www.comet.com Open in urlscan Pro
3.92.5.163  Public Scan

Submitted URL: http://go.comet.ml/
Effective URL: https://www.comet.com/site/?utm_source=mkto-fallback
Submission: On October 16 via manual from PT — Scanned from PT

Form analysis 3 forms found in the DOM

GET /site/

<form method="get" class="searchform" action="/site/" __bizdiag="115" __biza="WJ__">
  <label>
    <span class="screen-reader-text">Search</span>
    <input type="search" class="field" name="s" placeholder="Search" autocomplete="off">
  </label>
  <button type="submit" class="searchform-submit"><span class="ticon ticon-search" aria-hidden="true"></span><span class="screen-reader-text">Submit</span></button>
</form>

<form id="mktoForm_1206" __bizdiag="196353513" __biza="WJ__" novalidate="novalidate" class="mktoForm mktoHasWidth mktoLayoutLeft" style="font-family: Helvetica, Arial, sans-serif; font-size: 13px; color: rgb(51, 51, 51); width: 271px;">
  <style type="text/css">
    .mktoForm .mktoButtonWrap.mktoSimple .mktoButton {
      color: #fff;
      border: 1px solid #75ae4c;
      padding: 0.4em 1em;
      font-size: 1em;
      background-color: #99c47c;
      background-image: -webkit-gradient(linear, left top, left bottom, from(#99c47c), to(#75ae4c));
      background-image: -webkit-linear-gradient(top, #99c47c, #75ae4c);
      background-image: -moz-linear-gradient(top, #99c47c, #75ae4c);
      background-image: linear-gradient(to bottom, #99c47c, #75ae4c);
    }

    .mktoForm .mktoButtonWrap.mktoSimple .mktoButton:hover {
      border: 1px solid #447f19;
    }

    .mktoForm .mktoButtonWrap.mktoSimple .mktoButton:focus {
      outline: none;
      border: 1px solid #447f19;
    }

    .mktoForm .mktoButtonWrap.mktoSimple .mktoButton:active {
      background-color: #75ae4c;
      background-image: -webkit-gradient(linear, left top, left bottom, from(#75ae4c), to(#99c47c));
      background-image: -webkit-linear-gradient(top, #75ae4c, #99c47c);
      background-image: -moz-linear-gradient(top, #75ae4c, #99c47c);
      background-image: linear-gradient(to bottom, #75ae4c, #99c47c);
    }

    #mktoForm_1206 {
      width: 100% !important;
    }
  </style>
  <style type="text/css">
    .mktoForm .mktoButtonWrap.mktoSimple .mktoButton {
      color: #fff;
      border: 1px solid #75ae4c;
      padding: 0.4em 1em;
      font-size: 1em;
      background-color: #99c47c;
      background-image: -webkit-gradient(linear, left top, left bottom, from(#99c47c), to(#75ae4c));
      background-image: -webkit-linear-gradient(top, #99c47c, #75ae4c);
      background-image: -moz-linear-gradient(top, #99c47c, #75ae4c);
      background-image: linear-gradient(to bottom, #99c47c, #75ae4c);
    }

    .mktoForm .mktoButtonWrap.mktoSimple .mktoButton:hover {
      border: 1px solid #447f19;
    }

    .mktoForm .mktoButtonWrap.mktoSimple .mktoButton:focus {
      outline: none;
      border: 1px solid #447f19;
    }

