attosecond-metaoptics-website.pages.dev Open in urlscan Pro
2606:4700:310c::ac42:2eec  Public Scan

URL: https://attosecond-metaoptics-website.pages.dev/
Submission: On December 13 via api from US — Scanned from US

Form analysis 0 forms found in the DOM

Text Content

ATTOSECOND
METAOPTIC
MICROSCOPY

Menu
 * News
 * Team
 * Positions
 * Funding
 * Research
 * Publications

NEWS



TEAM

David Grafinger, dgrafinger@student.tugraz.at

Anna Karner, anna.karner@tugraz.at

Alexander Grossek, grossek@tugraz.at

Daniel Hipp (joint with Martin Schultze), daniel.hipp@student.tugraz.at

Marcus Ossiander, Google Scholar, marcus.ossiander@tugraz.at



OPEN POSITIONS

Bachelor/Master Thesis: White Light Cavities for Ultrafast Pulses

Master Thesis: Exploration of XUV Photonic Integrated Circuits

Contact marcus.ossiander@tugraz.at anytime for details.

FUNDING

European Research Council, Starting Grant

Austrian Science Fund, Start Prize

Alexander von Humboldt Stiftung, Feodor Lynen Fellowship

AFFILIATIONS AND COLLABORATIONS

Main: Institute of Experimental Physics, University of Technology Graz

Capasso group, SEAS, Harvard University

Young Academy, Austrian Academy of Sciences

RESEARCH HIGHLIGHTS EXPAND

Extreme Ultraviolet Metalens by Vacuum Guiding

M. Ossiander*, M. L. Meretska, H. K. Hampel, S. W. D. Lim, N. Knefz, T. Jauk, F.
Capasso*, M. Schultze*

Science 380, pp. 59-63, 07.04.2023

10.1126/science.adg6881

Secondary Articles:

Physics Today Holey lens focuses extreme-UV radiation (2023)

ORF Science Metaoptik für allerkleinste Strukturen (2023)

Optica Optics and Photonics News A Metalens for the Extreme Ultraviolet (2023)

Extreme ultraviolet (EUV) radiation is at the heart of semiconductor
lithography, modern material science, and attosecond metrology but a severe lack
of optics halts progress. In this publication, we experimentally demonstrate
metasurfaces as a superior way to handle EUV light. We achieve this by
introducing a new nanoscopic phase-shifting technique - vacuum guiding - which
exploits that holes in a membrane can have a considerably larger EUV refractive
index than the surrounding material. We fabricated an EUV metalens and proved it
focuses ultrashort light bursts generated via high-harmonic generation to a
waist of only 700 nm. The work multiplies the current high-frequency limit of
metasurfaces and, as the devices are phase-based, constitutes the first
universal optics technology in the EUV.

Metasurface-Stabilized Optical Microcavities

M. Ossiander*, M. L. Meretska, S. Rourke, C. M. Spaegele, X. Yin, I. C.
Benea-Chelmus, F. Capasso*

Nature Communications 14, 1114 (9pp), 27.02.2023

10.1038/s41467-023-36873-7

In this publication, we introduce microcavities generating holographic modes. By
combining dielectric metasurfaces and distributed Bragg reflectors, we harness
the design freedom of metasurfaces and the high reflectivity of Bragg
reflectors. Therefore, we demonstrated metasurfaces as a highly effective way to
concentrate light, i.e., to provide small mode volumes, high quality factors,
and Purcell control. Contrary to classic cavity designs, our metasurface
microcavities can stabilize designer modes and such, e.g., couple multiple
quantum emitters or improve the efficiency of semiconductor lasers.

The speed limit of optoelectronics

M. Ossiander*, K. Golyari, K. Scharl, L. Lehnert, F. Siegrist, J. P. Bürger, D.
Zimin, J.A. Gessner, M. Weidman, I. Floss, V. Smejkal, S. Donsa, C. Lemell, F.
Libisch, N. Karpowicz, J. Burgdörfer, F. Krausz*, M. Schultze

Nature Communications 13, 1620 (9pp), 25.03.2022

10.1038/s41467-022-29252-1

Secondary Articles:

Physics World Quantum physics sets a speed limit for fastest possible
optoelectronic switch (2022)

Der Standard Physikalisches Speedlimit für Computerchips liegt bei einem
Petahertz (2022)

yahoo! Do your electronic gadgets have a speed limit? (2022)

This publication highlights today's x-ray attosecond science as a powerful tool
for exploring future materials for communication and computation. We developed a
technique to inject carriers in the conduction band of lithium fluoride using a
1 fs vacuum-ultraviolet light pulse and to coherently steer them via the
electric field of a laser pulse. Albeit working with isolators, we could drive
currents with a speed close to one petahertz. The method allows following
excited electrons through the band structure and observing intra- and
non-adiabatic interband transitions. As the technique records real currents, it
connects microscopic effects to macroscopic signatures and directly measures
optoelectronic material properties.

