pubs.acs.org
Open in
urlscan Pro
104.18.34.234
Public Scan
Submitted URL: https://doi.org/10.1021/cm200683n?urlappend=?ref=PDF
Effective URL: https://pubs.acs.org/doi/10.1021/cm200683n?ref=PDF
Submission: On October 28 via api from HK — Scanned from CA
Effective URL: https://pubs.acs.org/doi/10.1021/cm200683n?ref=PDF
Submission: On October 28 via api from HK — Scanned from CA
Form analysis
2 forms found in the DOMName: defaultQuickSearch — GET /action/checkIsValidDoi
<form action="/action/checkIsValidDoi" name="defaultQuickSearch" method="get" title="Quick Search" autocomplete="off" class="quick-search_default"><input type="search" name="AllField" placeholder="Search text, DOI, authors, etc."
aria-label="Search text, DOI, authors, etc." data-auto-complete-max-words="7" data-auto-complete-max-chars="32" data-contributors-conf="3" data-topics-conf="3" data-publication-titles-conf="3" data-history-items-conf="3" value="" required="true"
class="quick-search_all-field autocomplete ui-autocomplete-input"><button type="submit" title="Search" class="icon-search"></button>
<div role="radiogroup" aria-label="journal filter" class="quick-search_journal-filter"><label for="thisJournalRadio" class="radio--primary"><input id="thisJournalRadio" type="radio" value="cmatex" name="SeriesKey" checked="checked"
class="all-content"><span>Chem. Mater.</span></label><label for="allPubRadio" class="radio--primary"><input id="allPubRadio" type="radio" value="" name="SeriesKey" class="all-content"><span>All Publications/Website</span></label></div>
<ul id="ui-id-1" tabindex="0" class="ui-menu ui-widget ui-widget-content ui-autocomplete ui-front" style="display: none;"></ul>
</form>
Name: citationQuickSearch — GET /action/quickLink
<form action="/action/quickLink" name="citationQuickSearch" method="get" title="Quick Search" class="quick-search_citation"><input type="hidden" name="quickLink" value="true"><select name="quickLinkJournal" class="quick-search_journals-select">
<option value="cmatex">Chemistry of Materials</option>
<option value="achre4">Accounts of Chemical Research</option>
<option value="amrcda">Accounts of Materials Research</option>
<option value="aastgj">ACS Agricultural Science & Technology</option>
<option value="aabmcb">ACS Applied Bio Materials</option>
<option value="aaembp">ACS Applied Electronic Materials</option>
<option value="aaemcq">ACS Applied Energy Materials</option>
<option value="aaemdr">ACS Applied Engineering Materials</option>
<option value="aamick">ACS Applied Materials & Interfaces</option>
<option value="aanmf6">ACS Applied Nano Materials</option>
<option value="aaoma6">ACS Applied Optical Materials</option>
<option value="aapmcd">ACS Applied Polymer Materials</option>
<option value="abmcb8">ACS Bio & Med Chem Au</option>
<option value="abseba">ACS Biomaterials Science & Engineering</option>
<option value="accacs">ACS Catalysis</option>
<option value="acscii">ACS Central Science</option>
<option value="acbcct">ACS Chemical Biology</option>
<option value="achsc5">ACS Chemical Health & Safety</option>
<option value="acncdm">ACS Chemical Neuroscience</option>
<option value="acsccc">ACS Combinatorial Science</option>
<option value="aesccq">ACS Earth and Space Chemistry</option>
<option value="aeclc7">ACS Electrochemistry</option>
<option value="aelccp">ACS Energy Letters</option>
<option value="aeacb3">ACS Engineering Au</option>
<option value="aeacc4">ACS Environmental Au</option>
<option value="aeacd5">ACS ES&T Air</option>
<option value="aeecco">ACS ES&T Engineering</option>
<option value="aewcaa">ACS ES&T Water</option>
<option value="afsthl">ACS Food Science & Technology</option>
<option value="aidcbc">ACS Infectious Diseases</option>
<option value="amlccd">ACS Macro Letters</option>
<option value="amacgu">ACS Materials Au</option>
<option value="amlcef">ACS Materials Letters</option>
<option value="amachv">ACS Measurement Science Au</option>
<option value="amclct">ACS Medicinal Chemistry Letters</option>
<option value="ancac3">ACS Nano</option>
<option value="anaccx">ACS Nanoscience Au</option>
<option value="acsodf">ACS Omega</option>
<option value="aoiab5">ACS Organic & Inorganic Au</option>
<option value="aptsfn">ACS Pharmacology & Translational Science</option>
<option value="apchd5">ACS Photonics</option>
<option value="apcach">ACS Physical Chemistry Au</option>
<option value="apaccd">ACS Polymers Au</option>
<option value="ascefj">ACS Sensors</option>
<option value="ascecg">ACS Sustainable Chemistry & Engineering</option>
<option value="asrmcd">ACS Sustainable Resource Management</option>
<option value="asbcd6">ACS Synthetic Biology</option>
<option value="ancham">Analytical Chemistry</option>
<option value="apwdam">Artificial Photosynthesis</option>
<option value="bichaw">Biochemistry</option>
<option value="bcches">Bioconjugate Chemistry</option>
<option value="bomaf6">Biomacromolecules</option>
<option value="bipret">Biotechnology Progress</option>
<option value="cgeabj">C&EN Global Enterprise</option>
<option value="cbehb5">Chem & Bio Engineering</option>
<option value="cbihbp">Chemical & Biomedical Imaging</option>
<option value="cenear">Chemical & Engineering News Archive</option>
<option value="chlseg">Chemical Health & Safety</option>
<option value="chlseg0">Chemical Health & Safety</option>
<option value="crtoec">Chemical Research in Toxicology</option>
<option value="chreay">Chemical Reviews</option>
<option value="cgdefu">Crystal Growth & Design</option>
<option value="enfuem">Energy & Fuels</option>
<option value="ehnea2">Environment & Health</option>
<option value="esthag">Environmental Science & Technology</option>
<option value="estlcu">Environmental Science & Technology Letters</option>
<option value="iepra6.2">I&EC Product Research and Development</option>
<option value="iechad">Industrial & Engineering Chemistry</option>
<option value="iecac0">Industrial & Engineering Chemistry Analytical Edition</option>
<option value="iecjc0">Industrial & Engineering Chemistry Chemical & Engineering Data Series</option>
<option value="iecfa7">Industrial & Engineering Chemistry Fundamentals</option>
<option value="iepdaw">Industrial & Engineering Chemistry Process Design and Development</option>