    .mktoForm .mktoButtonWrap.mktoSimple .mktoButton:active {
      background-color: #75ae4c;
      background-image: -webkit-gradient(linear, left top, left bottom, from(#75ae4c), to(#99c47c));
      background-image: -webkit-linear-gradient(top, #75ae4c, #99c47c);
      background-image: -moz-linear-gradient(top, #75ae4c, #99c47c);
      background-image: linear-gradient(to bottom, #75ae4c, #99c47c);
    }
  </style>
  <div class="mktoFormRow">
    <div class="mktoFieldDescriptor mktoFormCol" style="margin-bottom: 10px;">
      <div class="mktoOffset" style="width: 10px;"></div>
      <div class="mktoFieldWrap mktoRequiredField"><label id="LblFirstName" for="FirstName" class="mktoLabel mktoHasWidth" style="width: 100px;">
          <div class="mktoAsterix">*</div>First Name:
        </label>
        <div class="mktoGutter mktoHasWidth" style="width: 10px;"></div><input id="FirstName" name="FirstName" maxlength="255" aria-labelledby="LblFirstName InstructFirstName" type="text" class="mktoField mktoTextField mktoHasWidth mktoRequired"
          aria-required="true" style="width: 150px;"><span id="InstructFirstName" tabindex="-1" class="mktoInstruction"></span>
        <div class="mktoClear"></div>
      </div>
      <div class="mktoClear"></div>
    </div>
    <div class="mktoClear"></div>
  </div>
  <div class="mktoFormRow">
    <div class="mktoFieldDescriptor mktoFormCol" style="margin-bottom: 10px;">
      <div class="mktoOffset" style="width: 10px;"></div>
      <div class="mktoFieldWrap mktoRequiredField"><label id="LblLastName" for="LastName" class="mktoLabel mktoHasWidth" style="width: 100px;">
          <div class="mktoAsterix">*</div>Last Name:
        </label>
        <div class="mktoGutter mktoHasWidth" style="width: 10px;"></div><input id="LastName" name="LastName" maxlength="255" aria-labelledby="LblLastName InstructLastName" type="text" class="mktoField mktoTextField mktoHasWidth mktoRequired"
          aria-required="true" style="width: 150px;"><span id="InstructLastName" tabindex="-1" class="mktoInstruction"></span>
        <div class="mktoClear"></div>
      </div>
      <div class="mktoClear"></div>
    </div>
    <div class="mktoClear"></div>
  </div>
  <div class="mktoFormRow">
    <div class="mktoFieldDescriptor mktoFormCol" style="margin-bottom: 10px;">
      <div class="mktoOffset" style="width: 10px;"></div>
      <div class="mktoFieldWrap mktoRequiredField"><label id="LblEmail" for="Email" class="mktoLabel mktoHasWidth" style="width: 100px;">
          <div class="mktoAsterix">*</div>Email Address:
        </label>
        <div class="mktoGutter mktoHasWidth" style="width: 10px;"></div><input id="Email" name="Email" maxlength="255" aria-labelledby="LblEmail InstructEmail" type="email" class="mktoField mktoEmailField mktoHasWidth mktoRequired"
          aria-required="true" style="width: 150px;"><span id="InstructEmail" tabindex="-1" class="mktoInstruction"></span>
        <div class="mktoClear"></div>
      </div>
      <div class="mktoClear"></div>
    </div>
    <div class="mktoClear"></div>
  </div>
  <div class="mktoFormRow hidden-el-row"><input type="hidden" name="utm_campaign__c" class="mktoField mktoFieldDescriptor mktoFormCol" value="" style="margin-bottom: 10px;"><input type="hidden" name="utm_term__c"
      class="mktoField mktoFieldDescriptor mktoFormCol" value="" style="margin-bottom: 10px;"><input type="hidden" name="utm_source__c" class="mktoField mktoFieldDescriptor mktoFormCol" value="mkto-fallback" style="margin-bottom: 10px;"><input
      type="hidden" name="utm_medium__c" class="mktoField mktoFieldDescriptor mktoFormCol" value="" style="margin-bottom: 10px;"><input type="hidden" name="utm_content__c" class="mktoField mktoFieldDescriptor mktoFormCol" value=""
      style="margin-bottom: 10px;">
    <div class="mktoClear"></div>
  </div>
  <div class="mktoButtonRow"><span class="mktoButtonWrap mktoSimple" style="margin-left: 120px;"><button type="submit" class="mktoButton"><span class="theme-button-inner"><span class="theme-button-inner"><span class="theme-button-inner">Get
              Updates</span></span></span></button></span></div><input type="hidden" name="formid" class="mktoField mktoFieldDescriptor" value="1206"><input type="hidden" name="munchkinId" class="mktoField mktoFieldDescriptor" value="912-JJP-445">
</form>

<form __bizdiag="584362894" __biza="WJ__" novalidate="novalidate" class="mktoForm mktoHasWidth mktoLayoutLeft"
  style="font-family: Helvetica, Arial, sans-serif; font-size: 13px; color: rgb(51, 51, 51); visibility: hidden; position: absolute; top: -500px; left: -1000px; width: 1600px;"></form>

Text Content

skip to Main Content
 * Enterprise
 * Products
   * Opik – LLM Evaluation
   * Experiment Management
   * Artifacts
   * Model Registry
   * Model Production Monitoring
 * Docs
 * Pricing
 * Customers
 * Learn
   * Resources
   * Blog
   * Deep Learning Weekly
   * LLM Course
 * Company
   * About Us
   * News and Events
     * Events
     * Press Releases
   * Careers
   * Contact Us
   * Leadership
 * Login
 * Get Demo
 * Try Comet Free


Search Submit


WHERE AI DEVELOPERS BUILD

Comet provides an end-to-end model evaluation platform for AI developers, with
best in class LLM evaluations, experiment tracking, and production monitoring.

Try Comet Free




TRUSTED BY THE MOST INNOVATIVE ML TEAMS




WHERE AI DEVELOPERS BUILD

Comet provides an end-to-end model evaluation platform for AI developers, with
best in class LLM evaluations, experiment tracking, and production monitoring.

