www.tvrbo.com
Open in
urlscan Pro
3.233.126.24
Public Scan
Submitted URL: https://infotvrbo.com/
Effective URL: https://www.tvrbo.com/
Submission: On August 15 via api from US — Scanned from US
Effective URL: https://www.tvrbo.com/
Submission: On August 15 via api from US — Scanned from US
Form analysis
1 forms found in the DOM<form id="speedometer-form">
<div class="c-calculator__columns">
<div class="c-calculator__column">
<div class="c-calculator__variable">
<svg class="c-calculator__variable-icon" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 44 45">
<path
d="M12.7528 10.9153C12.7722 10.7063 12.8143 10.5013 12.8786 10.302C13.0741 10.03 13.2333 9.7303 13.349 9.4099C13.8964 8.70502 14.7468 8.28691 15.6415 8.28691H17.9962C18.3883 8.28691 18.7682 8.36352 19.1255 8.51455C19.4465 8.65053 19.8164 8.50008 19.952 8.17935C20.0877 7.85861 19.9377 7.48851 19.6168 7.35287C19.533 7.31738 19.4483 7.28484 19.3628 7.25507C20.0495 6.58972 20.477 5.65829 20.477 4.6288C20.477 2.61172 18.8359 0.970703 16.8189 0.970703C14.8018 0.970703 13.1608 2.61172 13.1608 4.6288C13.1608 5.65921 13.589 6.5914 14.2769 7.25692C14.0141 7.34841 13.7609 7.46589 13.5218 7.60734C13.25 5.85675 11.7325 4.51267 9.90706 4.51267C7.88998 4.51267 6.24896 6.15369 6.24896 8.17077C6.24896 9.20042 6.67658 10.132 7.36355 10.7974C7.1983 10.8547 7.03659 10.9226 6.87942 11.0006C6.41126 10.7826 5.88963 10.6607 5.34007 10.6607C3.32299 10.6607 1.68197 12.3017 1.68197 14.3188C1.68197 15.3486 2.10976 16.2803 2.79681 16.9458C1.17034 17.5124 0 19.0611 0 20.8783V23.7375C0 25.1981 1.18834 26.3864 2.64897 26.3864H4.34624C4.69456 26.3864 4.97695 26.1041 4.97695 25.7557C4.97695 25.4073 4.69456 25.125 4.34624 25.125H2.64897C1.88388 25.125 1.26141 24.5026 1.26141 23.7375V20.8783C1.26141 19.2785 2.56294 17.977 4.16267 17.977H6.51731C8.11703 17.977 9.41856 19.2785 9.41856 20.8783V23.7375C9.41856 24.5026 8.79609 25.125 8.031 25.125H7.06855C6.72023 25.125 6.43784 25.4073 6.43784 25.7557C6.43784 26.1041 6.72023 26.3864 7.06855 26.3864H8.031C9.49164 26.3864 10.68 25.1981 10.68 23.7375V20.8783C10.68 20.6607 10.6632 20.447 10.6309 20.2385H12.5982C14.0588 20.2385 15.2471 19.0501 15.2471 17.5895V16.6963H19.5099C20.9705 16.6963 22.1588 15.508 22.1588 14.0474V11.1882C22.1588 10.6345 22.0518 10.0964 21.8405 9.58894C21.7067 9.26728 21.3375 9.11498 21.0158 9.24903C20.6943 9.38291 20.542 9.75208 20.6759 10.0737C20.8229 10.4267 20.8974 10.8017 20.8974 11.1882V14.0474C20.8974 14.8125 20.275 15.4349 19.5099 15.4349H15.2471V14.7302C15.2237 14.313 15.1125 13.3442 14.4366 12.3747C13.8495 11.5328 13.1242 11.1031 12.7528 10.9153ZM16.8189 2.23212C18.1404 2.23212 19.2155 3.30726 19.2155 4.6288C19.2155 5.95035 18.1404 7.02549 16.8189 7.02549C15.4973 7.02549 14.4222 5.95035 14.4222 4.6288C14.4222 3.30726 15.4973 2.23212 16.8189 2.23212ZM9.90698 5.77408C11.2285 5.77408 12.3037 6.84923 12.3037 8.17077C12.3037 8.39858 12.2717 8.61916 12.212 8.82814C12.0257 9.09791 11.8724 9.38888 11.7556 9.69448C11.3156 10.2273 10.6503 10.5675 9.90698 10.5675C8.58544 10.5675 7.51029 9.49231 7.51029 8.17077C7.51029 6.84923 8.58544 5.77408 9.90698 5.77408ZM5.33999 11.9222C6.66153 11.9222 7.73667 12.9974 7.73667 14.3189C7.73667 15.6404 6.66153 16.7156 5.33999 16.7156C4.01845 16.7156 2.9433 15.6404 2.9433 14.3189C2.9433 12.9974 4.01845 11.9222 5.33999 11.9222ZM13.9857 17.5894C13.9857 18.3545 13.3633 18.977 12.5982 18.977H10.2198C9.73341 18.0336 8.89692 17.2989 7.88317 16.9458C8.5703 16.2803 8.998 15.3486 8.998 14.3188C8.998 13.393 8.65229 12.5464 8.08314 11.9014C8.29397 11.8534 8.51076 11.829 8.72974 11.829H11.0844C11.3712 11.829 11.6545 11.8708 11.9265 11.9532C13.1581 12.3266 13.9856 13.4426 13.9856 14.7302L13.9857 17.5894Z"
fill="white"></path>
<path
d="M12.7528 10.9153C12.7722 10.7063 12.8143 10.5013 12.8786 10.302C13.0741 10.03 13.2333 9.7303 13.349 9.4099C13.8964 8.70502 14.7468 8.28691 15.6415 8.28691H17.9962C18.3883 8.28691 18.7682 8.36352 19.1255 8.51455C19.4465 8.65053 19.8164 8.50008 19.952 8.17935C20.0877 7.85861 19.9377 7.48851 19.6168 7.35287C19.533 7.31738 19.4483 7.28484 19.3628 7.25507C20.0495 6.58972 20.477 5.65829 20.477 4.6288C20.477 2.61172 18.8359 0.970703 16.8189 0.970703C14.8018 0.970703 13.1608 2.61172 13.1608 4.6288C13.1608 5.65921 13.589 6.5914 14.2769 7.25692C14.0141 7.34841 13.7609 7.46589 13.5218 7.60734C13.25 5.85675 11.7325 4.51267 9.90706 4.51267C7.88998 4.51267 6.24896 6.15369 6.24896 8.17077C6.24896 9.20042 6.67658 10.132 7.36355 10.7974C7.1983 10.8547 7.03659 10.9226 6.87942 11.0006C6.41126 10.7826 5.88963 10.6607 5.34007 10.6607C3.32299 10.6607 1.68197 12.3017 1.68197 14.3188C1.68197 15.3486 2.10976 16.2803 2.79681 16.9458C1.17034 17.5124 0 19.0611 0 20.8783V23.7375C0 25.1981 1.18834 26.3864 2.64897 26.3864H4.34624C4.69456 26.3864 4.97695 26.1041 4.97695 25.7557C4.97695 25.4073 4.69456 25.125 4.34624 25.125H2.64897C1.88388 25.125 1.26141 24.5026 1.26141 23.7375V20.8783C1.26141 19.2785 2.56294 17.977 4.16267 17.977H6.51731C8.11703 17.977 9.41856 19.2785 9.41856 20.8783V23.7375C9.41856 24.5026 8.79609 25.125 8.031 25.125H7.06855C6.72023 25.125 6.43784 25.4073 6.43784 25.7557C6.43784 26.1041 6.72023 26.3864 7.06855 26.3864H8.031C9.49164 26.3864 10.68 25.1981 10.68 23.7375V20.8783C10.68 20.6607 10.6632 20.447 10.6309 20.2385H12.5982C14.0588 20.2385 15.2471 19.0501 15.2471 17.5895V16.6963H19.5099C20.9705 16.6963 22.1588 15.508 22.1588 14.0474V11.1882C22.1588 10.6345 22.0518 10.0964 21.8405 9.58894C21.7067 9.26728 21.3375 9.11498 21.0158 9.24903C20.6943 9.38291 20.542 9.75208 20.6759 10.0737C20.8229 10.4267 20.8974 10.8017 20.8974 11.1882V14.0474C20.8974 14.8125 20.275 15.4349 19.5099 15.4349H15.2471V14.7302C15.2237 14.313 15.1125 13.3442 14.4366 12.3747C13.8495 11.5328 13.1242 11.1031 12.7528 10.9153ZM16.8189 2.23212C18.1404 2.23212 19.2155 3.30726 19.2155 