=gr.Text(), outputs=gr.Gallery()).launch() 2. ENVIRONMENT VARIABLES Sometimes the code may be looking for system environment variables. To find out if this is the case, search for: os.environment.get. For example, let's say the code has: # app.py mps_fallback = os.environ.get("PYTORCH_ENABLE_MPS_FALLBACK") You can pass in the PYTORCH_ENABLE_MPS_FALLBACK environment variable by setting the env object when launching app.py, like this: { "run": [{ "method": "shell.run", "params": { "message": "python app.py", "env": { "PYTORCH_ENABLE_MPS_FALLBACK": "1" } } }] } -------------------------------------------------------------------------------- GUIDES This section will explain some frequently used techniques for writing scripts. INSTALL TORCH A lot of AI projects rely on PyTorch. However, installing PyTorch is a bit tricky. Let's take a look at an example. PROBLEM Let's imagine a project with the following folder structure (a typical huggingface gradio space is structured this way): app.py requirements.txt install.js * app.py: The actual app file * requirements.txt: A file that includes all the dependency declarations, which can be installed with pip install -r requirements.txt * install.js: a Pinokio script for installing the project The requirements.txt may look something like this: diffusers accelerate torch transformers gradio A naive way to write an install script install.js would be something like this: module.exports = { "run": [{ "method": "shell.run", "params": { "venv": "env", "message": "pip install -r requirements.txt" } }] } However this won't work for many cases, because with PyTorch, every OS/GPU combination has its own unique install command, as can be seen on the Official PyTorch Website (See the bottom line "Run this Command:"): SOLUTION To solve this problem and port AI projects to run locally and cross-platform, we need to: 1. Update ignore the generic torch, torchvision, and torchaudio declarations inside requirements.txt. 2. Update the install.json so it installs correct versions of Torch. 1. UPDATE REQUIREMENTS.TXT First, let's comment out any occurrence of torch, torchvision, and torchaudio, since we will write a custom installer for these: diffusers accelerate #torch <= commented out, will be ignored. transformers gradio Here's an actual example: https://huggingface.co/spaces/cocktailpeanut/SPRIGHT-T2I/blob/main/requirements.txt 2. UPDATE THE INSTALL SCRIPT Let's update the install.js to add all possible combintations of torch install commands: module.exports = { "run": [ // Torch for windows nvidia { "when": "{{platform === 'win32' && gpu === 'nvidia'}}", "method": "shell.run", "params": { "venv": "env", "message": "pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121" } }, // Torch for windows amd { "when": "{{platform === 'win32' && gpu === 'amd'}}", "method": "shell.run", "params": { "venv": "env", "message": "pip install torch-directml" } }, // Torch for windows cpu { "when": "{{platform === 'win32' && (gpu !== 'nvidia' && gpu !== 'amd')}}", "method": "shell.run", "params": { "venv": "env", "message": "pip install torch torchvision torchaudio" } }, // Torch for mac { "when": "{{platform === 'darwin'}}", "method": "shell.run", "params": { "venv": "env", "message": "pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cpu" } }, // Torch for linux nvidia { "when": "{{platform === 'linux' && gpu === 'nvidia'}}", "method": "shell.run", "params": { "venv": "env", "message": "pip install torch torchvision torchaudio" } }, // Torch for linux rocm (amd) { "when": "{{platform === 'linux' && gpu === 'amd'}}", "method": "shell.run", "params": { "venv": "env", "message": "pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm5.7" } }, // Torch for linux cpu { "when": "{{platform === 'linux' && (gpu !== 'amd' && gpu !=='amd')}}", "method": "shell.run", "params": { "venv": "env", "message": "pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu" } }, // Install requirements.txt { "method": "shell.run", "params": { "venv": "env", "message": "pip install -r requirements.txt" } } ] } 1. This will walk through the run array and check the when clauses, and only execute the commands when the conditions are met. 2. Then in the last step, it will run the original pip install -r requirements.txt INSTALL TORCH AND XFORMERS Xformers is another library that is frequently used in AI projects, but only for CUDA (NVIDIA GPUs). Whenever you come across a project that includes xformers as a dependency, you will need to do the same thing you did for torch: 1. comment out the xformers line from the requirements.txt 2. add a custom handling logic for xformers into the install script, so it only gets installed when the app is running on nvidia GPU. For example, an udpated requirements.txt file may look like this: diffusers accelerate #torch <= commented out, will be ignored. #xformers <= commented out, will be ignored. transformers gradio Additionally, we update the install script so it correctly handles xformers when the GPU is nvidia: 1. check if the gpu is nvidia. 2. and if so, add the xformers to the pip install command. module.exports = { "run": [ // Torch for windows nvidia { "when": "{{platform === 'win32' && gpu === 'nvidia'}}", "method": "shell.run", "params": { "venv": "env", "message": "pip install torch torchvision torchaudio xformers --index-url https://download.pytorch.org/whl/cu121" } }, // Torch for windows amd { "when": "{{platform === 'win32' && gpu === 'amd'}}", "method": "shell.run", "params": { "venv": "env", "message": "pip install torch-directml" } }, // Torch for windows cpu { "when": "{{platform === 'win32' && (gpu !== 'nvidia' && gpu !== 'amd')}}", "method": "shell.run", "params": { "venv": "env", "message": "pip install torch torchvision torchaudio" } }, // Torch for mac { "when": "{{platform === 'darwin'}}", "method": "shell.run", "params": { "venv": "env", "message": "pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cpu" } }, // Torch for linux nvidia { "when": "{{platform === 'linux' && gpu === 'nvidia'}}", "method": "shell.run", "params": { "venv": "env", "message": "pip install torch torchvision torchaudio xformers" } }, // Torch for linux rocm (amd) { "when": "{{platform === 'linux' && gpu === 'amd'}}", "method": "shell.run", "params": { "venv": "env", "message": "pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm5.7" } }, // Torch for linux cpu { "when": "{{platform === 'linux' && (gpu !== 'amd' && gpu !=='amd')}}", "method": "shell.run", "params": { "venv": "env", "message": "pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu" } }, // Install requirements.txt { "method": "shell.run", "params": { "venv": "env", "message": "pip install -r requirements.txt" } } ] } The only lines that have been changed are: * Torch for windows nvidia: "pip install torch torchvision torchaudio xformers --index-url https://download.pytorch.org/whl/cu121" * Torch for linux nvidia: "pip install torch torchvision torchaudio xformers" BUILD AN APP LAUNCHER INSTANTLY Pinokio script can be used to do all kinds of things (run shell commands, make network requests, write to files, etc.), but sometimes we want a dead simple way to auto-generate some scripts to install and run some apps. For this specific--but very frequent--use case, we have a program called gepeto, which automatically generates a set of scripts commonly used for installing, running, and managing apps. If building an app launcher is your goal, we recommend you start from using Gepeto. -------------------------------------------------------------------------------- FILE SYSTEM HOME DIRECTORY Pinokio stores everything inside a centralized location (Pinokio Home Directory). This means you can: 1. Remove apps simply by deleting folders (No messy sysetm-wide installed files and DLLs) 2. Back up either the entire workspace or individual apps simiply by backing up folders. When you first install Pinokio, you will be asked to set the home folder path. You can also update it later in the settings tab. -------------------------------------------------------------------------------- SELF-CONTAINED FILE SYSTEM The top level folders under the Pinokio home directory look like the following > We'll use the /PINOKIO_HOME notation to refer to the pinokio home directory > from this point. > > The /PINOKIO_HOME folder is whichever folder you set as your Pinokio home. /PINOKIO_HOME /api /stable-diffusion-webui.git /comfyui.git /brushnet.git ... /bin /miniconda /homebrew /py /drive /drives /peers ... /pip /cache /logs /API The api folder is where the downloaded app repositories are stored. An API folder can contain either of the following: 1. downloaded from git: repositories you downloaded from git. 2. locally created: you can manually create folders and work from there. /BIN The bin folder stores all the binaries commonly used by AI engines. * miniconda: for conda environment * brew: for dealing with homebrew on macs * python (and pip) * node.js (and npm) * etc. Things installed into the /bin folder can be shared across multiple apps in the /api folder. /DRIVE The drive folder stores virtual drives, used for deduplicating redundant files to save the disk space, sharing data across multiple apps, and overall separating data from application for many useful scenarios. > Learn more about virtual drives here /CACHE The cache folder stores cache files programmatically downloaded or generated by apps (through pip, torch, huggingface-cli, etc.) /LOGS The logs folder contains the logs, essential for debugging when something doesn't work. -------------------------------------------------------------------------------- DISTRIBUTED FILE URI Pinokio uses a unique distributed URI system that lets you: * Reference local files * With universally unique identifiers Let's first take a look at the most obvious option--Relative file paths. RELATIVE PATH A URI can be a relative path. The path is resolved relative to the currently running script. Let's say we have a folder at /PINOKIO_HOME/api/myapp, which looks like this: /myapp start.js subroutine.json And here's what start.js looks like: // start.js module.exports = { "run": [{ "method": "script.start", "params": { "uri": "subroutine.json" } }] } In this example, the start.js script calls another script named subroutine.json. This is a relative path. The Pinokio interpreter automatically resolves the path of subroutine.json as the same folder that contains start.js, which is /PINOKIO_HOME/api/myapp. So the script.start call will look for the file /PINOKIO_HOME/api/myapp/subroutine.json and run that script. GIT PATH The relative path is enough for most cases, but what if the script you want to run is NOT from the same repository? What if you want to download a remote repository and run some script inside it? This is where the Git URI scheme comes in. SPECIFICATION This goal is achieved by adopting the git url protocol. <REMOTE_GIT_URI>/<RELATIVE_PATH_WITHIN_THE_REPOSITORY> For example, to reference a file at install.js inside the https://github.com/cocktailpeanutlabs/comfyui.git git repository, the HTTP path would look like: https://github.com/cocktailpeanutlabs/comfyui.git/install.js Some rules: 1. The <REMOTE_GIT_URI> must end with .git (This is the standard way to reference git repositories) 2. The URL info is derived from the .git/config file within the downloaded repository. * This means a local repository without .git/config won't have a publicly addresable URI. You will need to publish it somewhere before you can use the universal git uri. CONTENT ADDRESSABLE In addition to being able to reference filenames, you can also reference files within a specific version, such as: 1. a file path in a specific commit hash 2. a file path in a specific branch // commit hash uri { "method": "script.start", "params": { "uri": "https://github.com/facefusion/facefusion-pinokio.git/install.js", "hash": "ced4e76aa2a7c60a08535af8c340efea153ec381" } } // git branch uri { "method": "script.start", "params": { "uri": "https://github.com/facefusion/facefusion-pinokio.git/install.js", "branch": "master" } } Above scripts will: 1. check whether the repository is locally installed 2. if not, git clone the repository https://github.com/facefusion/facefusion-pinokio.git 3. switch to the commit hash (ced4e76aa2a7c60a08535af8c340efea153ec381) or the branch (master) 4. resolve the locally downloaded file path install.js from the auto-downloaded git repository 5. and run it -------------------------------------------------------------------------------- VIRTUAL DRIVE INTRODUCTION Virtual drives let you store data outside of applications while making them behave as if they are inside, by utilizing symbolic links. This is useful for various cases such as: 1. Storing files that persist across multiple installs (Similar to Docker Volumes) 2. Sharing files across multiple apps (for example, ComfyUI, Fooocus, and Stable-Diffusion-WebUI sharing .safetensor AI model files among them so you don't have to download redundant files for each app) 3. Storing all the library files (such as pytorch) in a deduplicated manner, which saves a lot of disk space. USE CASES 1. Persistence: Because Drives exist independently, they stay around even if you delete the apps or update them. If you want to store large AI model files for some apps, and want the models to persist even when you delete or update the app, this is very useful. 