<option value="iepra6">Industrial & Engineering Chemistry Product Research and Development</option>
<option value="iecred">Industrial & Engineering Chemistry Research</option>
<option value="iecnav">Industrial and Engineering Chemistry, News Edition</option>
<option value="inocaj">Inorganic Chemistry</option>
<option value="jaaucr">JACS Au</option>
<option value="jacsat">Journal of the American Chemical Society</option>
<option value="jafcau">Journal of Agricultural and Food Chemistry</option>
<option value="jceaax">Journal of Chemical & Engineering Data</option>
<option value="jci001">Journal of Chemical Documentation</option>
<option value="jceda8">Journal of Chemical Education</option>
<option value="jchsc20">Journal of Chemical Health & Safety</option>
<option value="jcics1">Journal of Chemical Information and Computer Sciences</option>
<option value="jcisd8">Journal of Chemical Information and Modeling</option>
<option value="jctcce">Journal of Chemical Theory and Computation</option>
<option value="jcchff">Journal of Combinatorial Chemistry</option>
<option value="iechad.1">Journal of Industrial & Engineering Chemistry</option>
<option value="jmcmar.1">Journal of Medicinal and Pharmaceutical Chemistry</option>
<option value="jmcmar">Journal of Medicinal Chemistry</option>
<option value="jnprdf">Journal of Natural Products</option>
<option value="joceah">The Journal of Organic Chemistry</option>
<option value="jpchax">The Journal of Physical Chemistry</option>
<option value="jpchax.2">The Journal of Physical Chemistry</option>
<option value="jpcafh">The Journal of Physical Chemistry A</option>
<option value="jpcbfk">The Journal of Physical Chemistry B</option>
<option value="jpccck">The Journal of Physical Chemistry C</option>
<option value="jpclcd">The Journal of Physical Chemistry Letters</option>
<option value="jprobs">Journal of Proteome Research</option>
<option value="jamsef">Journal of the American Society for Mass Spectrometry</option>
<option value="jamsef1">Journal of the American Society for Mass Spectrometry</option>
<option value="jamsef0">Journal of the American Society for Mass Spectrometry</option>
<option value="langd5">Langmuir</option>
<option value="mamobx">Macromolecules</option>
<option value="mpohbp">Molecular Pharmaceutics</option>
<option value="nalefd">Nano Letters</option>
<option value="neaca9">News Edition, American Chemical Society</option>
<option value="orlef7">Organic Letters</option>
<option value="oprdfk">Organic Process Research & Development</option>
<option value="orgnd7">Organometallics</option>
<option value="pstoco">Polymer Science & Technology</option>
<option value="pcrhej">Precision Chemistry</option>
<option value="iepra6.1">Product R&D</option>
<option value="scimts">SciMeetings</option>
<option value="jpchax.1">The Journal of Physical and Colloid Chemistry</option>
</select><input type="search" inputmode="numeric" pattern="[0-9]*" name="quickLinkVolume" autocomplete="false" placeholder="Vol" required="required" class="quick-search_volume-input"><input type="search" inputmode="numeric" pattern="[0-9]*"
name="quickLinkPage" autocomplete="false" placeholder="Page" required="required" class="quick-search_page-input"><button type="submit" title="Search" class="icon-search"></button></form>
Text Content
Recently Viewedclose modal Recently Viewed YOU HAVE NOT VISITED ANY ARTICLES YET, PLEASE VISIT SOME ARTICLES TO SEE CONTENTS HERE. * ACS * ACS Publications * C&EN * CAS Find my institution Log In Alkali-ion Conduction Paths in LiFeSO4F and NaFeSO4F Tavorite-Type Cathode Materials * Cite * Citation * Citation and abstract * Citation and references * More citation options * Share Share on * Facebook * X (Twitter) * Wechat * LinkedIn * Reddit * Email * Jump to * Abstract * Cited By * ExpandCollapse Back to top Chem. Mater.All Publications/Website OR SEARCH CITATIONS Chemistry of MaterialsAccounts of Chemical ResearchAccounts of Materials ResearchACS Agricultural Science & TechnologyACS Applied Bio MaterialsACS Applied Electronic MaterialsACS Applied Energy MaterialsACS Applied Engineering MaterialsACS Applied Materials & InterfacesACS Applied Nano MaterialsACS Applied Optical MaterialsACS Applied Polymer MaterialsACS Bio & Med Chem AuACS Biomaterials Science & EngineeringACS CatalysisACS Central ScienceACS Chemical BiologyACS Chemical Health & SafetyACS Chemical NeuroscienceACS Combinatorial ScienceACS Earth and Space ChemistryACS ElectrochemistryACS Energy LettersACS Engineering AuACS Environmental AuACS ES&T AirACS ES&T EngineeringACS ES&T WaterACS Food Science & TechnologyACS Infectious DiseasesACS Macro LettersACS Materials AuACS Materials LettersACS Measurement Science AuACS Medicinal Chemistry LettersACS NanoACS Nanoscience AuACS OmegaACS Organic & Inorganic AuACS Pharmacology & Translational ScienceACS PhotonicsACS Physical Chemistry AuACS Polymers AuACS SensorsACS Sustainable Chemistry & EngineeringACS Sustainable Resource ManagementACS Synthetic BiologyAnalytical ChemistryArtificial PhotosynthesisBiochemistryBioconjugate ChemistryBiomacromoleculesBiotechnology ProgressC&EN Global EnterpriseChem & Bio EngineeringChemical & Biomedical ImagingChemical & Engineering News ArchiveChemical Health & SafetyChemical Health & SafetyChemical Research in ToxicologyChemical ReviewsCrystal Growth & DesignEnergy & FuelsEnvironment & HealthEnvironmental Science & TechnologyEnvironmental Science & Technology LettersI&EC Product Research and DevelopmentIndustrial & Engineering ChemistryIndustrial & Engineering Chemistry Analytical EditionIndustrial & Engineering Chemistry Chemical & Engineering Data SeriesIndustrial & Engineering Chemistry FundamentalsIndustrial & Engineering Chemistry Process Design and DevelopmentIndustrial & Engineering Chemistry Product Research and DevelopmentIndustrial & Engineering Chemistry ResearchIndustrial and Engineering Chemistry, News EditionInorganic ChemistryJACS AuJournal of the American Chemical SocietyJournal of Agricultural and Food ChemistryJournal of Chemical & Engineering DataJournal of Chemical DocumentationJournal of Chemical EducationJournal of Chemical Health & SafetyJournal of Chemical Information and Computer SciencesJournal of Chemical Information and ModelingJournal of Chemical Theory and ComputationJournal