Try Comet Free




TRUSTED BY THE MOST INNOVATIVE ML TEAMS




MANAGE ANY ML OR LLM LIFECYCLE, FROM TRAINING THROUGH PRODUCTION


MANAGE ANY ML OR LLM LIFECYCLE, FROM TRAINING THROUGH PRODUCTION

DEBUG AND EVALUATE YOUR LLM APPLICATIONS WITH OPIK

Automatically track all your prompt engineering work. Run automated evaluations
on your LLM responses to optimize your applications before and after they hit
production.

Opik – Open Source LLM Evaluation

TRACK AND VISUALIZE YOUR MODEL TRAINING RUNS WITH EXPERIMENT MANAGEMENT

Log all your machine learning iteration to a single system of record. Make it
easy to reproduce a previous experiment and compare the performances of training
runs.

Comet Experiment Management

MONITOR ML MODEL PERFORMANCE IN PRODUCTION WITH COMET MPM

Track data drift on your input and output features after your model is deployed
to production. Set customized alerts to capture model performance degradation in
real time.

Model Production Monitoring

STORE AND MANAGE YOUR MODELS WITH MODEL REGISTRY

Create a centralized repository of all your model versions with immediate access
to how they were trained. Promote models to downstream production systems with
webhooks

Comet Model Registry

CREATE AND VERSION DATASETS WITH ARTIFACTS

Know which exact dataset version a model was trained on for auditing and
governance purposes. Leverage remote pointers to reference data already stored
in the cloud. 

Comet Artifacts



EASY INTEGRATION

Add just a few lines of code to your notebook or script and automatically start
tracking LLM traces, code, hyperparameters, metrics, model predictions, and
more.

Try Comet Free




OPIK LLM EVALUATION

OPENAI

LANGCHAIN

LLAMAINDEX

ANY LLM


ML EXPERIMENT MANAGEMENT

PYTORCH

PYTORCH LIGHTNING

HUGGING FACE

KERAS

TENSORFLOW

SCIKIT-LEARN

XGBOOST

ANY FRAMEWORK


ML MODEL MONITORING

ANY FRAMEWORK


from llama_index.core import VectorStoreIndex, global_handler, set_global_handler
from llama_index.core.schema import TextNode

# Configure the Opik integration
set_global_handler("opik")
opik_callback_handler = global_handler


node1 = TextNode(text="The cat sat on the mat.", id_="1")
node2 = TextNode(text="The dog chased the cat.", id_="2")

index = VectorStoreIndex([node1, node2])

# Create a LlamaIndex query engine
query_engine = index.as_query_engine()

# Query the documents
response = query_engine.query("What did the dog do ?")
print(response)



from pytorch_lightning.loggers import CometLogger

# 1. Create your Model

# 2. Initialize CometLogger
comet_logger = CometLogger()

# 3. Train your model 
trainer = pl.Trainer(
    logger=[comet_logger],
    # ...configs
)

trainer.fit(model)

# 4. View real-time metrics in Comet

from comet_ml import Experiment
import torch.nn as nn

# 1. Define a new experiment 
experiment = Experiment(project_name="YOUR PROJECT")

# 2. Create your model class 
class RNN(nn.Module):
    #... Define your Class 

# 3. Train and test your model while logging everything to Comet
with experiment.train():
    # ...Train your model and log metrics 
    experiment.log_metric("accuracy", correct / total, step = step)

# 4. View real-time metrics in Comet

from pytorch_lightning.loggers import CometLogger

# 1. Create your Model

# 2. Initialize CometLogger
comet_logger = CometLogger()

# 3. Train your model 
trainer = pl.Trainer(
    logger=[comet_logger],
    # ...configs
)

trainer.fit(model)

# 4. View real-time metrics in Comet

from comet_ml import Experiment
from transformers import Trainer

# 1. Define a new experiment 
experiment = Experiment(project_name="YOUR PROJECT")

# 2. Train your model 
trainer = Trainer(
    model = model,
    # ...configs
)

trainer.train()

# 3. View real-time metrics in Comet

from comet_ml import Experiment
from tensorflow import keras

# 1. Define a new experiment 
experiment = Experiment(project_name="YOUR PROJECT")

# 2. Define your model
model = tf.keras.Model(
    # ...configs
)

# 3. Train your model
model.fit(
    x_train, y_train,
    validation_data=(x_test, y_test),
)

# 4. Track real-time metrics in Comet

from comet_ml import Experiment
import tensorflow as tf

# 1. Define a new experiment 
experiment = Experiment(project_name="YOUR PROJECT")

# 2. Define and train your model
model.fit(...)

# 3. Log additional model metrics and params
experiment.log_parameters({'custom_params': True})
experiment.log_metric('custom_metric', 0.95)