4.6288C19.2155 5.95035 18.1404 7.02549 16.8189 7.02549C15.4973 7.02549 14.4222 5.95035 14.4222 4.6288C14.4222 3.30726 15.4973 2.23212 16.8189 2.23212ZM9.90698 5.77408C11.2285 5.77408 12.3037 6.84923 12.3037 8.17077C12.3037 8.39858 12.2717 8.61916 12.212 8.82814C12.0257 9.09791 11.8724 9.38888 11.7556 9.69448C11.3156 10.2273 10.6503 10.5675 9.90698 10.5675C8.58544 10.5675 7.51029 9.49231 7.51029 8.17077C7.51029 6.84923 8.58544 5.77408 9.90698 5.77408ZM5.33999 11.9222C6.66153 11.9222 7.73667 12.9974 7.73667 14.3189C7.73667 15.6404 6.66153 16.7156 5.33999 16.7156C4.01845 16.7156 2.9433 15.6404 2.9433 14.3189C2.9433 12.9974 4.01845 11.9222 5.33999 11.9222ZM13.9857 17.5894C13.9857 18.3545 13.3633 18.977 12.5982 18.977H10.2198C9.73341 18.0336 8.89692 17.2989 7.88317 16.9458C8.5703 16.2803 8.998 15.3486 8.998 14.3188C8.998 13.393 8.65229 12.5464 8.08314 11.9014C8.29397 11.8534 8.51076 11.829 8.72974 11.829H11.0844C11.3712 11.829 11.6545 11.8708 11.9265 11.9532C13.1581 12.3266 13.9856 13.4426 13.9856 14.7302L13.9857 17.5894Z"
fill="url(#paint0_linear_3901_3043)" fill-opacity="0.2"></path>
<path
d="M12.7528 10.9153C12.7722 10.7063 12.8143 10.5013 12.8786 10.302C13.0741 10.03 13.2333 9.7303 13.349 9.4099C13.8964 8.70502 14.7468 8.28691 15.6415 8.28691H17.9962C18.3883 8.28691 18.7682 8.36352 19.1255 8.51455C19.4465 8.65053 19.8164 8.50008 19.952 8.17935C20.0877 7.85861 19.9377 7.48851 19.6168 7.35287C19.533 7.31738 19.4483 7.28484 19.3628 7.25507C20.0495 6.58972 20.477 5.65829 20.477 4.6288C20.477 2.61172 18.8359 0.970703 16.8189 0.970703C14.8018 0.970703 13.1608 2.61172 13.1608 4.6288C13.1608 5.65921 13.589 6.5914 14.2769 7.25692C14.0141 7.34841 13.7609 7.46589 13.5218 7.60734C13.25 5.85675 11.7325 4.51267 9.90706 4.51267C7.88998 4.51267 6.24896 6.15369 6.24896 8.17077C6.24896 9.20042 6.67658 10.132 7.36355 10.7974C7.1983 10.8547 7.03659 10.9226 6.87942 11.0006C6.41126 10.7826 5.88963 10.6607 5.34007 10.6607C3.32299 10.6607 1.68197 12.3017 1.68197 14.3188C1.68197 15.3486 2.10976 16.2803 2.79681 16.9458C1.17034 17.5124 0 19.0611 0 20.8783V23.7375C0 25.1981 1.18834 26.3864 2.64897 26.3864H4.34624C4.69456 26.3864 4.97695 26.1041 4.97695 25.7557C4.97695 25.4073 4.69456 25.125 4.34624 25.125H2.64897C1.88388 25.125 1.26141 24.5026 1.26141 23.7375V20.8783C1.26141 19.2785 2.56294 17.977 4.16267 17.977H6.51731C8.11703 17.977 9.41856 19.2785 9.41856 20.8783V23.7375C9.41856 24.5026 8.79609 25.125 8.031 25.125H7.06855C6.72023 25.125 6.43784 25.4073 6.43784 25.7557C6.43784 26.1041 6.72023 26.3864 7.06855 26.3864H8.031C9.49164 26.3864 10.68 25.1981 10.68 23.7375V20.8783C10.68 20.6607 10.6632 20.447 10.6309 20.2385H12.5982C14.0588 20.2385 15.2471 19.0501 15.2471 17.5895V16.6963H19.5099C20.9705 16.6963 22.1588 15.508 22.1588 14.0474V11.1882C22.1588 10.6345 22.0518 10.0964 21.8405 9.58894C21.7067 9.26728 21.3375 9.11498 21.0158 9.24903C20.6943 9.38291 20.542 9.75208 20.6759 10.0737C20.8229 10.4267 20.8974 10.8017 20.8974 11.1882V14.0474C20.8974 14.8125 20.275 15.4349 19.5099 15.4349H15.2471V14.7302C15.2237 14.313 15.1125 13.3442 14.4366 12.3747C13.8495 11.5328 13.1242 11.1031 12.7528 10.9153ZM16.8189 2.23212C18.1404 2.23212 19.2155 3.30726 19.2155 4.6288C19.2155 5.95035 18.1404 7.02549 16.8189 7.02549C15.4973 7.02549 14.4222 5.95035 14.4222 4.6288C14.4222 3.30726 15.4973 2.23212 16.8189 2.23212ZM9.90698 5.77408C11.2285 5.77408 12.3037 6.84923 12.3037 8.17077C12.3037 8.39858 12.2717 8.61916 12.212 8.82814C12.0257 9.09791 11.8724 9.38888 11.7556 9.69448C11.3156 10.2273 10.6503 10.5675 9.90698 10.5675C8.58544 10.5675 7.51029 9.49231 7.51029 8.17077C7.51029 6.84923 8.58544 5.77408 9.90698 5.77408ZM5.33999 11.9222C6.66153 11.9222 7.73667 12.9974 7.73667 14.3189C7.73667 15.6404 6.66153 16.7156 5.33999 16.7156C4.01845 16.7156 2.9433 15.6404 2.9433 14.3189C2.9433 12.9974 4.01845 11.9222 5.33999 11.9222ZM13.9857 17.5894C13.9857 18.3545 13.3633 18.977 12.5982 18.977H10.2198C9.73341 18.0336 8.89692 17.2989 7.88317 16.9458C8.5703 16.2803 8.998 15.3486 8.998 14.3188C8.998 13.393 8.65229 12.5464 8.08314 11.9014C8.29397 11.8534 8.51076 11.829 8.72974 11.829H11.0844C11.3712 11.829 11.6545 11.8708 11.9265 11.9532C13.1581 12.3266 13.9856 13.4426 13.9856 14.7302L13.9857 17.5894Z"
stroke="white"></path>
<path
d="M31.4094 23.2559C26.3783 23.2559 22.2852 27.349 22.2852 32.3801C22.2852 37.4112 26.3783 41.5043 31.4094 41.5043C36.4405 41.5043 40.5336 37.4112 40.5336 32.3801C40.5336 27.349 36.4405 23.2559 31.4094 23.2559ZM31.4094 40.2429C27.0738 40.2429 23.5466 36.7157 23.5466 32.3801C23.5466 28.0445 27.0738 24.5173 31.4094 24.5173C35.745 24.5173 39.2722 28.0445 39.2722 32.3801C39.2722 36.7157 35.745 40.2429 31.4094 40.2429Z"
fill="white"></path>
<path
d="M31.4094 23.2559C26.3783 23.2559 22.2852 27.349 22.2852 32.3801C22.2852 37.4112 26.3783 41.5043 31.4094 41.5043C36.4405 41.5043 40.5336 37.4112 40.5336 32.3801C40.5336 27.349 36.4405 23.2559 31.4094 23.2559ZM31.4094 40.2429C27.0738 40.2429 23.5466 36.7157 23.5466 32.3801C23.5466 28.0445 27.0738 24.5173 31.4094 24.5173C35.745 24.5173 39.2722 28.0445 39.2722 32.3801C39.2722 36.7157 35.745 40.2429 31.4094 40.2429Z"
fill="url(#paint1_linear_3901_3043)" fill-opacity="0.2"></path>
<path
d="M31.4094 23.2559C26.3783 23.2559 22.2852 27.349 22.2852 32.3801C22.2852 37.4112 26.3783 41.5043 31.4094 41.5043C36.4405 41.5043 40.5336 37.4112 40.5336 32.3801C40.5336 27.349 36.4405 23.2559 31.4094 23.2559ZM31.4094 40.2429C27.0738 40.2429 23.5466 36.7157 23.5466 32.3801C23.5466 28.0445 27.0738 24.5173 31.4094 24.5173C35.745 24.5173 39.2722 28.0445 39.2722 32.3801C39.2722 36.7157 35.745 40.2429 31.4094 40.2429Z"
stroke="white"></path>
<path
