post.drfengling.online
Open in
urlscan Pro
2606:4700:3037::6815:40bc
Public Scan
URL:
https://post.drfengling.online/
Submission: On October 18 via automatic, source certstream-suspicious — Scanned from DE
Submission: On October 18 via automatic, source certstream-suspicious — Scanned from DE
Form analysis
0 forms found in the DOMText Content
过去时间的日志记录 时间 值 log-20241018025737 [{"content":"是否支持插件系统?","role":"user"},{"content":"是的,LobeChat 支持插件系统。这个功能允许用户调用外部函数或服务,从而扩展和定制 LobeChat 的功能。您可以通过编写插件来集成新的 AI 模型、数据源或其他工具,以适应您的特定需求。\n\n有关插件系统的详细信息和使用方法,您可以查阅我们的[插件系统文档](https://lobehub.com/docs/usage/features/plugin-system)。如果您在开发或使用插件时遇到任何问题,也可以通过[电子邮件支持](mailto:support@lobehub.com)联系我们获取帮助。","role":"assistant"},{"content":"我的RequestBody.messages记录到的数据是:[{\"content\":\"# Role: LobeChat Support Assistant\\n\\n## About [LobeHub](https://lobehub.com/)\\n\\nLobeHub is an organization of design-engineers dedicated to providing advanced design components and tools for AI-generated content (AIGC).\\nIt aims to create a technology-driven community platform that enables the sharing of knowledge and ideas, fostering inspiration and collaboration.\\n\\nAdopting a Bootstrapping approach, LobeHub is committed to delivering an open, transparent, and user-friendly product ecosystem for both casual users and professional developers.\\nLobeHub serves as an AI Agent playground, where creativity and innovation meet.\\n\\n## About [LobeChat](https://lobechat.com/)\\n\\nLobeChat, a product of LobeHub, is an open-source ChatGPT/LLMs UI/Framework designed for modern LLMs/AI applications.\\nSupports Multi AI Providers( OpenAI / Claude 3 / Gemini / Perplexity / Bedrock / Azure / Mistral / Ollama ), Multi-Modals (Vision/TTS) and plugin system.\\nand offers a one-click FREE deployment for a private ChatGPT chat application, making it accessible and customizable for a wide range of users.\\n\\n### Features\\n\\n- [Multi-Model Service Provider Support](https://lobehub.com/docs/usage/features/multi-ai-providers)\\n- [Local Large Language Model (LLM) Support](https://lobehub.com/docs/usage/features/local-llm)\\n- [Model Visual Recognition](https://lobehub.com/docs/usage/features/vision)\\n- [TTS & STT Voice Conversation](https://lobehub.com/docs/usage/features/tts)\\n- [Text to Image Generation](https://lobehub.com/docs/usage/features/text-to-image)\\n- [Plugin System (Function Calling)](https://lobehub.com/docs/usage/features/plugin-system)\\n- [Agent Market (GPTs)](https://lobehub.com/docs/usage/features/agent-market)\\n\\n### Community Edition and Cloud Version\\n\\nLobeChat is currently available as a community preview version, completely open-source and free of charge.\\n\\nIn the LobeChat Cloud version, we provide 500,000 free computing credits to all registered users. It is ready to use without complex configurations.\\nIf you require more usage, you can subscribe to the Basic, Advanced, or Professional versions for a fee.\\n\\n### Self Hosting\\n\\nLobeChat provides Self-Hosted Version with [Vercel](https://lobehub.com/docs/self-hosting/platform/vercel) and [Docker Image](https://hub.docker.com/r/lobehub/lobe-chat).\\nThis allows you to deploy your own chatbot within a few minutes without any prior knowledge.\\n\\n**IMPORTANT**\\n\\nWhen users ask about usage or deployment, DO NOT MAKE UP ANSWERS. Instead, guide them to the relevant documentation!!!\\n\\nLearn more about [Build your own LobeChat](https://lobehub.com/docs/self-hosting) by checking it out.\\n\\n## Resources Links\\n\\nIn the response, please try to pick and include the relevant links below, and if a relevant answer cannot be provided, also offer the user these related links:\\n\\n- Official Website: https://lobehub.com/\\n- Cloud Version: https://lobechat.com/\\n- Community Edition: https://chat-preview.lobehub.com/\\n- GitHub Repository: https://github.com/lobehub/lobe-chat\\n- Latest News: https://lobehub.com/blog\\n- Usage Documentation: https://lobehub.com/docs/usage\\n- Self-Hosting Documentation: https://lobehub.com/docs/self-hosting\\n- Development Guide: https://github.com/lobehub/lobe-chat/wiki\\n- Email Support: support@lobehub.com\\n- Business Inquiries: hello@lobehub.com\\n\\n## Workflow\\n\\n1. Greet users and introduce the role and purpose of LobeHub LobeChat Support Assistant.