# 4. Track real-time metrics in Comet

from comet_ml import Experiment
import tree from sklearn

# 1. Define a new experiment 
experiment = Experiment(project_name="YOUR PROJECT")

# 2. Build your model and fit
clf = tree.DecisionTreeClassifier(
    # ...configs
)

clf.fit(X_train_scaled, y_train)
params = {...}
metrics = {...}

# 3. Log additional metrics and params
experiment.log_parameters(params)
experiment.log_metrics(metrics)

# 4. Track model performance in Comet

from comet_ml import Experiment
import xgboost as xgb

# 1. Define a new experiment
experiment = Experiment(project_name="YOUR PROJECT")

# 2. Define your model and fit
xg_reg = xgb.XGBRegressor(
    # ...configs
)
xg_reg.fit(
    X_train,
    y_train,
    eval_set=[(X_train, y_train), (X_test, y_test)],
    eval_metric="rmse",
)

# 3. Track model performance in Comet

# Utilize Comet in any environment
from comet_ml import Experiment

# 1. Define a new experiment
experiment = Experiment(project_name="YOUR PROJECT")

# 2. Model training here

# 3. Log metrics or params over time
experiment.log_metrics(metrics)

#4. Track real-time metrics in Comet



from openai import OpenAI
from opik.integrations.openai import track_openai

openai_client = OpenAI()
openai_client = track_openai(openai_client)

response = openai_client.chat.completions.create(
    model="gpt-3.5-turbo",
    messages=[
        {"role": "user", "content": "Hello, world!"}
    ]
)




from langchain_openai import ChatOpenAI
from opik.integrations.langchain import OpikTracer

# Initialize the tracer
opik_tracer = OpikTracer()

# Create the LLM Chain using LangChain
llm = ChatOpenAI(temperature=0)

# Configure the Opik integration
llm = llm.with_config({"callbacks": [opik_tracer]})

llm.invoke("Hello, how are you?")




from opik import track

@track
def llm_chain(user_question):
    context = get_context(user_question)
    response = call_llm(user_question, context)
    
    return response

@track
def get_context(user_question):
    # Logic that fetches the context, hard coded here
    return ["The dog chased the cat.", "The cat was called Luky."]

@track
def call_llm(user_question, context):
    # LLM call, can be combined with any Opik integration
    return "The dog chased the cat Luky."

response = llm_chain("What did the dog do ?")
print(response)


# Utilize Comet in any environment
from comet_mpm import CometMPM

# 1. Create the MPM logger
MPM = CometMPM()

# 2. Add your inference logic here

# 3. Log metrics or params over time
MPM.log_event(
        prediction_id="...",
        input_features=input_features,
        output_value=prediction,
        output_probability=probability,
    )


ML EXPERIMENT MANAGEMENT

PYTORCH

from comet_ml import Experiment
import torch.nn as nn

# 1. Define a new experiment 
experiment = Experiment(project_name="YOUR PROJECT")

# 2. Create your model class 
class RNN(nn.Module):
    #... Define your Class 

# 3. Train and test your model while logging everything to Comet
with experiment.train():
    # ...Train your model and log metrics 
    experiment.log_metric("accuracy", correct / total, step = step)

# 4. View real-time metrics in Comet

PYTORCH LIGHTNING

from pytorch_lightning.loggers import CometLogger

# 1. Create your Model

# 2. Initialize CometLogger
comet_logger = CometLogger()

# 3. Train your model 
trainer = pl.Trainer(
    logger=[comet_logger],
    # ...configs
)

trainer.fit(model)

# 4. View real-time metrics in Comet

HUGGING FACE

from comet_ml import Experiment
from transformers import Trainer

# 1. Define a new experiment 
experiment = Experiment(project_name="YOUR PROJECT")

# 2. Train your model 
trainer = Trainer(
    model = model,
    # ...configs
)

trainer.train()

# 3. View real-time metrics in Comet

KERAS

from comet_ml import Experiment
from tensorflow import keras

# 1. Define a new experiment 
experiment = Experiment(project_name="YOUR PROJECT")

# 2. Define your model
model = tf.keras.Model(
    # ...configs
)

# 3. Train your model
model.fit(
    x_train, y_train,
    validation_data=(x_test, y_test),
)

# 4. Track real-time metrics in Comet

TENSORFLOW

from comet_ml import Experiment
import tensorflow as tf

# 1. Define a new experiment 
experiment = Experiment(project_name="YOUR PROJECT")

# 2. Define and train your model
model.fit(...)

# 3. Log additional model metrics and params
experiment.log_parameters({'custom_params': True})
experiment.log_metric('custom_metric', 0.95)