d="M40.8464 25.5538C40.6421 25.2717 40.2477 25.2086 39.9656 25.4131C39.6836 25.6175 39.6205 26.0117 39.8249 26.2939C41.1133 28.0721 41.7944 30.1769 41.7944 32.3805C41.7944 38.1072 37.1354 42.7661 31.4088 42.7661C25.6821 42.7661 21.0231 38.1072 21.0231 32.3805C21.0231 26.6537 25.6821 21.9948 31.4088 21.9948C33.8558 21.9948 36.2321 22.8622 38.0997 24.4371C38.3661 24.6617 38.7639 24.6277 38.9884 24.3616C39.213 24.0952 39.1792 23.6974 38.9129 23.4729C36.8181 21.7062 34.153 20.7334 31.4088 20.7334C24.9866 20.7334 19.7617 25.9583 19.7617 32.3805C19.7617 38.8027 24.9866 44.0275 31.4088 44.0275C37.831 44.0275 43.0558 38.8027 43.0558 32.3805C43.0558 29.9093 42.2918 27.5487 40.8464 25.5538Z"
fill="white"></path>
<path
d="M40.8464 25.5538C40.6421 25.2717 40.2477 25.2086 39.9656 25.4131C39.6836 25.6175 39.6205 26.0117 39.8249 26.2939C41.1133 28.0721 41.7944 30.1769 41.7944 32.3805C41.7944 38.1072 37.1354 42.7661 31.4088 42.7661C25.6821 42.7661 21.0231 38.1072 21.0231 32.3805C21.0231 26.6537 25.6821 21.9948 31.4088 21.9948C33.8558 21.9948 36.2321 22.8622 38.0997 24.4371C38.3661 24.6617 38.7639 24.6277 38.9884 24.3616C39.213 24.0952 39.1792 23.6974 38.9129 23.4729C36.8181 21.7062 34.153 20.7334 31.4088 20.7334C24.9866 20.7334 19.7617 25.9583 19.7617 32.3805C19.7617 38.8027 24.9866 44.0275 31.4088 44.0275C37.831 44.0275 43.0558 38.8027 43.0558 32.3805C43.0558 29.9093 42.2918 27.5487 40.8464 25.5538Z"
fill="url(#paint2_linear_3901_3043)" fill-opacity="0.2"></path>
<path
d="M40.8464 25.5538C40.6421 25.2717 40.2477 25.2086 39.9656 25.4131C39.6836 25.6175 39.6205 26.0117 39.8249 26.2939C41.1133 28.0721 41.7944 30.1769 41.7944 32.3805C41.7944 38.1072 37.1354 42.7661 31.4088 42.7661C25.6821 42.7661 21.0231 38.1072 21.0231 32.3805C21.0231 26.6537 25.6821 21.9948 31.4088 21.9948C33.8558 21.9948 36.2321 22.8622 38.0997 24.4371C38.3661 24.6617 38.7639 24.6277 38.9884 24.3616C39.213 24.0952 39.1792 23.6974 38.9129 23.4729C36.8181 21.7062 34.153 20.7334 31.4088 20.7334C24.9866 20.7334 19.7617 25.9583 19.7617 32.3805C19.7617 38.8027 24.9866 44.0275 31.4088 44.0275C37.831 44.0275 43.0558 38.8027 43.0558 32.3805C43.0558 29.9093 42.2918 27.5487 40.8464 25.5538Z"
stroke="white"></path>
<path
d="M32.1957 28.3044V27.4227C32.1957 27.0743 31.9133 26.792 31.565 26.792C31.2166 26.792 30.9343 27.0743 30.9343 27.4227V28.3044C29.9522 28.4608 29.1992 29.3136 29.1992 30.3391V30.95C29.1992 32.0861 30.1235 33.0103 31.2595 33.0103H32.4384C32.5657 33.0103 32.6693 33.1138 32.6693 33.2411V34.42C32.6693 34.8605 32.3109 35.2189 31.8704 35.2189H31.2595C30.819 35.2189 30.4606 34.8605 30.4606 34.42V34.1146C30.4606 33.7662 30.1782 33.4839 29.8299 33.4839C29.4816 33.4839 29.1992 33.7662 29.1992 34.1146V34.42C29.1992 35.4455 29.9522 36.2982 30.9343 36.4547V37.3364C30.9343 37.6848 31.2166 37.9671 31.565 37.9671C31.9133 37.9671 32.1957 37.6848 32.1957 37.3364V36.4547C33.1777 36.2983 33.9307 35.4455 33.9307 34.42V33.2411C33.9307 32.4182 33.2613 31.7488 32.4384 31.7488H31.2595C30.819 31.7488 30.4606 31.3904 30.4606 30.95V30.3391C30.4606 29.8986 30.819 29.5402 31.2595 29.5402H31.8704C32.3109 29.5402 32.6693 29.8986 32.6693 30.3391V30.6445C32.6693 30.9929 32.9517 31.2752 33.3 31.2752C33.6483 31.2752 33.9307 30.9929 33.9307 30.6445V30.3391C33.9307 29.3136 33.1777 28.4608 32.1957 28.3044Z"
fill="white"></path>
<path
d="M32.1957 28.3044V27.4227C32.1957 27.0743 31.9133 26.792 31.565 26.792C31.2166 26.792 30.9343 27.0743 30.9343 27.4227V28.3044C29.9522 28.4608 29.1992 29.3136 29.1992 30.3391V30.95C29.1992 32.0861 30.1235 33.0103 31.2595 33.0103H32.4384C32.5657 33.0103 32.6693 33.1138 32.6693 33.2411V34.42C32.6693 34.8605 32.3109 35.2189 31.8704 35.2189H31.2595C30.819 35.2189 30.4606 34.8605 30.4606 34.42V34.1146C30.4606 33.7662 30.1782 33.4839 29.8299 33.4839C29.4816 33.4839 29.1992 33.7662 29.1992 34.1146V34.42C29.1992 35.4455 29.9522 36.2982 30.9343 36.4547V37.3364C30.9343 37.6848 31.2166 37.9671 31.565 37.9671C31.9133 37.9671 32.1957 37.6848 32.1957 37.3364V36.4547C33.1777 36.2983 33.9307 35.4455 33.9307 34.42V33.2411C33.9307 32.4182 33.2613 31.7488 32.4384 31.7488H31.2595C30.819 31.7488 30.4606 31.3904 30.4606 30.95V30.3391C30.4606 29.8986 30.819 29.5402 31.2595 29.5402H31.8704C32.3109 29.5402 32.6693 29.8986 32.6693 30.3391V30.6445C32.6693 30.9929 32.9517 31.2752 33.3 31.2752C33.6483 31.2752 33.9307 30.9929 33.9307 30.6445V30.3391C33.9307 29.3136 33.1777 28.4608 32.1957 28.3044Z"
fill="url(#paint3_linear_3901_3043)" fill-opacity="0.2"></path>
<path
d="M32.1957 28.3044V27.4227C32.1957 27.0743 31.9133 26.792 31.565 26.792C31.2166 26.792 30.9343 27.0743 30.9343 27.4227V28.3044C29.9522 28.4608 29.1992 29.3136 29.1992 30.3391V30.95C29.1992 32.0861 30.1235 33.0103 31.2595 33.0103H32.4384C32.5657 33.0103 32.6693 33.1138 32.6693 33.2411V34.42C32.6693 34.8605 32.3109 35.2189 31.8704 35.2189H31.2595C30.819 35.2189 30.4606 34.8605 30.4606 34.42V34.1146C30.4606 33.7662 30.1782 33.4839 29.8299 33.4839C29.4816 33.4839 29.1992 33.7662 29.1992 34.1146V34.42C29.1992 35.4455 29.9522 36.2982 30.9343 36.4547V37.3364C30.9343 37.6848 31.2166 37.9671 31.565 37.9671C31.9133 37.9671 32.1957 37.6848 32.1957 37.3364V36.4547C33.1777 36.2983 33.9307 35.4455 33.9307 34.42V33.2411C33.9307 32.4182 33.2613 31.7488 32.4384 31.7488H31.2595C30.819 31.7488 30.4606 31.3904 30.4606 30.95V30.3391C30.4606 29.8986 30.819 29.5402 31.2595 29.5402H31.8704C32.3109 29.5402 32.6693 29.8986 32.6693 30.3391V30.6445C32.6693 30.9929 32.9517 31.2752 33.3 31.2752C33.6483 31.2752 33.9307 30.9929 33.9307 30.6445V30.3391C33.9307 29.3136 33.1777 28.4608 32.1957 28.3044Z"
stroke="white"></path>
<path
d="M27.8259 8.31423C31.343 8.31423 34.2604 10.9305 34.7343 14.3191L34.2503 13.9616C33.9701 13.7545 33.5753 13.8138 33.3683 14.0941C33.1613 14.3743 33.2207 14.7691 33.5009 14.9761L35.0576 16.126C35.1668 16.2067 35.2983 16.2495 35.4323 16.2495C35.4651 16.2495 35.498 16.2469 35.5308 16.2417C35.6977 16.2154 35.8469 16.1231 35.9452 15.9857L37.1376 14.3196C37.3404 14.0363 37.275 13.6424 36.9918 13.4396C36.7085 13.2369 36.3146 13.3022 36.1118 13.5855L35.9342 13.8337C35.2447 9.98384 31.8712 7.05273 27.826 7.05273C27.4777 7.05273 27.1953 7.33504 27.1953 7.68344C27.1953 8.03184 27.4775 8.31423 27.8259 8.31423Z"