of Combinatorial ChemistryJournal of Industrial & Engineering ChemistryJournal of Medicinal and Pharmaceutical ChemistryJournal of Medicinal ChemistryJournal of Natural ProductsThe Journal of Organic ChemistryThe Journal of Physical ChemistryThe Journal of Physical ChemistryThe Journal of Physical Chemistry AThe Journal of Physical Chemistry BThe Journal of Physical Chemistry CThe Journal of Physical Chemistry LettersJournal of Proteome ResearchJournal of the American Society for Mass SpectrometryJournal of the American Society for Mass SpectrometryJournal of the American Society for Mass SpectrometryLangmuirMacromoleculesMolecular PharmaceuticsNano LettersNews Edition, American Chemical SocietyOrganic LettersOrganic Process Research & DevelopmentOrganometallicsPolymer Science & TechnologyPrecision ChemistryProduct R&DSciMeetingsThe Journal of Physical and Colloid Chemistry My Activity close Recently Viewed YOU HAVE NOT VISITED ANY ARTICLES YET, PLEASE VISIT SOME ARTICLES TO SEE CONTENTS HERE. Publications * publications * my Activity * Recently Viewed * user resources * Access Options * Authors & Reviewers * ACS Members * Curated Content * eAlerts * RSS & Mobile * for organizations * Products & Services * Get Access * Manage My Account * support * Website Demos & Tutorials * Support FAQs * Live Chat with Agent * For Advertisers * For Librarians & Account Managers * pairing * Pair a device * My ProfileLoginLogoutPair a device * about us * Overview * ACS & Open Access * Partners * Blog * Events Recently Viewed YOU HAVE NOT VISITED ANY ARTICLES YET, PLEASE VISIT SOME ARTICLES TO SEE CONTENTS HERE. Publications CONTENT TYPES * ALL TYPES SUBJECTS Publications: All Types Download Hi-Res ImageDownload to MS-PowerPointCite This:Chem. Mater. 2011, 23, 8, 2278-2284 ADVERTISEMENT * Info * Metrics Chemistry of Materials Vol 23/Issue 8 Article Get e-Alerts * Cite * Citation * Citation and abstract * Citation and references * More citation options * Share Share on * Facebook * X (Twitter) * WeChat * LinkedIn * Reddit * Email * Jump to * Abstract * Cited By * ExpandCollapse ArticleMarch 30, 2011 ALKALI-ION CONDUCTION PATHS IN LIFESO4F AND NAFESO4F TAVORITE-TYPE CATHODE MATERIALS CLICK TO COPY ARTICLE LINKARTICLE LINK COPIED! * Rajesh Tripathi† * Grahame R. Gardiner‡ * M. Saiful Islam*‡ * Linda F. Nazar*† View Author InformationView Author Information † Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 ‡ Department of Chemistry, University of Bath, Bath, United Kingdom BA2 7AY *E-mail addresses: lfnazar@uwaterloo.ca (L.F.N.), m.s.islam@bath.ac.uk (M.S.I.). Access Through Access is not provided via Institution Name Loading Institutional Login Options... Access Through Your Institution Add or Change Institution Explore subscriptions for institutions Other Access Options CHEMISTRY OF MATERIALS Cite this: Chem. Mater. 2011, 23, 8, 2278–2284 Click to copy citationCitation copied! https://pubs.acs.org/doi/10.1021/cm200683n https://doi.org/10.1021/cm200683n Published March 30, 2011 PUBLICATION HISTORY * Received 7 March 2011 * Revised 10 March 2011 * Published online 30 March 2011 * Published in issue 26 April 2011 research-article Copyright © 2011 American Chemical Society Request reuse permissions ABSTRACT Click to copy section linkSection link copied! A new family of fluorosulfates has attracted considerable attention as alternative positive electrode materials for rechargeable lithium batteries. However, an atomic-scale understanding of the ion conduction paths in these systems is still lacking, and this is important for developing strategies for optimization of the electrochemical properties. Here, the alkali-ion transport behavior of both LiFeSO4F and NaFeSO4F are investigated by atomistic modeling methods. Activation energies for numerous ion migration paths through the complex structures are calculated. The results indicate that LiFeSO4F is effectively a three-dimensional (3D) lithium-ion conductor with an activation energy of ∼0.4 eV for long-range diffusion, which involve a combination of zigzag paths through [100], [010], and [111] tunnels in the open tavorite lattice. In contrast, for the related NaFeSO4F, only one direction ([101]) is found to have a relatively low activation energy (0.6 eV). This leads to a diffusion coefficient that is more than 6 orders of magnitude lower than any other direction, suggesting that NaFeSO4F is a one-dimensional (1D) Na-ion conductor. ACS Publications Copyright © 2011 American Chemical Society SUBJECTS what are subjects Article subjects are automatically applied from the ACS Subject Taxonomy and describe the scientific concepts and themes of the article. * Activation energy * Chemical structure * Genetics * Ions * Materials KEYWORDS what are keywords Article keywords are supplied by the authors and highlight key terms and topics of the paper. * Li-ion battery * lithium iron fluorosulfate * sodium iron fluorosulfate * atomistic modeling * ion transport * lithium ion conductor * sodium ion conductor READ THIS ARTICLE To access this article, please review the available access options below. Recommended ACCESS THROUGH YOUR INSTITUTION You may have access to this article through your institution. Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access. Access Through Recommend Publication Institution Name Loading Institutional Login Options... Access Through Your Institution Add or Change Institution Explore subscriptions for institutions Get instant access PURCHASE ACCESS Read this article for 48 hours. Check out below using your ACS ID or as a guest. Purchase Access Restore my guest access Recommended LOG IN TO ACCESS You may have access to this article with your ACS ID if you have previously purchased it or have ACS member benefits. Log in below. Login with ACS ID * Purchase access Purchase this article for 48 hours $48.00 Add to cart Purchase this article for 48 hours Checkout CITED BY Click to copy section linkSection link copied! Citation Statements beta Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by ACS Publications if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles. * Supporting Supporting20 * Mentioning Mentioning153 * Contrasting Contrasting0 Explore this article's citation statements on scite.ai powered by This article is cited by 159 publications. 