# 4. Track real-time metrics in Comet

SCIKIT-LEARN

from comet_ml import Experiment
import tree from sklearn

# 1. Define a new experiment 
experiment = Experiment(project_name="YOUR PROJECT")

# 2. Build your model and fit
clf = tree.DecisionTreeClassifier(
    # ...configs
)

clf.fit(X_train_scaled, y_train)
params = {...}
metrics = {...}

# 3. Log additional metrics and params
experiment.log_parameters(params)
experiment.log_metrics(metrics)

# 4. Track model performance in Comet

XGBOOST

from comet_ml import Experiment
import xgboost as xgb

# 1. Define a new experiment
experiment = Experiment(project_name="YOUR PROJECT")

# 2. Define your model and fit
xg_reg = xgb.XGBRegressor(
    # ...configs
)
xg_reg.fit(
    X_train,
    y_train,
    eval_set=[(X_train, y_train), (X_test, y_test)],
    eval_metric="rmse",
)

# 3. Track model performance in Comet

ANY FRAMEWORK

# Utilize Comet in any environment
from comet_ml import Experiment

# 1. Define a new experiment
experiment = Experiment(project_name="YOUR PROJECT")

# 2. Model training here

# 3. Log metrics or params over time
experiment.log_metrics(metrics)

#4. Track real-time metrics in Comet


OPIK LLM EVALUATION

OPENAI

import comet_llm

from openai import OpenAI

#1. Initialize Comet 
comet_llm.init(
    api_key="YOUR_COMET_API_KEY",
    project="openai-example",
)

#2. Send Prompts to OpenAI 
client = OpenAI()
response = client.chat.completions.create(
  model="gpt-3.5-turbo",
  messages=[
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": "Who won the world series in 2020?"},
    {"role": "assistant", "content": "The Los Angeles Dodgers won the World Series in 2020."},
    {"role": "user", "content": "Where was it played?"}
  ]
)

#3. View Prompt Responses in Comet

LANGCHAIN

import comet_llm

from langchain.callbacks.tracers.comet import CometTracer
from langchain.chat_models import ChatOpenAI
from langchain.schema import HumanMessage

#1. Initialize Comet 
comet_llm.init(
    api_key="YOUR_COMET_API_KEY",
    project="langchain_example",
)

#2. Send Prompts to LLM
callbacks = [CometTracer()]
chat_model = ChatOpenAI(callbacks=callbacks)

text = "What would be a good company name for a company that makes colorful socks?"
messages = [HumanMessage(content=text)]

chat_model.invoke(messages)

#3. View Prompt Responses and Chains in Comet

ANY FRAMEWORK

#Utilize Comet in any environment 
import comet_llm

#1. Initialize Comet 
comet_llm.init(
    api_key="YOUR_API_KEY",
    project="YOUR_LLM_PROJECT",
)

#2. Log prompt to Comet
comet_llm.log_prompt(
    prompt = "",
    output = "",
)

#3. View Prompt History in Comet 


MODEL MONITORING

ANY FRAMEWORK

# Utilize Comet in any environment
from comet_mpm import CometMPM

# 1. Create the MPM logger
MPM = CometMPM()

# 2. Add your inference logic here

# 3. Log metrics or params over time
MPM.log_event(
        prediction_id="...",
        input_features=input_features,
        output_value=prediction,
        output_probability=probability,
    )


AN END-TO-END MODEL EVALUATION PLATFORM

Comet’s end-to-end model evaluation platform for developers focuses on shipping
AI features, including open source LLM tracing, ML unit-testing, evaluations,
experiment tracking and production monitoring.

Track and compare your training runs, log and evaluate your LLM responses,
version your models and training data, and monitor your models in production –
all in one platform.




EASY INTEGRATION

Add just a few lines of code to your notebook or script and automatically start
tracking LLM traces, code, hyperparameters, metrics, model predictions, and
more.

Try Comet Free




OPIK LLM EVALUATION

OPENAI

LANGCHAIN

LLAMAINDEX

ANY LLM


ML EXPERIMENT MANAGEMENT

PYTORCH

PYTORCH LIGHTNING

HUGGING FACE

KERAS

TENSORFLOW

SCIKIT-LEARN

XGBOOST

ANY FRAMEWORK


ML MODEL MONITORING

ANY FRAMEWORK

from comet_ml import Experiment
import torch.nn as nn

# 1. Define a new experiment 
experiment = Experiment(project_name="YOUR PROJECT")

# 2. Create your model class 
class RNN(nn.Module):
    #... Define your Class 

# 3. Train and test your model while logging everything to Comet
with experiment.train():
    # ...Train your model and log metrics 
    experiment.log_metric("accuracy", correct / total, step = step)