Slow light nanocoatings for ultrashort pulse compression

M. Ossiander*, Y.-W. Huang, W.-T. Chen, Z. Wang, X. Yin, Y. A. Ibrahim, M.
Schultze, F. Capasso*

Nature Communications 12, 6518 (8pp), 11.11.2021

10.1038/s41467-021-26920-6

Secondary Articles:

optics.org Harvard silicon coating counteracts light dispersion (2021)

Materials Today New silicon coating uses nanopillars to trap red light (2021)

The dispersion of transparent materials has aggravated using transmissive optics
in ultrafast laser science for decades. This work introduces nanostructured
coatings that imprint negative group delay dispersion in the visible and
near-infrared spectrum upon transmission. We experimentally demonstrated this in
the spectral domain and proved the coatings compress elongated pulses in the
time domain. As such, when applied to any ordinary transmissive optics, the
coatings cancel their dispersion and prevent temporal pulse broadening, allowing
their straightforward application to ultrashort laser pulses down to the
few-cycle regime.

Absolute Timing of the Photoelectric Effect

M. Ossiander*, J. Riemensberger, S. Neppl, M. Mittermair, M. Schäffer, A.
Duensing, M. Wagner, R. Heider, M. Wurzer, M. Gerl, M. Schnitzenbaumer. J.V.
Barth, F. Libisch, C. Lemell, J. Burgdörfer, P. Feulner, R. Kienberger*

Nature 561, pp. 374-377, 19.09.2018

10.1038/s41586-018-0503-6

Secondary Articles:

physicsworld How long does the photoelectric effect take? (2018)

Frankfurter Allgemeine Zeitung Ein Milliardstel einer Milliardstel Sekunde
(2018)

We developed a technique that enables recording the absolute timing of
photoelectrons escaping from surfaces. This is equivalent to the phase of the
photoelectrons and reveals, e.g., where they were born and how they move through
a crystal. We showed that electrons can be freed from solids unexpectedly fast
and demonstrated for the first time how to examine photoemission from adsorbates
in the time domain. Material science can now gain previously unattainable
information about the electron dynamics in designed surface-adsorbate-systems,
employed, e.g., in organic solar cells and catalysis.

Attosecond correlation dynamics

M. Ossiander*, F. Siegrist, V. Shirvanyan, R. Pazourek, A. Sommer, T. Latka, A.
Guggenmos, S. Nagele, J. Feist, J. Burgdörfer, R. Kienberger, M. Schultze*

Nature Physics 13, pp. 280-285, 07.11.2016

10.1038/nphys3941

Secondary Articles:

New Scientist Smallest sliver of time yet measured sees electrons fleeing atom
(2016)

Spiegel Online 0,000000000000000007 Sekunden (2016)

Optica Optics and Photonics News Tracking Photoelectrons with Sub-Attosecond
Precision (2016)

We recorded the time delay between the absorption of a photon by a helium atom
and the ejection of an electron for the first time. This allowed us to present
four major results: 1) We created the first absolute time reference for
attosecond spectroscopy. 2) We demonstrated how to retrieve the duration of
fundamental processes with unprecedented sub-attosecond precision and accuracy.
3) The attained precision enabled breaking down the recorded times into
universal and measurement-induced contributions and benchmarking theoretical
models for these. 4) We demonstrated a contribution purely arising from the
interaction of two electrons. This is the first realization of one of the
promises of attosecond science: following the interaction of electrons on their
natural timescale.

PUBLICATIONS EXPAND

2023

All-glass 100 mm Diameter Visible Metalens for Imaging the Cosmos

J.-S. Park, S. W. D. Lim, A. Amirzhan, H. Kang, K. Karrfalt, D. Kim, J. Leger,
A. M. Urbas, M. Ossiander, Z. Li, F. Capasso

preprint 17.07.2023 10.48550/arXiv.2307.08186

Minimal memory differentiable FDTD for photonic inverse design

R. J. Tang*, S. W. D. Lim*, M. Ossiander, X. Yin, F. Capasso

ACS Photonics, 14.11.2023 10.1021/acsphotonics.3c00694

Attosecond dynamics of photoemission over a wide photon energy range

C. A. Schröder*, J. Riemensberger, R. Kuzian, M. Ossiander, D. Potamianos, , F.
Allegretti, L. Bignardi, S. Lizzit, A. Akil, A. Cavalieri, D. Menzel, S. Neppl,
R. Ernstorfer, J. Braun, H. Ebert, J. Minar, W. Helml, M. Jobst, M. Gerl, E.
Bothschafter, A. Kim, K. Hütten, U. Kleineberg, M. Schnitzenbaumer, J. Barth, P.
Feulner, E. Krasovskii, R. Kienberger*

preprint, 30.10.2023 10.21203/rs.3.rs-3024896/v1

High-power laser beam shaping using a metasurface for shock excitation and
focusing at the microscale