fill="white"></path>
<path
d="M27.8259 8.31423C31.343 8.31423 34.2604 10.9305 34.7343 14.3191L34.2503 13.9616C33.9701 13.7545 33.5753 13.8138 33.3683 14.0941C33.1613 14.3743 33.2207 14.7691 33.5009 14.9761L35.0576 16.126C35.1668 16.2067 35.2983 16.2495 35.4323 16.2495C35.4651 16.2495 35.498 16.2469 35.5308 16.2417C35.6977 16.2154 35.8469 16.1231 35.9452 15.9857L37.1376 14.3196C37.3404 14.0363 37.275 13.6424 36.9918 13.4396C36.7085 13.2369 36.3146 13.3022 36.1118 13.5855L35.9342 13.8337C35.2447 9.98384 31.8712 7.05273 27.826 7.05273C27.4777 7.05273 27.1953 7.33504 27.1953 7.68344C27.1953 8.03184 27.4775 8.31423 27.8259 8.31423Z"
fill="url(#paint4_linear_3901_3043)" fill-opacity="0.2"></path>
<path
d="M27.8259 8.31423C31.343 8.31423 34.2604 10.9305 34.7343 14.3191L34.2503 13.9616C33.9701 13.7545 33.5753 13.8138 33.3683 14.0941C33.1613 14.3743 33.2207 14.7691 33.5009 14.9761L35.0576 16.126C35.1668 16.2067 35.2983 16.2495 35.4323 16.2495C35.4651 16.2495 35.498 16.2469 35.5308 16.2417C35.6977 16.2154 35.8469 16.1231 35.9452 15.9857L37.1376 14.3196C37.3404 14.0363 37.275 13.6424 36.9918 13.4396C36.7085 13.2369 36.3146 13.3022 36.1118 13.5855L35.9342 13.8337C35.2447 9.98384 31.8712 7.05273 27.826 7.05273C27.4777 7.05273 27.1953 7.33504 27.1953 7.68344C27.1953 8.03184 27.4775 8.31423 27.8259 8.31423Z"
stroke="white"></path>
<path
d="M13.232 35.62C13.0249 35.3397 12.63 35.2804 12.35 35.4875C12.0698 35.6944 12.0104 36.0893 12.2174 36.3695L12.5748 36.8534C9.18627 36.3795 6.57001 33.4622 6.57001 29.9452C6.57001 29.5968 6.28762 29.3145 5.9393 29.3145C5.59098 29.3145 5.30859 29.5968 5.30859 29.9452C5.30859 33.9903 8.23962 37.3638 12.0895 38.0533L11.8413 38.2309C11.5581 38.4336 11.4927 38.8276 11.6955 39.1108C11.8186 39.283 12.0123 39.3747 12.2089 39.3747C12.3359 39.3747 12.4642 39.3363 12.5753 39.2568L14.2416 38.0645C14.3789 37.9662 14.4712 37.8169 14.4975 37.65C14.5238 37.483 14.4822 37.3126 14.3819 37.1768L13.232 35.62Z"
fill="white"></path>
<path
d="M13.232 35.62C13.0249 35.3397 12.63 35.2804 12.35 35.4875C12.0698 35.6944 12.0104 36.0893 12.2174 36.3695L12.5748 36.8534C9.18627 36.3795 6.57001 33.4622 6.57001 29.9452C6.57001 29.5968 6.28762 29.3145 5.9393 29.3145C5.59098 29.3145 5.30859 29.5968 5.30859 29.9452C5.30859 33.9903 8.23962 37.3638 12.0895 38.0533L11.8413 38.2309C11.5581 38.4336 11.4927 38.8276 11.6955 39.1108C11.8186 39.283 12.0123 39.3747 12.2089 39.3747C12.3359 39.3747 12.4642 39.3363 12.5753 39.2568L14.2416 38.0645C14.3789 37.9662 14.4712 37.8169 14.4975 37.65C14.5238 37.483 14.4822 37.3126 14.3819 37.1768L13.232 35.62Z"
fill="url(#paint5_linear_3901_3043)" fill-opacity="0.2"></path>
<path
d="M13.232 35.62C13.0249 35.3397 12.63 35.2804 12.35 35.4875C12.0698 35.6944 12.0104 36.0893 12.2174 36.3695L12.5748 36.8534C9.18627 36.3795 6.57001 33.4622 6.57001 29.9452C6.57001 29.5968 6.28762 29.3145 5.9393 29.3145C5.59098 29.3145 5.30859 29.5968 5.30859 29.9452C5.30859 33.9903 8.23962 37.3638 12.0895 38.0533L11.8413 38.2309C11.5581 38.4336 11.4927 38.8276 11.6955 39.1108C11.8186 39.283 12.0123 39.3747 12.2089 39.3747C12.3359 39.3747 12.4642 39.3363 12.5753 39.2568L14.2416 38.0645C14.3789 37.9662 14.4712 37.8169 14.4975 37.65C14.5238 37.483 14.4822 37.3126 14.3819 37.1768L13.232 35.62Z"
stroke="white"></path>
<defs>
<linearGradient id="paint0_linear_3901_3043" x1="11.0794" y1="0.970703" x2="11.0794" y2="26.3864" gradientUnits="userSpaceOnUse">
<stop stop-color="#DC3929"></stop>
<stop offset="1" stop-opacity="0"></stop>
</linearGradient>
<linearGradient id="paint1_linear_3901_3043" x1="31.4094" y1="23.2559" x2="31.4094" y2="41.5043" gradientUnits="userSpaceOnUse">
<stop stop-color="#DC3929"></stop>
<stop offset="1" stop-opacity="0"></stop>
</linearGradient>
<linearGradient id="paint2_linear_3901_3043" x1="31.4088" y1="20.7334" x2="31.4088" y2="44.0275" gradientUnits="userSpaceOnUse">
<stop stop-color="#DC3929"></stop>
<stop offset="1" stop-opacity="0"></stop>
</linearGradient>
<linearGradient id="paint3_linear_3901_3043" x1="31.565" y1="26.792" x2="31.565" y2="37.9671" gradientUnits="userSpaceOnUse">
<stop stop-color="#DC3929"></stop>
<stop offset="1" stop-opacity="0"></stop>
</linearGradient>
<linearGradient id="paint4_linear_3901_3043" x1="32.2254" y1="7.05273" x2="32.2254" y2="16.2495" gradientUnits="userSpaceOnUse">
<stop stop-color="#DC3929"></stop>
<stop offset="1" stop-opacity="0"></stop>
</linearGradient>
<linearGradient id="paint5_linear_3901_3043" x1="9.9069" y1="29.3145" x2="9.9069" y2="39.3747" gradientUnits="userSpaceOnUse">
<stop stop-color="#DC3929"></stop>
<stop offset="1" stop-opacity="0"></stop>
</linearGradient>
</defs>
</svg>
<div class="c-calculator__variable-inner">
<div class="c-calculator__variable-inner-row">
<label class="c-calculator__variable-title"> Conversion rate </label>
<div class="c-calculator__variable-value">
<input id="input-slider-field--cr" class="input-slider-field" maxlength="256" placeholder="0" type="number" required="">
<span class="c-calculator__variable-append"> % </span>
</div>
</div>
<div class="c-calculator__variable-inner-row">
<input id="range-slider--cr" class="range-slider" type="range" min="0" max="10" step="0.1" value="3" style="background: linear-gradient(90deg, rgb(220, 57, 41) 30%, rgb(38, 38, 38) 30%);">
</div>
</div>
</div>
<div class="c-calculator__variable">
<svg class="c-calculator__variable-icon" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 44 45">
<g id="g6" fill="#fff" clip-path="url(#clip0_4756_1761)">
<path id="path2"