# 4. View real-time metrics in Comet

from pytorch_lightning.loggers import CometLogger

# 1. Create your Model

# 2. Initialize CometLogger
comet_logger = CometLogger()

# 3. Train your model 
trainer = pl.Trainer(
    logger=[comet_logger],
    # ...configs
)

trainer.fit(model)

# 4. View real-time metrics in Comet

from comet_ml import Experiment
from transformers import Trainer

# 1. Define a new experiment 
experiment = Experiment(project_name="YOUR PROJECT")

# 2. Train your model 
trainer = Trainer(
    model = model,
    # ...configs
)

trainer.train()

# 3. View real-time metrics in Comet

from comet_ml import Experiment
from tensorflow import keras

# 1. Define a new experiment 
experiment = Experiment(project_name="YOUR PROJECT")

# 2. Define your model
model = tf.keras.Model(
    # ...configs
)

# 3. Train your model
model.fit(
    x_train, y_train,
    validation_data=(x_test, y_test),
)

# 4. Track real-time metrics in Comet

from comet_ml import Experiment
import tensorflow as tf

# 1. Define a new experiment 
experiment = Experiment(project_name="YOUR PROJECT")

# 2. Define and train your model
model.fit(...)

# 3. Log additional model metrics and params
experiment.log_parameters({'custom_params': True})
experiment.log_metric('custom_metric', 0.95)

# 4. Track real-time metrics in Comet

from comet_ml import Experiment
import tree from sklearn

# 1. Define a new experiment 
experiment = Experiment(project_name="YOUR PROJECT")

# 2. Build your model and fit
clf = tree.DecisionTreeClassifier(
    # ...configs
)

clf.fit(X_train_scaled, y_train)
params = {...}
metrics = {...}

# 3. Log additional metrics and params
experiment.log_parameters(params)
experiment.log_metrics(metrics)

# 4. Track model performance in Comet

from comet_ml import Experiment
import xgboost as xgb

# 1. Define a new experiment
experiment = Experiment(project_name="YOUR PROJECT")

# 2. Define your model and fit
xg_reg = xgb.XGBRegressor(
    # ...configs
)
xg_reg.fit(
    X_train,
    y_train,
    eval_set=[(X_train, y_train), (X_test, y_test)],
    eval_metric="rmse",
)

# 3. Track model performance in Comet

# Utilize Comet in any environment
from comet_ml import Experiment

# 1. Define a new experiment
experiment = Experiment(project_name="YOUR PROJECT")

# 2. Model training here

# 3. Log metrics or params over time
experiment.log_metrics(metrics)

#4. Track real-time metrics in Comet



from openai import OpenAI
from opik.integrations.openai import track_openai

openai_client = OpenAI()
openai_client = track_openai(openai_client)

response = openai_client.chat.completions.create(
    model="gpt-3.5-turbo",
    messages=[
        {"role": "user", "content": "Hello, world!"}
    ]
)




from langchain_openai import ChatOpenAI
from opik.integrations.langchain import OpikTracer

# Initialize the tracer
opik_tracer = OpikTracer()

# Create the LLM Chain using LangChain
llm = ChatOpenAI(temperature=0)

# Configure the Opik integration
llm = llm.with_config({"callbacks": [opik_tracer]})

llm.invoke("Hello, how are you?")




from opik import track

@track
def llm_chain(user_question):
    context = get_context(user_question)
    response = call_llm(user_question, context)
    
    return response

@track
def get_context(user_question):
    # Logic that fetches the context, hard coded here
    return ["The dog chased the cat.", "The cat was called Luky."]

@track
def call_llm(user_question, context):
    # LLM call, can be combined with any Opik integration
    return "The dog chased the cat Luky."

response = llm_chain("What did the dog do ?")
print(response)



from llama_index.core import VectorStoreIndex, global_handler, set_global_handler
from llama_index.core.schema import TextNode

# Configure the Opik integration
set_global_handler("opik")
opik_callback_handler = global_handler


node1 = TextNode(text="The cat sat on the mat.", id_="1")
node2 = TextNode(text="The dog chased the cat.", id_="2")

index = VectorStoreIndex([node1, node2])

# Create a LlamaIndex query engine
query_engine = index.as_query_engine()

# Query the documents
response = query_engine.query("What did the dog do ?")
print(response)




OPIK LLM EVALUATION

OPENAI



from openai import OpenAI
from opik.integrations.openai import track_openai

openai_client = OpenAI()
openai_client = track_openai(openai_client)

response = openai_client.chat.completions.create(
    model="gpt-3.5-turbo",
    messages=[
        {"role": "user", "content": "Hello, world!"}
    ]
)



LANGCHAIN


from langchain_openai import ChatOpenAI
from opik.integrations.langchain import OpikTracer

# Initialize the tracer
opik_tracer = OpikTracer()

# Create the LLM Chain using LangChain
llm = ChatOpenAI(temperature=0)

# Configure the Opik integration
llm = llm.with_config({"callbacks": [opik_tracer]})

llm.invoke("Hello, how are you?")