2. Shareable: Virtual drives can also specify peers, which lets multiple apps share a single virtual drive. When you specify a peer array, the fs.link API will look for any pre-existing peer drive before creating a new dedicated drive. If a peer drive exists, the fs.link will simply link to the discovered drive path instead of creating a new one. 3. Save Disk Space: The primary purpose of the virtual drive is to avoid duplicate files as much as possible, which significantly saves disk space. In many cases, it can save tens of gigabytes per application. HOW IT WORKS 1. SYMBOLIC LINK Virtual drives are internally implemented with symbolic links on Linux/Mac, and junctions on Windows. When you create a set of virtual drives using the fs.link API, here's what happens: 1. Create a set of virtual drive folders under the /PINOKIO_HOME/drive folder. 2. Create symbolic links from the specified app folders to the newly created virtual drive folders (which exist OUTSIDE of the app repository) 3. Thanks to the symbolic links, when you reference one of the app folders that link to the virtual drives, it will behave as if the files are actually insdie the specified app folder path, but in reality the files are stored in the external "virtual drive" folder. 4. When you delete the app repository, the files you stored using virtual drivees will stay, since the virtual drives exist outside of the app repository. Only the links are deleted. 2. PROGRAMMABLE Normally creating symbolic links is a tedious process that people must do manually, since every person's system environment is different. However thanks to Pinokio's self-contained and distributed file system architecture, it is possible to write scripts that will deterministically automate symbolic link creation regardless of what the user's global system environment looks like. > Learn more about the fs.link API here. 3. IT "JUST" WORKS. The virtual drive abstraction seamlessly blends into whichever apps you already have, and the apps do NOT need to be written in special ways to facilitate virtual drives. Apps work EXACTLY the same as when they do not use virtual drives, without having to change any code. In fact you can turn the virtual drive feature on and off very easily, simply by including or excluding a single fs.link API call. Example: Let's say an app at path /PINOKIO_HOM/api/sd has a piece of code that says open("models/checkpoint.pt") * Without virtual drive: it will open the file at /PINOKIO_HOME/api/sd/models/checkpoint.pt within the current repository. * With virtual drive: Let's say we've created a link from /PINOKIO_HOME/api/sd/models to the models virtual drive path for this repository. * It will try to open the file at /PINOKIO_HOME/api/sd/models/checkpoint.pt * The /PINOKIO_HOME/api/sd/models folder itself is not an actual folder with contents, but instead a symbolic link to an externally created virtual drive. * But this distinction doesn't change anything, the attempt to open /PINOKIO_HOME/api/sd/models/checkpoint.pt will be automatically redirected to open models/checkpoint.pt on the virtual drive. Basically, everything works exactly the same as when you didn't create the virtual drive links, but we still end up with all the benefits that come with virtual drives. > Learn more about the fs.link API here. -------------------------------------------------------------------------------- PROCESSOR The processor is the CPU of Pinokio. It follows the same scheme all modern CPUs implement (fetch-decode-execute cycle) 1. Fetch (Loader): The loader engine instantiates the state machine (including the memory as well as self, which refers to its own code) 2. Decode (Template): The template engine takes a template expression and instantiates it using the current state provided by the loader 3. Execute (Runner): The runner takes the instantiated request and executes it. FETCH The "Fetch" step resolves locally installed scripts and loads them to memory. RESOLVE SCRIPT The first step is to resolve the script URI. This involves: 1. Checking if the specified HTTP git URI is already installed locally. 2. If it is installed, resolving the local path, so we can access the actual files. SYNTAX { "uri": <script_uri> } * <script_uri>: may be one of the two forms: * Absolute Path: Full absolute file path to the script file to run * Example: C:\\pinokio\\api\\my_app\\install.json * Pinokio File System Path: A Pinokio file system path. Instead of specifying the full file path, starts with ~/api. * Example: ~/api/my_app/install.json * Git Path: The distributed URI scheme as explained here. Used for referencing locally downloaded remote repositories. * Example: https://github.com/cocktailpeanut/blogger.git/index.json EXAMPLE { "uri": "https://github.com/cocktailpeanut/blogger.git/index.json" } Here's how the above request gets resolved to a local file: 1. First look for a locally downloaded repository under the /PINOKIO_HOME/api whose git remote matches https://github.com/cocktailpeanut/blogger.git 2. Let's say we have a locally downloaded repository at /PINOKIO_HOME/api/blogger.git. Then the script resolves the local file at /PINOKIO_HOME/api/blogger.git/index.json. 3. If not found, it will throw an error. > Note > > Pinokio does NOT make a network request to the https path. > > Instead, the https URI is simply used for resolving the local paths for > already downloaded repositories. USAGE In practice, most Pinokio users will NOT directly make the "uri" call request programmatically. Instead, the scripts can be triggered through the UI. LOAD SCRIPT The loading stage takes the resolved script file, and actually loads them to memory, so the Pinokio engine can run through the script to execute the commands. SCRIPT WRITTEN IN JSON SYNTAX A script is a JSON (or a JavaScript that returns JSON) file that follows the following syntax: { "daemon": <daemon>, "run": <rpc_requests>, <key>: <val>, <key>: <val>, ... } * <rpc_requests>: An array of RPC calls written in JSON * <deamon>: (optional) If set to true, the script process will NOT terminate after all RPC requests in the <rpc_requests> array have finished running. * <key>: (optional) In addition to the reserved attributes daemon and run, you can add your own custom key/value pairs. These custom key/value pairs can be accessed inside templates as a variable named self. * <val>: (optional) The value associated with the <key> EXAMPLE Here's an example script that clones a repository and installs some packages. { "run": [{ "method": "shell.run", "params": { "message": "git clone https://huggingface.co/spaces/cocktailpeanut/BRIA-RMBG-1.4 app" } }, { "method": "shell.run", "params": { "venv": "env", "path": "app", "message": "pip install -r requirements.txt" } }] } In this example, the run array makes 2 shell.run RPC calls: 1. git clone: Runs git clone https://huggingface.co/spaces/cocktailpeanut/BRIA-RMBG-1.4 app to clone the remote repository to app folder. 2. install dependencies: * Runs pip install -r requirements.txt * from the app folder (which was just downloaded from the previous step) * to install depencencies to a venv environment at env path SCRIPT WRITTEN IN JAVASCRIPT You can also write JavaScript files to implement a script. Simply write a node.js async function module that returns a JSON script: SYNTAX module.exports = async (kernel) => { return <JSON_RUN_SCRIPT> } EXAMPLE module.exports = async (kernel) => { return { "run": [ { "method": "shell.run", "params": { "message": "git clone https://huggingface.co/spaces/cocktailpeanut/BRIA-RMBG-1.4 app" } }, { "method": "shell.run", "params": { "venv": "env", "path": "app", "message": "pip install -r requirements.txt" } }, (kernel.gpu === 'nvidia' ? "pip install xformers" : null) ] } } This is useful when you want to dynamically generate the script based on the kernel state. 1. Note that it's a node.js module. 2. It's an async function which takes kernel variable, which lets you access all the system utils and info. 3. The async function is returning a JSON that follows the Pinokio script syntax. Note that the last step in the run array either returns pip install xformers or null depending on the kernel.gpu variable: (kernel.gpu === 'nvidia' ? "pip install xformers" : null) This will utilize the kernel.gpu variable to detect the gpu, and only run pip install xformers if the gpu is nvidia. Otherwise it returns null, which will be ignored (skipped) in the execution stage. -------------------------------------------------------------------------------- DECODE A typical Pinokio script contains template expressions. Without template expressions, you would only be able to run static commands. What we want is to be able to dynamically form requests on the fly, so every run can run a unique request workflow based on the current state of the Pinokio state machine. TEMPLATE INTERPRETER A Pinokio template expression is a string surrounded by {{ }}, and filled out on the fly when a command is run. Example: { "method": "local.set", "params": { "name": "{{input}}" } } So, what can go inside the {{ }} expression? 1. Any JavaScript evaluation expression: It is recommended to use only simple expressions, but any expression you can run in node.js can be included. For example: {{Buffer.from(input.images[0], "base64")}} 2. Memory variables: Pinokio exposes certain variables from the memory so you can dynamically run commands based on these memory variables. The next section lists all the memory variables available for use inside the script template expressions. MEMORY VARIABLES So what kind of variables are available inside the template expression? Pinokio exposes several system memory variables inside templates. Making use of these variables are essential for writing dynamic (and stateful) scripts. > You can learn more about memory variables in the memory section. DECODE CYCLE The template expressions are instantiated freshly at the beginning of every step in the run array, using the up-to-date memory variables available at the time of parsing. For example let's say we have a logging script: { "run": [{ "method": "log", "params": { "raw": "running instruction {{current}}" } }, { "method": "log", "params": { "raw": "running instruction {{current}}" } }, { "method": "log", "params": { "raw": "running instruction {{current}}" } }] } Since the current variable returns the index of the currently executing step in the run array, 1. First it will run the run[0] step, and print running instruction 0 2. Then it will run the next step run[1], and print running instruction 1 3. Finally it will run the final step run[2], and print running instruction 2 -------------------------------------------------------------------------------- EXECUTE Once the request has been instantiated by the decoder, the request is executed. SCRIPT LIFECYCLE The script lifecycle is very simple: { "run": [ <RPC>, <RPC>, <RPC>, <RPC>, <RPC>, ... ] } 1. The run array is an ordered list of RPC calls. 2. Pinokio walks through the run array to run the steps one by one. 3. Each <RPC> is freshly decoded with the template interpreter before executing. 4. After each step, the return value of each step is passed down to the next step in the form of input. 