d="m43.09 11.49-8.987-.444c0-.093.008-.187.008-.28 0-3.674-2.55-6.878-6.068-7.61a.634.634 0 0 0-.742.493c-.067.35.15.682.483.759 2.935.613 5.069 3.29 5.069 6.357 0 3.58-2.851 6.485-6.344 6.485-3.435 0-6.236-2.795-6.344-6.28v-.213c0-3.11 2.167-5.795 5.152-6.375a.646.646 0 0 0 .5-.75.633.633 0 0 0-.734-.511c-3.426.665-5.952 3.647-6.152 7.167l-8.453-.41-.308-1.422v-.069a.651.651 0 0 0-.475-.434L3.359 6.436a1.856 1.856 0 0 0-1.617.375C1.267 7.22 1 7.774 1 8.371c0 .92.609 1.695 1.484 1.9l4.46 1.031 1.475 7.099a.626.626 0 0 0 .609.502c.041 0 .083-.008.133-.017a.641.641 0 0 0 .484-.758l-.834-4.014h1.292c.392 1.807 2.41 11.198 2.801 13.005.067.29.317.502.609.502H40.63v1.423H11.92l-1.692-8.146a.628.628 0 0 0-.742-.495.641.641 0 0 0-.483.759l1.8 8.65a.62.62 0 0 0 .609.502h.708v1.423h-.116c-.675 0-1.217.563-1.217 1.244v1.483c0 .69.55 1.245 1.217 1.245h.175c.05.247.125.485.217.707a3.421 3.421 0 0 0-.276 1.355c0 1.84 1.468 3.34 3.268 3.34 1.8 0 3.268-1.5 3.268-3.34 0-.776-.258-1.492-.7-2.063h2.56c.34 0 .624-.29.624-.639 0-.349-.283-.639-.625-.639h-8.478v-1.423H40.63v1.423H23.258a.637.637 0 0 0-.626.64c0 .349.284.639.626.639h10.837c.05.247.125.485.217.707a3.421 3.421 0 0 0-.276 1.355c0 1.84 1.468 3.34 3.268 3.34 1.8 0 3.268-1.5 3.268-3.34 0-.776-.259-1.492-.7-2.063h.8c.675 0 1.217-.562 1.217-1.244v-1.483c0-.69-.55-1.244-1.217-1.244H16.014v-1.423h24.65c.675 0 1.217-.562 1.217-1.244v-1.483a1.23 1.23 0 0 0-1.167-1.244l2.95-14.07a.643.643 0 0 0-.575-.784ZM15.387 39.841c-1.108 0-2.017-.93-2.017-2.063v-.076a3.243 3.243 0 0 0 2.017.715c.342 0 .626-.29.626-.639v-1.96a2.064 2.064 0 0 1 1.392 1.96c0 1.134-.9 2.063-2.018 2.063Zm-.625-4.125v1.32a2.058 2.058 0 0 1-1.292-1.32h1.292Zm21.908 0v1.32a2.058 2.058 0 0 1-1.292-1.32h1.292Zm.625 4.125c-1.109 0-2.017-.93-2.017-2.063v-.076a3.243 3.243 0 0 0 2.017.715c.342 0 .625-.29.625-.639v-1.96a2.064 2.064 0 0 1 1.392 1.96c0 1.134-.909 2.063-2.017 2.063ZM13.37 31.737v-1.423h1.392v1.423h-1.392ZM41.472 16.62l-4.993-.23.625-3.912 5.185.256-.817 3.886Zm-.967 4.627-4.793-.077.558-3.502 4.935.23-.7 3.349Zm-10.578 5.087.183-3.98 4.135.06-.625 3.912h-3.693v.008Zm-5.144 0L24.6 22.27l4.268.068-.183 3.996h-3.902Zm-4.943 0-.65-4.141 4.151.068.183 4.082H19.84v-.009Zm-7.936-9.791 5.168.239.65 4.107-4.893-.077-.925-4.27Zm6.444.298 3.643.17a7.59 7.59 0 0 0 1.142.716l.15 3.247-4.294-.068-.641-4.065Zm2.267-1.176-2.467-.11-.634-4.031 1.442.068a7.78 7.78 0 0 0 1.66 4.073Zm9.553 5.42.167-3.605c.042-.025.092-.05.133-.085l4.552.205-.567 3.545-4.285-.06Zm5.677-8.667-.625 3.92-3.268-.153a7.755 7.755 0 0 0 2.001-3.86l1.892.093Zm-6.794 5.676-.133 2.974L24.533 21l-.125-2.761a7.456 7.456 0 0 0 2.1.298c.893 0 1.751-.153 2.543-.443ZM16.24 11.455l.633 4.04-5.243-.239-.876-4.065 5.486.264Zm-6.42 1.38H8.545l-.458-2.198a.635.635 0 0 0-.475-.494L2.759 9.018a.664.664 0 0 1-.509-.656c0-.435.392-.75.809-.656l5.969 1.423.15.682.642 3.025Zm3.285 9.264 4.819.077.658 4.167h-4.56l-.917-4.244Zm21.774 4.235.626-3.894 4.735.077-.8 3.817h-4.56Z">
</path>
<path id="path4"
d="M23.808 9.104c0 1.27 1.008 2.31 2.259 2.31h.892c.55 0 1.008.46 1.008 1.03 0 .563-.45 1.032-1.008 1.032H25.95a.843.843 0 0 1-.809-.614.618.618 0 0 0-.775-.426.637.637 0 0 0-.417.793 2.087 2.087 0 0 0 1.951 1.525v1.116c0 .35.283.64.625.64s.625-.29.625-.64v-1.125c1.16-.093 2.076-1.09 2.076-2.3 0-1.27-1.008-2.31-2.259-2.31h-.892c-.55 0-1.009-.46-1.009-1.031s.45-1.031 1.01-1.031h.8c.374 0 .7.247.808.613.1.341.45.529.775.427a.637.637 0 0 0 .417-.793 2.088 2.088 0 0 0-1.734-1.508V5.678c0-.35-.283-.639-.625-.639a.637.637 0 0 0-.625.64v1.124c-1.167.094-2.084 1.09-2.084 2.301Z">
</path>
</g>
<defs id="defs11">
<clipPath id="clip0_4756_1761">
<path id="rect8" fill="#fff" d="M0 0h43v43H0z" transform="translate(.618 .908)"></path>
</clipPath>
</defs>
</svg>
<div class="c-calculator__variable-inner">
<div class="c-calculator__variable-inner-row">
<label class="c-calculator__variable-title"> Average order value </label>
<div class="c-calculator__variable-value">
<input id="input-slider-field--aov" class="input-slider-field" maxlength="256" placeholder="0" type="number" required="">
<span class="c-calculator__variable-append"> $ </span>
</div>
</div>
<div class="c-calculator__variable-inner-row">
<input id="range-slider--aov" class="range-slider" type="range" min="0" max="1000" step="5" value="120" style="background: linear-gradient(90deg, rgb(220, 57, 41) 12%, rgb(38, 38, 38) 12%);">
</div>
</div>
</div>
<div class="c-calculator__variable">
<svg class="c-calculator__variable-icon" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 44 45">
<g id="g8" fill="#fff" clip-path="url(#clip0_4756_1779)">
<path id="path2"
d="M43.306 33.63h-2.774V12.477a2.43 2.43 0 0 0-2.427-2.428h-4.508a.687.687 0 0 0-.318.078c-2.638-5.952-9.602-8.64-15.555-6.002a11.787 11.787 0 0 0-6.003 6.002.687.687 0 0 0-.318-.078H6.895a2.43 2.43 0 0 0-2.427 2.428V33.63H1.694a.693.693 0 0 0-.694.694v3.814a2.43 2.43 0 0 0 2.427 2.428h38.146A2.43 2.43 0 0 0 44 38.138v-3.814a.693.693 0 0 0-.694-.694ZM22.5 4.501c5.745 0 10.403 4.658 10.403 10.403S28.245 25.307 22.5 25.307 12.097 20.65 12.097 14.904c.006-5.742 4.66-10.397 10.403-10.403Zm0 22.194c6.501 0 11.79-5.29 11.79-11.79 0-.465-.027-.928-.082-1.388h2.857V31.55H7.935V13.517h2.857c-.055.46-.082.923-.082 1.387 0 6.501 5.289 11.79 11.79 11.79ZM5.855 12.477c0-.575.465-1.04 1.04-1.04h4.336c-.071.228-.134.459-.191.693H7.242a.693.693 0 0 0-.694.693v19.42c0 .383.31.694.694.694h30.516c.383 0 .694-.31.694-.694v-19.42a.693.693 0 0 0-.694-.693H33.96c-.057-.234-.12-.466-.19-.694h4.335c.575 0 1.04.466 1.04 1.04V33.63H5.855V12.477Zm20.537 22.54-.23.694h-7.323l-.231-.694h7.784Zm16.22 3.121a1.04 1.04 0 0 1-1.04 1.04H3.428a1.04 1.04 0 0 1-1.04-1.04v-3.12h14.758l.536 1.605c.094.284.36.475.658.475h8.322c.298 0 .564-.191.658-.474l.536-1.607h14.758v3.121Z">
</path>
<path id="path4"