Y. Kai, J. Lem, M. Ossiander, M. L. Meretska, V. Sokurenko, S. E. Kooi, F.
Capasso, K. A. Nelson, T. Pezeril

Optics express 31, pp. 31308-31315, 07.9.2023 10.1364/OE.487894

Topologically protected four-dimensional optical singularities

C. M. Spaegele*, M. Tamagnone*, S. W. D. Lim, M. Ossiander, M. L. Meretska, F.
Capasso*

Science Advances 9, eadh0369, 16.6.2023 10.1126/sciadv.adh0369

Extreme Ultraviolet Metalens by Vacuum Guiding

M. Ossiander*, M. L. Meretska, H. K. Hampel, S. W. D. Lim, N. Knefz, T. Jauk, F.
Capasso*, M. Schultze*

Science 380, pp. 59-63, 07.04.2023 10.1126/science.adg6881

Metasurface-Stabilized Optical Microcavities

M. Ossiander*, M. L. Meretska, S. Rourke, C. M. Spaegele, X. Yin, I. C.
Benea-Chelmus, F. Capasso*

Nature Communications 14, 1114 (9pp), 27.02.2023 10.1038/s41467-023-36873-7

2022

Measurements of the magneto-optical properties of thin-film EuS at room
temerature in the visible spectrum

M. L. Meretska, F. H. B. Somhorst, M. Ossiander, Y. Hou, J. Moodera, F. Capasso

Applied Physics Letters 120, 251103, 20.06.2022 10.1063/5.0090533

The speed limit of optoelectronics

M. Ossiander*, K. Golyari, K. Scharl, L. Lehnert, F. Siegrist, J. P. Bürger, D.
Zimin, J.A. Gessner, M. Weidman, I. Floss, V. Smejkal, S. Donsa, C. Lemell, F.
Libisch, N. Karpowicz, J. Burgdörfer, F. Krausz*, M. Schultze

Nature Communications 13, 1620 (9pp), 25.03.2022 10.1038/s41467-022-29252-1

2021

Slow light nanocoatings for ultrashort pulse compression

M. Ossiander*, Y.-W. Huang, W.-T. Chen, Z. Wang, X. Yin, Y. A. Ibrahim, M.
Schultze, F. Capasso*

Nature Communications 12, 6518 (8pp), 11.11.2021 10.1038/s41467-021-26920-6

Multifunctional wide-angle optics and lasing based on supercell metasurfaces

C. Spägele, M. Tamagnone*, D. Kazakov, M. Ossiander, M. Piccardo, F. Capasso*

Nature Communications 12, 3787 (10pp), 18.06.2021 10.1038/s41467-021-24071-2

2020

Broadband phase-shifting mirrors for ultrafast lasers

M. Trubetskov, T. Amotchkina*, L. Lehnert, J. Sancho-Parramon, K. Golyari, V.
Janicki, M. Ossiander, M. Schultze, V. Pervak

Applied Optics 59.5, pp. A123-A127, 10.02.2020 10.1364/AO.59.00A123

2019

Megahertz-compatible angular streaking with few-femtosecond resolution at X-ray
free-electron lasers

R. Heider, M. S. Wagner, N. Hartmann, M. Ilchen, J. Buck, G. Hartmann, V.
Shirvanyan, A. O. Lindahl, C. Benko, J. Grünert, J. Krzywinski, J. Liu, M.
Ossiander, A. A. Lutman, A. Marinelli, T. Maxwell, A. A. Miahnahri, S. P.
Moeller, M. Planas, J. Robinson, J. Viefhaus, T. Feurer, R. Kienberger, R. N.
Coffee, W. Helml*

Phys. Rev. A 100, 053420, 25.11.2019 10.1103/PhysRevA.100.053420

Attosecond Dynamics of sp-band Photo-Excitation

J. Riemensberger*, S. Neppl, D. Potamianos, M. Schäffer, M. Schnitzenbaumer, M.
Ossiander, C. Schröder, A. Guggenmos, U. Kleineberg, D. Menzel, F. Allegretti,
J. V. Barth, R. Kienberger, P. Feulner, A. G. Borisov, P. M. Echenique, A. K.
Kazansky