1. Wei Wei, Tao Ye, Zunqiu Xiao, Kejia Xiang, Huaying Wang, Zhongtai Zhang, Shitong Wang, Zilong Tang. Synthesis of a Sodium-Ion Cathode Material Na3Fe2(SO4)3F with the Help of Fluorine Element. ACS Applied Materials & Interfaces 2024, 16 (37) , 49362-49370. https://doi.org/10.1021/acsami.4c09115 2. Fiaz Hussain, Hamza Maqbool, Songbai Han, Liping Wang, Jinlong Zhu, Yusheng Zhao, Wei Xia. Na2FeS2 Cathode for Sodium-Ion Batteries: A Theoretical Study. ACS Applied Energy Materials 2023, 6 (14) , 7563-7570. https://doi.org/10.1021/acsaem.3c00973 3. Menghang Zhang, Hui Pan, Yigang Wang, Jingui Yang, Hao Dong, Ping He, Haoshen Zhou. Research on Li+/Na+ Selectivity of NASICON-Type Solid-State Ion Conductors by First-Principles Calculations. Energy & Fuels 2023, 37 (14) , 10663-10672. https://doi.org/10.1021/acs.energyfuels.3c01502 4. Kévin Lemoine, Annie Hémon-Ribaud, Marc Leblanc, Jérôme Lhoste, Jean-Marie Tarascon, Vincent Maisonneuve. Fluorinated Materials as Positive Electrodes for Li- and Na-Ion Batteries. Chemical Reviews 2022, 122 (18) , 14405-14439. https://doi.org/10.1021/acs.chemrev.2c00247 5. Yansong Bai, Xiaoyan Zhang, Hongbo Shu, Zhigao Luo, Hai Hu, Qinglan Zhao, Ying Wang, Xianyou Wang. Superior Na-Storage Properties of Nickel-Substituted Na2FeSiO4@C Microspheres Encapsulated with the In Situ-Synthesized Alveolation-like Carbon Matrix. ACS Applied Materials & Interfaces 2020, 12 (31) , 34858-34872. https://doi.org/10.1021/acsami.0c07894 6. Andreas Blidberg, Torbjörn Gustafsson, Carl Tengstedt, Fredrik Björefors, and William R. Brant . Monitoring LixFeSO4F (x = 1, 0.5, 0) Phase Distributions in Operando To Determine Reaction Homogeneity in Porous Battery Electrodes. Chemistry of Materials 2017, 29 (17) , 7159-7169. https://doi.org/10.1021/acs.chemmater.7b01019 7. Xiaoqi Sun, Rajesh Tripathi, Guerman Popov, Mahalingam Balasubramanian, and Linda F. Nazar . Stabilization of Lithium Transition Metal Silicates in the Olivine Structure. Inorganic Chemistry 2017, 56 (16) , 9931-9937. https://doi.org/10.1021/acs.inorgchem.7b01453 8. Vaishali Sharma, Diptikanta Swain, and Tayur N. Guru Row . Superionic Behavior and Phase Transition in a Vanthoffite Mineral. Inorganic Chemistry 2017, 56 (11) , 6048-6051. https://doi.org/10.1021/acs.inorgchem.7b00802 9. Pieremanuele Canepa, Gopalakrishnan Sai Gautam, Daniel C. Hannah, Rahul Malik, Miao Liu, Kevin G. Gallagher, Kristin A. Persson, and Gerbrand Ceder . Odyssey of Multivalent Cathode Materials: Open Questions and Future Challenges. Chemical Reviews 2017, 117 (5) , 4287-4341. https://doi.org/10.1021/acs.chemrev.6b00614 10. Shiliang Zhou, Gözde Barim, Benjamin J. Morgan, Brent C. Melot, and Richard L. Brutchey . Influence of Rotational Distortions on Li+- and Na+-Intercalation in Anti-NASICON Fe2(MoO4)3. Chemistry of Materials 2016, 28 (12) , 4492-4500. https://doi.org/10.1021/acs.chemmater.6b01806 11. Randy Jalem, Ryosuke Natsume, Masanobu Nakayama, and Toshihiro Kasuga . First-Principles Investigation of the Na+ Ion Transport Property in Oxyfluorinated Titanium(IV) Phosphate Na3Ti2P2O10F. The Journal of Physical Chemistry C 2016, 120 (3) , 1438-1445. https://doi.org/10.1021/acs.jpcc.5b12115 12. Zhendong Guo, Dong Zhang, Hailong Qiu, Tong Zhang, Qiang Fu, Lijie Zhang, Xiao Yan, Xing Meng, Gang Chen, and Yingjin Wei . Improved Cycle Stability and Rate Capability of Graphene Oxide Wrapped Tavorite LiFeSO4F as Cathode Material for Lithium-Ion Batteries. ACS Applied Materials & Interfaces 2015, 7 (25) , 13972-13979. https://doi.org/10.1021/acsami.5b02966 13. Randy Jalem, Mayumi Kimura, Masanobu Nakayama, and Toshihiro Kasuga . Informatics-Aided Density Functional Theory Study on the Li Ion Transport of Tavorite-Type LiMTO4F (M3+–T5+, M2+–T6+). Journal of Chemical Information and Modeling 2015, 55 (6) , 1158-1168. https://doi.org/10.1021/ci500752n 14. Andreas Blidberg, Lennart Häggström, Tore Ericsson, Carl Tengstedt, Torbjörn Gustafsson, and Fredrik Björefors . Structural and Electronic Changes in Li2FeP2O7 during Electrochemical Cycling. Chemistry of Materials 2015, 27 (11) , 3801-3804. https://doi.org/10.1021/acs.chemmater.5b00440 15. Xian Zhang, Qiuran Wang, Zhimin Ma, Jianqiao He, Zhe Wang, Chong Zheng, Jianhua Lin, and Fuqiang Huang . Synthesis, Structure, Multiband Optical, and Electrical Conductive Properties of a 3D Open Cubic Framework Based on [Cu8Sn6S24]z− Clusters. Inorganic Chemistry 2015, 54 (11) , 5301-5308. https://doi.org/10.1021/acs.inorgchem.5b00317 16. Dipan Kundu, Rajesh Tripathi, Guerman Popov, W. R. M. Makahnouk, and Linda F. Nazar . Synthesis, Structure, and Na-Ion Migration in Na4NiP2O7F2: A Prospective High Voltage Positive Electrode Material for the Na-Ion Battery. Chemistry of Materials 2015, 27 (3) , 885-891. https://doi.org/10.1021/cm504058k 17. Rodolpho Mouta, Maria Águida B. Melo, Eduardo M. Diniz, and Carlos William A. Paschoal . Concentration of Charge Carriers, Migration, and Stability in Li3OCl Solid Electrolytes. Chemistry of Materials 2014, 26 (24) , 7137-7144. https://doi.org/10.1021/cm503717e 18. Naoaki Yabuuchi, Kei Kubota, Mouad Dahbi, and Shinichi Komaba . Research Development on Sodium-Ion Batteries. Chemical Reviews 2014, 114 (23) , 11636-11682. https://doi.org/10.1021/cr500192f 19. Adam Sobkowiak, Matthew R. Roberts, Lennart Häggström, Tore Ericsson, Anna M. Andersson, Kristina Edström, Torbjörn Gustafsson, and Fredrik Björefors . Identification of an Intermediate Phase, Li1/2FeSO4F, Formed during Electrochemical Cycling of Tavorite LiFeSO4F. Chemistry of Materials 2014, 26 (15) , 4620-4628. https://doi.org/10.1021/cm502104q 20. Christopher Eames, John M. Clark, Gwenaelle Rousse, Jean-Marie Tarascon, and M. Saiful Islam . Lithium Migration Pathways and van der Waals Effects in the LiFeSO4OH Battery Material. Chemistry of Materials 2014, 26 (12) , 3672-3678. https://doi.org/10.1021/cm5008203 21. Sanghun Lee and Sung Soo Park . Comparative Study of Tavorite and Triplite LiFeSO4F as Cathode Materials for Lithium Ion Batteries: Structure, Defect Chemistry, and Lithium Conduction Properties from Atomistic Simulation. The Journal of Physical Chemistry C 2014, 118 (24) , 12642-12648. https://doi.org/10.1021/jp502672k 