pubs.acs.org Open in urlscan Pro
104.18.34.234  Public Scan

Submitted URL: https://doi.org/10.1021/cm200683n?urlappend=?ref=PDF
Effective URL: https://pubs.acs.org/doi/10.1021/cm200683n?ref=PDF
Submission: On October 28 via api from HK — Scanned from CA

Form analysis 2 forms found in the DOM

Name: defaultQuickSearchGET /action/checkIsValidDoi

<form action="/action/checkIsValidDoi" name="defaultQuickSearch" method="get" title="Quick Search" autocomplete="off" class="quick-search_default"><input type="search" name="AllField" placeholder="Search text, DOI, authors, etc."
    aria-label="Search text, DOI, authors, etc." data-auto-complete-max-words="7" data-auto-complete-max-chars="32" data-contributors-conf="3" data-topics-conf="3" data-publication-titles-conf="3" data-history-items-conf="3" value="" required="true"
    class="quick-search_all-field autocomplete ui-autocomplete-input"><button type="submit" title="Search" class="icon-search"></button>
  <div role="radiogroup" aria-label="journal filter" class="quick-search_journal-filter"><label for="thisJournalRadio" class="radio--primary"><input id="thisJournalRadio" type="radio" value="cmatex" name="SeriesKey" checked="checked"
        class="all-content"><span>Chem. Mater.</span></label><label for="allPubRadio" class="radio--primary"><input id="allPubRadio" type="radio" value="" name="SeriesKey" class="all-content"><span>All Publications/Website</span></label></div>
  <ul id="ui-id-1" tabindex="0" class="ui-menu ui-widget ui-widget-content ui-autocomplete ui-front" style="display: none;"></ul>
</form>

Name: citationQuickSearchGET /action/quickLink

<form action="/action/quickLink" name="citationQuickSearch" method="get" title="Quick Search" class="quick-search_citation"><input type="hidden" name="quickLink" value="true"><select name="quickLinkJournal" class="quick-search_journals-select">
    <option value="cmatex">Chemistry of Materials</option>
    <option value="achre4">Accounts of Chemical Research</option>
    <option value="amrcda">Accounts of Materials Research</option>
    <option value="aastgj">ACS Agricultural Science &amp; Technology</option>
    <option value="aabmcb">ACS Applied Bio Materials</option>
    <option value="aaembp">ACS Applied Electronic Materials</option>
    <option value="aaemcq">ACS Applied Energy Materials</option>
    <option value="aaemdr">ACS Applied Engineering Materials</option>
    <option value="aamick">ACS Applied Materials &amp; Interfaces</option>
    <option value="aanmf6">ACS Applied Nano Materials</option>
    <option value="aaoma6">ACS Applied Optical Materials</option>
    <option value="aapmcd">ACS Applied Polymer Materials</option>
    <option value="abmcb8">ACS Bio &amp; Med Chem Au</option>
    <option value="abseba">ACS Biomaterials Science &amp; Engineering</option>
    <option value="accacs">ACS Catalysis</option>
    <option value="acscii">ACS Central Science</option>
    <option value="acbcct">ACS Chemical Biology</option>
    <option value="achsc5">ACS Chemical Health &amp; Safety</option>
    <option value="acncdm">ACS Chemical Neuroscience</option>
    <option value="acsccc">ACS Combinatorial Science</option>
    <option value="aesccq">ACS Earth and Space Chemistry</option>
    <option value="aeclc7">ACS Electrochemistry</option>
    <option value="aelccp">ACS Energy Letters</option>
    <option value="aeacb3">ACS Engineering Au</option>
    <option value="aeacc4">ACS Environmental Au</option>
    <option value="aeacd5">ACS ES&amp;T Air</option>
    <option value="aeecco">ACS ES&amp;T Engineering</option>
    <option value="aewcaa">ACS ES&amp;T Water</option>
    <option value="afsthl">ACS Food Science &amp; Technology</option>
    <option value="aidcbc">ACS Infectious Diseases</option>
    <option value="amlccd">ACS Macro Letters</option>
    <option value="amacgu">ACS Materials Au</option>
    <option value="amlcef">ACS Materials Letters</option>
    <option value="amachv">ACS Measurement Science Au</option>
    <option value="amclct">ACS Medicinal Chemistry Letters</option>
    <option value="ancac3">ACS Nano</option>
    <option value="anaccx">ACS Nanoscience Au</option>
    <option value="acsodf">ACS Omega</option>
    <option value="aoiab5">ACS Organic &amp; Inorganic Au</option>
    <option value="aptsfn">ACS Pharmacology &amp; Translational Science</option>
    <option value="apchd5">ACS Photonics</option>
    <option value="apcach">ACS Physical Chemistry Au</option>
    <option value="apaccd">ACS Polymers Au</option>
    <option value="ascefj">ACS Sensors</option>
    <option value="ascecg">ACS Sustainable Chemistry &amp; Engineering</option>
    <option value="asrmcd">ACS Sustainable Resource Management</option>
    <option value="asbcd6">ACS Synthetic Biology</option>
    <option value="ancham">Analytical Chemistry</option>
    <option value="apwdam">Artificial Photosynthesis</option>
    <option value="bichaw">Biochemistry</option>
    <option value="bcches">Bioconjugate Chemistry</option>
    <option value="bomaf6">Biomacromolecules</option>
    <option value="bipret">Biotechnology Progress</option>
    <option value="cgeabj">C&amp;EN Global Enterprise</option>
    <option value="cbehb5">Chem &amp; Bio Engineering</option>
    <option value="cbihbp">Chemical &amp; Biomedical Imaging</option>
    <option value="cenear">Chemical &amp; Engineering News Archive</option>
    <option value="chlseg">Chemical Health &amp; Safety</option>
    <option value="chlseg0">Chemical Health &amp; Safety</option>
    <option value="crtoec">Chemical Research in Toxicology</option>
    <option value="chreay">Chemical Reviews</option>
    <option value="cgdefu">Crystal Growth &amp; Design</option>
    <option value="enfuem">Energy &amp; Fuels</option>
    <option value="ehnea2">Environment &amp; Health</option>
    <option value="esthag">Environmental Science &amp; Technology</option>
    <option value="estlcu">Environmental Science &amp; Technology Letters</option>
    <option value="iepra6.2">I&amp;EC Product Research and Development</option>
    <option value="iechad">Industrial &amp; Engineering Chemistry</option>
    <option value="iecac0">Industrial &amp; Engineering Chemistry Analytical Edition</option>
    <option value="iecjc0">Industrial &amp; Engineering Chemistry Chemical &amp; Engineering Data Series</option>
    <option value="iecfa7">Industrial &amp; Engineering Chemistry Fundamentals</option>
    <option value="iepdaw">Industrial &amp; Engineering Chemistry Process Design and Development</option>
    <option value="iepra6">Industrial &amp; Engineering Chemistry Product Research and Development</option>
    <option value="iecred">Industrial &amp; Engineering Chemistry Research</option>
    <option value="iecnav">Industrial and Engineering Chemistry, News Edition</option>
    <option value="inocaj">Inorganic Chemistry</option>
    <option value="jaaucr">JACS Au</option>
    <option value="jacsat">Journal of the American Chemical Society</option>
    <option value="jafcau">Journal of Agricultural and Food Chemistry</option>
    <option value="jceaax">Journal of Chemical &amp; Engineering Data</option>
    <option value="jci001">Journal of Chemical Documentation</option>
    <option value="jceda8">Journal of Chemical Education</option>
    <option value="jchsc20">Journal of Chemical Health &amp; Safety</option>
    <option value="jcics1">Journal of Chemical Information and Computer Sciences</option>
    <option value="jcisd8">Journal of Chemical Information and Modeling</option>
    <option value="jctcce">Journal of Chemical Theory and Computation</option>
    <option value="jcchff">Journal of Combinatorial Chemistry</option>
    <option value="iechad.1">Journal of Industrial &amp; Engineering Chemistry</option>
    <option value="jmcmar.1">Journal of Medicinal and Pharmaceutical Chemistry</option>
    <option value="jmcmar">Journal of Medicinal Chemistry</option>
    <option value="jnprdf">Journal of Natural Products</option>
    <option value="joceah">The Journal of Organic Chemistry</option>
    <option value="jpchax">The Journal of Physical Chemistry</option>
    <option value="jpchax.2">The Journal of Physical Chemistry</option>
    <option value="jpcafh">The Journal of Physical Chemistry A</option>
    <option value="jpcbfk">The Journal of Physical Chemistry B</option>
    <option value="jpccck">The Journal of Physical Chemistry C</option>
    <option value="jpclcd">The Journal of Physical Chemistry Letters</option>
    <option value="jprobs">Journal of Proteome Research</option>
    <option value="jamsef">Journal of the American Society for Mass Spectrometry</option>
    <option value="jamsef1">Journal of the American Society for Mass Spectrometry</option>
    <option value="jamsef0">Journal of the American Society for Mass Spectrometry</option>
    <option value="langd5">Langmuir</option>
    <option value="mamobx">Macromolecules</option>
    <option value="mpohbp">Molecular Pharmaceutics</option>
    <option value="nalefd">Nano Letters</option>
    <option value="neaca9">News Edition, American Chemical Society</option>
    <option value="orlef7">Organic Letters</option>
    <option value="oprdfk">Organic Process Research &amp; Development</option>
    <option value="orgnd7">Organometallics</option>
    <option value="pstoco">Polymer Science &amp; Technology</option>
    <option value="pcrhej">Precision Chemistry</option>
    <option value="iepra6.1">Product R&amp;D</option>
    <option value="scimts">SciMeetings</option>
    <option value="jpchax.1">The Journal of Physical and Colloid Chemistry</option>
  </select><input type="search" inputmode="numeric" pattern="[0-9]*" name="quickLinkVolume" autocomplete="false" placeholder="Vol" required="required" class="quick-search_volume-input"><input type="search" inputmode="numeric" pattern="[0-9]*"
    name="quickLinkPage" autocomplete="false" placeholder="Page" required="required" class="quick-search_page-input"><button type="submit" title="Search" class="icon-search"></button></form>

