attosecond-metaoptics-website.pages.dev
Open in
urlscan Pro
2606:4700:310c::ac42:2eec
Public Scan
URL:
https://attosecond-metaoptics-website.pages.dev/
Submission: On December 13 via api from US — Scanned from US
Submission: On December 13 via api from US — Scanned from US
Form analysis
0 forms found in the DOMText Content
ATTOSECOND METAOPTIC MICROSCOPY Menu * News * Team * Positions * Funding * Research * Publications NEWS TEAM David Grafinger, dgrafinger@student.tugraz.at Anna Karner, anna.karner@tugraz.at Alexander Grossek, grossek@tugraz.at Daniel Hipp (joint with Martin Schultze), daniel.hipp@student.tugraz.at Marcus Ossiander, Google Scholar, marcus.ossiander@tugraz.at OPEN POSITIONS Bachelor/Master Thesis: White Light Cavities for Ultrafast Pulses Master Thesis: Exploration of XUV Photonic Integrated Circuits Contact marcus.ossiander@tugraz.at anytime for details. FUNDING European Research Council, Starting Grant Austrian Science Fund, Start Prize Alexander von Humboldt Stiftung, Feodor Lynen Fellowship AFFILIATIONS AND COLLABORATIONS Main: Institute of Experimental Physics, University of Technology Graz Capasso group, SEAS, Harvard University Young Academy, Austrian Academy of Sciences RESEARCH HIGHLIGHTS EXPAND Extreme Ultraviolet Metalens by Vacuum Guiding M. Ossiander*, M. L. Meretska, H. K. Hampel, S. W. D. Lim, N. Knefz, T. Jauk, F. Capasso*, M. Schultze* Science 380, pp. 59-63, 07.04.2023 10.1126/science.adg6881 Secondary Articles: Physics Today Holey lens focuses extreme-UV radiation (2023) ORF Science Metaoptik für allerkleinste Strukturen (2023) Optica Optics and Photonics News A Metalens for the Extreme Ultraviolet (2023) Extreme ultraviolet (EUV) radiation is at the heart of semiconductor lithography, modern material science, and attosecond metrology but a severe lack of optics halts progress. In this publication, we experimentally demonstrate metasurfaces as a superior way to handle EUV light. We achieve this by introducing a new nanoscopic phase-shifting technique - vacuum guiding - which exploits that holes in a membrane can have a considerably larger EUV refractive index than the surrounding material. We fabricated an EUV metalens and proved it focuses ultrashort light bursts generated via high-harmonic generation to a waist of only 700 nm. The work multiplies the current high-frequency limit of metasurfaces and, as the devices are phase-based, constitutes the first universal optics technology in the EUV. Metasurface-Stabilized Optical Microcavities M. Ossiander*, M. L. Meretska, S. Rourke, C. M. Spaegele, X. Yin, I. C. Benea-Chelmus, F. Capasso* Nature Communications 14, 1114 (9pp), 27.02.2023 10.1038/s41467-023-36873-7 In this publication, we introduce microcavities generating holographic modes. By combining dielectric metasurfaces and distributed Bragg reflectors, we harness the design freedom of metasurfaces and the high reflectivity of Bragg reflectors. Therefore, we demonstrated metasurfaces as a highly effective way to concentrate light, i.e., to provide small mode volumes, high quality factors, and Purcell control. Contrary to classic cavity designs, our metasurface microcavities can stabilize designer modes and such, e.g., couple multiple quantum emitters or improve the efficiency of semiconductor lasers. The speed limit of optoelectronics M. Ossiander*, K. Golyari, K. Scharl, L. Lehnert, F. Siegrist, J. P. Bürger, D. Zimin, J.A. Gessner, M. Weidman, I. Floss, V. Smejkal, S. Donsa, C. Lemell, F. Libisch, N. Karpowicz, J. Burgdörfer, F. Krausz*, M. Schultze Nature Communications 13, 1620 (9pp), 25.03.2022 10.1038/s41467-022-29252-1 Secondary Articles: Physics World Quantum physics sets a speed limit for fastest possible optoelectronic switch (2022) Der