22. Behdokht Farbod, Kai Cui, W. Peter Kalisvaart, Martin Kupsta, Beniamin Zahiri, Alireza Kohandehghan, Elmira Memarzadeh Lotfabad, Zhi Li, Erik J. Luber, and David Mitlin . Anodes for Sodium Ion Batteries Based on Tin–Germanium–Antimony Alloys. ACS Nano 2014, 8 (5) , 4415-4429. https://doi.org/10.1021/nn4063598 23. G. Rousse and J. M. Tarascon . Sulfate-Based Polyanionic Compounds for Li-Ion Batteries: Synthesis, Crystal Chemistry, and Electrochemistry Aspects. Chemistry of Materials 2014, 26 (1) , 394-406. https://doi.org/10.1021/cm4022358 24. Christian Masquelier and Laurence Croguennec . Polyanionic (Phosphates, Silicates, Sulfates) Frameworks as Electrode Materials for Rechargeable Li (or Na) Batteries. Chemical Reviews 2013, 113 (8) , 6552-6591. https://doi.org/10.1021/cr3001862 25. Ying Shirley Meng and M. Elena Arroyo-de Dompablo . Recent Advances in First Principles Computational Research of Cathode Materials for Lithium-Ion Batteries. Accounts of Chemical Research 2013, 46 (5) , 1171-1180. https://doi.org/10.1021/ar2002396 26. Linda J. M. Davis and Gillian R. Goward . Differentiating Lithium Ion Hopping Rates in Vanadium Phosphate versus Vanadium Fluorophosphate Structures Using 1D 6Li Selective Inversion NMR. The Journal of Physical Chemistry C 2013, 117 (16) , 7981-7992. https://doi.org/10.1021/jp310790g 27. Sanghun Lee and Sung Soo Park . Atomistic Simulation Study of Monoclinic Li3V2(PO4)3 as a Cathode Material for Lithium Ion Battery: Structure, Defect Chemistry, Lithium Ion Transport Pathway, and Dynamics. The Journal of Physical Chemistry C 2012, 116 (48) , 25190-25197. https://doi.org/10.1021/jp306105g 28. Sanghun Lee and Sung Soo Park . Structure, Defect Chemistry, and Lithium Transport Pathway of Lithium Transition Metal Pyrophosphates (Li2MP2O7, M: Mn, Fe, and Co): Atomistic Simulation Study. Chemistry of Materials 2012, 24 (18) , 3550-3557. https://doi.org/10.1021/cm301921d 29. Mathieu Salanne, Dario Marrocchelli, and Graeme W. Watson . Cooperative Mechanism for the Diffusion of Li+ Ions in LiMgSO4F. The Journal of Physical Chemistry C 2012, 116 (35) , 18618-18625. https://doi.org/10.1021/jp304767d 30. Rana. A. Shakoor, Heejin Kim, Woosuk Cho, Soo Yeon Lim, Hannah Song, Jung Woo Lee, Jeung Ku Kang, Yong-Tae Kim, Yousung Jung, and Jang Wook Choi . Site-Specific Transition Metal Occupation in Multicomponent Pyrophosphate for Improved Electrochemical and Thermal Properties in Lithium Battery Cathodes: A Combined Experimental and Theoretical Study. Journal of the American Chemical Society 2012, 134 (28) , 11740-11748. https://doi.org/10.1021/ja3042228 31. S. A. Shevlin, C. Cazorla, and Z. X. Guo . Structure and Defect Chemistry of Low- and High-Temperature Phases of LiBH4. The Journal of Physical Chemistry C 2012, 116 (25) , 13488-13496. https://doi.org/10.1021/jp3014805 32. Sanghun Lee and Sung Soo Park . Atomistic Simulation Study of Mixed-Metal Oxide (LiNi1/3Co1/3Mn1/3O2) Cathode Material for Lithium Ion Battery. The Journal of Physical Chemistry C 2012, 116 (10) , 6484-6489. https://doi.org/10.1021/jp2122467 33. Brian L. Ellis, T. N. Ramesh, Linda J.M. Davis, Gillian R. Goward, and Linda F. Nazar . Structure and Electrochemistry of Two-Electron Redox Couples in Lithium Metal Fluorophosphates Based on the Tavorite Structure. Chemistry of Materials 2011, 23 (23) , 5138-5148. https://doi.org/10.1021/cm201773n 34. Tim Mueller, Geoffroy Hautier, Anubhav Jain, and Gerbrand Ceder . Evaluation of Tavorite-Structured Cathode Materials for Lithium-Ion Batteries Using High-Throughput Computing. Chemistry of Materials 2011, 23 (17) , 3854-3862. https://doi.org/10.1021/cm200753g 35. Yan Chen, Yuefeng Su, Yixin Zhang, Zekai Lv, Chen Xie, Wenbin Sun, Yong Zhao, Man Xie. Insights into iron-based polyanionic cathodes for scale- energy storage. Energy Storage Materials 2024, 11 , 103722. https://doi.org/10.1016/j.ensm.2024.103722 36. Xi Tan, Ming Chen, Jinkai Zhang, Shiqi Li, Huajie Zhang, Long Yang, Tian Sun, Xin Qian, Guang Feng. Decoding Electrochemical Processes of Lithium‐Ion Batteries by Classical Molecular Dynamics Simulations. Advanced Energy Materials 2024, 14 (22) https://doi.org/10.1002/aenm.202400564 37. Zhendong Guo, Tieyan Wang, Mingchen Ni, Fenhong Song, Jing Fan, Xiaorui Dong, Dashuai Wang. Improved structure stability and performance of a LiFeSO 4 F cathode material for lithium-ion batteries by magnesium substitution. Physical Chemistry Chemical Physics 2024, 26 (18) , 13949-13954. https://doi.org/10.1039/D4CP00344F 38. Lemoine Kevin, Kenmogne-Debah Roméo, Doubtsof Léa, Frezet Lawrence, Petit Elodie, Guerin Katia, Devouard Bertrand, Sougrati Moulay-Tahar, Delbègue Diane, Bonnet Pierre. Insertion of fluorine into a LiFePO 4 electrode material by gas–solid fluorination. Dalton Transactions 2024, 53 (17) , 7546-7554. https://doi.org/10.1039/D4DT00603H 39. Zhaolu Liu, Ning Wang, Ruiqi Wang, Jie Xu, Hao Zhang, Nan Wang, Yongjie Cao, Yao Liu, Junxi Zhang. Iron‐Based Sulfate for Sodium‐Ion Batteries: Past, Present, and Future. Energy Technology 2024, 6 https://doi.org/10.1002/ente.202301399 40. Zibing Pan, Huaqi Chen, Yubin Zeng, Yan Ding, Xiangjun Pu, Zhongxue Chen. Fluorine chemistry in lithium-ion and sodium-ion batteries. Energy Materials 2023, 3 (6) https://doi.org/10.20517/energymater.2023.61 41. Qihan Meng, Qingfei Hao, Fei Chen, Lei Wang, Na Li, Xudong Sun. Li4Ti5O12 hollow macrospheres combine high tap density and excellent low-temperature performance as anode materials for Li-ion batteries. Materials Characterization 2023, 203 , 113089. https://doi.org/10.1016/j.matchar.2023.113089 42. Jena Akash Kumar Satrughna, Archana Kanwade, Abhishek Srivastava, Manish Kumar Tiwari, Subhash Chand Yadav, Surya Teja Akula, Parasharam M. Shirage. Experimental and computational advancement of cathode materials for futuristic sodium ion batteries. Materials Today 2023, 5 https://doi.org/10.1016/j.mattod.2023.06.013 43. Jiashen Meng, Zhitong Xiao, Lujun Zhu, Xiao Zhang, Xufeng Hong, Yongfeng Jia, Fang Liu, Quanquan Pang. Fluorinated electrode materials for high-energy batteries. Matter 2023, 6 (6) , 1685-1716. https://doi.org/10.1016/j.matt.2023.03.032 44. Aleksandr Sh. Samarin, Ivan A. Trussov, Stanislav S. Fedotov. Electrode materials for reversible sodium ions de/intercalation. 