Text Content

Recently Viewedclose modal
Recently Viewed

YOU HAVE NOT VISITED ANY ARTICLES YET, PLEASE VISIT SOME ARTICLES TO SEE
CONTENTS HERE.




 * ACS
 * ACS Publications
 * C&EN
 * CAS

Find my institution
Log In
Alkali-ion Conduction Paths in LiFeSO4F and NaFeSO4F Tavorite-Type Cathode
Materials

 * Cite
    * Citation
    * Citation and abstract
    * Citation and references
    * More citation options

 * Share
   Share on
    * Facebook
    * X (Twitter)
    * Wechat
    * LinkedIn
    * Reddit
    * Email
      

 * Jump to
    * Abstract
    * Cited By

 * ExpandCollapse

Back to top
Chem. Mater.All Publications/Website

OR SEARCH CITATIONS

Chemistry of MaterialsAccounts of Chemical ResearchAccounts of Materials
ResearchACS Agricultural Science & TechnologyACS Applied Bio MaterialsACS
Applied Electronic MaterialsACS Applied Energy MaterialsACS Applied Engineering
MaterialsACS Applied Materials & InterfacesACS Applied Nano MaterialsACS Applied
Optical MaterialsACS Applied Polymer MaterialsACS Bio & Med Chem AuACS
Biomaterials Science & EngineeringACS CatalysisACS Central ScienceACS Chemical
BiologyACS Chemical Health & SafetyACS Chemical NeuroscienceACS Combinatorial
ScienceACS Earth and Space ChemistryACS ElectrochemistryACS Energy LettersACS
Engineering AuACS Environmental AuACS ES&T AirACS ES&T EngineeringACS ES&T
WaterACS Food Science & TechnologyACS Infectious DiseasesACS Macro LettersACS
Materials AuACS Materials LettersACS Measurement Science AuACS Medicinal
Chemistry LettersACS NanoACS Nanoscience AuACS OmegaACS Organic & Inorganic
AuACS Pharmacology & Translational ScienceACS PhotonicsACS Physical Chemistry
AuACS Polymers AuACS SensorsACS Sustainable Chemistry & EngineeringACS
Sustainable Resource ManagementACS Synthetic BiologyAnalytical
ChemistryArtificial PhotosynthesisBiochemistryBioconjugate
ChemistryBiomacromoleculesBiotechnology ProgressC&EN Global EnterpriseChem & Bio
EngineeringChemical & Biomedical ImagingChemical & Engineering News
ArchiveChemical Health & SafetyChemical Health & SafetyChemical Research in
ToxicologyChemical ReviewsCrystal Growth & DesignEnergy & FuelsEnvironment &
HealthEnvironmental Science & TechnologyEnvironmental Science & Technology
LettersI&EC Product Research and DevelopmentIndustrial & Engineering
ChemistryIndustrial & Engineering Chemistry Analytical EditionIndustrial &
Engineering Chemistry Chemical & Engineering Data SeriesIndustrial & Engineering
Chemistry FundamentalsIndustrial & Engineering Chemistry Process Design and
DevelopmentIndustrial & Engineering Chemistry Product Research and
DevelopmentIndustrial & Engineering Chemistry ResearchIndustrial and Engineering
Chemistry, News EditionInorganic ChemistryJACS AuJournal of the American
Chemical SocietyJournal of Agricultural and Food ChemistryJournal of Chemical &
Engineering DataJournal of Chemical DocumentationJournal of Chemical
EducationJournal of Chemical Health & SafetyJournal of Chemical Information and
Computer SciencesJournal of Chemical Information and ModelingJournal of Chemical
Theory and ComputationJournal of Combinatorial ChemistryJournal of Industrial &
Engineering ChemistryJournal of Medicinal and Pharmaceutical ChemistryJournal of
Medicinal ChemistryJournal of Natural ProductsThe Journal of Organic
ChemistryThe Journal of Physical ChemistryThe Journal of Physical ChemistryThe
Journal of Physical Chemistry AThe Journal of Physical Chemistry BThe Journal of
Physical Chemistry CThe Journal of Physical Chemistry LettersJournal of Proteome
ResearchJournal of the American Society for Mass SpectrometryJournal of the
American Society for Mass SpectrometryJournal of the American Society for Mass
SpectrometryLangmuirMacromoleculesMolecular PharmaceuticsNano LettersNews
Edition, American Chemical SocietyOrganic LettersOrganic Process Research &
DevelopmentOrganometallicsPolymer Science & TechnologyPrecision ChemistryProduct
R&DSciMeetingsThe Journal of Physical and Colloid Chemistry
My Activity
close
Recently Viewed

YOU HAVE NOT VISITED ANY ARTICLES YET, PLEASE VISIT SOME ARTICLES TO SEE
CONTENTS HERE.

Publications
 * publications
 * my Activity
   * Recently Viewed

 * user resources
   * Access Options
   * Authors & Reviewers
   * ACS Members
   * Curated Content
   * eAlerts
   * RSS & Mobile
 * for organizations
   * Products & Services
   * Get Access
   * Manage My Account
 * support
   * Website Demos & Tutorials
   * Support FAQs
   * Live Chat with Agent
   * For Advertisers
   * For Librarians & Account Managers
 * pairing
   * Pair a device
 * My ProfileLoginLogoutPair a device
 * about us
   * Overview
   * ACS & Open Access
   * Partners
   * Blog
   * Events

Recently Viewed

YOU HAVE NOT VISITED ANY ARTICLES YET, PLEASE VISIT SOME ARTICLES TO SEE
CONTENTS HERE.

Publications

CONTENT TYPES

 * ALL TYPES

SUBJECTS

Publications: All Types

Download Hi-Res ImageDownload to MS-PowerPointCite This:Chem. Mater. 2011, 23,
8, 2278-2284
ADVERTISEMENT


 * Info
 * Metrics

Chemistry of Materials
Vol 23/Issue 8
Article
Get e-Alerts

 * Cite
    * Citation
    * Citation and abstract
    * Citation and references
    * More citation options

 * Share
   Share on
    * Facebook
    * X (Twitter)
    * WeChat
    * LinkedIn
    * Reddit
    * Email
      

 * Jump to
    * Abstract
    * Cited By

 * ExpandCollapse

ArticleMarch 30, 2011


ALKALI-ION CONDUCTION PATHS IN LIFESO4F AND NAFESO4F TAVORITE-TYPE CATHODE
MATERIALS
CLICK TO COPY ARTICLE LINKARTICLE LINK COPIED!