Standard Physikalisches Speedlimit für Computerchips liegt bei einem Petahertz (2022) yahoo! Do your electronic gadgets have a speed limit? (2022) This publication highlights today's x-ray attosecond science as a powerful tool for exploring future materials for communication and computation. We developed a technique to inject carriers in the conduction band of lithium fluoride using a 1 fs vacuum-ultraviolet light pulse and to coherently steer them via the electric field of a laser pulse. Albeit working with isolators, we could drive currents with a speed close to one petahertz. The method allows following excited electrons through the band structure and observing intra- and non-adiabatic interband transitions. As the technique records real currents, it connects microscopic effects to macroscopic signatures and directly measures optoelectronic material properties. Slow light nanocoatings for ultrashort pulse compression M. Ossiander*, Y.-W. Huang, W.-T. Chen, Z. Wang, X. Yin, Y. A. Ibrahim, M. Schultze, F. Capasso* Nature Communications 12, 6518 (8pp), 11.11.2021 10.1038/s41467-021-26920-6 Secondary Articles: optics.org Harvard silicon coating counteracts light dispersion (2021) Materials Today New silicon coating uses nanopillars to trap red light (2021) The dispersion of transparent materials has aggravated using transmissive optics in ultrafast laser science for decades. This work introduces nanostructured coatings that imprint negative group delay dispersion in the visible and near-infrared spectrum upon transmission. We experimentally demonstrated this in the spectral domain and proved the coatings compress elongated pulses in the time domain. As such, when applied to any ordinary transmissive optics, the coatings cancel their dispersion and prevent temporal pulse broadening, allowing their straightforward application to ultrashort laser pulses down to the few-cycle regime. Absolute Timing of the Photoelectric Effect M. Ossiander*, J. Riemensberger, S. Neppl, M. Mittermair, M. Schäffer, A. Duensing, M. Wagner, R. Heider, M. Wurzer, M. Gerl, M. Schnitzenbaumer. J.V. Barth, F. Libisch, C. Lemell, J. Burgdörfer, P. Feulner, R. Kienberger* Nature 561, pp. 374-377, 19.09.2018 10.1038/s41586-018-0503-6 Secondary Articles: physicsworld How long does the photoelectric effect take? (2018) Frankfurter Allgemeine Zeitung Ein Milliardstel einer Milliardstel Sekunde (2018) We developed a technique that enables recording the absolute timing of photoelectrons escaping from surfaces. This is equivalent to the phase of the photoelectrons and reveals, e.g., where they were born and how they move through a crystal. We showed that electrons can be freed from solids unexpectedly fast and demonstrated for the first time how to examine photoemission from adsorbates in the time domain. Material science can now gain previously unattainable information about the electron dynamics in designed surface-adsorbate-systems, employed, e.g., in organic solar cells and catalysis. Attosecond correlation dynamics M. Ossiander*, F. Siegrist, V. Shirvanyan, R. Pazourek, A. Sommer, T. Latka, A. Guggenmos, S. Nagele, J. Feist, J. Burgdörfer, R. Kienberger, M. Schultze* Nature Physics 13, pp. 280-285, 07.11.2016 10.1038/nphys3941 Secondary Articles: New Scientist Smallest sliver of time yet measured sees electrons fleeing atom (2016) Spiegel Online 0,000000000000000007 Sekunden (2016) Optica Optics and Photonics News Tracking Photoelectrons with Sub-Attosecond Precision (2016) We recorded the time delay between the absorption of a photon by a helium atom and the ejection of an electron for the first time. This allowed us to present four major results: 1) We created the first absolute time reference for attosecond spectroscopy. 