2023, 46-82. https://doi.org/10.1016/B978-0-12-823144-9.00096-0 45. Shashwat Singh, Sai Pranav Vanam, Shubham Lochab, Maximilian Fichtner, Prabeer Barpanda. Development of polyanionic sodium-ion battery insertion materials. 2023, 241-271. https://doi.org/10.1016/B978-0-12-823144-9.00154-0 46. Debolina Deb, Gopalakrishnan Sai Gautam. Critical overview of polyanionic frameworks as positive electrodes for Na-ion batteries. Journal of Materials Research 2022, 37 (19) , 3169-3196. https://doi.org/10.1557/s43578-022-00646-7 47. Wei Yang, Qi Liu, Yanshuo Zhao, Daobin Mu, Guoqiang Tan, Hongcai Gao, Li Li, Renjie Chen, Feng Wu. Progress on Fe‐Based Polyanionic Oxide Cathodes Materials toward Grid‐Scale Energy Storage for Sodium‐Ion Batteries. Small Methods 2022, 6 (9) https://doi.org/10.1002/smtd.202200555 48. Eun Jeong Kim, P. Ramesh Kumar, Zachary T. Gossage, Kei Kubota, Tomooki Hosaka, Ryoichi Tatara, Shinichi Komaba. Active material and interphase structures governing performance in sodium and potassium ion batteries. Chemical Science 2022, 13 (21) , 6121-6158. https://doi.org/10.1039/D2SC00946C 49. . Polyanion‐Type Cathodes for Sodium‐Ion Batteries. 2022, 79-135. https://doi.org/10.1002/9783527831623.ch4 50. Artem D. Dembitskiy, Dmitry A. Aksyonov, Artem M. Abakumov, Stanislav S. Fedotov. NH+-based frameworks as a platform for designing electrodes and solid electrolytes for Na-ion batteries: A screening approach. Solid State Ionics 2022, 374 , 115810. https://doi.org/10.1016/j.ssi.2021.115810 51. Yun Gao, Hang Zhang, Xiao‐Hao Liu, Zhuo Yang, Xiang‐Xi He, Li Li, Yun Qiao, Shu‐Lei Chou. Low‐Cost Polyanion‐Type Sulfate Cathode for Sodium‐Ion Battery. Advanced Energy Materials 2021, 11 (42) https://doi.org/10.1002/aenm.202101751 52. Zhenya Wang, Hao Guo, De Ning, Xiaobai Ma, Lirong Zheng, Dmitry Smirnov, Kai Sun, Dongfeng Chen, Limei Sun, Xiangfeng Liu. Tuning fermi level and band gap in Li 4 Ti 5 O 12 by doping and vacancy for ultrafast Li + insertion/extraction. Journal of the American Ceramic Society 2021, 104 (11) , 5934-5945. https://doi.org/10.1111/jace.17948 53. Beth I J Johnston, Peter J Baker, Serena A Cussen. Ion dynamics in fluoride-containing polyatomic anion cathodes by muon spectroscopy. Journal of Physics: Materials 2021, 4 (4) , 044015. https://doi.org/10.1088/2515-7639/ac22ba 54. Along Zhao, Yongjin Fang, Xinping Ai, Hanxi Yang, Yuliang Cao. Mixed polyanion cathode materials: Toward stable and high-energy sodium-ion batteries. Journal of Energy Chemistry 2021, 60 , 635-648. https://doi.org/10.1016/j.jechem.2021.01.014 55. Aqeel Idrus, Fadhlul Wafi Badrudin, Mohamad Fariz Mohamad Taib, Oskar Hasdinor Hassan, Abdul Malik Marwan Bin Ali, Muhd Zu Azhan Yahya. Ab Initio Study on Structural Properties of NaFeSO4OH Cathode Material for Rechargeable Sodium Ion Battery. Solid State Phenomena 2021, 317 , 400-405. https://doi.org/10.4028/www.scientific.net/SSP.317.400 56. Yuanyuan Zhu, Yang Huang, Rong Du, Ming Tang, Baotian Wang, Junrong Zhang. Effect of Ni2+ on Lithium-Ion Diffusion in Layered LiNi1−x−yMnxCoyO2 Materials. Crystals 2021, 11 (5) , 465. https://doi.org/10.3390/cryst11050465 57. Yupeng Shen, Qian Wang, Y. Kawazoe, Puru Jena. Potential of porous nodal-line semi-metallic carbon for sodium-ion battery anode. Journal of Power Sources 2020, 478 , 228746. https://doi.org/10.1016/j.jpowsour.2020.228746 58. Mingzhe Chen, Qiannan Liu, Yanyan Zhang, Guichuan Xing, Shu-Lei Chou, Yuxin Tang. Emerging polyanionic and organic compounds for high energy density, non-aqueous potassium-ion batteries. Journal of Materials Chemistry A 2020, 8 (32) , 16061-16080. https://doi.org/10.1039/C9TA11221A 59. Huangxu Li, Ming Xu, Zhian Zhang, Yanqing Lai, Jianmin Ma. Engineering of Polyanion Type Cathode Materials for Sodium‐Ion Batteries: Toward Higher Energy/Power Density. Advanced Functional Materials 2020, 30 (28) https://doi.org/10.1002/adfm.202000473 60. Shan-Shan Fan, Hai-Ping Liu, Qian Liu, Cheng-Shuai Ma, Ting-Feng Yi. Comprehensive insights and perspectives into the recent progress of electrode materials for non-aqueous K-ion battery. Journal of Materiomics 2020, 6 (2) , 431-454. https://doi.org/10.1016/j.jmat.2020.02.007 61. Zhenya Wang, Wenyun Yang, Jinbo Yang, Lirong Zheng, Kai Sun, Dongfeng Chen, Limei Sun, Xiangfeng Liu. Tuning the crystal and electronic structure of Li4Ti5O12 via Mg/La Co-doping for fast and stable lithium storage. Ceramics International 2020, 46 (9) , 12965-12974. https://doi.org/10.1016/j.ceramint.2020.02.066 62. Ting Jin, Huangxu Li, Kunjie Zhu, Peng-Fei Wang, Pei Liu, Lifang Jiao. Polyanion-type cathode materials for sodium-ion batteries. Chemical Society Reviews 2020, 49 (8) , 2342-2377. https://doi.org/10.1039/C9CS00846B 63. Ulf Breddemann, Ingo Krossing. Review on Synthesis, Characterization, and Electrochemical Properties of Fluorinated Nickel‐Cobalt‐Manganese Cathode Active Materials for Lithium‐Ion Batteries. ChemElectroChem 2020, 7 (6) , 1389-1430. https://doi.org/10.1002/celc.202000029 64. Wontae Lee, Shoaib Muhammad, Chernov Sergey, Hayeon Lee, Jaesang Yoon, Yong‐Mook Kang, Won‐Sub Yoon. Advances in the Cathode Materials for Lithium Rechargeable Batteries. Angewandte Chemie International Edition 2020, 59 (7) , 2578-2605. https://doi.org/10.1002/anie.201902359 65. Wontae Lee, Shoaib Muhammad, Chernov Sergey, Hayeon Lee, Jaesang Yoon, Yong‐Mook Kang, Won‐Sub Yoon. Kathodenmaterialien für wiederaufladbare Lithiumbatterien. Angewandte Chemie 2020, 132 (7) , 2598-2626. https://doi.org/10.1002/ange.201902359 66. Yulia Arinicheva, Michael Wolff, Sandra Lobe, Christian Dellen, Dina Fattakhova-Rohlfing, Olivier Guillon, Daniel Böhm, Florian Zoller, Richard Schmuch, Jie Li, Martin Winter, Evan Adamczyk, Valérie Pralong. Ceramics for electrochemical storage. 