 * Rajesh Tripathi†
 * Grahame R. Gardiner‡
 * M. Saiful Islam*‡
 * Linda F. Nazar*†

View Author InformationView Author Information
† Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L
3G1
‡ Department of Chemistry, University of Bath, Bath, United Kingdom BA2 7AY
*E-mail addresses: lfnazar@uwaterloo.ca (L.F.N.), m.s.islam@bath.ac.uk (M.S.I.).
Access Through Access is not provided via Institution Name Loading Institutional
Login Options... Access Through Your Institution
Add or Change Institution
Explore subscriptions for institutions
Other Access Options


CHEMISTRY OF MATERIALS

Cite this: Chem. Mater. 2011, 23, 8, 2278–2284
Click to copy citationCitation copied!
https://pubs.acs.org/doi/10.1021/cm200683n
https://doi.org/10.1021/cm200683n
Published March 30, 2011


PUBLICATION HISTORY

 * Received 
   
   7 March 2011

 * Revised 
   
   10 March 2011

 * Published 
   
   online 30 March 2011

 * Published 
   
   in issue 26 April 2011

research-article
Copyright © 2011 American Chemical Society
Request reuse permissions



ABSTRACT

Click to copy section linkSection link copied!

A new family of fluorosulfates has attracted considerable attention as
alternative positive electrode materials for rechargeable lithium batteries.
However, an atomic-scale understanding of the ion conduction paths in these
systems is still lacking, and this is important for developing strategies for
optimization of the electrochemical properties. Here, the alkali-ion transport
behavior of both LiFeSO4F and NaFeSO4F are investigated by atomistic modeling
methods. Activation energies for numerous ion migration paths through the
complex structures are calculated. The results indicate that LiFeSO4F is
effectively a three-dimensional (3D) lithium-ion conductor with an activation
energy of ∼0.4 eV for long-range diffusion, which involve a combination of
zigzag paths through [100], [010], and [111] tunnels in the open tavorite
lattice. In contrast, for the related NaFeSO4F, only one direction ([101]) is
found to have a relatively low activation energy (0.6 eV). This leads to a
diffusion coefficient that is more than 6 orders of magnitude lower than any
other direction, suggesting that NaFeSO4F is a one-dimensional (1D) Na-ion
conductor.

ACS Publications
Copyright © 2011 American Chemical Society


SUBJECTS

what are subjects

Article subjects are automatically applied from the ACS Subject Taxonomy and
describe the scientific concepts and themes of the article.

 * Activation energy
 * Chemical structure
 * Genetics
 * Ions
 * Materials


KEYWORDS

what are keywords

Article keywords are supplied by the authors and highlight key terms and topics
of the paper.

 * Li-ion battery
 * lithium iron fluorosulfate
 * sodium iron fluorosulfate
 * atomistic modeling
 * ion transport
 * lithium ion conductor
 * sodium ion conductor


READ THIS ARTICLE

To access this article, please review the available access options below.

Recommended


ACCESS THROUGH YOUR INSTITUTION

You may have access to this article through your institution.

Your institution does not have access to this content. Add or change your
institution or let them know you’d like them to include access.

Access Through Recommend Publication Institution Name Loading Institutional
Login Options... Access Through Your Institution
Add or Change Institution
Explore subscriptions for institutions

Get instant access


PURCHASE ACCESS

Read this article for 48 hours. Check out below using your ACS ID or as a guest.

Purchase Access

Restore my guest access


Recommended


LOG IN TO ACCESS

You may have access to this article with your ACS ID if you have previously
purchased it or have ACS member benefits. Log in below.

Login with ACS ID
 * Purchase access
   
   Purchase this article for 48 hours $48.00 Add to cart
   
   
   
   Purchase this article for 48 hours Checkout




CITED BY

Click to copy section linkSection link copied!
Citation Statements
beta

Smart citations by scite.ai include citation statements extracted from the full
text of the citing article. The number of the statements may be higher than the
number of citations provided by ACS Publications if one paper cites another
multiple times or lower if scite has not yet processed some of the citing
articles.

 * Supporting
   Supporting20
 * Mentioning
   Mentioning153
 * Contrasting
   Contrasting0

Explore this article's citation statements on scite.ai
powered by  

This article is cited by 159 publications.

 1.   Wei Wei, Tao Ye, Zunqiu Xiao, Kejia Xiang, Huaying Wang, Zhongtai Zhang,
      Shitong Wang, Zilong Tang. Synthesis of a Sodium-Ion Cathode Material
      Na3Fe2(SO4)3F with the Help of Fluorine Element. ACS Applied Materials &
      Interfaces 2024, 16 (37) , 49362-49370.
      https://doi.org/10.1021/acsami.4c09115
      
 2.   Fiaz Hussain, Hamza Maqbool, Songbai Han, Liping Wang, Jinlong Zhu,
      Yusheng Zhao, Wei Xia. Na2FeS2 Cathode for Sodium-Ion Batteries: A
      Theoretical Study. ACS Applied Energy Materials 2023, 6 (14) , 7563-7570.
      https://doi.org/10.1021/acsaem.3c00973
      
 3.   Menghang Zhang, Hui Pan, Yigang Wang, Jingui Yang, Hao Dong, Ping He,
      Haoshen Zhou. Research on Li+/Na+ Selectivity of NASICON-Type Solid-State
      Ion Conductors by First-Principles Calculations. Energy & Fuels 2023, 37
      (14) , 10663-10672. https://doi.org/10.1021/acs.energyfuels.3c01502
      
 4.   Kévin Lemoine, Annie Hémon-Ribaud, Marc Leblanc, Jérôme Lhoste, Jean-Marie
      Tarascon, Vincent Maisonneuve. Fluorinated Materials as Positive
      Electrodes for Li- and Na-Ion Batteries. Chemical Reviews 2022, 122 (18) ,
      14405-14439. https://doi.org/10.1021/acs.chemrev.2c00247
      
 5.   Yansong Bai, Xiaoyan Zhang, Hongbo Shu, Zhigao Luo, Hai Hu, Qinglan Zhao,
      Ying Wang, Xianyou Wang. Superior Na-Storage Properties of
      Nickel-Substituted Na2FeSiO4@C Microspheres Encapsulated with the In
      Situ-Synthesized Alveolation-like Carbon Matrix. ACS Applied Materials &
      Interfaces 2020, 12 (31) , 34858-34872.
      https://doi.org/10.1021/acsami.0c07894
      
 6.   Andreas Blidberg, Torbjörn Gustafsson, Carl Tengstedt, Fredrik Björefors,
      and William R. Brant . Monitoring LixFeSO4F (x = 1, 0.5, 0) Phase
      Distributions in Operando To Determine Reaction Homogeneity in Porous
      Battery Electrodes. Chemistry of Materials 2017, 29 (17) , 7159-7169.
      https://doi.org/10.1021/acs.chemmater.7b01019
      
 7.   Xiaoqi Sun, Rajesh Tripathi, Guerman Popov, Mahalingam Balasubramanian,
      and Linda F. Nazar . Stabilization of Lithium Transition Metal Silicates
      in the Olivine Structure. Inorganic Chemistry 2017, 56 (16) , 9931-9937.
      https://doi.org/10.1021/acs.inorgchem.7b01453
      
 8.   Vaishali Sharma, Diptikanta Swain, and Tayur N. Guru Row . Superionic
      Behavior and Phase Transition in a Vanthoffite Mineral. Inorganic
      Chemistry 2017, 56 (11) , 6048-6051.
      https://doi.org/10.1021/acs.inorgchem.7b00802
      
 9.   Pieremanuele Canepa, Gopalakrishnan Sai Gautam, Daniel C. Hannah, Rahul
      Malik, Miao Liu, Kevin G. Gallagher, Kristin A. Persson, and Gerbrand
      Ceder . Odyssey of Multivalent Cathode Materials: Open Questions and
      Future Challenges. Chemical Reviews 2017, 117 (5) , 4287-4341.
      https://doi.org/10.1021/acs.chemrev.6b00614
      