5. Each step can make use of the input variable passed in from the previous step in their template expression to dynamically construct the method to run. 6. When it reaches the end of the run array, the script halts, and all the processes associated with the script is garbage collected. RPC The RPC (Remote Procedure Call) API lets you actually write various logic to make Pinokio do things. SYNTAX { "id": <RPC_id>, "when": <RPC_condition>, "method": <RPC_method>, "params": <RPC_params>, } 1. <RPC_id>: optional. mark this RPC call with the id of <RPC_id>. a jump RPC call can jump to any step within the run array. 2. <RPC_condition>: optional. if evaluated to true, run this step. Otherwise go to the next step. 3. <RPC_method>: The RPC method to call 4. <RPC_params>: A JSON parameter to pass to the <RPC_method> as payload. The <RPC_params> object will be available as the value {{input}} template expression on the next step. > To learn about all the available RPC APIs, see the script section. EXAMPLES ID { "run": [{ "method": "jump", "params": { "id": "{{gpu === 'nvidia' ? 'cuda' : 'cpu'}}" } }, { "id": "cpu", "method": "shell.run", "params": { "message": "pip install torch torchvision torchaudio" } }, { "id": "cuda", "method": "shell.run", "params": { "message": "pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121" } }] } When the script starts running it encounters a jump instruction that dynamically jumps to either cuda (run[2]) or cpu (run[1]) depending on the GPU. WHEN { "run": [{ "when": "{{gpu !== 'nvidia'}}", "method": "shell.run", "params": { "message": "pip install torch torchvision torchaudio" } }, { "when": "{{gpu === 'nvidia'}}", "method": "shell.run", "params": { "message": "pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121" } }] } * run[0] is run if the gpu is NOT nvidia. (In nvidia GPU machines, this step is ignored and goes to the next step immediately) * run[1] is run if the gpu is nvidia. DAEMON MODE By default when Pinokio finishes running all the steps inside the run array, every process associated with the script halts, and whatever was in the memory gets cleared out immediately (See script lifecycle). However, sometimes you may want to keep all the processes running even after Pinokio interpreter has finished executing every step in the run array. For example imagine launching a web server using Pinokio script: { "run": [{ "method": "shell.run", "params": { "message": "python server.py" } }] } The python server.py may launch a server, but when the script finishes running, everything associated with the script will be shut down automatically, including the server. To keep the server process running, we simply need to specify an additional attribute: daemon: { "daemon": true, "run": [{ "method": "shell.run", "params": { "message": "python server.py" } }] } By setting daemon to true, Pinokio won't automatically shut down all the associated processes, which means the server will stay running. The only way to stop the server in this case, is to explicitly stop the script using the script.stop API, or through the Pinokio stop button interface. -------------------------------------------------------------------------------- MEMORY As a pinokio script gets executed step by step, you can update the memory so it can be used in later steps. INPUT An input is a variable that gets passed from one RPC call to the next. Not all RPC APIs have a return value, but the ones that do, will pass down the input value to the next step. There are two types of input: 1. Return values between steps: The input value passed into run[1], ... run[run.length-1] steps. Basically, these are values that one step passes on to the next. run[0] can't have this since there is no previous step to run[0]. 2. Initial script launch parameter: The input value passed into run[0]. * By default, this value will be null for run[0] since there is no "previous step". * But it is possible to pass in custom input values to the first step run[0] * script.start params: You can launch scripts programmatically using the script.start API. And when you call the method, you can pass an additional params parameter. This will be passed into the first step run[0] as input. * pinokio.js menu item params: You can construct the menu items UI in pinokio.js with an array attribute named menu, where each item may contain an href attribute, which will create a menu item that launches a script at the specified URI. You can also pass an additional params object along with the href, and this params object will be passed to the first step run[0] of the script as input when it's launched through the menu item. Let's take a look at an example: { "run": [{ "id": "run", "method": "gradio.predict", "params": { "uri": "http://127.0.0.1:7860", "path": "/answer_question_1", "params": [ { "path": "https://media.timeout.com/images/105795964/750/422/image.jpg" }, "Explain what is going on here" ] } }, { "method": "log", "params": { "json2": "{{input.data[0]}}" } }] } In the example above, we are: 1. Making a request to http://127.0.0.1:7860 using the gradio.predict API. 2. The return value of the gradio.predict gets passed down to the next step log. 3. The log takes the input and instantiates the template {{input.data[0]}} and logs the result to the terminal. -------------------------------------------------------------------------------- ARGS args is equivalent to the input of the first step (run[0]). Sometimes you may want to pass in some parameters when launching a script, and make use of the parameter object throughout the entire script. You can't do this with input because the input variable gets set freshly for every step. Let's take a look at an example (a file named launch.json): { "run": [{ "method": "log", "params": { "json2": "{{input}}" } }, { "method": "log", "params": { "json2": "{{args}}" } }] } We may launch this script with the following script.start API call: { "run": [{ "method": "script.start", "params": { "uri": "launch.json", "params": { "a": 1, "b": 2 } } }] } This will print: {"a": 1, "b": 2} {"a": 1, "b": 2} 1. The first line is from the first step, using the input value available at run[0]. 2. The second line is from the second step, usin the args value. Note that the input value and args value will always be the same for run[0]. -------------------------------------------------------------------------------- LOCAL The local variable is every variable prefixed with local.. For example: * local.items * local.prompt Local variables are reset whenever the script finishes running, which means if you run a script once, and run it again, they will always start from scratch. You can set local variable values with local.set API. -------------------------------------------------------------------------------- SELF The self refers to the script itself. A run script looks like this: { "daemon": <daemon>, "run": <rpc_requests>, <key>: <val>, <key>: <val>, ... } Where: * <rpc_requests>: An array of RPC calls written in JSON * <deamon>: (optional) If set to true, the script process will NOT terminate after all RPC requests in the <rpc_requests> array have finished running. * <key>: (optional) In addition to the reserved attributes daemon and run, you can add your own custom key/value pairs * <val>: (optional) The value associated with the <key> Note that you can have any kind of custom <key>/<value> pairs in the script. And when you do, you can access them using the self notation. Let's imagine we have the following script: { "cmds": { "win32": "dir", "darwin": "ls", "linux": "ls" }, "run": [{ "method": "shell.run", "params": { "message": "{{self.cmds[platform]}}" } }] } Here, the self.cmds[platform] will resolve to: * dir on windows * ls on mac (darwin) * ls on linux -------------------------------------------------------------------------------- URI The current script uri -------------------------------------------------------------------------------- CWD The path of the currently running script -------------------------------------------------------------------------------- PLATFORM The current operating system. May be one of the following: * darwin * linux * win32 -------------------------------------------------------------------------------- ARCH The current system architecture. May be one of the following: * x32 * x64 * arm * arm64 * s390 * s390x * mipsel * ia32 * mips * ppc * ppc64 -------------------------------------------------------------------------------- GPUS An array of available GPUs on the machine Example: ["apple"] -------------------------------------------------------------------------------- GPU The first available GPU Example: apple -------------------------------------------------------------------------------- CURRENT The current variable points to the index of the currently executing instruction within the run array. For example: { "run": [{ "method": "log", "params": { "raw": "running instruction {{current}}" } }, { "method": "log", "params": { "raw": "running instruction {{current}}" } }, { "method": "log", "params": { "raw": "running instruction {{current}}" } }] } will print: running instruction 0 running instruction 1 running instruction 2 -------------------------------------------------------------------------------- NEXT The next variable points to the index of the next instruction to be executed. (null if the current instruction is the final instruction in the run array): { "run": [{ "method": "log", "params": { "raw": "running instruction {{current}}. next instruction is {{next}}" } }, { "method": "log", "params": { "raw": "running instruction {{current}}. next instruction is {{next}}" } }, { "method": "log", "params": { "raw": "running instruction {{current}}. next instruction is {{next}}" } }] } Above command will print the following: running instruction 0. next instruction is 1 running instruction 1. next instruction is 2 running instruction 2. next instruction is null -------------------------------------------------------------------------------- KERNEL The kernel JavaScript API * kernel.exists(): check if a path exists * kernel.script.running(): check if a script at specified path is currently running * kernel.script.local(): get the local variables of a script (if running) KERNEL.EXISTS Check whether a file or a folder at the specified path exists: SYNTAX kernel.exists(...pathChunks) * pathChunks: any number of path chunks. * the chunks will be combined to resolve the full path (Internally using the node.js path.resolve(...pathChunks)) * The chunks must resolve to an absolute path when combined. EXAMPLES INSIDE A SCRIPT { "run": [{ "when": "{{!kernel.exists(cwd, 'env')}}", "method": "script.start", "params": { "uri": "install.js" } }] } When the template interpreter encounters kernel.exists, it merges all the supplied chunks to construct the full path. 1. First resolve the path using the cwd variable and the string "env", which will resolve to the env folder in the current directory. 2. Then it checks if that path exists. 