LLAMAINDEX


from llama_index.core import VectorStoreIndex, global_handler, set_global_handler
from llama_index.core.schema import TextNode

# Configure the Opik integration
set_global_handler("opik")
opik_callback_handler = global_handler


node1 = TextNode(text="The cat sat on the mat.", id_="1")
node2 = TextNode(text="The dog chased the cat.", id_="2")

index = VectorStoreIndex([node1, node2])

# Create a LlamaIndex query engine
query_engine = index.as_query_engine()

# Query the documents
response = query_engine.query("What did the dog do ?")
print(response)



ANY FRAMEWORK


from opik import track

@track
def llm_chain(user_question):
    context = get_context(user_question)
    response = call_llm(user_question, context)
    
    return response

@track
def get_context(user_question):
    # Logic that fetches the context, hard coded here
    return ["The dog chased the cat.", "The cat was called Luky."]

@track
def call_llm(user_question, context):
    # LLM call, can be combined with any Opik integration
    return "The dog chased the cat Luky."

response = llm_chain("What did the dog do ?")
print(response)



ML EXPERIMENT MANAGEMENT

PYTORCH

from comet_ml import Experiment
import torch.nn as nn

# 1. Define a new experiment 
experiment = Experiment(project_name="YOUR PROJECT")

# 2. Create your model class 
class RNN(nn.Module):
    #... Define your Class 

# 3. Train and test your model while logging everything to Comet
with experiment.train():
    # ...Train your model and log metrics 
    experiment.log_metric("accuracy", correct / total, step = step)

# 4. View real-time metrics in Comet

PYTORCH LIGHTNING

from pytorch_lightning.loggers import CometLogger

# 1. Create your Model

# 2. Initialize CometLogger
comet_logger = CometLogger()

# 3. Train your model 
trainer = pl.Trainer(
    logger=[comet_logger],
    # ...configs
)

trainer.fit(model)

# 4. View real-time metrics in Comet

HUGGING FACE

from comet_ml import Experiment
from transformers import Trainer

# 1. Define a new experiment 
experiment = Experiment(project_name="YOUR PROJECT")

# 2. Train your model 
trainer = Trainer(
    model = model,
    # ...configs
)

trainer.train()

# 3. View real-time metrics in Comet

KERAS

from comet_ml import Experiment
from tensorflow import keras

# 1. Define a new experiment 
experiment = Experiment(project_name="YOUR PROJECT")

# 2. Define your model
model = tf.keras.Model(
    # ...configs
)

# 3. Train your model
model.fit(
    x_train, y_train,
    validation_data=(x_test, y_test),
)

# 4. Track real-time metrics in Comet

TENSORFLOW

from comet_ml import Experiment
import tensorflow as tf

# 1. Define a new experiment 
experiment = Experiment(project_name="YOUR PROJECT")

# 2. Define and train your model
model.fit(...)

# 3. Log additional model metrics and params
experiment.log_parameters({'custom_params': True})
experiment.log_metric('custom_metric', 0.95)

# 4. Track real-time metrics in Comet

SCIKIT-LEARN

from comet_ml import Experiment
import tree from sklearn

# 1. Define a new experiment 
experiment = Experiment(project_name="YOUR PROJECT")

# 2. Build your model and fit
clf = tree.DecisionTreeClassifier(
    # ...configs
)

clf.fit(X_train_scaled, y_train)
params = {...}
metrics = {...}

# 3. Log additional metrics and params
experiment.log_parameters(params)
experiment.log_metrics(metrics)

# 4. Track model performance in Comet

XGBOOST

from comet_ml import Experiment
import xgboost as xgb

# 1. Define a new experiment
experiment = Experiment(project_name="YOUR PROJECT")

# 2. Define your model and fit
xg_reg = xgb.XGBRegressor(
    # ...configs
)
xg_reg.fit(
    X_train,
    y_train,
    eval_set=[(X_train, y_train), (X_test, y_test)],
    eval_metric="rmse",
)

# 3. Track model performance in Comet

ANY FRAMEWORK

# Utilize Comet in any environment
from comet_ml import Experiment

# 1. Define a new experiment
experiment = Experiment(project_name="YOUR PROJECT")

# 2. Model training here

# 3. Log metrics or params over time
experiment.log_metrics(metrics)

#4. Track real-time metrics in Comet


ML MODEL MONITORING

ANY FRAMEWORK

# Utilize Comet in any environment
from comet_mpm import CometMPM

# 1. Create the MPM logger
MPM = CometMPM()

# 2. Add your inference logic here

# 3. Log metrics or params over time
MPM.log_event(
        prediction_id="...",
        input_features=input_features,
        output_value=prediction,
        output_probability=probability,
    )


AN END-TO-END MODEL EVALUATION PLATFORM

Comet’s end-to-end model evaluation platform for developers focuses on shipping
AI features, including open source LLM tracing, ML unit-testing, evaluations,
experiment tracking and production monitoring.