 10.  Shiliang Zhou, Gözde Barim, Benjamin J. Morgan, Brent C. Melot, and
      Richard L. Brutchey . Influence of Rotational Distortions on Li+- and
      Na+-Intercalation in Anti-NASICON Fe2(MoO4)3. Chemistry of Materials 2016,
      28 (12) , 4492-4500. https://doi.org/10.1021/acs.chemmater.6b01806
      
 11.  Randy Jalem, Ryosuke Natsume, Masanobu Nakayama, and Toshihiro Kasuga .
      First-Principles Investigation of the Na+ Ion Transport Property in
      Oxyfluorinated Titanium(IV) Phosphate Na3Ti2P2O10F. The Journal of
      Physical Chemistry C 2016, 120 (3) , 1438-1445.
      https://doi.org/10.1021/acs.jpcc.5b12115
      
 12.  Zhendong Guo, Dong Zhang, Hailong Qiu, Tong Zhang, Qiang Fu, Lijie Zhang,
      Xiao Yan, Xing Meng, Gang Chen, and Yingjin Wei . Improved Cycle Stability
      and Rate Capability of Graphene Oxide Wrapped Tavorite LiFeSO4F as Cathode
      Material for Lithium-Ion Batteries. ACS Applied Materials & Interfaces
      2015, 7 (25) , 13972-13979. https://doi.org/10.1021/acsami.5b02966
      
 13.  Randy Jalem, Mayumi Kimura, Masanobu Nakayama, and Toshihiro Kasuga .
      Informatics-Aided Density Functional Theory Study on the Li Ion Transport
      of Tavorite-Type LiMTO4F (M3+–T5+, M2+–T6+). Journal of Chemical
      Information and Modeling 2015, 55 (6) , 1158-1168.
      https://doi.org/10.1021/ci500752n
      
 14.  Andreas Blidberg, Lennart Häggström, Tore Ericsson, Carl Tengstedt,
      Torbjörn Gustafsson, and Fredrik Björefors . Structural and Electronic
      Changes in Li2FeP2O7 during Electrochemical Cycling. Chemistry of
      Materials 2015, 27 (11) , 3801-3804.
      https://doi.org/10.1021/acs.chemmater.5b00440
      
 15.  Xian Zhang, Qiuran Wang, Zhimin Ma, Jianqiao He, Zhe Wang, Chong Zheng,
      Jianhua Lin, and Fuqiang Huang . Synthesis, Structure, Multiband Optical,
      and Electrical Conductive Properties of a 3D Open Cubic Framework Based on
      [Cu8Sn6S24]z− Clusters. Inorganic Chemistry 2015, 54 (11) , 5301-5308.
      https://doi.org/10.1021/acs.inorgchem.5b00317
      
 16.  Dipan Kundu, Rajesh Tripathi, Guerman Popov, W. R. M. Makahnouk, and Linda
      F. Nazar . Synthesis, Structure, and Na-Ion Migration in Na4NiP2O7F2: A
      Prospective High Voltage Positive Electrode Material for the Na-Ion
      Battery. Chemistry of Materials 2015, 27 (3) , 885-891.
      https://doi.org/10.1021/cm504058k
      
 17.  Rodolpho Mouta, Maria Águida B. Melo, Eduardo M. Diniz, and Carlos William
      A. Paschoal . Concentration of Charge Carriers, Migration, and Stability
      in Li3OCl Solid Electrolytes. Chemistry of Materials 2014, 26 (24) ,
      7137-7144. https://doi.org/10.1021/cm503717e
      
 18.  Naoaki Yabuuchi, Kei Kubota, Mouad Dahbi, and Shinichi Komaba . Research
      Development on Sodium-Ion Batteries. Chemical Reviews 2014, 114 (23) ,
      11636-11682. https://doi.org/10.1021/cr500192f
      
 19.  Adam Sobkowiak, Matthew R. Roberts, Lennart Häggström, Tore Ericsson, Anna
      M. Andersson, Kristina Edström, Torbjörn Gustafsson, and Fredrik Björefors
      . Identification of an Intermediate Phase, Li1/2FeSO4F, Formed during
      Electrochemical Cycling of Tavorite LiFeSO4F. Chemistry of Materials 2014,
      26 (15) , 4620-4628. https://doi.org/10.1021/cm502104q
      
 20.  Christopher Eames, John M. Clark, Gwenaelle Rousse, Jean-Marie Tarascon,
      and M. Saiful Islam . Lithium Migration Pathways and van der Waals Effects
      in the LiFeSO4OH Battery Material. Chemistry of Materials 2014, 26 (12) ,
      3672-3678. https://doi.org/10.1021/cm5008203
      
 21.  Sanghun Lee and Sung Soo Park . Comparative Study of Tavorite and Triplite
      LiFeSO4F as Cathode Materials for Lithium Ion Batteries: Structure, Defect
      Chemistry, and Lithium Conduction Properties from Atomistic Simulation.
      The Journal of Physical Chemistry C 2014, 118 (24) , 12642-12648.
      https://doi.org/10.1021/jp502672k
      
 22.  Behdokht Farbod, Kai Cui, W. Peter Kalisvaart, Martin Kupsta, Beniamin
      Zahiri, Alireza Kohandehghan, Elmira Memarzadeh Lotfabad, Zhi Li, Erik J.
      Luber, and David Mitlin . Anodes for Sodium Ion Batteries Based on
      Tin–Germanium–Antimony Alloys. ACS Nano 2014, 8 (5) , 4415-4429.
      https://doi.org/10.1021/nn4063598
      
 23.  G. Rousse and J. M. Tarascon . Sulfate-Based Polyanionic Compounds for
      Li-Ion Batteries: Synthesis, Crystal Chemistry, and Electrochemistry
      Aspects. Chemistry of Materials 2014, 26 (1) , 394-406.
      https://doi.org/10.1021/cm4022358
      
 24.  Christian Masquelier and Laurence Croguennec . Polyanionic (Phosphates,
      Silicates, Sulfates) Frameworks as Electrode Materials for Rechargeable Li
      (or Na) Batteries. Chemical Reviews 2013, 113 (8) , 6552-6591.
      https://doi.org/10.1021/cr3001862
      
 25.  Ying Shirley Meng and M. Elena Arroyo-de Dompablo . Recent Advances in
      First Principles Computational Research of Cathode Materials for
      Lithium-Ion Batteries. Accounts of Chemical Research 2013, 46 (5) ,
      1171-1180. https://doi.org/10.1021/ar2002396
      
 26.  Linda J. M. Davis and Gillian R. Goward . Differentiating Lithium Ion
      Hopping Rates in Vanadium Phosphate versus Vanadium Fluorophosphate
      Structures Using 1D 6Li Selective Inversion NMR. The Journal of Physical
      Chemistry C 2013, 117 (16) , 7981-7992. https://doi.org/10.1021/jp310790g
      
 27.  Sanghun Lee and Sung Soo Park . Atomistic Simulation Study of Monoclinic
      Li3V2(PO4)3 as a Cathode Material for Lithium Ion Battery: Structure,
      Defect Chemistry, Lithium Ion Transport Pathway, and Dynamics. The Journal
      of Physical Chemistry C 2012, 116 (48) , 25190-25197.
      https://doi.org/10.1021/jp306105g
      
 28.  Sanghun Lee and Sung Soo Park . Structure, Defect Chemistry, and Lithium
      Transport Pathway of Lithium Transition Metal Pyrophosphates (Li2MP2O7, M:
      Mn, Fe, and Co): Atomistic Simulation Study. Chemistry of Materials 2012,
      24 (18) , 3550-3557. https://doi.org/10.1021/cm301921d
      
 29.  Mathieu Salanne, Dario Marrocchelli, and Graeme W. Watson . Cooperative
      Mechanism for the Diffusion of Li+ Ions in LiMgSO4F. The Journal of
      Physical Chemistry C 2012, 116 (35) , 18618-18625.
      https://doi.org/10.1021/jp304767d
      