3. if exists, returns true, otherwise returns false INSIDE PINOKIO.JS It is also possible to use the kernel.exists() method inside pinokio.js to dynamically construct the UI. > The UI sidebar gets updated for every step in the run array execution. module.exports = { version: "1.5", title: "My App", description: "Add description here", icon: "icon.png", menu: async (kernel) => { // we pass 3 chunks: __dirname, "app", and "env" ==> the chunks will be joined to construct the absolute path, and will be checked to see if the path exists. let installed = await kernel.exists(__dirname, "app", "env") if (installed) { // Already installed, display "start" button return [{ icon: "fa-solid fa-plug", text: "Start", href: "start.js", }] } else { // Not installed, display "install" button return [{ icon: "fa-solid fa-plug", text: "Install", href: "install.js", }] } } } KERNEL.SCRIPT.LOCAL Get the local variables of any specified script path SYNTAX kernel.script.local(...pathChunks) EXAMPLE USING RELATIVE PATH { "run": [{ "method": "script.start", "params": { "uri": "start.js" } }, { "method": "log", "params": { "text": "{{kernel.script.local(cwd, 'start.js').url}}" } }] } 1. First run install.js using the script.start API 2. Then in the next step (log API call), we check {{kernel.script.local(cwd, 'start.js')}} 3. If the start.js is running, it will return a JSON that contains all its variables as key/value pairs. Otherwise it will return an empty JSON {} 4. In this case, we assume there's a local variable named url, and can get its value with kernel.script.local(cwd, 'start.js').url USING GIT PATH { "run": [{ "method": "script.start", "params": { "uri": "https://github.com/cocktailpeanutlabs/moondream2.git/start.js" } }, { "method": "log", "params": { "json2": "{{kernel.script.local('https://github.com/cocktailpeanutlabs/moondream2.git/start.js')}}" } }] } 1. If https://github.com/cocktailpeanutlabs/moondream2.git/start.js is running: return all local variables for the script 2. If NOT running: return an empty object {} INSIDE PINOKIO.JS module.exports = { version: "1.5", title: "My App", description: "Add description here", icon: "icon.png", menu: async (kernel) => { // Step 1. // Get the `local.url` variable inside the script "start.js" let url = kernel.local(__dirname, "app", "start.js").url // Step 2. // If there's a local variable "url", display the "web UI" tab, // which links to the url => when clicked, this will open the url if (url) { return [{ icon: "fa-solid fa-plug", text: "Web UI", href: url, }] } // Step 3. // if there is no local variable "url", // it means the url inside the "start.js" script is not yet ready. // so do NOT display the tab to open the url. else { return [{ icon: "fa-solid fa-plug", text: "Start", href: "start.js", }] } } } KERNEL.SCRIPT.RUNNING SYNTAX kernel.script.running(...pathChunks) EXAMPLES { "run": [{ "method": "script.start", "params": { "uri": "install.js" } }, { "method": "log", "params": { "text": "{{kernel.script.running(cwd, 'install.js')}}" } }] } 1. First it will start the install.js script using the script.start API. 2. Then in the second step, it checks if the install.js script is running. In this case we have to pass both the cwd (current directory) and the install.js so they can be merged to result in an absolute path. INSIDE PINOKIO.JS module.exports = { version: "1.5", title: "My App", description: "Add description here", icon: "icon.png", menu: async (kernel) => { // Step 1. // Get the `local.url` variable inside the script "start.js" let url = kernel.local(__dirname, "app", "start.js").url // Step 2. // If there's a local variable "url", display the "web UI" tab, // which links to the url => when clicked, this will open the url if (url) { return [{ icon: "fa-solid fa-plug", text: "Web UI", href: url, }] } // Step 3. // if there is no local variable "url", // it means the url inside the "start.js" script is not yet ready. // so do NOT display the tab to open the url. else { return [{ icon: "fa-solid fa-plug", text: "Start", href: "start.js", }] } } } -------------------------------------------------------------------------------- _ The _ is the utility variable that lets you easily manipulate data inside template expressions, powered by lodash. Example: { "run": [{ "method": "log", "params": { "raw": "{{_.difference([2, 1], [2, 3])}}" } }] } will print: 1 Another example, where we use the _.sample() method to randomly pick an item from the self.friends variable: { "friends": [ "HAL 9000", "Deep Blue", "Watson", "AlphaGo", "Siri", "Cortana", "Alexa", "Google Assistant", "OpenAI", "Tesla Autopilot", "IBM Watson", "Boston Dynamics", "IBM Deep Blue", "Microsoft Tay", "IBM DeepMind", "Amazon Rekognition", "OpenAI GPT-3" ], "run": [{ "method": "log", "params": { "raw": "random friend: {{_.sample(self.friends)}}" } }, { "method": "log", "params": { "raw": "random friend: {{_.sample(self.friends)}}" } }, { "method": "log", "params": { "raw": "random friend: {{_.sample(self.friends)}}" } }] } Above script prints randomly picked items, for example: random friend: IBM DeepMind random friend: HAL 9000 random friend: Amazon Rekognition -------------------------------------------------------------------------------- OS Pinokio exposes the node.js os module through the os variable. For example, ee can use the os variable to dynamically figure out which platform the script is running on and perhaps shape the commands based on the platform. Example: { "run": [{ "method": "shell.run", "params": { "message": "{{os.platform() === 'win32' ? 'dir' : 'ls'}}" } }] } Above script: 1. runs dir on windows 2. runs ls on non-windows operating systems (mac, linux) -------------------------------------------------------------------------------- PATH The Node.js path module EXAMPLES { "run": [{ "method": "shell.run", "params": { "message": "cd {{path.resolve(cwd, 'env')}}" } }] } -------------------------------------------------------------------------------- SCRIPT Pinokio script is a declarative markup that can shell commands, work with files, make network requests, and pretty much everything you need to automatically install and run ANYTHING on a computer. It is written in JSON, and can also be written in JavaScript (which returns the resulting JSON) in case you need to make them dynamically change. -------------------------------------------------------------------------------- FS * fs.write * fs.read * fs.rm * fs.copy * fs.download * fs.link FS.WRITE SYNTAX The fs api provides a simple way to write json, text, or buffer to the file system. { "method": "fs.write", "params": { "path": <path>, <type>: <data> } } * <path>: the file path to write to (see distributed file URI) * <type>: "json", "json2", "text", or "buffer". The <data> is treated as the type specified by the <type> value when writing to the file. * <data>: the data to write to the file. RETURN VALUE none EXAMPLES WRITING JSON Here's a simple example to write JSON to items.json { "method": "fs.write", "params": { "path": "items.json", "json": { "names": [ "alice", "bob", "carol" ] } } } This will result in a file named items.json looking like this: {"names":["alice","bob","carol"]} WRITING MULTI-LINE JSON The json type writes the entire JSON in a single line. If we want to write a multiline JSON, use json2 type: { "method": "fs.write", "params": { "path": "items.json", "json2": { "names": [ "alice", "bob", "carol" ] } } } This will result in items.json looking like this: { "names": [ "alice", "bob", "carol" ] } WRITING TEXT { "method": "fs.write", "params": { "path": "items.csv", "text": "alice,bob,carol" } } This will result in items.csv that looks like this: alice,bob,carol WRITING BUFFER Converting a base64 string to Buffer and writing to img.png: { "method": "fs.write", "params": { "path": "img.png", "buffer": "{{Buffer.from(input.images[0], 'base64')}}" } } -------------------------------------------------------------------------------- FS.READ SYNTAX The fs api provides a simple way to read from files. { "method": "fs.read", "params": { "path": <path>, "encoding": <encoding> } } * <path>: the file path to read from (see distributed file URI) * <encoding>: the data encoding to read as. can be one of the following ("buffer" if not specified) * "ascii" * "base64" * "base64url" * "hex" * "utf8" * "utf-8" * "binary" > Internally, the API calls the fs.readFile node.js method: > > fs.readFile(params.path, params.encoding) RETURN VALUE * input: the file content EXAMPLES example (read img.png and print its base64 encoded string): { "run": [{ "method": "fs.read", "params": { "path": "img.png", "encoding": "base64" } }, { "method": "log", "params": { "raw": "data:image/png;base64,{{input}}" } }] } -------------------------------------------------------------------------------- FS.RM SYNTAX The fs.rm API deletes a file or a folder at the specified path { "method": "fs.rm", "params": { "path": <path> } } * <path>: the file path to write to (see distributed file URI) RETURN VALUE none EXAMPLES example: Delete the folder app in the current directory. { "run": [{ "method": "fs.rm", "params": { "path": "app" } }] } -------------------------------------------------------------------------------- FS.COPY SYNTAX The fs.copy API copies a file or a folder at src to dest { "method": "fs.copy", "params": { "src": <source_path>, "dest": <destination_path> } } * <source_path>: the source file to copy from (see distributed file URI) * <destination_path>: the destination file to copy to (see distributed file URI) RETURN VALUE none EXAMPLES example: Copying hello.txt to world.txt { "run": [{ "method": "fs.copy", "params": { "src": "hello.txt", "dest": "world.txt" } }] } example: Copying the folder app to a new folder api recursively { "run": [{ "method": "fs.copy", "params": { "src": "app", "dest": "api" } }] } -------------------------------------------------------------------------------- FS.DOWNLOAD The fs.download downloads a file to a specified path or directory. If the path does not exist, it is created first if possible. SYNTAX { "method": "fs.download", "params": { "uri": <uri>, <type>: <path> } } * <uri>: download file url(s). can be: * a url * an array of urls * <type>: can be either "path" or "dir" * <path>: the destination path. * if the <type> is "path": the file path to download as (see distributed file URI) * if the <type> is "dir": the directory path to download the file into. The remote filename will be preserved. (see distributed file URI) RETURN VALUE none EXAMPLES DOWNLOAD FILE AS PATH example: Download https://via.placeholder.com/600/92c952 to a file named placeholder.png { "run": [{ "method": "fs.download", "params": { "url": "https://via.placeholder.com/600/92c952", "path": "placeholder.png" } }] } DOWNLOAD FILE INTO DIR example: Download the file at https://huggingface.co/stabilityai/sdxl-turbo/resolve/main/sd_xl_turbo_1.0.safetensors?download=true under the models folder { "run": [{ "method": "fs.download", "params": { "url": "https://huggingface.co/stabilityai/sdxl-turbo/resolve/main/sd_xl_turbo_1.0.safetensors?download=true", "dir": "models" } }] } DOWNLOAD FILES INTO DIR example: Download multiple files into a dir { "run": [{ "method": "fs.download", "params": { "uri": [ "https://huggingface.co/justimyhxu/GRM/blob/main/grm_u.pth", "https://huggingface.co/cocktailpeanut/sv3/blob/main/sv3d_p.safetensors" ], "dir": "app/checkpoints" } }] } -------------------------------------------------------------------------------- FS.LINK The fs.link API provides an easy way to store data outside of the repository through a mechanism called Pinokio Virtual Drive. Virtual drives let you store data outside of applications and reference them from the apps without changing anything. Useful for many things, such as: 1. Storing files that persist across multiple installs (Similar to Docker Volumes) 2. Sharing files across multiple apps (such as AI model .safetensor files) 3. Storing all the library files (such as pytorch) in a deduplicated manner > Learn more about Virtual Drives here Here are the operations supported by the fs.link API: 1. folder linking: link any folder paths within the current repository to corresponding virtual drive paths 2. peer linking: optionally, you can create a shared drive among multiple applications by declaring them as peer drives. It works the same sa folder linking, except it first checks if there's already an existing peer drive before creating one. If there is one already, the discovered peer drive is used instead of creating one. 3. venv linking: a special link method, which automatically links every installed python package inside a venv environment to each corresponding drive path. * useful for saving disk space by automatically deduplicating redundant packages (such as pytorch, etc.) across multiple apps. 1. FOLDER LINKING You can link folders to virtual drive counterparts with: { "method": "fs.link", "params": { "drive": { <drive_folder_path>: <actual_folder_path>, <drive_folder_path>: <actual_folder_path>, ... } } } Every fs.link call creates a virtual drive designated for the current repository, and then links the specified virtual paths to the actual path counterparts. * <drive_folder_path>: a relative path within the virtual drive path to create * <actual_folder_path>: the actual relative folder path within this repository. * Must be a folder path (no file paths) * May be a string or an array * When an array is used, all paths in the <actual_folder_path> array will turn into symbolic links that point to the corresponding <drive_folder_path> virtual drive path. Here's an example: // /PINOKIO_HOME/api/APP1/install.json { "method": "fs.link", "params": { "drive": { "checkpoints": "app/models/checkpoints", "clip": "app/models/clip", "vae": "app/models/vae" } } } 1. The fs.link call first creates a virtual drive for the current repository (/PINOKIO_HOME/api/APP1) 2. It then merges all the