2020, 549-709. https://doi.org/10.1016/B978-0-08-102726-4.00010-7 67. Hiroyoshi Momida, Ayuko Kitajou, Shigeto Okada, Tamio Oguchi. First-Principles Study of X-Ray Absorption Spectra in NaFeSO 4 F for Exploring Na-Ion Battery Reactions. Journal of the Physical Society of Japan 2019, 88 (12) , 124709. https://doi.org/10.7566/JPSJ.88.124709 68. Insang Hwang, Sung-Kyun Jung, Sung-Pyo Cho, Kisuk Kang. In operando formation of new iron-oxyfluoride host structure for Na-ion storage from NaF–FeO nanocomposite. Energy Storage Materials 2019, 23 , 427-433. https://doi.org/10.1016/j.ensm.2019.04.020 69. Muhammd Mamoor, Ruqian Lian, Dashuai Wang, Xing Meng, Gang Chen, Yingjin Wei. Structure, charge transfer, and kinetic properties of NaVPO 4 F with Na + extraction: a comprehensive first-principles study. Physical Chemistry Chemical Physics 2019, 21 (27) , 14612-14619. https://doi.org/10.1039/C9CP01819K 70. Andreas Blidberg, Mario Valvo, Maria Alfredsson, Carl Tengstedt, Torbjörn Gustafsson, Fredrik Björefors. Electronic changes in poly(3,4-ethylenedioxythiophene)-coated LiFeSO4F during electrochemical lithium extraction. Journal of Power Sources 2019, 418 , 84-89. https://doi.org/10.1016/j.jpowsour.2019.02.039 71. Baskar Senthilkumar, Chinnasamy Murugesan, Lalit Sharma, Shubham Lochab, Prabeer Barpanda. An Overview of Mixed Polyanionic Cathode Materials for Sodium‐Ion Batteries. Small Methods 2019, 3 (4) https://doi.org/10.1002/smtd.201800253 72. Mingzhe Chen, Qiannan Liu, Shi‐Wen Wang, Enhui Wang, Xiaodong Guo, Shu‐Lei Chou. High‐Abundance and Low‐Cost Metal‐Based Cathode Materials for Sodium‐Ion Batteries: Problems, Progress, and Key Technologies. Advanced Energy Materials 2019, 9 (14) https://doi.org/10.1002/aenm.201803609 73. Yuheng Zheng, Yaxiang Lu, Xingguo Qi, Yuesheng Wang, Linqin Mu, Yunming Li, Qiang Ma, Ju Li, Yong-Sheng Hu. Superior electrochemical performance of sodium-ion full-cell using poplar wood derived hard carbon anode. Energy Storage Materials 2019, 18 , 269-279. https://doi.org/10.1016/j.ensm.2018.09.002 74. Tuan Loi Nguyen, Tejaswi Tanaji Salunkhe, Thuan Ngoc Vo, Hyung Wook Choi, Young-Chul Lee, Jin-Seok Choi, Jaehyun Hur, Il Tae Kim. Tailored synthesis of antimony-based alloy/oxides nanosheets for high-performance sodium-ion battery anodes. Journal of Power Sources 2019, 414 , 470-478. https://doi.org/10.1016/j.jpowsour.2019.01.033 75. Radostina Stoyanova, Violeta Koleva, Antonia Stoyanova. Lithium versus Mono/Polyvalent Ion Intercalation: Hybrid Metal Ion Systems for Energy Storage. The Chemical Record 2019, 19 (2-3) , 474-501. https://doi.org/10.1002/tcr.201800081 76. Wenhua Zuo, Rui Liu, Gregorio F. Ortiz, Saúl Rubio, Taras Chyrka, Pedro Lavela, Shiyao Zheng, José L. Tirado, Donghao Wang, Yong Yang. Sodium storage behavior of Na0.66Ni0.33˗xZnxMn0.67O2 (x = 0, 0.07 and 0.14) positive materials in diglyme-based electrolytes. Journal of Power Sources 2018, 400 , 317-324. https://doi.org/10.1016/j.jpowsour.2018.08.037 77. Laura Lander, Jean‐Marie Tarascon, Atsuo Yamada. Sulfate‐Based Cathode Materials for Li‐ and Na‐Ion Batteries. The Chemical Record 2018, 18 (10) , 1394-1408. https://doi.org/10.1002/tcr.201800071 78. Su Jin Kim, Boeun Lee, Kwan-Young Lee, Byung Won Cho, Si Hyoung Oh. Facile topotactic synthesis of tavorite LiFeSO 4 F using supercritical methanol. Journal of Power Sources 2018, 398 , 27-33. https://doi.org/10.1016/j.jpowsour.2018.07.047 79. Ranjusha Rajagopalan, Zhenguo Wu, Yumei Liu, Shaymaa Al-Rubaye, Enhui Wang, Chunjin Wu, Wei Xiang, Benhe Zhong, Xiaodong Guo, Shi Xue Dou, Hua Kun Liu. A novel high voltage battery cathodes of Fe 2+ /Fe 3+ sodium fluoro sulfate lined with carbon nanotubes for stable sodium batteries. Journal of Power Sources 2018, 398 , 175-182. https://doi.org/10.1016/j.jpowsour.2018.07.066 80. Ying Ma. Computer Simulation of Cathode Materials for Lithium Ion and Lithium Batteries: A Review. ENERGY & ENVIRONMENTAL MATERIALS 2018, 1 (3) , 148-173. https://doi.org/10.1002/eem2.12017 81. Sudip Chakraborty, Amitava Banerjee, Teeraphat Watcharatharapong, Rafael B Araujo, Rajeev Ahuja. Current computational trends in polyanionic cathode materials for Li and Na batteries. Journal of Physics: Condensed Matter 2018, 30 (28) , 283003. https://doi.org/10.1088/1361-648X/aac62d 82. Prabeer Barpanda, Laura Lander, Shin‐ichi Nishimura, Atsuo Yamada. Polyanionic Insertion Materials for Sodium‐Ion Batteries. Advanced Energy Materials 2018, 8 (17) https://doi.org/10.1002/aenm.201703055 83. Abir Bejaoui, Ahmed Souamti, Massoud Kahlaoui, Antonio Diego Lozano-Gorrín, Dalila Ben Hassen Chehimi. Synthesis, electrical and dielectrical properties of (LixNa1–x)6Mg(SO4)4 vanthoffite ceramics as new attractive electrode materials for Li- and Na-ion batteries. Materials Science and Engineering: B 2018, 228 , 224-233. https://doi.org/10.1016/j.mseb.2017.12.001 84. Jing Liang, Yuhan Li, Xiaoying Hou, Fengdi Wang, Wanqiao Zhang, Jingping Zhang, Shuwei Tang, Hao Sun. Insight into electrochemical and elastic properties in AFe1-M SO4F (A = Li, Na; M = Co, Ni, Mg) cathode materials: A first principle study. Electrochimica Acta 2017, 251 , 316-323. https://doi.org/10.1016/j.electacta.2017.08.123 85. W. Deriouche, E. Anger, M. Freire, A. Maignan, N. Amdouni, V. Pralong. A vanadium oxy-phosphate Na 4 VO(PO 4 ) 2 as cathode material for Na ion batteries. Solid State Sciences 2017, 72 , 124-129. https://doi.org/10.1016/j.solidstatesciences.2017.08.017 86. Weina Xie, Xiaoling Yang, Yanyun Lin, Weiling Zhuang, Qiong Luo. First-principles study on surface properties of t-LiFeSO4F: Showing a potential way to enhance electronic conductivity. Chemical Physics Letters 2017, 684 , 177-185. https://doi.org/10.1016/j.cplett.2017.04.097 87. Sheng-Ping Guo, Jia-Chuang Li, Qian-Ting Xu, Ze Ma, Huai-Guo Xue. Recent achievements on polyanion-type compounds for sodium-ion batteries: Syntheses, crystal chemistry and electrochemical performance. Journal of Power Sources 2017, 361 , 285-299. https://doi.org/10.1016/j.jpowsour.2017.07.002 88. Andreas Blidberg, Adam Sobkowiak, Carl Tengstedt, Mario Valvo, Torbjörn Gustafsson, Fredrik Björefors. Identifying the Electrochemical Processes in LiFeSO 4 F Cathodes for Lithium Ion Batteries. ChemElectroChem 2017, 4 (8) , 1896-1907. https://doi.org/10.1002/celc.201700192 89. Qiao Ni, Ying Bai, Feng Wu, Chuan Wu. Polyanion‐Type Electrode Materials for Sodium‐Ion Batteries. Advanced Science 2017, 4 (3) https://doi.org/10.1002/advs.201600275 90. Jang-Yeon Hwang, Seung-Taek Myung, Yang-Kook Sun. Sodium-ion batteries: present and future. Chemical Society Reviews 2017, 46 (12) , 3529-3614. https://doi.org/10.1039/C6CS00776G 91. Chen Ling, Ruigang Zhang. Anomalously