 30.  Rana. A. Shakoor, Heejin Kim, Woosuk Cho, Soo Yeon Lim, Hannah Song, Jung
      Woo Lee, Jeung Ku Kang, Yong-Tae Kim, Yousung Jung, and Jang Wook Choi .
      Site-Specific Transition Metal Occupation in Multicomponent Pyrophosphate
      for Improved Electrochemical and Thermal Properties in Lithium Battery
      Cathodes: A Combined Experimental and Theoretical Study. Journal of the
      American Chemical Society 2012, 134 (28) , 11740-11748.
      https://doi.org/10.1021/ja3042228
      
 31.  S. A. Shevlin, C. Cazorla, and Z. X. Guo . Structure and Defect Chemistry
      of Low- and High-Temperature Phases of LiBH4. The Journal of Physical
      Chemistry C 2012, 116 (25) , 13488-13496.
      https://doi.org/10.1021/jp3014805
      
 32.  Sanghun Lee and Sung Soo Park . Atomistic Simulation Study of Mixed-Metal
      Oxide (LiNi1/3Co1/3Mn1/3O2) Cathode Material for Lithium Ion Battery. The
      Journal of Physical Chemistry C 2012, 116 (10) , 6484-6489.
      https://doi.org/10.1021/jp2122467
      
 33.  Brian L. Ellis, T. N. Ramesh, Linda J.M. Davis, Gillian R. Goward, and
      Linda F. Nazar . Structure and Electrochemistry of Two-Electron Redox
      Couples in Lithium Metal Fluorophosphates Based on the Tavorite Structure.
      Chemistry of Materials 2011, 23 (23) , 5138-5148.
      https://doi.org/10.1021/cm201773n
      
 34.  Tim Mueller, Geoffroy Hautier, Anubhav Jain, and Gerbrand Ceder .
      Evaluation of Tavorite-Structured Cathode Materials for Lithium-Ion
      Batteries Using High-Throughput Computing. Chemistry of Materials 2011, 23
      (17) , 3854-3862. https://doi.org/10.1021/cm200753g
      
 35.  Yan Chen, Yuefeng Su, Yixin Zhang, Zekai Lv, Chen Xie, Wenbin Sun, Yong
      Zhao, Man Xie. Insights into iron-based polyanionic cathodes for scale-
      energy storage. Energy Storage Materials 2024, 11 , 103722.
      https://doi.org/10.1016/j.ensm.2024.103722
      
 36.  Xi Tan, Ming Chen, Jinkai Zhang, Shiqi Li, Huajie Zhang, Long Yang, Tian
      Sun, Xin Qian, Guang Feng. Decoding Electrochemical Processes of
      Lithium‐Ion Batteries by Classical Molecular Dynamics Simulations.
      Advanced Energy Materials 2024, 14 (22)
      https://doi.org/10.1002/aenm.202400564
      
 37.  Zhendong Guo, Tieyan Wang, Mingchen Ni, Fenhong Song, Jing Fan, Xiaorui
      Dong, Dashuai Wang. Improved structure stability and performance of a
      LiFeSO 4 F cathode material for lithium-ion batteries by magnesium
      substitution. Physical Chemistry Chemical Physics 2024, 26 (18) ,
      13949-13954. https://doi.org/10.1039/D4CP00344F
      
 38.  Lemoine Kevin, Kenmogne-Debah Roméo, Doubtsof Léa, Frezet Lawrence, Petit
      Elodie, Guerin Katia, Devouard Bertrand, Sougrati Moulay-Tahar, Delbègue
      Diane, Bonnet Pierre. Insertion of fluorine into a LiFePO 4 electrode
      material by gas–solid fluorination. Dalton Transactions 2024, 53 (17) ,
      7546-7554. https://doi.org/10.1039/D4DT00603H
      
 39.  Zhaolu Liu, Ning Wang, Ruiqi Wang, Jie Xu, Hao Zhang, Nan Wang, Yongjie
      Cao, Yao Liu, Junxi Zhang. Iron‐Based Sulfate for Sodium‐Ion Batteries:
      Past, Present, and Future. Energy Technology 2024, 6
      https://doi.org/10.1002/ente.202301399
      
 40.  Zibing Pan, Huaqi Chen, Yubin Zeng, Yan Ding, Xiangjun Pu, Zhongxue Chen.
      Fluorine chemistry in lithium-ion and sodium-ion batteries. Energy
      Materials 2023, 3 (6) https://doi.org/10.20517/energymater.2023.61
      
 41.  Qihan Meng, Qingfei Hao, Fei Chen, Lei Wang, Na Li, Xudong Sun. Li4Ti5O12
      hollow macrospheres combine high tap density and excellent low-temperature
      performance as anode materials for Li-ion batteries. Materials
      Characterization 2023, 203 , 113089.
      https://doi.org/10.1016/j.matchar.2023.113089
      
 42.  Jena Akash Kumar Satrughna, Archana Kanwade, Abhishek Srivastava, Manish
      Kumar Tiwari, Subhash Chand Yadav, Surya Teja Akula, Parasharam M.
      Shirage. Experimental and computational advancement of cathode materials
      for futuristic sodium ion batteries. Materials Today 2023, 5
      https://doi.org/10.1016/j.mattod.2023.06.013
      
 43.  Jiashen Meng, Zhitong Xiao, Lujun Zhu, Xiao Zhang, Xufeng Hong, Yongfeng
      Jia, Fang Liu, Quanquan Pang. Fluorinated electrode materials for
      high-energy batteries. Matter 2023, 6 (6) , 1685-1716.
      https://doi.org/10.1016/j.matt.2023.03.032
      
 44.  Aleksandr Sh. Samarin, Ivan A. Trussov, Stanislav S. Fedotov. Electrode
      materials for reversible sodium ions de/intercalation. 2023, 46-82.
      https://doi.org/10.1016/B978-0-12-823144-9.00096-0
      
 45.  Shashwat Singh, Sai Pranav Vanam, Shubham Lochab, Maximilian Fichtner,
      Prabeer Barpanda. Development of polyanionic sodium-ion battery insertion
      materials. 2023, 241-271.
      https://doi.org/10.1016/B978-0-12-823144-9.00154-0
      
 46.  Debolina Deb, Gopalakrishnan Sai Gautam. Critical overview of polyanionic
      frameworks as positive electrodes for Na-ion batteries. Journal of
      Materials Research 2022, 37 (19) , 3169-3196.
      https://doi.org/10.1557/s43578-022-00646-7
      
 47.  Wei Yang, Qi Liu, Yanshuo Zhao, Daobin Mu, Guoqiang Tan, Hongcai Gao, Li
      Li, Renjie Chen, Feng Wu. Progress on Fe‐Based Polyanionic Oxide Cathodes
      Materials toward Grid‐Scale Energy Storage for Sodium‐Ion Batteries. Small
      Methods 2022, 6 (9) https://doi.org/10.1002/smtd.202200555
      
 48.  Eun Jeong Kim, P. Ramesh Kumar, Zachary T. Gossage, Kei Kubota, Tomooki
      Hosaka, Ryoichi Tatara, Shinichi Komaba. Active material and interphase
      structures governing performance in sodium and potassium ion batteries.
      Chemical Science 2022, 13 (21) , 6121-6158.
      https://doi.org/10.1039/D2SC00946C
      
 49.  . Polyanion‐Type Cathodes for Sodium‐Ion Batteries. 2022, 79-135.
      https://doi.org/10.1002/9783527831623.ch4
      
 50.  Artem D. Dembitskiy, Dmitry A. Aksyonov, Artem M. Abakumov, Stanislav S.
      Fedotov. NH+-based frameworks as a platform for designing electrodes and
      solid electrolytes for Na-ion batteries: A screening approach. Solid State
      Ionics 2022, 374 , 115810. https://doi.org/10.1016/j.ssi.2021.115810
      
 51.  Yun Gao, Hang Zhang, Xiao‐Hao Liu, Zhuo Yang, Xiang‐Xi He, Li Li, Yun
      Qiao, Shu‐Lei Chou. Low‐Cost Polyanion‐Type Sulfate Cathode for Sodium‐Ion
      Battery. Advanced Energy Materials 2021, 11 (42)
      https://doi.org/10.1002/aenm.202101751
      