files inside app/models/checkpoints, app/models/clip, app/models/vae into the corresponding virtual drive folders (checkpoints, clip, vae) 3. Finally, it creates symbolic links to link the actual paths to the virtual drive paths: * from app/models/checkpoints, app/models/clip, and app/models/vae to * to the created virtual drive paths for this repository at checkpoints, clip, and vae each. Let's walk through each step one by one. > NOTE > > The following sections simply explain how the fs.link API works internally, > and not something you need to do yourself. All these steps are taken care of > by the fs.link API automatically. > > Just read to understand what exactly happens when you run the fs.link API. STEP 1. DRIVE CREATION The fs.link first creates a virtual drive for the current repository. A unique folder for the current repository is created under /PINOKIO_HOME/drive/drives/peers. Here's an example: /PINOKIO_HOME /drive /drives /peers /d1711553147861 <= virtual drive STEP 2. CREATE VIRTUAL DRIVE FOLDERS The next step is to create the virtual drive folders from the keys under the params.drive, in this case: * checkpoints * clip * vae We end up with a virtua drive at the following paths: /PINOKIO_HOME /drive /drives /peers /d1711553147861 <= virtual drive /checkpoints /clip /vae STEP 3. MERGE FILES INTO DRIVES Next, if there were any existing files inside the application folders, we need to merge them into the virtual drive folders, since we are about to turn these folders into symbolic links. > The merging is necessary, because otherwise all those files will be lost > during the process, since the original folders will turn into symbolic links > in the next step. Pinokio uses a merging algorithm to merge the files at path: * /PINOKIO_HOME/api/APP1/app/models/checkpoints * /PINOKIO_HOME/api/APP1/app/models/clip * /PINOKIO_HOME/api/APP1/app/models/vae into the virtual drive folders: * /PINOKIO_HOME/drive/drives/peers//d1711553147861/checkpoints * /PINOKIO_HOME/drive/drives/peers//d1711553147861/clip * /PINOKIO_HOME/drive/drives/peers//d1711553147861/vae At the end of this step, the original application folders will be empty, and all the files will now be in the virtual drive folders. STEP 4. CREATE LINKS Finally we finish the process by linking the application folders to the corresponding drive folders: /PINOKIO_HOME/api/APP1/app/models/checkpoints => /PINOKIO_HOME/drive/drives/peers//d1711553147861/checkpoints /PINOKIO_HOME/api/APP1/app/models/clip => /PINOKIO_HOME/drive/drives/peers//d1711553147861/clip /PINOKIO_HOME/api/APP1/app/models/vae => /PINOKIO_HOME/drive/drives/peers//d1711553147861/vae The app will work exactly the same as before, because when the app tries to access the application folders, they will be redirected by the symbolic links to the virtual drive folders. Now if we download a file named sd_xl_turbo_1.0_fp16.safetensors into /PINOKIO_HOME/api/APP1/app/models/checkpoints, the actual file will be stored in the linked virtual drive folder like this: /PINOKIO_HOME /api /APP1 /app /models /checkpoints => symbolic liink to /drive/drives/peers/d1711553147861/checkpoints /APP2 /APP3 ... /drive /drives /peers /d1711553147861 /checkpoints sd_xl_turbo_1.0_fp16.safetensors ... /logs /bin /cache However you will still be able to access the sd_xl_turbo_1.0_fp16.safetensors file as if it's inside /PINOKIO_HOME/api/APP1/app/models/checkpoints thanks to the symbolic link system. 2. PEER LINKING Now, what if we want to share a single virtual drive among multiple apps? For example, let's say we have 3 different Stable Diffusion apps named Stable-Diffusion-WebUI, ComfyUI, and Fooocus, and they all use the same AI model files. How can we create a virtual drive so it can be shared by all 3 apps? We can achieve this by declaring peers when creating a virtual drive with fs.link: { "method": "fs.link", "params": { "drive": { <drive_folder_path>: <actual_folder_path>, <drive_folder_path>: <actual_folder_path>, ... }, "peers": <peers> } } * <peers>: an array of git repository URIs The only difference from plain folder linking is that there's a peer array. When a peers array is declared, the fs.link API runs the following logic first BEFORE attempting to create its own virtual drive folders: 1. Loop through the peers array, and for each peer check if there is any virtual drive already created. 2. If a virtual drive is found for a peer, use that drive instead of creating a new drive. 3. If no virtual drive is found for any of the specified git repositories in the peers array, create a virtual drive using the folder linking method. Let's take a look at a specific example, where we will write scripts for fooocus, stable-diffusion-webui, and comfyui so they all declare one another as peers: Install script in https://github.com/cocktailpeanutlabs/fooocus.git { "run": [{ "method": "shell.run", "params": { "message": "git clone https://github.com/lllyasviel/Fooocus app" } }, { "method": "fs.link", "params": { "drive": { "checkpoints": "app/models/checkpoints", "clip": "app/models/clip", "clip_vision": "app/models/clip_vision", "configs": "app/models/configs", "controlnet": "app/models/controlnet", "diffusers": "app/models/diffusers", "embeddings": "app/models/embeddings", "gligen": "app/models/gligen", "hypernetworks": "app/models/hypernetworks", "inpaint": "app/models/inpaint", "loras": "app/models/loras", "prompt_expansion": "app/models/prompt_expansion", "style_models": "app/models/style_models", "unet": "app/models/unet", "upscale_models": "app/models/upscale_models", "vae": "app/models/vae", "vae_approx": "app/models/vae_approx" }, "peers": [ "https://github.com/cocktailpeanutlabs/automatic1111.git", "https://github.com/cocktailpeanutlabs/comfyui.git" ] } }] } Install script in https://github.com/cocktailpeanutlabs/automatic1111.git { "run": [{ "method": "shell.run", "params": { "message": "git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui app" } }, { "method": "fs.link", "params": { "drive": { "checkpoints": "app/models/Stable-diffusion", "vae": "app/models/VAE", "loras": [ "app/models/Lora", "app/models/LyCORIS" ], "upscale_models": [ "app/models/ESRGAN", "app/models/RealESRGAN", "app/models/SwinIR" ], "embeddings": "app/embeddings", "hypernetworks": "app/models/hypernetworks", "controlnet": "app/models/ControlNet" }, "peers": [ "https://github.com/cocktailpeanutlabs/comfyui.git", "https://github.com/cocktailpeanutlabs/fooocus.git" ] } }] } Install script in https://github.com/cocktailpeanutlabs/comfyui.git { "run": [{ "method": "shell.run", "params": { "message": "git clone https://github.com/comfyanonymous/ComfyUI.git app" } }, { "method": "fs.link", "params": { "drive": { "checkpoints": "app/models/checkpoints", "clip": "app/models/clip", "clip_vision": "app/models/clip_vision", "configs": "app/models/configs", "controlnet": "app/models/controlnet", "embeddings": "app/models/embeddings", "loras": "app/models/loras", "upscale_models": "app/models/upscale_models", "vae": "app/models/vae" }, "peers": [ "https://github.com/cocktailpeanutlabs/automatic1111.git", "https://github.com/cocktailpeanutlabs/fooocus.git" ] } }] } Each of the three scripts declares the rest 2 as the peers: So how does this work in practice? 1. When any of these three scripts are run for the first time, there will be no existing "peer drive", therefore a new virtual drive will be created for the respository. 2. Then later if you run one of the other scripts, it will first run the peers check to discover any existing peer. 3. Since a peer virtual drive was already created in step 1, the virtual drive created in step 1 will used when running the rest of the fs.link folder linking, instead of creating a new drive. 3. VENV LINKING One of the most frequently encountered use cases is dealing with redundant packages installed into venv environments across multiple apps. Let's imagine the following scenario where we have 3 different apps APP1, APP2, and APP3, each with its own independent venv environment: /PINOKIO_HOME /api /APP1 requirements.txt app.py /venv /lib /python3.10 /site-packages /torch /accelerate /xformers /APP2 requirements.txt app.py /venv /lib /python3.10 /site-packages /torch /accelerate /xformers /APP3 requirements.txt app.py /venv /lib /python3.10 /site-packages /torch /accelerate /xformers 1. ALL of these apps have the same redundant packages installed (torch, accelerate, xformers, etc.) 2. However this is how venv is supposed to work. The whole point of venv is to isolate environments, so each environment is not supposed to know about other environments on the same machine. 3. It would still be nice to take advantage of the isolated environments we get from venv, while removing redundancy, so we can save some disk space. And this is where the venv linking comes in. For this special use case, there's an automated way to create virtual drives, with just one line. { "method": "fs.link", "params": { "venv": <venv_path> } } * <venv_path>: The venv folder path to create virtual drive links for. This will: 1. look into all the pip packages installed into the venv at <venv_path> 2. automatically create virtual drives for each unique version of the installed packages 3. automatically merge the package files inside the <venv_path> into the virtual drive paths 4. automatically create symbolic links from all the folders inside the original <venv_path> site-packages folder pointing to the automatically created virtual drive folders. Unlike the folder linking method which creates a unique virtual drive for every repository, there is a single centralized pip drive organized as follows: /PINOKIO_HOME /drive /drives /pip /accelerate /0.20.3 /0.21.0 /0.28.0 /torch /2.1.0 /2.2.2 ... Basically, every unique version of a unique library installed has its unique folder path. When you call fs.link on a venv environment path, here's what happens: 1. Pinokio scans through the specified venv folder to find all installed packages 2. Then for every package in the venv, it looks up /PINOKIO_HOME/drive/drives/pip/<package_name>/<version> to check if it already exists in the virtual drive 3. If it already exists, just use that one 4. If it does NOT exist, create the library's version folder (for example /PINOKIO_HOME/drive/drives/pip/torch/2.3.0), move all files into the drive, and create a symbolic link This way, each library path in the venv will be nothing more than a symbolic link to the created drive path. Here's what the end result may look like for the original 3 apps example from above: /PINOKIO_HOME /drive /drives /pip /accelerate /0.20.3 /0.21.0 /0.28.0 /torch /2.1.0 /2.2.2 /xformers /0.0.25 /0.0.24 ... /api /APP1 requirements.txt app.py /venv /lib /python3.10 /site-packages /torch => link to /PINOKIO_HOME/drive/drives/pip/torch/2.2.2 /accelerate => link to /PINOKIO_HOME/drive/drives/pip/accelerate/0.28.0 /xformers => link to /PINOKIO_HOME/drive/drives/pip/xformers/0.0.25 /APP2 requirements.txt app.py /venv /lib /python3.10 /site-packages /torch => link to /PINOKIO_HOME/drive/drives/pip/torch/2.2.2 /accelerate => link to /PINOKIO_HOME/drive/drives/pip/accelerate/0.28.0 /xformers => link to /PINOKIO_HOME/drive/drives/pip/xformers/0.0.25 /APP3 requirements.txt app.py /venv /lib /python3.10 /site-packages /torch => link to /PINOKIO_HOME/drive/drives/pip/torch/2.2.2 /accelerate => link to /PINOKIO_HOME/drive/drives/pip/accelerate/0.28.0 /xformers => link to /PINOKIO_HOME/drive/drives/pip/xformers/0.0.25 1. Note that the /torch, /accelerate, and xformers folders are all pointing to the shared virtual drive folders. This is already saving tons of disk space by removing the redundancy. 