Track and compare your training runs, log and evaluate your LLM responses,
version your models and training data, and monitor your models in production –
all in one platform.




WHERE AI DEVELOPERS BUILD

Run Comet’s end-to-end evaluation platform on any infrastructure to see
firsthand how Comet’s reshapes your workflow. Bring your existing software and
data stack. Use code panels to create visualizations in your preferred user
interfaces.


WHERE AI DEVELOPERS BUILD

Run Comet’s end-to-end evaluation platform on any infrastructure to see
firsthand how Comet’s reshapes your workflow. Bring your existing software and
data stack. Use code panels to create visualizations in your preferred user
interfaces.

 * Before Comet
 * After Comet

BEFORE COMET



AFTER COMET



INFRASTRUCTURE





AN AI PLATFORM BUILT FOR ENTERPRISE, DRIVEN BY COMMUNITY

Comet’s end-to-end evaluation platform is trusted by innovative data scientists,
ML practitioners, and engineers in the most demanding enterprise environments.


AN AI PLATFORM BUILT FOR ENTERPRISE, DRIVEN BY COMMUNITY

Comet’s end-to-end evaluation platform is trusted by innovative data scientists,
ML practitioners, and engineers in the most demanding enterprise environments.

"Comet has aided our success with ML and serves to further ML development within
Zappos."

KYLE ANDERSON

Director of software engineering

"Comet offers the most complete experiment tracking solution on the market. It's
brought significant value to our business."

OLCAY CIRIT

Staff Research and Tech lead

"Comet enables us to speed up research cycles and reliably reproduce and
collaborate on our modeling projects. It has become an indispensable part of our
ML workflow."

VICTOR SANH

Machine Learning Scientist

"None of the other products have the simplicity, ease of use and feature set
that Comet has."

RONNY HUANG

Research Scientist

"After discovering Comet, our deep learning team's productivity went up. Comet
is easy to set up and allows us to move research faster."

GURU RAO

Head of AI

"We can seamlessly compare and share experiments, debug and stop underperforming
models. Comet has improved our efficiency."

CAROL ANDERSON

Staff Data Scientist




GET STARTED TODAY, FREE

No credit card required, try Comet with no risk and no commitment.

Create Free Account





GET STARTED TODAY, FREE

No credit card required, try Comet with no risk and no commitment.

Create Free Account





SUBSCRIBE TO COMET

Sign up to receive the Comet newsletter and never miss out on the latest ML
updates, news and events!

*
First Name:




*
Last Name:




*
Email Address:





Get Updates

Thank you for subscribing to Comet’s newsletter!


PRODUCTS

 * Experiment Management
 * Artifacts
 * Model Registry
 * Model Production Monitoring
 * LLMOps


LEARN

 * Documentation
 * Resources
 * Comet Blog
 * Deep Learning Weekly
 * Heartbeat
 * LLM Course


COMPANY

 * About Us
 * News and Events
 * Careers
 * Contact Us


PRICING

 * Pricing
 * Create a Free Account
 * Contact Sales


FOLLOW US

LinkedInTwitterYoutubeFacebook


LEARN

 * Documentation
 * Resources
 * Comet Blog
 * Deep Learning Weekly
 * Heartbeat
 * LLM Course


PRODUCTS

 * Experiment Management
 * Artifacts
 * Model Registry
 * Model Production Monitoring
 * LLMOps


COMPANY

 * About Us
 * News and Events
 * Careers
 * Contact Us


PRICING

 * Pricing
 * Create a Free Account
 * Contact Sales


FOLLOW US

LinkedInTwitterYoutubeFacebook
© 2024 Comet ML, Inc. - All Rights Reserved
 * Terms of Service
 * Privacy Policy
 * CCPA Privacy Notice
 * Cookie Settings

Back To Top

We use cookies to collect statistical usage information about our website and
its visitors and ensure we give you the best experience on our website. Please
refer to our Privacy Policy to learn more.OkPrivacy policy
×Close mobile menu
 * Enterprise
 * Products
   * Opik – LLM Evaluation
   * Experiment Management
   * Artifacts
   * Model Registry
   * Model Production Monitoring
 * Docs
 * Pricing
 * Customers
 * Learn
   * Resources
   * Blog
 * Company
   * About Us
   * News and Events
     * Events
     * Press Releases
   * Careers
   * Leadership
   * Contact Us
 * Login
 * Get Demo
 * Try Comet Free



1