 52.  Zhenya Wang, Hao Guo, De Ning, Xiaobai Ma, Lirong Zheng, Dmitry Smirnov,
      Kai Sun, Dongfeng Chen, Limei Sun, Xiangfeng Liu. Tuning fermi level and
      band gap in Li 4 Ti 5 O 12 by doping and vacancy for ultrafast Li +
      insertion/extraction. Journal of the American Ceramic Society 2021, 104
      (11) , 5934-5945. https://doi.org/10.1111/jace.17948
      
 53.  Beth I J Johnston, Peter J Baker, Serena A Cussen. Ion dynamics in
      fluoride-containing polyatomic anion cathodes by muon spectroscopy.
      Journal of Physics: Materials 2021, 4 (4) , 044015.
      https://doi.org/10.1088/2515-7639/ac22ba
      
 54.  Along Zhao, Yongjin Fang, Xinping Ai, Hanxi Yang, Yuliang Cao. Mixed
      polyanion cathode materials: Toward stable and high-energy sodium-ion
      batteries. Journal of Energy Chemistry 2021, 60 , 635-648.
      https://doi.org/10.1016/j.jechem.2021.01.014
      
 55.  Aqeel Idrus, Fadhlul Wafi Badrudin, Mohamad Fariz Mohamad Taib, Oskar
      Hasdinor Hassan, Abdul Malik Marwan Bin Ali, Muhd Zu Azhan Yahya. Ab
      Initio Study on Structural Properties of NaFeSO4OH Cathode Material for
      Rechargeable Sodium Ion Battery. Solid State Phenomena 2021, 317 ,
      400-405. https://doi.org/10.4028/www.scientific.net/SSP.317.400
      
 56.  Yuanyuan Zhu, Yang Huang, Rong Du, Ming Tang, Baotian Wang, Junrong Zhang.
      Effect of Ni2+ on Lithium-Ion Diffusion in Layered LiNi1−x−yMnxCoyO2
      Materials. Crystals 2021, 11 (5) , 465.
      https://doi.org/10.3390/cryst11050465
      
 57.  Yupeng Shen, Qian Wang, Y. Kawazoe, Puru Jena. Potential of porous
      nodal-line semi-metallic carbon for sodium-ion battery anode. Journal of
      Power Sources 2020, 478 , 228746.
      https://doi.org/10.1016/j.jpowsour.2020.228746
      
 58.  Mingzhe Chen, Qiannan Liu, Yanyan Zhang, Guichuan Xing, Shu-Lei Chou,
      Yuxin Tang. Emerging polyanionic and organic compounds for high energy
      density, non-aqueous potassium-ion batteries. Journal of Materials
      Chemistry A 2020, 8 (32) , 16061-16080. https://doi.org/10.1039/C9TA11221A
      
 59.  Huangxu Li, Ming Xu, Zhian Zhang, Yanqing Lai, Jianmin Ma. Engineering of
      Polyanion Type Cathode Materials for Sodium‐Ion Batteries: Toward Higher
      Energy/Power Density. Advanced Functional Materials 2020, 30 (28)
      https://doi.org/10.1002/adfm.202000473
      
 60.  Shan-Shan Fan, Hai-Ping Liu, Qian Liu, Cheng-Shuai Ma, Ting-Feng Yi.
      Comprehensive insights and perspectives into the recent progress of
      electrode materials for non-aqueous K-ion battery. Journal of Materiomics
      2020, 6 (2) , 431-454. https://doi.org/10.1016/j.jmat.2020.02.007
      
 61.  Zhenya Wang, Wenyun Yang, Jinbo Yang, Lirong Zheng, Kai Sun, Dongfeng
      Chen, Limei Sun, Xiangfeng Liu. Tuning the crystal and electronic
      structure of Li4Ti5O12 via Mg/La Co-doping for fast and stable lithium
      storage. Ceramics International 2020, 46 (9) , 12965-12974.
      https://doi.org/10.1016/j.ceramint.2020.02.066
      
 62.  Ting Jin, Huangxu Li, Kunjie Zhu, Peng-Fei Wang, Pei Liu, Lifang Jiao.
      Polyanion-type cathode materials for sodium-ion batteries. Chemical
      Society Reviews 2020, 49 (8) , 2342-2377.
      https://doi.org/10.1039/C9CS00846B
      
 63.  Ulf Breddemann, Ingo Krossing. Review on Synthesis, Characterization, and
      Electrochemical Properties of Fluorinated Nickel‐Cobalt‐Manganese Cathode
      Active Materials for Lithium‐Ion Batteries. ChemElectroChem 2020, 7 (6) ,
      1389-1430. https://doi.org/10.1002/celc.202000029
      
 64.  Wontae Lee, Shoaib Muhammad, Chernov Sergey, Hayeon Lee, Jaesang Yoon,
      Yong‐Mook Kang, Won‐Sub Yoon. Advances in the Cathode Materials for
      Lithium Rechargeable Batteries. Angewandte Chemie International Edition
      2020, 59 (7) , 2578-2605. https://doi.org/10.1002/anie.201902359
      
 65.  Wontae Lee, Shoaib Muhammad, Chernov Sergey, Hayeon Lee, Jaesang Yoon,
      Yong‐Mook Kang, Won‐Sub Yoon. Kathodenmaterialien für wiederaufladbare
      Lithiumbatterien. Angewandte Chemie 2020, 132 (7) , 2598-2626.
      https://doi.org/10.1002/ange.201902359
      
 66.  Yulia Arinicheva, Michael Wolff, Sandra Lobe, Christian Dellen, Dina
      Fattakhova-Rohlfing, Olivier Guillon, Daniel Böhm, Florian Zoller, Richard
      Schmuch, Jie Li, Martin Winter, Evan Adamczyk, Valérie Pralong. Ceramics
      for electrochemical storage. 2020, 549-709.
      https://doi.org/10.1016/B978-0-08-102726-4.00010-7
      
 67.  Hiroyoshi Momida, Ayuko Kitajou, Shigeto Okada, Tamio Oguchi.
      First-Principles Study of X-Ray Absorption Spectra in NaFeSO 4 F for
      Exploring Na-Ion Battery Reactions. Journal of the Physical Society of
      Japan 2019, 88 (12) , 124709. https://doi.org/10.7566/JPSJ.88.124709
      
 68.  Insang Hwang, Sung-Kyun Jung, Sung-Pyo Cho, Kisuk Kang. In operando
      formation of new iron-oxyfluoride host structure for Na-ion storage from
      NaF–FeO nanocomposite. Energy Storage Materials 2019, 23 , 427-433.
      https://doi.org/10.1016/j.ensm.2019.04.020
      
 69.  Muhammd Mamoor, Ruqian Lian, Dashuai Wang, Xing Meng, Gang Chen, Yingjin
      Wei. Structure, charge transfer, and kinetic properties of NaVPO 4 F with
      Na + extraction: a comprehensive first-principles study. Physical
      Chemistry Chemical Physics 2019, 21 (27) , 14612-14619.
      https://doi.org/10.1039/C9CP01819K
      
 70.  Andreas Blidberg, Mario Valvo, Maria Alfredsson, Carl Tengstedt, Torbjörn
      Gustafsson, Fredrik Björefors. Electronic changes in
      poly(3,4-ethylenedioxythiophene)-coated LiFeSO4F during electrochemical
      lithium extraction. Journal of Power Sources 2019, 418 , 84-89.
      https://doi.org/10.1016/j.jpowsour.2019.02.039
      
 71.  Baskar Senthilkumar, Chinnasamy Murugesan, Lalit Sharma, Shubham Lochab,
      Prabeer Barpanda. An Overview of Mixed Polyanionic Cathode Materials for
      Sodium‐Ion Batteries. Small Methods 2019, 3 (4)
      https://doi.org/10.1002/smtd.201800253
      
 72.  Mingzhe Chen, Qiannan Liu, Shi‐Wen Wang, Enhui Wang, Xiaodong Guo, Shu‐Lei
      Chou. High‐Abundance and Low‐Cost Metal‐Based Cathode Materials for
      Sodium‐Ion Batteries: Problems, Progress, and Key Technologies. Advanced
      Energy Materials 2019, 9 (14) https://doi.org/10.1002/aenm.201803609
      