d="M22.5 23.92a9.016 9.016 0 0 0 9.016-9.015A9.016 9.016 0 0 0 22.5 5.889a9.016 9.016 0 0 0-9.017 9.016A9.027 9.027 0 0 0 22.5 23.92Zm-5.861-13.894.466.465a.695.695 0 0 0 .981-.981l-.466-.466a7.593 7.593 0 0 1 4.186-1.737v.661a.693.693 0 1 0 1.387 0v-.661c1.54.14 3 .746 4.186 1.737l-.466.466a.695.695 0 0 0 .982.981l.465-.465a7.593 7.593 0 0 1 1.737 4.185h-.661a.693.693 0 1 0 0 1.387h.661c-.14 1.54-.745 3-1.736 4.186l-.466-.466a.695.695 0 0 0-.981.982l.465.465a7.595 7.595 0 0 1-4.186 1.738v-.662a.693.693 0 1 0-1.387 0v.662c-1.54-.14-3-.746-4.186-1.737l.466-.465a.695.695 0 0 0-.981-.982l-.466.466a7.596 7.596 0 0 1-1.737-4.187h.661a.693.693 0 1 0 0-1.387h-.661c.14-1.54.745-3 1.737-4.185Z">
</path>
<path id="path6" d="M22.5 15.597h2.08a.693.693 0 1 0 0-1.387h-1.386v-3.468a.693.693 0 1 0-1.387 0v4.162c0 .383.31.693.693.693Z"></path>
</g>
<defs id="defs13">
<clipPath id="clip0_4756_1779">
<path id="rect10" fill="#fff" d="M0 0h43v43H0z" transform="translate(.618 .111)"></path>
</clipPath>
</defs>
</svg>
<div class="c-calculator__variable-inner">
<div class="c-calculator__variable-inner-row">
<label class="c-calculator__variable-title"> Monthly sessions </label>
<div class="c-calculator__variable-value">
<input id="input-slider-field--ms" class="input-slider-field" maxlength="256" placeholder="0" type="number" required="">
<span class="c-calculator__variable-append"> k </span>
</div>
</div>
<div class="c-calculator__variable-inner-row">
<input id="range-slider--ms" class="range-slider" type="range" min="1" max="1000" step="1" value="100" style="background: linear-gradient(90deg, rgb(220, 57, 41) 9.90991%, rgb(38, 38, 38) 9.90991%);">
</div>
</div>
</div>
<div data-display="desktop">
<div class="c-calculator__output-wrapper c-calculator__output-wrapper--impact">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 245 46" style="fill:none">
<path d="M23.06.768C10.73.768.732 10.764.732 23.096c0 12.33 9.997 22.327 22.328 22.327h198.88c12.332 0 22.328-9.996 22.328-22.327 0-12.332-9.996-22.328-22.327-22.328z" style="fill:url(#aba)"></path>
<path d="M23.06.768C10.73.768.732 10.764.732 23.096c0 12.33 9.997 22.327 22.328 22.327h198.88c12.332 0 22.328-9.996 22.328-22.327 0-12.332-9.996-22.328-22.327-22.328z" style="stroke:url(#bab);stroke-width:1.53553998"></path>
<defs>
<linearGradient id="aba" x1="123.52" x2="123.52" y1="-3.417" y2="45.093" gradientTransform="translate(-1.02 -.437)" gradientUnits="userSpaceOnUse">
<stop stop-color="#242424"></stop>
<stop offset="1"></stop>
</linearGradient>
<linearGradient id="bab" x1="123.52" x2="123.52" y1="-33.252" y2="34.768" gradientTransform="translate(-1.02 -.437)" gradientUnits="userSpaceOnUse">
<stop stop-color="#DB3929"></stop>
<stop offset="1" stop-color="#DB3929" stop-opacity="0"></stop>
</linearGradient>
</defs>
</svg>
<div class="c-calculator__output-title"> A/B Test Impact </div>
</div>
<ul class="c-calculator__impact">
<li class="c-calculator__impact-item">
<button class="c-calculator__impact-item-button" data-value="5"> +5<span>%</span>
</button>
</li>
<li class="c-calculator__impact-item">
<button class="c-calculator__impact-item-button" data-value="12" data-selected="true"> +12<span>%</span>
</button>
</li>
<li class="c-calculator__impact-item">
<button class="c-calculator__impact-item-button" data-value="16"> +16<span>%</span>
</button>
</li>
</ul>
</div>
</div>
<div class="c-calculator__column c-calculator__column--mobile">
<div>
<div class="c-calculator__output-wrapper c-calculator__output-wrapper--impact">
<svg preserveAspectRatio="none" viewBox="0 0 264 51" xmlns="http://www.w3.org/2000/svg" style="fill:none">
<path fill="url(#abb)" d="M24.845 1.444c-13.26 0-24.01 10.75-24.01 24.01 0 13.26 10.75 24.009 24.01 24.009h213.858c13.26 0 24.01-10.75 24.01-24.01 0-13.26-10.75-24.01-24.01-24.01H24.845Z"></path>
<path stroke="url(#baa)" stroke-width="1.651" d="M24.845 1.444c-13.26 0-24.01 10.75-24.01 24.01 0 13.26 10.75 24.009 24.01 24.009h213.858c13.26 0 24.01-10.75 24.01-24.01 0-13.26-10.75-24.01-24.01-24.01H24.845Z"></path>
<defs>
<linearGradient id="abb" x1="131.774" x2="131.774" y1="-3.526" y2="48.637" gradientUnits="userSpaceOnUse">
<stop stop-color="#242424"></stop>
<stop offset="1"></stop>
</linearGradient>
<linearGradient id="baa" x1="131.774" x2="131.774" y1="-35.608" y2="37.535" gradientUnits="userSpaceOnUse">
<stop stop-color="#DB3929"></stop>
<stop offset="1" stop-color="#DB3929" stop-opacity="0"></stop>
</linearGradient>
</defs>
</svg>
<div class="c-calculator__output-title"> A/B Test Impact </div>
</div>
<ul class="c-calculator__impact">
<li class="c-calculator__impact-item">
<button class="c-calculator__impact-item-button" data-value="5"> +5<span>%</span>
</button>
</li>
<li class="c-calculator__impact-item">
<button class="c-calculator__impact-item-button" data-value="12" data-selected="true"> +12<span>%</span>
</button>
</li>
<li class="c-calculator__impact-item">
<button class="c-calculator__impact-item-button" data-value="16"> +16<span>%</span>
</button>
</li>
</ul>
</div>
<div class="c-calculator__output">
<div class="c-calculator__output-wrapper c-calculator__output-wrapper--ear">
<svg preserveAspectRatio="none" viewBox="0 0 264 51" xmlns="http://www.w3.org/2000/svg" style="fill:none">
<defs>
<linearGradient id="abc" x1="131.774" x2="131.774" y1="-3.526" y2="48.637" gradientUnits="userSpaceOnUse">
<stop stop-color="#242424"></stop>
<stop offset="1"></stop>
</linearGradient>
<linearGradient id="bac" x1="131.774" x2="131.774" y1="-35.608" y2="37.535" gradientUnits="userSpaceOnUse">
<stop stop-color="#DB3929"></stop>
<stop offset="1" stop-color="#DB3929" stop-opacity="0"></stop>
</linearGradient>
</defs>
<path fill="url(#abc)" d="M24.845 1.444c-13.26 0-24.01 10.75-24.01 24.01 0 13.26 10.75 24.009 24.01 24.009h213.858c13.26 0 24.01-10.75 24.01-24.01 0-13.26-10.75-24.01-24.01-24.01H24.845Z"></path>