\\n2. Understand and address user inquiries related to the LobeHub ecosystem and LobeChat application.\\n3. If unable to resolve user queries, pick and guide them to appropriate resources listed above.\\n\\n## Initialization\\n\\nAs the role , I will adhere to the following guidelines:\\n- Provide accurate and helpful information to users.\\n- Maintain a friendly and professional demeanor.\\n- Direct users to the appropriate resources when necessary.\\n- Keep the language of the response consistent with the language of the user input; if they are not consistent, then translate.\\n\\nWelcome users to LobeChat, introduce myself as the , and inform them about the services and support available. Then, guide users through the for assistance.\",\"role\":\"system\"},{\"content\":\"是否支持插件系统?\",\"role\":\"user\"}],现在我想只记录最后的user的content内容","role":"user"},{"content":"要记录最后一条用户消息的内容,您可以从 `RequestBody.messages` 数组中提取最后一条消息,并获取其 `content` 字段。以下是提取最后一条用户消息内容的示例代码:\n\n```python\n# 假设RequestBody.messages是这样的列表\nmessages = [\n {\"content\": \"Role: LobeChat Support Assistant\\n\\n## About [LobeHub](https://lobehub.com/)\\n\\n...\"},\n {\"content\": \"## About [LobeChat](https://lobechat.com/)\\n\\n...\"},\n {\"content\": \"是否支持插件系统?\", \"role\": \"user\"}\n]\n\n# 提取最后一条用户消息的内容\nlast_user_message = messages[-1]['content'] if messages[-1]['role'] == 'user' else None\n\n# 输出最后一条用户消息的内容\nprint(last_user_message)\n```\n\n这段代码会输出:\n```\n是否支持插件系统?\n```\n\n这是因为我们遍历了 `RequestBody.messages` 数组,并检查每条消息的 `role` 字段。如果 `role` 是 `'user'`,我们就认为这是一条用户消息,并记录其 `content`。最后一条消息的 `role` 是 `'user'`,所以我们记录了它的 `content`。","role":"assistant"},{"content":"测试一下","role":"user"}] log-20241018025840 [{"content":"是否支持插件系统?","role":"user"},{"content":"是的,LobeChat 支持插件系统。这个功能允许用户调用外部函数或服务,从而扩展和定制 LobeChat 的功能。您可以通过编写插件来集成新的 AI 模型、数据源或其他工具,以适应您的特定需求。\n\n有关插件系统的详细信息和使用方法,您可以查阅我们的[插件系统文档](https://lobehub.com/docs/usage/features/plugin-system)。如果您在开发或使用插件时遇到任何问题,也可以通过[电子邮件支持](mailto:support@lobehub.com)联系我们获取帮助。","role":"assistant"},{"content":"我的RequestBody.messages记录到的数据是:[{\"content\":\"# Role: LobeChat Support Assistant\\n\\n## About [LobeHub](https://lobehub.com/)\\n\\nLobeHub is an organization of design-engineers dedicated to providing advanced design components and tools for AI-generated content (AIGC).\\nIt aims to create a technology-driven community platform that enables the sharing of knowledge and ideas, fostering inspiration and collaboration.\\n\\nAdopting a Bootstrapping approach, LobeHub is committed to delivering an open, transparent, and user-friendly product ecosystem for both casual users and professional developers.\\nLobeHub serves as an AI Agent playground, where creativity and innovation meet.\\n\\n## About [LobeChat](https://lobechat.com/)\\n\\nLobeChat, a product of LobeHub, is an open-source ChatGPT/LLMs UI/Framework designed for modern LLMs/AI applications.\\nSupports Multi AI Providers( OpenAI / Claude 3 / Gemini / Perplexity / Bedrock / Azure / Mistral / Ollama ), Multi-Modals (Vision/TTS) and plugin system.\\nand offers a one-click FREE deployment for a private ChatGPT chat application, making it accessible and customizable for a wide range of users.\\n\\n### Features\\n\\n- [Multi-Model Service Provider Support](https://lobehub.com/docs/usage/features/multi-ai-providers)\\n- [Local Large Language Model (LLM) Support](https://lobehub.com/docs/usage/features/local-llm)\\n- [Model Visual Recognition](https://lobehub.com/docs/usage/features/vision)\\n- [TTS & STT Voice Conversation](https://lobehub.com/docs/usage/features/tts)\\n- [Text to Image Generation](https://lobehub.com/docs/usage/features/text-to-image)\\n- [Plugin System (Function Calling)](https://lobehub.com/docs/usage/features/plugin-system)\\n- [Agent Market (GPTs)](https://lobehub.com/docs/usage/features/agent-market)\\n\\n### Community Edition and Cloud Version\\n\\nLobeChat is currently available as a community preview version, completely open-source and free of charge.\\n\\nIn the LobeChat Cloud version, we provide 500,000 free computing credits to all registered users. It is ready to use without complex configurations.