 73.  Yuheng Zheng, Yaxiang Lu, Xingguo Qi, Yuesheng Wang, Linqin Mu, Yunming
      Li, Qiang Ma, Ju Li, Yong-Sheng Hu. Superior electrochemical performance
      of sodium-ion full-cell using poplar wood derived hard carbon anode.
      Energy Storage Materials 2019, 18 , 269-279.
      https://doi.org/10.1016/j.ensm.2018.09.002
      
 74.  Tuan Loi Nguyen, Tejaswi Tanaji Salunkhe, Thuan Ngoc Vo, Hyung Wook Choi,
      Young-Chul Lee, Jin-Seok Choi, Jaehyun Hur, Il Tae Kim. Tailored synthesis
      of antimony-based alloy/oxides nanosheets for high-performance sodium-ion
      battery anodes. Journal of Power Sources 2019, 414 , 470-478.
      https://doi.org/10.1016/j.jpowsour.2019.01.033
      
 75.  Radostina Stoyanova, Violeta Koleva, Antonia Stoyanova. Lithium versus
      Mono/Polyvalent Ion Intercalation: Hybrid Metal Ion Systems for Energy
      Storage. The Chemical Record 2019, 19 (2-3) , 474-501.
      https://doi.org/10.1002/tcr.201800081
      
 76.  Wenhua Zuo, Rui Liu, Gregorio F. Ortiz, Saúl Rubio, Taras Chyrka, Pedro
      Lavela, Shiyao Zheng, José L. Tirado, Donghao Wang, Yong Yang. Sodium
      storage behavior of Na0.66Ni0.33˗xZnxMn0.67O2 (x = 0, 0.07 and 0.14)
      positive materials in diglyme-based electrolytes. Journal of Power Sources
      2018, 400 , 317-324. https://doi.org/10.1016/j.jpowsour.2018.08.037
      
 77.  Laura Lander, Jean‐Marie Tarascon, Atsuo Yamada. Sulfate‐Based Cathode
      Materials for Li‐ and Na‐Ion Batteries. The Chemical Record 2018, 18 (10)
      , 1394-1408. https://doi.org/10.1002/tcr.201800071
      
 78.  Su Jin Kim, Boeun Lee, Kwan-Young Lee, Byung Won Cho, Si Hyoung Oh. Facile
      topotactic synthesis of tavorite LiFeSO 4 F using supercritical methanol.
      Journal of Power Sources 2018, 398 , 27-33.
      https://doi.org/10.1016/j.jpowsour.2018.07.047
      
 79.  Ranjusha Rajagopalan, Zhenguo Wu, Yumei Liu, Shaymaa Al-Rubaye, Enhui
      Wang, Chunjin Wu, Wei Xiang, Benhe Zhong, Xiaodong Guo, Shi Xue Dou, Hua
      Kun Liu. A novel high voltage battery cathodes of Fe 2+ /Fe 3+ sodium
      fluoro sulfate lined with carbon nanotubes for stable sodium batteries.
      Journal of Power Sources 2018, 398 , 175-182.
      https://doi.org/10.1016/j.jpowsour.2018.07.066
      
 80.  Ying Ma. Computer Simulation of Cathode Materials for Lithium Ion and
      Lithium Batteries: A Review. ENERGY & ENVIRONMENTAL MATERIALS 2018, 1 (3)
      , 148-173. https://doi.org/10.1002/eem2.12017
      
 81.  Sudip Chakraborty, Amitava Banerjee, Teeraphat Watcharatharapong, Rafael B
      Araujo, Rajeev Ahuja. Current computational trends in polyanionic cathode
      materials for Li and Na batteries. Journal of Physics: Condensed Matter
      2018, 30 (28) , 283003. https://doi.org/10.1088/1361-648X/aac62d
      
 82.  Prabeer Barpanda, Laura Lander, Shin‐ichi Nishimura, Atsuo Yamada.
      Polyanionic Insertion Materials for Sodium‐Ion Batteries. Advanced Energy
      Materials 2018, 8 (17) https://doi.org/10.1002/aenm.201703055
      
 83.  Abir Bejaoui, Ahmed Souamti, Massoud Kahlaoui, Antonio Diego
      Lozano-Gorrín, Dalila Ben Hassen Chehimi. Synthesis, electrical and
      dielectrical properties of (LixNa1–x)6Mg(SO4)4 vanthoffite ceramics as new
      attractive electrode materials for Li- and Na-ion batteries. Materials
      Science and Engineering: B 2018, 228 , 224-233.
      https://doi.org/10.1016/j.mseb.2017.12.001
      
 84.  Jing Liang, Yuhan Li, Xiaoying Hou, Fengdi Wang, Wanqiao Zhang, Jingping
      Zhang, Shuwei Tang, Hao Sun. Insight into electrochemical and elastic
      properties in AFe1-M SO4F (A = Li, Na; M = Co, Ni, Mg) cathode materials:
      A first principle study. Electrochimica Acta 2017, 251 , 316-323.
      https://doi.org/10.1016/j.electacta.2017.08.123
      
 85.  W. Deriouche, E. Anger, M. Freire, A. Maignan, N. Amdouni, V. Pralong. A
      vanadium oxy-phosphate Na 4 VO(PO 4 ) 2 as cathode material for Na ion
      batteries. Solid State Sciences 2017, 72 , 124-129.
      https://doi.org/10.1016/j.solidstatesciences.2017.08.017
      
 86.  Weina Xie, Xiaoling Yang, Yanyun Lin, Weiling Zhuang, Qiong Luo.
      First-principles study on surface properties of t-LiFeSO4F: Showing a
      potential way to enhance electronic conductivity. Chemical Physics Letters
      2017, 684 , 177-185. https://doi.org/10.1016/j.cplett.2017.04.097
      
 87.  Sheng-Ping Guo, Jia-Chuang Li, Qian-Ting Xu, Ze Ma, Huai-Guo Xue. Recent
      achievements on polyanion-type compounds for sodium-ion batteries:
      Syntheses, crystal chemistry and electrochemical performance. Journal of
      Power Sources 2017, 361 , 285-299.
      https://doi.org/10.1016/j.jpowsour.2017.07.002
      
 88.  Andreas Blidberg, Adam Sobkowiak, Carl Tengstedt, Mario Valvo, Torbjörn
      Gustafsson, Fredrik Björefors. Identifying the Electrochemical Processes
      in LiFeSO 4 F Cathodes for Lithium Ion Batteries. ChemElectroChem 2017, 4
      (8) , 1896-1907. https://doi.org/10.1002/celc.201700192
      
 89.  Qiao Ni, Ying Bai, Feng Wu, Chuan Wu. Polyanion‐Type Electrode Materials
      for Sodium‐Ion Batteries. Advanced Science 2017, 4 (3)
      https://doi.org/10.1002/advs.201600275
      
 90.  Jang-Yeon Hwang, Seung-Taek Myung, Yang-Kook Sun. Sodium-ion batteries:
      present and future. Chemical Society Reviews 2017, 46 (12) , 3529-3614.
      https://doi.org/10.1039/C6CS00776G
      
 91.  Chen Ling, Ruigang Zhang. Anomalously high Na + and low Li + mobility in
      intercalated Na 2 Ti 6 O 13. Physical Chemistry Chemical Physics 2017, 19
      (15) , 10036-10041. https://doi.org/10.1039/C7CP01138E
      
 92.  Teeraphat Watcharatharapong, Jiraroj T-Thienprasert, Prabeer Barpanda,
      Rajeev Ahuja, Sudip Chakraborty. Mechanistic study of Na-ion diffusion and
      small polaron formation in Kröhnkite Na 2 Fe(SO 4 ) 2 ·2H 2 O based
      cathode materials. J. Mater. Chem. A 2017, 5 (41) , 21726-21739.
      https://doi.org/10.1039/C7TA04508E
      
 93.  Radha Shivaramaiah, Laura Lander, G. P. Nagabhushana, Gwenaëlle Rousse,
      Jean‐Marie Tarascon, Alexandra Navrotsky. Thermodynamic Properties of
      Polymorphs of Fluorosulfate Based Cathode Materials with Exchangeable
      Potassium Ions. ChemPhysChem 2016, 17 (21) , 3365-3368.
      https://doi.org/10.1002/cphc.201600960
      