2. At the same time, each app works EXACTLY the same as before because these are symbolic links, and they all behave as if these pip packages are actually stored in each app's venv site-packages folders (but in reality they are just symbolic links pointing to the shared pip virtual drive) -------------------------------------------------------------------------------- JUMP By default, Pinokio steps through all the requests in the run array and halts at the end. However you can implement looping, which will let you build all kinds of interesting perpetual workflows. SYNTAX { "method": "jump", "params": { <key>: <value>, "params": <params> } } * <key>: can be either "index" or "id" * index: jump to the index position in the run array * id: jump to the position tagged as id * <value> * if <key> is "index", jump to the specified <value> position within the run array (For example if "index": 3, jump to run[3]. * if <key> is "id", jump to a step tagged with an id of <value>. * <params>: (optional) Sometimes you may want to pass arguments to the next step. The <params> value will be available as "input" inside the next step when using a template expression. RETURN VALUE none EXAMPLES JUMP TO INDEX { "run": [{ "method": "jump", "params": { "index": 2 } }, { "method": "log", "params": { "raw": "hello" } }, { "method": "log", "params": { "raw": "world" } }] } This will print: world JUMP TO ID { "run": [{ "method": "jump", "params": { "id": "w" } }, { "method": "log", "params": { "raw": "hello" } }, { "id": "w", "method": "log", "params": { "raw": "world" } }] } This will print: world JUMP WITH PARAMS { "run": [{ "method": "jump", "params": { "id": "w", "params": { "answer": 42 } } }, { "method": "log", "params": { "raw": "hello" } }, { "id": "w", "method": "log", "params": { "raw": "the meaning of life, the universe, and everything: {{input.answer}}" } }] } Above script will: 1. first encounter the jump step, which jumps to the id of "w", which happens to be the last step in the run array (run[2]). 2. in addition to jumping, it will pass the params of { "answer": 42 }. 3. In the last step, the params passed in from the previous step will be available as the variable input, and the template expression {{input.answer}} will evaluate to 42 So it will print: the meaning of life, the universe, and everything: 42 LOOP You can use the jump api to loop. { "run": [{ "id": "start", "method": "local.set", "params": { "counter": "{{local.counter ? local.counter+1 : 1}}" } }, { "method": "log", "params": { "raw": "{{'' + local.counter + ' is ' + (local.counter % 2 === 0 ? 'even' : 'odd')}}" } }, { "method": "jump", "params": { "id": "{{local.counter < 20 ? 'start' : 'end'}}" } }, { "id": "end", "method": "log", "params": { "raw": "finished!" } }] } 1. sets local.counter to 1 2. prints whether it's even or odd 3. jumps back to start if the local.counter is less than 20 4. otherwise jump to end. -------------------------------------------------------------------------------- GRADIO GRADIO.PREDICT SYNTAX { "method": "gradio.predict", "params": { "uri": <uri>, "path": <path>, "params": <params> } } * <uri>: gradio endpoint uri * <path>: gradio endpoint route * <params>: the params array to pass to the gradio function RETURN VALUE * input: The return value from the gradio function EXAMPLES Let's make a request to a gradio endpoint: { "run": [{ "method": "gradio.predict", "params": { "uri": "http://127.0.0.1:7860", "path": "/answer_question_1", "params": [ { "path": "https://media.timeout.com/images/105795964/750/422/image.jpg" }, "Explain what is going on here" ] } }, { "method": "log", "params": { "json2": "{{input.data[0]}}" } }] } If the endpoint returns { "data": ["A man is drinking coffee"] }, the script will print: A man is drinking coffee. -------------------------------------------------------------------------------- LOCAL * local.set LOCAL.SET Sets a value at an object path (can be a key path, and the key path can also include an array index) SYNTAX { "method": "local.set", "params": { <key>: <val>, ... } } Sets the local variable attributes for the <key> as <val>. 1. The local variable will be available from the memory as long as the script is running. 2. When the script finishes running, the local variables will be gone. RETURN VALUE none EXAMPLES SIMPLE KEY/VAL The following comand sets the local variables local.name.first and local.animal: { "run": [{ "method": "local.set", "params": { "name": "Alice", "animal": "dog" } }, { "method": "log", "params": { "text": "{{local.name + ' ' + local.animal}}" } }] } This will set the local variables name and animal, and will print: Alice dog -------------------------------------------------------------------------------- LOG SYNTAX { "method": "log", "params": { <type>: <data> } } * <type>: the type of data to print. can be one of the following: * "raw": log raw text * "text": same as "raw" * "json": log single line json * "json2": log json in multiple lines * <data>: the data to print. RETURN VALUE none EXAMPLES PRINTING RAW TEXT { "run": [{ "method": "local.set", "params": { "hello": "world" } }, { "method": "log", "params": { "text": "{{local.hello}}" } }] } will print: world PRINTING JSON Passing the json attribute (instead of raw) will print JSON { "run": [{ "method": "local.set", "params": { "hello": "world" } }, { "method": "log", "params": { "json": "{{local}}" } }] } will print: {"hello":"world"} PRINTING MULTILINE JSON Passing the json2 attribute will print JSON, but in multiple lines: { "run": [{ "method": "local.set", "params": { "hello": "world", "bye": "world" } }, { "method": "log", "params": { "json2": "{{local}}" } }] } will print the object in multiple lines: { "hello": "world" "bye": "world" } -------------------------------------------------------------------------------- NET SYNTAX { "method": "net", "params": { "url": <url>, "method": <method>, "headers": <request_headers>, "data": <request_data> } } * <url>: the endpoint url * <request_headers>: http request header object * <data>: request body * <method>: can be "get", "post", "delete", or "put" The net api internally makes use of the axios library, so for a full reference of the API refer to the Axios documentation here Internally, the above JSON script calls the following axios command: let response = await axios({ "url": <url>, "method": "get"|"post"|"delete"|"put", "headers": <request headers>, "data": <request body>, }).then((res) => { return res.data }) RETURN VALUE * input: The return value from the axios() function call from the previous section EXAMPLES { "run": [{ "method": "net", "params": { "url": "http://127.0.0.1:7860/sdapi/v1/txt2img", "method": "post", "data": { "cfg_scale": 7, "steps": 30, "prompt": "a pencil drawing of a bear" } } }, { "method": "fs.write", "params": { "path": "img.png", "buffer": "{{Buffer.from(input.images[0], "base64")}}" } }] } -------------------------------------------------------------------------------- NOTIFY Programmatically display a push notification popup. SYNTAX { "method": "notify", "params": { "html": <html>, "href": <href>, "target": <target> } } * <html>: The html content to display in the notification popup. Can be any HTML * <href>: a url to open. can be an external website or a script url * <target>: optional opens in the current window if not specified. If set to _blank, opens an external browser RETURN VALUE none EXAMPLES BASIC MESSAGE { "run": [{ "method": "notify", "params": { "html": "simple message" } }] } FULL HTML You can even include full HTML elements, such as images { "run": [{ "method": "notify", "params": { "html": "<div><img src='https://www.reactiongifs.com/r/2012/06/homer_lurking.gif'/><p>This is an example</p></div>" } }] } NOTIFY + START NEW SCRIPT You can display a notification, and start a new script when clicked. { "run": [{ "method": "notify", "params": { "html": "Click to run index.json", "href": "./index.json" } }] } NOTIFY + OPEN AN EXTERNAL BROWSER You can display a notification, and launch an external browser when clicked. Just need to set the href, and set target to _blank: { "run": [{ "method": "notify", "params": { "html": "Click to open https://github.com", "href": "https://github.com", "target": "_blank" } }] } -------------------------------------------------------------------------------- PROXY * proxy.start PROXY.START Creates a wifi sharing proxy, so you can access the pinokio server from any other device on the same wifi network. The system automatically searches for available ports starting from 42421 (port 42420 is reserved for the proxy for Pinokio itself) and automatically creates proxies with the next available port whenever you call proxy.start. SYNTAX { "run": [{ "method": "proxy.start", "params": { "name": <name>, "uri": <uri> } }] } * <name>: the name of the proxy to display * <uri>: the uri to proxy When you call the above method, it will create a proxy using an available port, which points to the <uri>. 1. This new proxy URL can be accessed from any device on the same wifi network 2. When a request is made to the proxy URL, it will automatically load the contents of the <uri> RETURN VALUE * input: the created proxy information. includes the following attributes: * target: the target uri (same as params.uri) * proxy: the newly created proxy uri For example: { "target":"http://127.0.0.1:8188", "proxy":"http://192.168.1.103:42421" } EXAMPLES { "run": [{ "method": "shell.run", "params": { "venv": "env", "path": "app", "message": "python app.py", "on": [{ "event": "/http:\/\/[0-9.:]+/", "done": true }] } }, { "method": "local.set", "params": { "url": "{{input.event[0]}}" } }, { "method": "proxy.start", "params": { "uri": "{{local.url}}", "name": "Local Sharing" } }] } In this example: 1. The shell.run command runs python app.py which launches a server 2. The "on" attribute monitors the terminal to wait for the matching regular expression 3. When there's a string in the terminal that matches the pattern, the shell.run method will stop and go to the next step, passing the matched regular expression object as input. 4. In the second step, a local variable named url is set using the local.set method. It sets the url as the first item in the regular expression match object from the first step. 5. In the last step, it starts a proxy for the local.url -------------------------------------------------------------------------------- SCRIPT * script.download * script.start * script.stop * script.return -------------------------------------------------------------------------------- SCRIPT.DOWNLOAD Download a script from a git URI SYNTAX { "method": "script.download", "params": { "uri": <uri>, "hash": <commit>, "branch": <branch>, "pull": <should_pull>, } } * <uri>: the git uri to download * <commit>: (optional) the git commit hash to switch to after downloading * <branch>: (optional) the git branch to switch to after downloading * <should_pull>: (optional) if set to true, always run git pull before running code (in case there's been an update made to the remote branch) This will download the specified git URI to an automatically generated folder. The download folder name is automatically derived from the repository URL. RETURN VALUE none -------------------------------------------------------------------------------- SCRIPT.START SYNTAX { "method": "script.start", "params": { "uri": <uri>, "hash": <commit>, "branch": <branch>, "pull": <should_pull>, "params": { "a": "hello", "b": "world" } } } * <uri>: the script path to start running * <commit>: (optional) the git commit hash to switch to after downloading * <branch>: (optional) the git branch to switch to after downloading * <should_pull>: (optional) if set to true, always run git pull before running code (in case there's been an update made to the remote branch) * <params>: the params to path to the script. The params will be available as: * <args>: throughout the entire script * <params>: on the first method RETURN VALUE * input: if the called script returns a response with script.return, this value will be set as input. EXAMPLES LOCAL SCRIPT CALL Let's say we want to call callee.json from index.json. index.json: { "run": [{ "method": "script.start", "params": { "uri": "callee.json", "params": { "a": "hello", "b": "world" } } }, { "method": "log", "params": { "json2": "{{input}}" } }] } and the callee.json: { "run": [{ "method": "log", "params": { "json2": "{{input}}" } }, { "method": "log", "params": { "text": "{{args.a + ' ' + args.b}}" } }, { "method": "log", "params": { "json2": "{{args}}" } }, { "method": "script.return", "params": { "response": "{{args.a + ' + ' + args.b}}" } }] } This will print: { "a": "hello", "b": "world" } hello world { "a": "hello", "b": "world" } { "response": "hello + world" } This is because when this script is called with the params of { "a": "hello", "b": "world" }: 1. In the first step, BOTH input and args will be { "a": "hello", "b": "world" } * input is the params passed in from the immediately previous step, which means the input value will be different for every step. * args is the params passed in to the script itself, which means the args (if it exists), will be the same value throughout the entire script execution. 