<path stroke="url(#bac)" stroke-width="1.651" d="M24.845 1.444c-13.26 0-24.01 10.75-24.01 24.01 0 13.26 10.75 24.009 24.01 24.009h213.858c13.26 0 24.01-10.75 24.01-24.01 0-13.26-10.75-24.01-24.01-24.01H24.845Z"></path>
</svg>
<div class="c-calculator__output-title"> Extra Annual Revenue </div>
</div>
<div class="c-calculator__output-inner">
<svg preserveAspectRatio="none" viewBox="0 0 279 41" xmlns="http://www.w3.org/2000/svg">
<rect x="0.279163" y="0.40955" width="262.133" height="41.3553" transform="matrix(1 0 -0.365539 0.930796 16.136 0.873069)" fill="#0F0F0F" stroke="url(#paint0_linear_3901_3150)" stroke-width="0.88"></rect>
<defs>
<linearGradient id="paint0_linear_3901_3150" x1="123.558" y1="-21.7448" x2="114.775" y2="36.0886" gradientUnits="userSpaceOnUse">
<stop stop-color="#939393"></stop>
<stop offset="1" stop-color="#101010"></stop>
</linearGradient>
</defs>
</svg>
<p class="c-calculator__output-value display--ear">$518,400</p>
</div>
</div>
<div class="c-calculator__output">
<div class="c-calculator__output-title"> Revenue Per User </div>
<div class="c-calculator__output-inner">
<svg preserveAspectRatio="none" viewBox="0 0 279 41" xmlns="http://www.w3.org/2000/svg">
<rect x="0.279163" y="0.40955" width="262.133" height="41.3553" transform="matrix(1 0 -0.365539 0.930796 16.136 0.873069)" fill="#0F0F0F" stroke="url(#paint0_linear_3901_3150)" stroke-width="0.88"></rect>
<defs>
<linearGradient id="paint0_linear_3901_3150" x1="123.558" y1="-21.7448" x2="114.775" y2="36.0886" gradientUnits="userSpaceOnUse">
<stop stop-color="#939393"></stop>
<stop offset="1" stop-color="#101010"></stop>
</linearGradient>
</defs>
</svg>
<p class="c-calculator__output-value display--rpu">$3.60</p>
</div>
</div>
<div class="c-calculator__output">
<div class="c-calculator__output-title"> Annual Revenue </div>
<div class="c-calculator__output-inner">
<svg preserveAspectRatio="none" viewBox="0 0 279 41" xmlns="http://www.w3.org/2000/svg">
<rect x="0.279163" y="0.40955" width="262.133" height="41.3553" transform="matrix(1 0 -0.365539 0.930796 16.136 0.873069)" fill="#0F0F0F" stroke="url(#paint0_linear_3901_3150)" stroke-width="0.88"></rect>
<defs>
<linearGradient id="paint0_linear_3901_3150" x1="123.558" y1="-21.7448" x2="114.775" y2="36.0886" gradientUnits="userSpaceOnUse">
<stop stop-color="#939393"></stop>
<stop offset="1" stop-color="#101010"></stop>
</linearGradient>
</defs>
</svg>
<p class="c-calculator__output-value display--ar">$4,320,000</p>
</div>
</div>
</div>
<div class="c-calculator__column">
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" id="svg116" class="c-calculator__dial" style="fill:none" version="1.1" viewBox="0 0 519.2 519.2">
<mask id="a" width="450" height="405" x="513" y="275" maskUnits="userSpaceOnUse">
<path id="path2" d="M0 0h448.8v403.92H0z" style="fill:#d9d9d9" transform="matrix(1 0 0 -1 513.894 679.917)"></path>
</mask>
<g id="g17" style="filter:url(#e)">
<circle id="circle15" cx="738.294" cy="531.198" r="76.56" style="fill:url(#f)" transform="translate(-478.694 -264.557)"></circle>
</g>
<mask id="h" width="88" height="94" x="689" y="493" maskUnits="userSpaceOnUse">
<path id="path21" d="M689.2 493.404h87.435v93.318H689.2z" style="fill:url(#g)"></path>
</mask>
<path id="path140" d="M425.28 414.164c38.487-40.876 62.071-95.941 62.071-156.515 0-126.121-102.24-228.362-228.36-228.362-126.122 0-228.363 102.24-228.363 228.362 0 60.574 23.585 115.639 62.072 156.515z"
style="fill:url(#paint8_linear_3901_3026)"></path>
<path id="path142"
d="M425.28 414.164c38.487-40.876 62.071-95.941 62.071-156.515 0-126.121-102.24-228.362-228.36-228.362-126.122 0-228.363 102.24-228.363 228.362 0 60.574 23.585 115.639 62.072 156.515h11.706c-9.785-10.214-20.372-22.03-27.939-32.543-18.063-25.102-35.105-70.983-35.105-70.983l5.558-3.831c-3.647-15.797-5.574-32.253-5.574-49.158 0-93.53 58.996-173.28 141.804-204.067v-5.335s47.45-12.005 78.368-11.376c31.135.634 78.367 11.376 78.367 11.376v7.287c80.144 32.107 136.75 110.5 136.75 202.115 0 17.204-1.997 33.942-5.77 49.996l5.565 3.836s-17.04 45.88-35.105 70.982c-7.359 10.226-17.575 21.683-27.133 31.7z"
style="fill:url(#paint9_linear_3901_3026)"></path>
<g id="g205" style="filter:url(#filter0_dd_3901_3026)" transform="translate(-471.03 -207.065)">
<circle id="circle203" cx="729.57" cy="467.791" r="77.912" style="fill:url(#paint11_linear_3901_3026)"></circle>
</g>
<path id="path214"
d="M155.844 375.509c-4.276 0-6.962-2.888-6.962-7.724 0-4.814 2.686-7.724 6.962-7.724 4.254 0 6.941 2.91 6.941 7.724 0 4.836-2.687 7.724-6.94 7.724zm0-1.523c3.471 0 5.262-2.014 5.262-6.201 0-4.187-1.79-6.202-5.262-6.202-3.492 0-5.283 2.015-5.283 6.202 0 4.187 1.791 6.2 5.283 6.2z"
style="fill:#fff"></path>
<path id="path216"
d="M110.413 263.285H98.524v-1.097c0-2.888 1.053-4.3 4.075-5.396l3.358-1.186c2.172-.806 2.888-1.545 2.888-3.135 0-1.97-1.365-2.91-4.209-2.91-3.246 0-4.589 1.254-4.589 3.493v.268h-1.59v-.201c0-2.665 1.836-5.06 6.224-5.06 4.03 0 5.776 1.992 5.776 4.41 0 2.306-1.432 3.605-4.074 4.5l-3.067 1.03c-2.463.873-3.157 1.859-3.157 3.963l3.358-.134h6.896zm8.581.224c-4.276 0-6.963-2.888-6.963-7.724 0-4.814 2.687-7.724 6.963-7.724 4.254 0 6.941 2.91 6.941 7.724 0 4.836-2.687 7.724-6.94 7.724zm0-1.523c3.47 0 5.262-2.014 5.262-6.201 0-4.187-1.792-6.202-5.262-6.202-3.492 0-5.283 2.015-5.283 6.202 0 4.187 1.791 6.2 5.283 6.2z"
style="fill:#fff"></path>
<path id="path218"
d="M153.092 148.285h-1.612v-3.18h-9.605v-1.163l9.336-10.657h1.881v10.366h2.8v1.455h-2.8zm-9.023-4.634h7.411v-8.441h-.112l-7.299 8.306zm20.123 4.858c-4.276 0-6.963-2.888-6.963-7.724 0-4.814 2.687-7.724 6.963-7.724 4.254 0 6.94 2.91 6.94 7.724 0 4.836-2.686 7.724-6.94 7.724zm0-1.523c3.47 0 5.261-2.014 5.261-6.201 0-4.187-1.79-6.202-5.26-6.202-3.494 0-5.285 2.015-5.285 6.202 0 4.187 1.791 6.2 5.284 6.2z"