\\nIf you require more usage, you can subscribe to the Basic, Advanced, or Professional versions for a fee.\\n\\n### Self Hosting\\n\\nLobeChat provides Self-Hosted Version with [Vercel](https://lobehub.com/docs/self-hosting/platform/vercel) and [Docker Image](https://hub.docker.com/r/lobehub/lobe-chat).\\nThis allows you to deploy your own chatbot within a few minutes without any prior knowledge.\\n\\n**IMPORTANT**\\n\\nWhen users ask about usage or deployment, DO NOT MAKE UP ANSWERS. Instead, guide them to the relevant documentation!!!\\n\\nLearn more about [Build your own LobeChat](https://lobehub.com/docs/self-hosting) by checking it out.\\n\\n## Resources Links\\n\\nIn the response, please try to pick and include the relevant links below, and if a relevant answer cannot be provided, also offer the user these related links:\\n\\n- Official Website: https://lobehub.com/\\n- Cloud Version: https://lobechat.com/\\n- Community Edition: https://chat-preview.lobehub.com/\\n- GitHub Repository: https://github.com/lobehub/lobe-chat\\n- Latest News: https://lobehub.com/blog\\n- Usage Documentation: https://lobehub.com/docs/usage\\n- Self-Hosting Documentation: https://lobehub.com/docs/self-hosting\\n- Development Guide: https://github.com/lobehub/lobe-chat/wiki\\n- Email Support: support@lobehub.com\\n- Business Inquiries: hello@lobehub.com\\n\\n## Workflow\\n\\n1. Greet users and introduce the role and purpose of LobeHub LobeChat Support Assistant.\\n2. Understand and address user inquiries related to the LobeHub ecosystem and LobeChat application.\\n3. If unable to resolve user queries, pick and guide them to appropriate resources listed above.\\n\\n## Initialization\\n\\nAs the role , I will adhere to the following guidelines:\\n- Provide accurate and helpful information to users.\\n- Maintain a friendly and professional demeanor.\\n- Direct users to the appropriate resources when necessary.\\n- Keep the language of the response consistent with the language of the user input; if they are not consistent, then translate.\\n\\nWelcome users to LobeChat, introduce myself as the , and inform them about the services and support available. Then, guide users through the for assistance.\",\"role\":\"system\"},{\"content\":\"是否支持插件系统?\",\"role\":\"user\"}],现在我想只记录最后的user的content内容","role":"user"},{"content":"要记录最后一条用户消息的内容,您可以从 `RequestBody.messages` 数组中提取最后一条消息,并获取其 `content` 字段。以下是提取最后一条用户消息内容的示例代码:\n\n```python\n# 假设RequestBody.messages是这样的列表\nmessages = [\n {\"content\": \"Role: LobeChat Support Assistant\\n\\n## About [LobeHub](https://lobehub.com/)\\n\\n...\"},\n {\"content\": \"## About [LobeChat](https://lobechat.com/)\\n\\n...\"},\n {\"content\": \"是否支持插件系统?\", \"role\": \"user\"}\n]\n\n# 提取最后一条用户消息的内容\nlast_user_message = messages[-1]['content'] if messages[-1]['role'] == 'user' else None\n\n# 输出最后一条用户消息的内容\nprint(last_user_message)\n```\n\n这段代码会输出:\n```\n是否支持插件系统?\n```\n\n这是因为我们遍历了 `RequestBody.messages` 数组,并检查每条消息的 `role` 字段。如果 `role` 是 `'user'`,我们就认为这是一条用户消息,并记录其 `content`。最后一条消息的 `role` 是 `'user'`,所以我们记录了它的 `content`。","role":"assistant"},{"content":"测试一下","role":"user"},{"content":"当然,由于我无法直接执行代码,我将提供一个简单的文本示例来展示如何处理您提供的 `RequestBody.messages` 数据。\n\n假设 `RequestBody.messages` 是以下列表:\n\n```python\nRequestBody.messages = [\n {\"content\": \"Role: LobeChat Support Assistant\\n\\n## About [LobeHub](https://lobehub.com/)\\n\\nLobeHub is an organization of design-engineers dedicated to providing advanced design components and tools for AI-generated content (AIGC).\\nIt aims to create a technology-driven community platform that enables the sharing of knowledge and ideas, fostering inspiration and collaboration.\\n\\nAdopting a Bootstrapping approach, LobeHub is committed to delivering an open, transparent, and user-friendly product ecosystem for both casual users and professional developers.\\nLobeHub serves as an AI Agent playground, where creativity and innovation meet.\\n\\n## About [LobeChat](https://lobechat.com/)\\n\\nLobeChat, a product of LobeHub, is an open-source ChatGPT/LLMs UI/Framework designed for modern LLMs/AI applications.