 94.  Hyungsub Kim, Haegyeom Kim, Zhang Ding, Myeong Hwan Lee, Kyungmi Lim,
      Gabin Yoon, Kisuk Kang. Recent Progress in Electrode Materials for
      Sodium‐Ion Batteries. Advanced Energy Materials 2016, 6 (19)
      https://doi.org/10.1002/aenm.201600943
      
 95.  Jesús Muñiz, Marina E. Rincón, Próspero Acevedo-Peña. The role of the
      oxide shell on the stability and energy storage properties of MWCNT@TiO
      22
      2 nanohybrid materials used in Li-ion batteries. Theoretical Chemistry
      Accounts 2016, 135 (7) https://doi.org/10.1007/s00214-016-1940-7
      
 96.  Ali Darwiche, Romain Dugas, Bernard Fraisse, Laure Monconduit. Reinstating
      lead for high-loaded efficient negative electrode for rechargeable
      sodium-ion battery. Journal of Power Sources 2016, 304 , 1-8.
      https://doi.org/10.1016/j.jpowsour.2015.10.087
      
 97.  Dario Marrocchelli, Céline Merlet, Mathieu Salanne. Molecular Dynamics
      Simulations of Electrochemical Energy Storage Devices. 2016, 61-89.
      https://doi.org/10.1007/978-1-4471-5677-2_3
      
 98.  Meng Tian, Yurui Gao, Zhaoxiang Wang, Liquan Chen. Understanding
      structural stability of monoclinic LiMnO 2 and NaMnO 2 upon
      de-intercalation. Physical Chemistry Chemical Physics 2016, 18 (26) ,
      17345-17350. https://doi.org/10.1039/C6CP02019D
      
 99.  Kyu-Young Park, Inchul Park, Hyungsub Kim, Gabin Yoon, Hyeokjo Gwon,
      Yongbeom Cho, Young Soo Yun, Jung-Joon Kim, Seongsu Lee, Docheon Ahn,
      Yunok Kim, Haegyeom Kim, Insang Hwang, Won-Sub Yoon, Kisuk Kang.
      Lithium-excess olivine electrode for lithium rechargeable batteries.
      Energy & Environmental Science 2016, 9 (9) , 2902-2915.
      https://doi.org/10.1039/C6EE01266C
      
 100. Jianhua Gao, Xunshan Sha, Xi Liu, Limei Song, Pan Zhao. Preparation,
      structure and properties of Na 2 Mn 3 (SO 4 ) 4 : a new potential
      candidate with high voltage for Na-ion batteries. Journal of Materials
      Chemistry A 2016, 4 (30) , 11870-11877. https://doi.org/10.1039/C6TA02629J
      

Load all citations
Download PDF

Get e-Alerts
Get e-Alerts


CHEMISTRY OF MATERIALS

Cite this: Chem. Mater. 2011, 23, 8, 2278–2284
Click to copy citationCitation copied!
https://doi.org/10.1021/cm200683n
Published March 30, 2011


PUBLICATION HISTORY

 * Received 
   
   7 March 2011

 * Revised 
   
   10 March 2011

 * Published 
   
   online 30 March 2011

 * Published 
   
   in issue 26 April 2011

Copyright © 2011 American Chemical Society
Request reuse permissions


ARTICLE VIEWS

4422


ALTMETRIC

-



CITATIONS

159
Learn about these metrics
close

Article Views are the COUNTER-compliant sum of full text article downloads since
November 2008 (both PDF and HTML) across all institutions and individuals. These
metrics are regularly updated to reflect usage leading up to the last few days.

Citations are the number of other articles citing this article, calculated by
Crossref and updated daily. Find more information about Crossref citation
counts.

The Altmetric Attention Score is a quantitative measure of the attention that a
research article has received online. Clicking on the donut icon will load a
page at altmetric.com with additional details about the score and the social
media presence for the given article. Find more information on the Altmetric
Attention Score and how the score is calculated.


RECOMMENDED ARTICLES


 * STRUCTURAL, TRANSPORT, AND ELECTROCHEMICAL INVESTIGATION OF NOVEL AMSO4F (A =
   NA, LI; M = FE, CO, NI, MN) METAL FLUOROSULPHATES PREPARED USING LOW
   TEMPERATURE SYNTHESIS ROUTES
   
   July 14, 2010Inorganic Chemistry
    * Prabeer Barpanda
    * , 
    * Jean-Noël Chotard
    * , 
    * Nadir Recham
    * , 
    * Charles Delacourt
    * , 
    * Mohamed Ati
    * , 
    * Loic Dupont
    * , 
    * Michel Armand
    * , and 
    * Jean-Marie Tarascon*
    * 


 * NEW CLASS OF 3.7 V FE-BASED POSITIVE ELECTRODE MATERIALS FOR NA-ION BATTERY
   BASED ON CATION-DISORDERED POLYANION FRAMEWORK
   
   August 31, 2018Chemistry of Materials
    * Minkyu Kim
    * , 
    * Donghoon Kim
    * , 
    * Wontae Lee
    * , 
    * Hyun Myung Jang
    * , and 
    * Byoungwoo Kang*
    * 


 * AMORPHOUS XNAF-FESO4 SYSTEMS (1 ≤ X ≤ 2) WITH EXCELLENT CATHODE PROPERTIES
   FOR SODIUM-ION BATTERIES
   
   August 1, 2019ACS Applied Energy Materials
    * Ayuko Kitajou*
    * , 
    * Hiroyoshi Momida
    * , 
    * Takahiro Yamashita
    * , 
    * Tamio Oguchi
    * , and 
    * Shigeto Okada*
    * 


 * PREPARATION AND CHARACTERIZATION OF A STABLE FESO4F-BASED FRAMEWORK FOR
   ALKALI ION INSERTION ELECTRODES
   
   November 13, 2012Chemistry of Materials
    * Nadir Recham
    * , 
    * Gwenaëlle Rousse
    * , 
    * Moulay T. Sougrati
    * , 
    * Jean-Noël Chotard
    * , 
    * Christine Frayret
    * , 
    * Sathiya Mariyappan
    * , 
    * Brent C. Melot
    * , 
    * Jean-Claude Jumas
    * , and 
    * Jean-Marie Tarascon*
    * 


 * ATOMIC-SCALE INVESTIGATION OF DEFECTS, DOPANTS, AND LITHIUM TRANSPORT IN THE
   LIFEPO4 OLIVINE-TYPE BATTERY MATERIAL
   
   September 8, 2005Chemistry of Materials
    * M. Saiful Islam
    * , 
    * Daniel J. Driscoll
    * , 
    * Craig A. J. Fisher
    * , and 
    * Peter R. Slater
    * 

   Sponsored Content
   Brought to you by ACS
   ACS Campaign for a Sustainable Future
   Find out how ACS is shaping the future of sustainable chemistry and learn
   ways to get involved
   
   ADVERTISEMENT
   

Show moreShow lessrecommended articles



PARTNERS


 * 1155 Sixteenth Street N.W.
 * Washington, DC 20036
 * Copyright © 2024
   American Chemical Society




ABOUT

 * About ACS Publications
 * ACS & Open Access
 * ACS Membership
 * ACS Publications Blog


RESOURCES AND INFORMATION

 * Journals A-Z
 * Books and Reference
 * Advertising Media Kit
 * Institutional Sales
 * ACS Researcher Resources
 * Privacy Policy
 * Terms of Use


SUPPORT & CONTACT

 * Help
 * Live Chat
 * FAQ


CONNECT WITH ACS PUBLICATIONS

 * 
 * 
 * 
 * 
 * 

Monday, October 28, 2024

Please be aware that pubs.acs.org is undergoing maintenance on Friday, September
6, at 6 p.m. EDT that may have an impact on your experience. During this time,
you may not be able to access certain features like login, purchasing single
articles, saving searches or running existing saved searches, modifying your
e-Alert preferences, or accessing Librarian administrative functions. We
appreciate your patience as we continue to improve the ACS Publications
platform.


THIS WEBSITE USES COOKIES TO IMPROVE YOUR USER EXPERIENCE. BY CONTINUING TO USE
THE SITE, YOU ARE ACCEPTING OUR USE OF COOKIES. READ THE ACS PRIVACY POLICY.

CONTINUE
✓
Thanks for sharing!
AddToAny
More…





Live Chat