2) We demonstrated how to retrieve the duration of fundamental processes with unprecedented sub-attosecond precision and accuracy. 3) The attained precision enabled breaking down the recorded times into universal and measurement-induced contributions and benchmarking theoretical models for these. 4) We demonstrated a contribution purely arising from the interaction of two electrons. This is the first realization of one of the promises of attosecond science: following the interaction of electrons on their natural timescale. PUBLICATIONS EXPAND 2023 All-glass 100 mm Diameter Visible Metalens for Imaging the Cosmos J.-S. Park, S. W. D. Lim, A. Amirzhan, H. Kang, K. Karrfalt, D. Kim, J. Leger, A. M. Urbas, M. Ossiander, Z. Li, F. Capasso preprint 17.07.2023 10.48550/arXiv.2307.08186 Minimal memory differentiable FDTD for photonic inverse design R. J. Tang*, S. W. D. Lim*, M. Ossiander, X. Yin, F. Capasso ACS Photonics, 14.11.2023 10.1021/acsphotonics.3c00694 Attosecond dynamics of photoemission over a wide photon energy range C. A. Schröder*, J. Riemensberger, R. Kuzian, M. Ossiander, D. Potamianos, , F. Allegretti, L. Bignardi, S. Lizzit, A. Akil, A. Cavalieri, D. Menzel, S. Neppl, R. Ernstorfer, J. Braun, H. Ebert, J. Minar, W. Helml, M. Jobst, M. Gerl, E. Bothschafter, A. Kim, K. Hütten, U. Kleineberg, M. Schnitzenbaumer, J. Barth, P. Feulner, E. Krasovskii, R. Kienberger* preprint, 30.10.2023 10.21203/rs.3.rs-3024896/v1 High-power laser beam shaping using a metasurface for shock excitation and focusing at the microscale Y. Kai, J. Lem, M. Ossiander, M. L. Meretska, V. Sokurenko, S. E. Kooi, F. Capasso, K. A. Nelson, T. Pezeril Optics express 31, pp. 31308-31315, 07.9.2023 10.1364/OE.487894 Topologically protected four-dimensional optical singularities C. M. Spaegele*, M. Tamagnone*, S. W. D. Lim, M. Ossiander, M. L. Meretska, F. Capasso* Science Advances 9, eadh0369, 16.6.2023 10.1126/sciadv.adh0369 Extreme Ultraviolet Metalens by Vacuum Guiding M. Ossiander*, M. L. Meretska, H. K. Hampel, S. W. D. Lim, N. Knefz, T. Jauk, F. Capasso*, M. Schultze* Science 380, pp. 59-63, 07.04.2023 10.1126/science.adg6881 Metasurface-Stabilized Optical Microcavities M. Ossiander*, M. L. Meretska, S. Rourke, C. M. Spaegele, X. Yin, I. C. Benea-Chelmus, F. Capasso* Nature Communications 14, 1114 (9pp), 27.02.2023 10.1038/s41467-023-36873-7 2022 Measurements of the magneto-optical properties of thin-film EuS at room temerature in the visible spectrum M. L. Meretska, F. H. B. Somhorst, M. Ossiander, Y. Hou, J. Moodera, F. Capasso Applied Physics Letters 120, 251103, 20.06.2022 10.1063/5.0090533 The speed limit of optoelectronics M. Ossiander*, K. Golyari, K. Scharl, L. Lehnert, F. Siegrist, J. P. Bürger, D. Zimin, J.A. Gessner, M. Weidman, I. Floss, V. Smejkal, S. Donsa, C. Lemell, F. Libisch, N. Karpowicz, J. Burgdörfer, F. Krausz*, M. Schultze Nature Communications 13, 1620 (9pp), 25.03.2022 10.1038/s41467-022-29252-1 2021 Slow light nanocoatings for ultrashort pulse compression M. Ossiander*, Y.-W. Huang, W.-T. Chen, Z. Wang, X. Yin, Y. A. Ibrahim, M. Schultze, F. Capasso* Nature Communications 12, 6518 (8pp), 11.11.2021 10.1038/s41467-021-26920-6 Multifunctional wide-angle optics and lasing based on supercell metasurfaces C. Spägele, M. Tamagnone*, D. Kazakov, M. Ossiander, M. Piccardo, F. Capasso* Nature Communications 12, 3787 (10pp), 18.06.2021 10.1038/s41467-021-24071-2 2020 Broadband phase-shifting mirrors for ultrafast lasers M. Trubetskov, T. Amotchkina*, L. Lehnert, J. Sancho-Parramon, K. Golyari, V. Janicki, M. Ossiander, M. Schultze, V. Pervak Applied Optics 59.5, pp. A123-A127, 10.02.2020 10.1364/AO.59.00A123 2019 Megahertz-compatible angular streaking with few-femtosecond resolution at