high Na + and low Li + mobility in intercalated Na 2 Ti 6 O 13. Physical Chemistry Chemical Physics 2017, 19 (15) , 10036-10041. https://doi.org/10.1039/C7CP01138E 92. Teeraphat Watcharatharapong, Jiraroj T-Thienprasert, Prabeer Barpanda, Rajeev Ahuja, Sudip Chakraborty. Mechanistic study of Na-ion diffusion and small polaron formation in Kröhnkite Na 2 Fe(SO 4 ) 2 ·2H 2 O based cathode materials. J. Mater. Chem. A 2017, 5 (41) , 21726-21739. https://doi.org/10.1039/C7TA04508E 93. Radha Shivaramaiah, Laura Lander, G. P. Nagabhushana, Gwenaëlle Rousse, Jean‐Marie Tarascon, Alexandra Navrotsky. Thermodynamic Properties of Polymorphs of Fluorosulfate Based Cathode Materials with Exchangeable Potassium Ions. ChemPhysChem 2016, 17 (21) , 3365-3368. https://doi.org/10.1002/cphc.201600960 94. Hyungsub Kim, Haegyeom Kim, Zhang Ding, Myeong Hwan Lee, Kyungmi Lim, Gabin Yoon, Kisuk Kang. Recent Progress in Electrode Materials for Sodium‐Ion Batteries. Advanced Energy Materials 2016, 6 (19) https://doi.org/10.1002/aenm.201600943 95. Jesús Muñiz, Marina E. Rincón, Próspero Acevedo-Peña. The role of the oxide shell on the stability and energy storage properties of MWCNT@TiO 22 2 nanohybrid materials used in Li-ion batteries. Theoretical Chemistry Accounts 2016, 135 (7) https://doi.org/10.1007/s00214-016-1940-7 96. Ali Darwiche, Romain Dugas, Bernard Fraisse, Laure Monconduit. Reinstating lead for high-loaded efficient negative electrode for rechargeable sodium-ion battery. Journal of Power Sources 2016, 304 , 1-8. https://doi.org/10.1016/j.jpowsour.2015.10.087 97. Dario Marrocchelli, Céline Merlet, Mathieu Salanne. Molecular Dynamics Simulations of Electrochemical Energy Storage Devices. 2016, 61-89. https://doi.org/10.1007/978-1-4471-5677-2_3 98. Meng Tian, Yurui Gao, Zhaoxiang Wang, Liquan Chen. Understanding structural stability of monoclinic LiMnO 2 and NaMnO 2 upon de-intercalation. Physical Chemistry Chemical Physics 2016, 18 (26) , 17345-17350. https://doi.org/10.1039/C6CP02019D 99. Kyu-Young Park, Inchul Park, Hyungsub Kim, Gabin Yoon, Hyeokjo Gwon, Yongbeom Cho, Young Soo Yun, Jung-Joon Kim, Seongsu Lee, Docheon Ahn, Yunok Kim, Haegyeom Kim, Insang Hwang, Won-Sub Yoon, Kisuk Kang. Lithium-excess olivine electrode for lithium rechargeable batteries. Energy & Environmental Science 2016, 9 (9) , 2902-2915. https://doi.org/10.1039/C6EE01266C 100. Jianhua Gao, Xunshan Sha, Xi Liu, Limei Song, Pan Zhao. Preparation, structure and properties of Na 2 Mn 3 (SO 4 ) 4 : a new potential candidate with high voltage for Na-ion batteries. Journal of Materials Chemistry A 2016, 4 (30) , 11870-11877. https://doi.org/10.1039/C6TA02629J Load all citations Download PDF Get e-Alerts Get e-Alerts CHEMISTRY OF MATERIALS Cite this: Chem. Mater. 2011, 23, 8, 2278–2284 Click to copy citationCitation copied! https://doi.org/10.1021/cm200683n Published March 30, 2011 PUBLICATION HISTORY * Received 7 March 2011 * Revised 10 March 2011 * Published online 30 March 2011 * Published in issue 26 April 2011 Copyright © 2011 American Chemical Society Request reuse permissions ARTICLE VIEWS 4422 ALTMETRIC - CITATIONS 159 Learn about these metrics close Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days. Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts. The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated. RECOMMENDED ARTICLES * STRUCTURAL, TRANSPORT, AND ELECTROCHEMICAL INVESTIGATION OF NOVEL AMSO4F (A = NA, LI; M = FE, CO, NI, MN) METAL FLUOROSULPHATES PREPARED USING LOW TEMPERATURE SYNTHESIS ROUTES July 14, 2010Inorganic Chemistry * Prabeer Barpanda * , * Jean-Noël Chotard * , * Nadir Recham * , * Charles Delacourt * , * Mohamed Ati * , * Loic Dupont * , * Michel Armand * , and * Jean-Marie Tarascon* * * NEW CLASS OF 3.7 V FE-BASED POSITIVE ELECTRODE MATERIALS FOR NA-ION BATTERY BASED ON CATION-DISORDERED POLYANION FRAMEWORK August 31, 2018Chemistry of Materials * Minkyu Kim * , * Donghoon Kim * , * Wontae Lee * , * Hyun Myung Jang * , and * Byoungwoo Kang* * * AMORPHOUS XNAF-FESO4 SYSTEMS (1 ≤ X ≤ 2) WITH EXCELLENT CATHODE PROPERTIES FOR SODIUM-ION BATTERIES August 1, 2019ACS Applied Energy Materials * Ayuko Kitajou* * , * Hiroyoshi Momida * , * Takahiro Yamashita * , * Tamio Oguchi * , and * Shigeto Okada* * * PREPARATION AND CHARACTERIZATION OF A STABLE FESO4F-BASED FRAMEWORK FOR ALKALI ION INSERTION ELECTRODES November 13, 2012Chemistry of Materials * Nadir Recham * , * Gwenaëlle Rousse * , * Moulay T. Sougrati * , * Jean-Noël Chotard * , * Christine Frayret * , * Sathiya Mariyappan * , * Brent C. Melot * , * Jean-Claude Jumas * , and * Jean-Marie Tarascon* * * ATOMIC-SCALE INVESTIGATION OF DEFECTS, DOPANTS, AND LITHIUM TRANSPORT IN THE LIFEPO4 OLIVINE-TYPE BATTERY MATERIAL September 8, 2005Chemistry of Materials * M. Saiful Islam * , * Daniel J. Driscoll * , * Craig A. J. Fisher * , and * Peter R. Slater * Sponsored Content Brought to you by ACS ACS Campaign for a Sustainable Future Find out how ACS is shaping the future of sustainable chemistry and learn ways to get involved ADVERTISEMENT Show moreShow lessrecommended articles PARTNERS * 1155 Sixteenth Street N.W. * Washington, DC 20036 * Copyright © 2024 American Chemical Society ABOUT * About ACS Publications * ACS & Open Access * ACS Membership * ACS Publications Blog RESOURCES AND INFORMATION * Journals A-Z * Books and Reference * Advertising Media Kit * Institutional Sales * ACS Researcher Resources * Privacy Policy * Terms of Use SUPPORT & CONTACT * Help * Live Chat * FAQ CONNECT WITH ACS PUBLICATIONS * * * * * Monday, October 28, 2024 Please be aware that pubs.acs.org is undergoing maintenance on Friday, September 6, at 6 p.m. EDT that may have an impact on your experience. During this time, you may not be able to access certain features like login, purchasing single articles, saving searches or running existing saved searches, modifying your e-Alert preferences, or accessing Librarian administrative functions. We appreciate your patience as we continue to improve the ACS Publications platform. THIS WEBSITE USES COOKIES TO IMPROVE YOUR USER EXPERIENCE. BY CONTINUING TO USE THE SITE, YOU ARE ACCEPTING OUR USE OF COOKIES. READ THE ACS PRIVACY POLICY. CONTINUE ✓ Thanks for sharing! AddToAny More… Live Chat