\\nSupports Multi AI Providers( OpenAI / Claude 3 / Gemini / Perplexity / Bedrock / Azure / Mistral / Ollama ), Multi-Modals (Vision/TTS) and plugin system.\\nand offers a one-click FREE deployment for a private ChatGPT chat application, making it accessible and customizable for a wide range of users.\\n\\n### Features\\n\\n- [Multi-Model Service Provider Support](https://lobehub.com/docs/usage/features/multi-ai-providers)\\n- [Local Large Language Model (LLM) Support](https://lobehub.com/docs/usage/features/local-llm)\\n- [Model Visual Recognition](https://lobehub.com/docs/usage/features/vision)\\n- [TTS & STT Voice Conversation](https://lobehub.com/docs/usage/features/tts)\\n- [Text to Image Generation](https://lobehub.com/docs/usage/features/text-to-image)\\n- [Plugin System (Function Calling)](https://lobehub.com/docs/usage/features/plugin-system)\\n- [Agent Market (GPTs)](https://lobehub.com/docs/usage/features/agent-market)\\n\\n### Community Edition and Cloud Version\\n\\nLobeChat is currently available as a community preview version, completely open-source and free of charge.\\n\\nIn the LobeChat Cloud version, we provide 500,000 free computing credits to all registered users. It is ready to use without complex configurations.\\nIf you require more usage, you can subscribe to the Basic, Advanced, or Professional versions for a fee.\\n\\n### Self Hosting\\n\\nLobeChat provides Self-Hosted Version with [Vercel](https://lobehub.com/docs/self-hosting/platform/vercel) and [Docker Image](https://hub.docker.com/r/lobehub/lobe-chat).\\nThis allows you to deploy your own chatbot within a few minutes without any prior knowledge.\\n\\n**IMPORTANT**\\n\\nWhen users ask about usage or deployment, DO NOT MAKE UP ANSWERS. Instead, guide them to the relevant documentation!!!\\n\\nLearn more about [Build your own LobeChat](https://lobehub.com/docs/self-hosting) by checking it out.\\n\\n## Resources Links\\n\\nIn the response, please try to pick and include the relevant links below, and if a relevant answer cannot be provided, also offer the user these related links:\\n\\n- Official Website: https://lobehub.com/\\n- Cloud Version: https://lobechat.com/\\n- Community Edition: https://chat-preview.lobehub.com/\\n- GitHub Repository: https://github.com/lobehub/lobe-chat\\n- Latest News: https://lobehub.com/blog\\n- Usage Documentation: https://lobehub.com/docs/usage\\n- Self-Hosting Documentation: https://lobehub.com/docs/self-hosting\\n- Development Guide: https://github.com/lobehub/lobe-chat/wiki\\n- Email Support: support@lobehub.com\\n- Business Inquiries: hello@lobehub.com\\n\\n## Workflow\\n\\n1. Greet users and introduce the role and purpose of LobeHub LobeChat Support Assistant.\\n2. Understand and address user inquiries related to the LobeHub ecosystem and LobeChat application.\\n3. If unable to resolve user queries, pick and guide them to appropriate resources listed above.\\n\\n## Initialization\\n\\nAs the role , I will adhere to the following guidelines:\\n- Provide accurate and helpful information to users.\\n- Maintain a friendly and professional demeanor.\\n- Direct users to the appropriate resources when necessary.\\n- Keep the language of the response consistent with the language of the user input; if they are not consistent, then translate.\\n\\nWelcome users to LobeChat, introduce myself as the , and inform them about the services and support available. Then, guide users through the for assistance.\", \"role\": \"system\"},\n {\"content\": \"是否支持插件系统?\", \"role\": \"user\"}\n]\n```\n\n要提取最后一条用户消息的内容,我们可以使用以下代码:\n\n```python\n# 假设RequestBody.messages是这样的列表\nRequestBody.messages = [\n # ... (上面的数据)\n]\n\n# 提取最后一条用户消息的内容\nlast_user_message = RequestBody.messages[-1]['content']\n\n# 输出最后一条用户消息的内容\nprint(last_user_message)\n```\n\n输出将会是:\n\n```\n是否支持插件系统?\n```\n\n这是因为我们直接访问了列表中的最后一个元素,并且因为 `role` 字段是 `'user'`,我们确定这是用户的消息。","role":"assistant"},{"content":"10:57:32.160\t ✘ [ERROR] Expected \";\" but found \"if\"\n10:57:32.160\t \n10:57:32.160\t worker.js:16:53:\n10:57:32.160\t 16 │ ...ssage = message[-1]['content'] if message[-1]['role'] == 'user'...\n10:57:32.160\t │ ~~\n10:57:32.160\t ╵ ;","role":"user"}] log-20241018033747 "测试一下" log-20241018033853 "测试一下"