X-ray free-electron lasers R. Heider, M. S. Wagner, N. Hartmann, M. Ilchen, J. Buck, G. Hartmann, V. Shirvanyan, A. O. Lindahl, C. Benko, J. Grünert, J. Krzywinski, J. Liu, M. Ossiander, A. A. Lutman, A. Marinelli, T. Maxwell, A. A. Miahnahri, S. P. Moeller, M. Planas, J. Robinson, J. Viefhaus, T. Feurer, R. Kienberger, R. N. Coffee, W. Helml* Phys. Rev. A 100, 053420, 25.11.2019 10.1103/PhysRevA.100.053420 Attosecond Dynamics of sp-band Photo-Excitation J. Riemensberger*, S. Neppl, D. Potamianos, M. Schäffer, M. Schnitzenbaumer, M. Ossiander, C. Schröder, A. Guggenmos, U. Kleineberg, D. Menzel, F. Allegretti, J. V. Barth, R. Kienberger, P. Feulner, A. G. Borisov, P. M. Echenique, A. K. Kazansky Phys. Rev. Lett. 123, 176801, 21.10.2019 10.1103/PhysRevLett.123.176801 Light-wave dynamic control of magnetism F. Siegrist, J. A. Gessner, M. Ossiander, C. Denker, Y. Chang, M. C. Schröder, A. Guggenmos, Y. Cui, J. Walowski, U. Martens, J. K. Dewhurst, U. Kleineberg, M. Münzenberg, S. Sharma, M. Schultze* Nature 571, pp. 240-244, 26.06.2019 10.1038/s41586-019-1333-x Few-Femtosecond Wave Packet Revivals in Ozone T. Latka*, V. Shirvanyan, M. Ossiander, O. Razskazovskaya, A. Guggenmos, M. Jobst, M. Fieß, S. Holzner, A. Sommer, M. Schultze, C. Jakubeit, J. Riemensberger, B. Bernhardt, W. Helml, F. Gatti, B. Lasorne, D. Lauvergnat, P. Decleva, G. J. Halász, Á. Vibók, R. Kienberger* Phys. Rev. A 99, 063405 (9pp), 10.06.2019 10.1103/PhysRevA.99.063405 2018 Absolute Timing of the Photoelectric Effect M. Ossiander*, J. Riemensberger, S. Neppl, M. Mittermair, M. Schäffer, A. Duensing, M. Wagner, R. Heider, M. Wurzer, M. Gerl, M. Schnitzenbaumer. J.V. Barth, F. Libisch, C. Lemell, J. Burgdörfer, P. Feulner, R. Kienberger* Nature 561, pp. 374-377, 19.09.2018 10.1038/s41586-018-0503-6 2017 Carrier frequency tuning of few-cycle light pulses by a broadband attenuating mirror O. Razskazovskaya, M. Ossiander, F. Siegrist, V. Pervak, M. Schultze Applied Optics 56.32, pp. 8978-8982, 08.11.2017 10.1364/AO.56.008978 2016 Attosecond correlation dynamics M. Ossiander*, F. Siegrist, V. Shirvanyan, R. Pazourek, A. Sommer, T. Latka, A. Guggenmos, S. Nagele, J. Feist, J. Burgdörfer, R. Kienberger, M. Schultze* Nature Physics 13, pp. 280-285, 07.11.2016 10.1038/nphys3941 Attosecond photoelectron streaking with enhanced energy resolution for small-band-gap materials A. Guggenmos, A. Akil, M. Ossiander, M. Schäffer, A. M. Azzeer, G. Böhm, M.-C. Amann, R. Kienberger, M. Schultze, U. Kleineberg Optics Letters 41.16, pp. 3714-3717, 03.08.2016 10.1364/OL.41.003714 2015 Chromium/Scandium multilayer mirrors for attosecond pulses at 145 eV A. Guggenmos*, M. Jobst, M. Ossiander, S. Radünz, J. Riemensberger, M. Schäffer, A. Akil, C. Jakubeit, P. Böhm, S. Noever, B. Nickel, R. Kienberger, F. Krausz, U. Kleineberg Optics Letters 40.12, pp. 2846-2849, 11.06.2015 10.1364/OL.40.002846 2014 Optical study of lithographically defined, subwavelength plasmonic wires and their coupling to embedded quantum emitters G. Bracher*, K. Schraml, M. Ossiander, S. Frederick, J. J. Finley, M. Kaniber Nanotechnology 25.7, 075203 (6pp), 21.01.2014 10.1088/0957-4484/25/7/075203 2012 Carrier-envelope-phase-stable, 1.2 mJ, 1.5 cycle laser pulses at 2.1 um Y. Deng*, A. Schwarz, H. Fattahi, M. Ueffing, X. Gu, M. Ossiander, T. Metzger, V. Pervak, H. Ishizuki, T. Taira, T. Kobayashi, G. Marcus, F. Krausz, R. Kienberger, N. Karpowicz Optics Letters 37.23, pp. 4973-4975, 29.11.2012 10.1364/OL.37.004973 Active stabilization for optically synchronized optical parametric chirped pulse amplification A. Schwarz*, M. Ueffing, Y. Deng, X. Gu, H. Fattahi, T. Metzger, M. Ossiander, F. Krausz, R. Kienberger Optics Express 20.5, pp. 5557-5565, 22.2.2012 10.1364/OE.20.005557