2. In the second step, the args is still available as the same value, therefore prints hello world 3. In the third step, the args is the same again, so prints the same args object 4. The last step (script.return) returns the value { "response": "hello + world" } 5. Then the original index.json goes on to the next step with the return value set to input, so the log method prints { "response": "hello + world" } because: 1. the args will be { "a": "hello", "b": "world" } throughout the entire callee.json script execution 2. the input value REMOTE SCRIPT CALL "remote script" does NOT mean it makes a request to a remote server. Remote script simply means a script downloaded from a remote server. In this case, the uri can be a git URI scheme that points to a file. For example https://github.com/cocktailpeanutlabs/comfyui.git/install.js. Here's an example. Let's say we have a script at /PINOKIO_HOME/api/myapp/install.json: { "run": [{ "method": "script.start", "params": { "uri": "https://github.com/cocktailpeanutlabs/torch.git/install.js", "branch": "main", "params": { "venv": "{{path.resolve(cwd, 'env')}}" } } }] } When this script runs, here's what happens: 1. First, internally Pinokio runs script.download to clone the repository at https://github.com/cocktailpeanutlabs/torch.git 2. Then it switches the git branch to main. 3. Then it starts the script install.js with a params of { "venv": "{{path.resolve(cwd, 'env')}}" }, which resolves to the env folder of the current script * Note that the cwd is the path of the original script: /PINOKIO_HOME/api/myapp (not the path for the repository just downloaded) * This means the actual params that gets passed will look something like { "venv": "/PINOKIO_HOME/api/myapp/install.json" } -------------------------------------------------------------------------------- SCRIPT.STOP SYNTAX { "run": [{ "method": "script.stop", "params": { "uri": <uri> } }] } * <uri>: the file path (or an array of file paths). The scripts at the path will be stopped. RETURN VALUE none EXAMPLES STOP ONE SCRIPT { "run": [{ "method": "script.stop", "params": { "uri": "https://github.com/cocktailpeanutlabs/moondream2.git/start.js" } }] } STOP MULTIPLE SCRIPTS { "run": [{ "method": "script.stop", "params": { "uri": [ "https://github.com/cocktailpeanutlabs/moondream2.git/start1.js" "https://github.com/cocktailpeanutlabs/moondream2.git/start2.js" ] } }] } -------------------------------------------------------------------------------- SCRIPT.RETURN SYNTAX index.json: { "run": [{ "method": "script.start", "params": { "uri": "add.json", "params": { "a": 1, "b": 2, } } }, { "method": "log", "params": { "json2": "{{input.response}}" } }] } and the callee.json: { "run": [{ "method": "script.return", "params": { "response": "{{args.a + args.b}}" } }] } Will print: 3 RETURN VALUE none > note that script.return itself does NOT have a return value because its > function is to return the value back to the caller script. -------------------------------------------------------------------------------- SHELL * shell.run SHELL.RUN SYNTAX The shell.run command starts an instant shell, runs the specified commands, and closes the shell. { "method": "shell.run", "params": { "message": <message>, "path": <path>, "env": <env>, "venv": <venv_path>, "conda": <conda_config>, "on": <shell_event_handler>, "sudo": <sudo>, } } * <message>: The message to enter into the shell. May be a string, or an array. * string => enters the message. * array => enters the messages in the array sequentially. * For example "message": ["pip install -r requirements.txt", "pip install torch"] will internally run: pip install -r requirements.txt && pip install torch * <path> (optional): The path from which to start the shell session (can be either a relative or absolute path). * When NOT specified: the shell starts from the same path as the currently running script. * When specified: the shell session starts from the specified path * <env> (optional): Environment variable key/value pairs. * when the key/value pairs are specified, the custom environment values are set. * when NOT specified, the shell uses the default environment * <venv_path> (optional): A declarative syntax for automatically creating or activating a venv environment at the specified path. * When NOT specified (default): Does not create or activate a venv and runs the shell session normally. * When specified: Creates a venv at the specified path if it doesn't exist yet, or if it exists, activates the existing venv at the specified path, and runs the shell session in that venv. * the shell automatically creates a venv environment at that path if it doesn't exist, then automatically activates the environment before running the command(s) specified by the message attribute. * <conda_config> (optional): Declarative syntax for defining the conda environment that will be activated for this shell session. Can be an object or a string. * When NOT specified (default): By default Pinokio installs a handful of essential modules in the base conda environment that's isolated to Pinokio (Even if you have a conda installed on your system globally, Pinokio will NOT use it and use the isolated conda built-into Pinokio). * When specified: The <conda_config> attribute can be a string or an object. * string: the <conda_config> is interpreted as the path in which the conda environment is stored. (Ex: if "conda": "conda_env", the shell will activate the conda environment at the conda_env path). * object: In some cases you may want more advanced ways of creating/activating the conda environments declaratively. When the ` is an object type instead of string, the following rules apply: * path: Same as when the <conda_config> is a string. Interpreted as the path in which the conda environment is stored. (Ex: if "conda": "conda_env", the shell will activate the conda environment at the conda_env path). * name: the conda environment name to activate. Unlike activation by path, the environments created/activated this way are centrally stored under the PINOKIO_HOME/bin/miniconda folder. * skip: if set to true, do NOT activate ANY environment (By default this is set to false, and therefore every shell activates the Pinokio-global base conda environment every time unless you specify with the params.conda attribute. * python: The python version to install inside the environment (The default is python=3.10 if not specified) * the shell automatically creates a conda enviornment at that path if it doesn't exist, then automatically activates the environment before running the command(s) specified by the message attribute. * <shell_event_handler> (optional): event handler for the shell. Can be used to parse the terminal when running shell.run. The parsed result can be passed down to the next API call in the run array as the input variable. * if specified: The shell keeps running until the specified pattern is met. * You may have multiple items in the <shell_event_handler> array. The first event to match will handle the event and move to the next step. An event handler object may have the following attributes: * event: a regular expression string to match. * kill or done: describe the behavior for when the event match happens. Either kill the shell process and move on, or keep it running and move on. * if done: true is set, keep the shell and the associated processes running and move onto the next step (Useful when you use the shell to launch some process that needs to keep running, such as web servers) * if kill: true is set, kill the shell session and all processes tied to the shell session before moving onto the next step. * if NOT specified (default): The shell ends only when it reaches the next terminal prompt (when all the commands have finished running, which will trigger the prompt to display at the end again). * <sudo>: (optional) run in admin mode when set to true. * on mac and linux, it runs the command with sudo <message> * on windows, it runs the command in administrator mode RETURN VALUE * input: * id: The internal shell ID * stdout: The raw shell content * event: If the shell.run call had an on shell parser attached, the return value will have an event attribute, which is the regular expression match object from the first matched pattern in the <shell_event_handler>. Example: When running: { "daemon": true, "run": [{ "method": "shell.run", "params": { "message": "python app.py", "venv": "env", "on": [{ "event": "/http:\/\/[0-9.:]+/", "done": true }] } }, { "method": "local.set", "params": { "url": "{{input.event[0]}}" } }, { "method": "log", "params": { "raw": "Running on {{local.url}}" } }] } The first step will return input as the following object: { "id": "8e04df87-9b97-4e80-8e77-9224fcb0204f", "stdout": "\r\nThe default interactive shell is now zsh.\r\nTo update your account to use zsh, please run `chsh -s /bin/zsh`.\r\nFor more details, please visit https://support.apple.com/kb/HT208050.\r\n<<PINOKIO SHELL>> eval \"$(conda shell.bash hook)\" && conda deactivate && conda deactivate && conda deactivate && conda activate base && source /Users/x/pinokiomaster/api/comfyui.git/app/env/bin/activate /Users/x/pinokiomaster/api/comfyui.git/app/env && python main.py --force-fp16\r\n** ComfyUI startup time: 2024-04-06 22:53:40.865398\r\n** Platform: Darwin\r\n** Python version: 3.10.12 (main, Jul 5 2023, 15:02:25) [Clang 14.0.6 ]\r\n** Python executable: /Users/x/pinokiomaster/api/comfyui.git/app/env/bin/python\r\n** Log path: /Users/x/pinokiomaster/api/comfyui.git/app/comfyui.log\r\n\r\nPrestartup times for custom nodes:\r\n 0.0 seconds: /Users/x/pinokiomaster/api/comfyui.git/app/custom_nodes/ComfyUI-Manager\r\n\r\nTotal VRAM 65536 MB, total RAM 65536 MB\r\nForcing FP16.\r\nSet vram state to: SHARED\r\nDevice: mps\r\nVAE dtype: torch.float32\r\nUsing sub quadratic optimization for cross attention, if you have memory or speed issues try using: --use-split-cross-attention\r\n### Loading: ComfyUI-Manager (V2.7.2)\r\n### ComfyUI Revision: 1969 [02409c30] | Released on '2024-02-12'\r\n\r\nImport times for custom nodes:\r\n 0.1 seconds: /Users/x/pinokiomaster/api/comfyui.git/app/custom_nodes/ComfyUI-Manager\r\n\r\nStarting server\r\n\r\nTo see the GUI go to: http://127.0.0.1:8188", "event": [ "http://127.0.0.1:8188" ] } * As a result, the local.url will be set to {{input.event[0]}} which evaluates to http://127.0.0.1:8188. * And finally the last log step will print: Running on http://127.0.0.1:8188 EXAMPLES MESSAGE You can either pass one message (string), or multiple messages (array): SINGLE MESSAGE If the message attribute is a single string, it simply enters that line into the shell. { "run": [{ "method": "shell.run", "params": { "venv": "env", "message": "pip install -r requirements.txt" } }] } MULTIPLE MESSAGES If the message attribute is an array, it executes the commands in sequence. { "run": [{ "method": "shell.run", "params": { "venv": "env", "message": [ "pip install -r requirements.txt", "pip install torch gradio" ] } }] } PATH The path attribute is used to specify the path from which the shell starts. { "run": [{ "method": "shell.run", "params": { "path": "app", "message": "python app.py" } }] } In this example, the shell starts from the app folder, basically running python for the app/app.py file. ENV The env attribute can be used to inject custom environment variables when starting the shell. { "run": [{ "method": "shell.run", "params": { "env": { "PYTORCH_ENABLE_MPS_FALLBACK": "1" }, "message": "python app.py" } }] } In this example, the PYTORCH_ENABLE_MPS_FALLBACK environment variable is set to "1" before running python app.py. VENV The venv attribute is used to declaratively activate a venv environment with just 1 line. { "run": [{ "method": "shell.run", "params": { "venv": ".env", "message": "python app.py" } }] } With just one line above, it either creates a venv at path .env (if it doesn't exist yet), and activates the environment for this specific shells session. Basically, when the .env already exists, it's equivalent to: source .env/bin/activate python app.py And when the .env doesn't exist, it's equivalent to: python -m venv .env source .env/bin/activate python app.py But you don't have to worry about any of this since with just one line "venv": ".env" this is handled