Phys. Rev. Lett. 123, 176801, 21.10.2019 10.1103/PhysRevLett.123.176801

Light-wave dynamic control of magnetism

F. Siegrist, J. A. Gessner, M. Ossiander, C. Denker, Y. Chang, M. C. Schröder,
A. Guggenmos, Y. Cui, J. Walowski, U. Martens, J. K. Dewhurst, U. Kleineberg, M.
Münzenberg, S. Sharma, M. Schultze*

Nature 571, pp. 240-244, 26.06.2019 10.1038/s41586-019-1333-x

Few-Femtosecond Wave Packet Revivals in Ozone

T. Latka*, V. Shirvanyan, M. Ossiander, O. Razskazovskaya, A. Guggenmos, M.
Jobst, M. Fieß, S. Holzner, A. Sommer, M. Schultze, C. Jakubeit, J.
Riemensberger, B. Bernhardt, W. Helml, F. Gatti, B. Lasorne, D. Lauvergnat, P.
Decleva, G. J. Halász, Á. Vibók, R. Kienberger*

Phys. Rev. A 99, 063405 (9pp), 10.06.2019 10.1103/PhysRevA.99.063405

2018

Absolute Timing of the Photoelectric Effect

M. Ossiander*, J. Riemensberger, S. Neppl, M. Mittermair, M. Schäffer, A.
Duensing, M. Wagner, R. Heider, M. Wurzer, M. Gerl, M. Schnitzenbaumer. J.V.
Barth, F. Libisch, C. Lemell, J. Burgdörfer, P. Feulner, R. Kienberger*

Nature 561, pp. 374-377, 19.09.2018 10.1038/s41586-018-0503-6

2017

Carrier frequency tuning of few-cycle light pulses by a broadband attenuating
mirror

O. Razskazovskaya, M. Ossiander, F. Siegrist, V. Pervak, M. Schultze

Applied Optics 56.32, pp. 8978-8982, 08.11.2017 10.1364/AO.56.008978

2016

Attosecond correlation dynamics

M. Ossiander*, F. Siegrist, V. Shirvanyan, R. Pazourek, A. Sommer, T. Latka, A.
Guggenmos, S. Nagele, J. Feist, J. Burgdörfer, R. Kienberger, M. Schultze*

Nature Physics 13, pp. 280-285, 07.11.2016 10.1038/nphys3941

Attosecond photoelectron streaking with enhanced energy resolution for
small-band-gap materials

A. Guggenmos, A. Akil, M. Ossiander, M. Schäffer, A. M. Azzeer, G. Böhm, M.-C.
Amann, R. Kienberger, M. Schultze, U. Kleineberg

Optics Letters 41.16, pp. 3714-3717, 03.08.2016 10.1364/OL.41.003714

2015

Chromium/Scandium multilayer mirrors for attosecond pulses at 145 eV

A. Guggenmos*, M. Jobst, M. Ossiander, S. Radünz, J. Riemensberger, M. Schäffer,
A. Akil, C. Jakubeit, P. Böhm, S. Noever, B. Nickel, R. Kienberger, F. Krausz,
U. Kleineberg

Optics Letters 40.12, pp. 2846-2849, 11.06.2015 10.1364/OL.40.002846

2014

Optical study of lithographically defined, subwavelength plasmonic wires and
their coupling to embedded quantum emitters

G. Bracher*, K. Schraml, M. Ossiander, S. Frederick, J. J. Finley, M. Kaniber

Nanotechnology 25.7, 075203 (6pp), 21.01.2014 10.1088/0957-4484/25/7/075203

2012

Carrier-envelope-phase-stable, 1.2 mJ, 1.5 cycle laser pulses at 2.1 um

Y. Deng*, A. Schwarz, H. Fattahi, M. Ueffing, X. Gu, M. Ossiander, T. Metzger,
V. Pervak, H. Ishizuki, T. Taira, T. Kobayashi, G. Marcus, F. Krausz, R.
Kienberger, N. Karpowicz

Optics Letters 37.23, pp. 4973-4975, 29.11.2012 10.1364/OL.37.004973

Active stabilization for optically synchronized optical parametric chirped pulse
amplification

A. Schwarz*, M. Ueffing, Y. Deng, X. Gu, H. Fattahi, T. Metzger, M. Ossiander,
F. Krausz, R. Kienberger

Optics Express 20.5, pp. 5557-5565, 22.2.2012 10.1364/OE.20.005557