automatically. Note that the venv environment is ephemeral to the shell.run call, so when that shell session ends, the venv is no longer active. For example: { "run": [{ "method": "shell.run", "params": { "venv": "env1", "message": "python app.py" } }, { "method": "shell.run", "params": { "venv": "env2", "message": "python app.py" } }] } in the example above, the first shell.run runs in env1 environment, whereas the second shell.run runs in env2 environment. The two shell sessions are completely independent from each other. CONDA The conda attribute 1. DEFAULT IS BASE By default if you do not specify any conda attribute in shell.run, it will automatically activate the Pinokio-sandboxed base environment. > Even if you have a globally installed conda, it will NOT use your system-wide > base environment, but use Pinokio's own base environment. This is to ensure > everything works exactly the same for every user in every system. For example the following will automatically activate the Pinokio base environment before starting the shell (which you can find in /PINOKIO_HOME/bin/miniconda): { "run": [{ "method": "shell.run", "params": { "message": "python app.py" } }] } 2. SPECIFYING CUSTOM CONDA ENVIRONMENT PATH You can also create and/or activate a custom conda environment at a specific path: { "run": [{ "method": "shell.run", "params": { "conda": "conda_env", "message": "python app.py" } }] } Above script will: 1. First check if there's a conda environment at path conda_env (relative to the current folder) 2. If there is one, activate the environment 3. If there is no conda environment there, create a conda environment at the location and activate it. 4. Finally start the shell session and run the command python app.py 3. SPECIFYING CUSTOM CONDA ENVIRONMENT BY NAME You can also create/activate a conda environment by name. In this case you will need to use the object syntax instead of using string. The difference is, instead of storing the conda environment at a specific path, the environment will be stored inside /PINOKIO_HOME/bin/miniconda. { "run": [{ "method": "shell.run", "params": { "conda": { "name": "conda_env", }, "message": "python app.py" } }] } > Writing scripts that create custom conda environments by name is not > recommended, because of potential name collision issues. If you really must > use conda, create custom conda environments using path instead. 4. SKIP ACTIVATING ANY CONDA ENVIRONMENT Normally you probably don't want to do this, but you can even avoid the default option of activating the base conda environment if you want. { "run": [{ "method": "shell.run", "params": { "conda": { "skip": true }, "message": "python app.py" } }] } 5. CUSTOM CONDA ENVIRONMENT WITH CUSTOM PYTHON You can create a custom conda environment with a custom python version using the conda.python attribute: { "run": [{ "method": "shell.run", "params": { "conda": { "path": "custom_python_conda_env", "python": "python=3.11" }, "message": "python app.py" } }] } ON The on attribute lets you implement a realtime shell parser. 1. Monitor the shell content in realtime 2. When one of the specified events match, move on to the next step along with the matched pattern as input.event 3. Additionally, specify whether to kill the shell process (kill) or keep it running (done) 1. KEEP THE SHELL PROCESS RUNNING AND MOVE ON { "daemon": true, "run": [{ "method": "shell.run", "params": { "message": "python app.py", "venv": "env", "on": [{ "event": "/http:\/\/[0-9.:]+/", "done": true }] } }, { "method": "local.set", "params": { "url": "{{input.event[0]}}" } }] } Explanation: 1. method: Run a command with shell.run that starts a web server (python app.py) 2. venv: The shell is automatically activated to the venv at path env (relative path). 3. on: The on handler takes an array of multiple possible events (In this case just one event). * event The shell keeps running until the regular expression /http:\/\/[0-9.:]+/, * done: Since done: true is set, the behavior is to move onto the next RPC call while keeping the shell process running. This is needed because we want the python app.py process to keep running (it's a web server). * The return value of this method is { id, stdout, event } where: * id: the id of the terminal * stdout: the full content of the terminal * event: the regular expression match object (see https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/match). 4. In the next step local.set, the input variable passed in from the previous step contains { id, stdout, event } attributes. * The input.event attribute is the regular expression match array from the previous step (see https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/match). * we use the input.event[0] to set the local.url local variable. 1. KILL THE SHELL PROCESS AND MOVE ON Example: { "daemon": true, "run": [{ "method": "shell.run", "params": { "message": "python app.py", "venv": "env", "on": [{ "event": "/http:\/\/[0-9.:]+/", "kill": true }] } }, { "method": "local.set", "params": { "url": "{{input.event[0]}}" } }] } Same as the done: true case, but in this case, the kill: true is set, therefore when the event match happens, the shell session as well as all its associated processes are shut down before moving onto the next step. SUDO Run shell commands in admin mode. { "run": [{ "method": "shell.run", "params": { "sudo": true, "message": "reg add HKLM\\SYSTEM\\CurrentControlSet\\Control\\FileSystem /v LongPathsEnabled /t REG_DWORD /d 1 /f", } }] } In this case we are trying to set the registry value, which needs to be run in admin mode, and we can simply pass the sudo: true option to achieve this. -------------------------------------------------------------------------------- UI The RPC API lets you automatically run things. But we also need a user interface to interact with them. Just like scripts, you can write a UI using nothing but JSON (or JavaScript). COMPONENTS For every project, you just need to think about two UI components: 1. shortcut: displayed on the home page. 2. app: The actual UI layout. SHORTCUT APP PINOKIO.JS Building a UI requires only a single file named pinokio.js. Simply place a file named pinokio.js in the project root folder. The pinokio.js file describes both: 1. Shortcut UI 2. App UI > What if there is no pinokio.js file? > > In this case, Pinokio will do its best to generate a minimal UI for you: > > 1. The shortcut UI will simply display the folder name as its title, and a > default icon. > 2. The app UI will display all js or json files inside the project root > folder. But in most cases you will want to write a simple pinokio.js file to build your own custom UI. SYNTAX module.exports = { "version": <script_schema_version>, "title": <title>, "icon": <icon>, "description": <description>, "menu": <menu> } * <script_schema_version>: The schema version used (the latest version is "1.5") * <title>: The title of the app * <description>: the description of the app * <icon>: the filepath of the icon image (example icon.png, icon.jpeg, icon.gif, icon.webp, etc) * <menu>: An array of tab items, or an async function that takes kernel as argument and returns the same tab items array. Each item in the array may have the following attributes: * text: The text to display on the tab. * icon: The icon to display on the tab. Uses Fontawesome class names (example: fa-solid fa-check, fa-regular fa-star, etc.) * href: The URL to open in the tab. * params (optional): The query parameters to pass to the tab. * If passed to a script, the params will be made available as the input variable inside the first step of the run script. * popout (optional): Opens the href link in an external browser instead of Pinokio if set to true * menu (optional): If specified, creates a nested menu. The nested menu follows the same specification as the top level menu (with text, icon, href, params, and popout attributes) -------------------------------------------------------------------------------- EXAMPLES STATIC MENU Here's a UI script for generating a minimal launcher UI: module.exports = { version: "1.5", title: "Test Launcher", description: "This is for testing a test launcher", icon: "icon.png", menu: [{ icon: "fa-brands fa-google", // see https://fontawesome.com/icons/google?f=brands&s=solid text: "Open Google", href: "https://google.com", }, { icon: "fa-brands fa-discord", text: "Open Discord in New Window", href: "https://discord.gg/TQdNwadtE4", popout: true // "popout": true => opens the link in an external browser instead of as a Pinokio tab. }] } DYNAMIC MENU The sidebar menu is automatically re-rendered every time a step in the currently running script finishes. This means you can write the pinokio.js file so it automatically displays relevant items in realtime. For example, when the app is running, you may want to display a link to open the actual web UI. Or when the app is not running, you may want to display a "Start" button instead. We can achieve this type of dynamic menu rendering by using a function instead of array. Instead of setting a static menu array, set the menu as an async function that takes kernel as an argument: const path = require("path") module.exports = { version: "1.5", title: "InvokeAI", description: "Generative AI for Professional Creatives", icon: "icon.jpeg", menu: async (kernel) => { let installing = kernel.script.running(__dirname, "install.json") let installed = await kernel.exists(__dirname, "app", "env") if (installing) { return [{ icon: "fa-solid fa-plug", text: "Installing...", href: "install.json" }] } else if (installed) { let running = kernel.running(__dirname, "start.json") if (running) { let memory = kernel.script.local(__dirname, "start.json") if (memory && memory.url) { return [ { icon: "fa-solid fa-rocket", text: "Web UI", href: memory.url }, { icon: "fa-solid fa-terminal", text: "Terminal", href: "start.json" }, { icon: "fa-solid fa-rotate", text: "Update", href: "update.json" }, ] } else { return [ { icon: "fa-solid fa-terminal", text: "Terminal", href: "start.json" }, { icon: "fa-solid fa-rotate", text: "Update", href: "update.json" }, ] } } else { return [{ icon: "fa-solid fa-power-off", text: "Start", href: "start.json", }, { icon: "fa-solid fa-rotate", text: "Update", href: "update.json" }, { icon: "fa-solid fa-plug", text: "Reinstall", href: "install.json" }, { icon: "fa-solid fa-broom", text: "Factory Reset", href: "reset.json" }] } } else { return [ { icon: "fa-solid fa-plug", text: "Install", href: "install.json" }, { icon: "fa-solid fa-rotate", text: "Update", href: "update.json" } ] } } } Note that you can use the kernel API to: 1. check whether a file/folder exists at a path: kernel.exists() 2. check if a script at a specified path is running: kernel.script.running() 3. get the local variables object for a script at specified path: kernel.script.local() -------------------------------------------------------------------------------- NESTED MENU You can nest the menu array into another menu (up to level 2) module.exports = { title: "Test Launcher", description: "This is for testing a test launcher", icon: "icon.png", menu: [{ icon: "fa-solid fa-download", text: "Download Models", menu: [ { text: "Download by URL", icon: "fa-solid fa-download", href: "download.html?raw=true" }, { text: "SDXL", icon: "fa-solid fa-download", href: "download-sdxl.json", mode: "refresh" }, { text: "SDXL Turbo", icon: "fa-solid fa-download", href: "download-turbo.json", mode: "refresh" }, { text: "Stable Video XT", icon: "fa-solid fa-download", href: "download-svd-xt.json", mode: "refresh" }, { text: "Stable Video", icon: "fa-solid fa-download", href: "download-svd.json", mode: "refresh" }, { text: "Stable Video XT 1.1", icon: "fa-solid fa-download", href: "download-svd-xt-1.1.json", mode: "refresh" }, { text: "LCM LoRA", icon: "fa-solid fa-download", href: "download-lcm-lora.json", mode: "refresh" }, { text: "SD 1.5", icon: "fa-solid fa-download", href: "download-sd15.json", mode: "refresh" }, { text: "SD 2.1", icon: "fa-solid fa-download", href: "download-sd21.json", mode: "refresh" }, { text: "Playground2.5 fp16", icon: "fa-solid fa-download", href: "download-playground-fp16.json", mode: "refresh" }, { text: "Playground2.5", icon: "fa-solid fa-download", href: "download-playground.json", mode: "refresh" }, ] }] } --------------------------------------------------------------------------------