style="fill:#fff"></path>
<path id="path220"
d="M346.185 148.509c-4.097 0-6.627-1.433-6.627-4.3 0-1.857 1.298-3.29 3.761-3.782v-.157c-2.17-.291-3.358-1.612-3.358-3.314 0-2.306 2.127-3.895 6.224-3.895 4.12 0 6.224 1.589 6.224 3.895 0 1.702-1.187 3.023-3.358 3.314v.157c2.507.492 3.761 1.925 3.761 3.783 0 2.866-2.552 4.299-6.627 4.299zm0-8.62c3.18 0 4.634-.873 4.634-2.641 0-1.657-1.119-2.665-4.634-2.665-3.493 0-4.634 1.008-4.634 2.665 0 1.768 1.455 2.64 4.634 2.64zm0 7.097c3.56 0 5.015-.895 5.015-3.022 0-1.948-1.5-2.933-5.015-2.933-3.515 0-5.015.985-5.015 2.933 0 2.127 1.433 3.022 5.015 3.022zm14.945 1.523c-4.276 0-6.962-2.888-6.962-7.724 0-4.814 2.686-7.724 6.962-7.724 4.254 0 6.941 2.91 6.941 7.724 0 4.836-2.687 7.724-6.94 7.724zm0-1.523c3.471 0 5.262-2.014 5.262-6.201 0-4.187-1.79-6.202-5.262-6.202-3.492 0-5.283 2.015-5.283 6.202 0 4.187 1.791 6.2 5.283 6.2z"
style="fill:#fff"></path>
<path id="path222"
d="M251.806 110.497c-4.814 0-6.896-2.283-6.896-7.858 0-4.5 2.172-7.59 6.851-7.59 3.426 0 5.933 1.769 5.933 4.79v.158h-1.724v-.157c0-1.858-1.097-3.268-4.209-3.268-3.806 0-5.194 2.015-5.194 6v1.343h.157c.515-1.68 2.574-2.933 5.552-2.933 3.672 0 5.821 1.79 5.821 4.702 0 2.933-2.284 4.813-6.29 4.813zm-.045-1.522c3.224 0 4.702-1.12 4.702-3.403 0-2.217-1.433-3.381-4.679-3.381-3.045 0-4.904 1.209-4.904 3.246 0 2.329 1.747 3.538 4.881 3.538zm15.041 1.522c-4.276 0-6.962-2.888-6.962-7.724 0-4.813 2.686-7.724 6.962-7.724 4.254 0 6.941 2.91 6.941 7.724 0 4.836-2.687 7.724-6.94 7.724zm0-1.522c3.471 0 5.262-2.015 5.262-6.202 0-4.186-1.79-6.201-5.262-6.201-3.492 0-5.283 2.015-5.283 6.2 0 4.188 1.791 6.203 5.283 6.203z"
style="fill:#fff"></path>
<path id="path226"
d="M384.357 263.285h-1.59v-11.933h-3.537v-1.21h.784c1.656 0 2.462-.447 3.044-1.857h1.3zm9.064.224c-4.276 0-6.963-2.888-6.963-7.724 0-4.814 2.687-7.724 6.963-7.724 4.254 0 6.94 2.91 6.94 7.724 0 4.836-2.686 7.724-6.94 7.724zm0-1.523c3.47 0 5.261-2.014 5.261-6.201 0-4.187-1.79-6.202-5.26-6.202-3.494 0-5.285 2.015-5.285 6.202 0 4.187 1.791 6.2 5.284 6.2zm15.48 1.523c-4.277 0-6.963-2.888-6.963-7.724 0-4.814 2.686-7.724 6.962-7.724 4.254 0 6.941 2.91 6.941 7.724 0 4.836-2.687 7.724-6.94 7.724zm0-1.523c3.47 0 5.261-2.014 5.261-6.201 0-4.187-1.79-6.202-5.262-6.202-3.492 0-5.283 2.015-5.283 6.202 0 4.187 1.791 6.2 5.283 6.2z"
style="fill:#fff"></path>
<path id="path228"
d="M347.163 375.285h-1.59v-11.933h-3.537v-1.21h.783c1.657 0 2.463-.447 3.045-1.857h1.3zm14.191 0h-11.889v-1.097c0-2.888 1.053-4.3 4.075-5.396l3.358-1.186c2.172-.806 2.888-1.545 2.888-3.135 0-1.97-1.365-2.91-4.209-2.91-3.246 0-4.589 1.254-4.589 3.493v.268h-1.59v-.201c0-2.665 1.836-5.06 6.224-5.06 4.03 0 5.776 1.992 5.776 4.41 0 2.306-1.433 3.605-4.074 4.5l-3.068 1.03c-2.462.873-3.156 1.859-3.156 3.963l3.358-.134h6.896zm8.581.224c-4.276 0-6.963-2.888-6.963-7.724 0-4.814 2.687-7.724 6.963-7.724 4.254 0 6.941 2.91 6.941 7.724 0 4.836-2.687 7.724-6.94 7.724zm0-1.523c3.47 0 5.261-2.014 5.261-6.201 0-4.187-1.79-6.202-5.26-6.202-3.493 0-5.285 2.015-5.285 6.202 0 4.187 1.792 6.2 5.284 6.2z"
style="fill:#fff"></path>
<path id="path147" d="M87.269 371.153c1.468 2.105 2.115 3.068 3.699 5.216l16.59-14.562c.327-.293.232-.979-.202-1.562l-.024-.003c-.45-.56-1.089-.82-1.46-.571z" style="fill:#fff;fill-opacity:.2"></path>
<path id="path149" d="M55.784 290.253c.384 2.537.537 3.687 1.005 6.314l21.325-5.704c.423-.118.642-.775.511-1.49l-.02-.013c-.155-.701-.613-1.218-1.056-1.159z" style="fill:#fff;fill-opacity:.2"></path>
<path id="path151" d="M57.366 212.277c-.509 2.515-.759 3.647-1.219 6.276l21.989 1.946c.437.034.868-.509.99-1.225l-.015-.02c.095-.711-.158-1.354-.595-1.45z" style="fill:#fff;fill-opacity:.2"></path>
<path id="path153" d="M88.49 137.824c-1.553 2.044-2.27 2.955-3.827 5.122l18.955 11.314c.379.221 1.003-.081 1.424-.672l-.004-.025c.394-.599.446-1.288.094-1.564z" style="fill:#fff;fill-opacity:.2"></path>
<path id="path155" d="M143.819 82.939c-2.197 1.326-3.2 1.908-5.448 3.346l13.436 17.515c.271.345.963.296 1.572-.099l.005-.024c.588-.412.89-1.033.666-1.419z" style="fill:#fff;fill-opacity:.2"></path>
<path id="path157" d="M221.103 52.844c-2.538.384-3.687.538-6.314 1.006l5.706 21.324c.118.423.776.642 1.49.511l.014-.021c.701-.155 1.218-.613 1.158-1.056z" style="fill:#fff;fill-opacity:.2"></path>
<path id="path159" d="M303.94 54.077c-2.496-.595-3.619-.883-6.231-1.434l-2.699 21.909c-.049.436.479.886 1.19 1.032l.021-.014c.708.119 1.358-.112 1.469-.545z" style="fill:#fff;fill-opacity:.2"></path>
<path id="path161" d="M377.501 87.305c-1.977-1.636-2.857-2.39-4.957-4.038l-12.097 18.465c-.237.37.038 1.006.612 1.452l.024-.004c.583.419 1.269.5 1.559.16z" style="fill:#fff;fill-opacity:.2"></path>
<path id="path163" d="M434.568 147.109c-1.308-2.208-1.881-3.215-3.301-5.476l-17.627 13.289c-.348.268-.304.959.085 1.572l.025.005c.406.592 1.024.899 1.413.678z" style="fill:#fff;fill-opacity:.2"></path>
<path id="path165" d="M460.482 220.434c-.497-2.518-.702-3.659-1.287-6.263l-21.047 6.658c-.417.137-.607.804-.444 1.511l.021.013c.187.693.667 1.189 1.107 1.11z" style="fill:#fff;fill-opacity:.2"></path>
<path id="path167" d="M462.693 306.495c.637-2.486.944-3.604 1.539-6.206l-21.861-3.068c-.435-.056-.893.464-1.052 1.173l.014.021c-.131.705.089 1.36.52 1.478z" style="fill:#fff;fill-opacity:.2"></path>
<path id="path169" d="M431.515 376.019c1.645-1.97 2.404-2.847 4.06-4.939l-18.409-12.181c-.369-.238-1.006.034-1.454.605l.003.025c-.422.581-.505 1.266-.167 1.558z" style="fill:#fff;fill-opacity:.2"></path>
<path id="path193" d="M451.106 343.8c1.628-3.461 2.39-5.012 3.988-8.654l-31.142-10.603c-.621-.205-1.437.428-1.867 1.422l.014.034c-.388.996-.25 2.016.348 2.309z" style="fill:#fff;fill-opacity:.6"></path>
<path id="path171" d="M342.814 65.045c-3.475-1.599-5.031-2.349-8.686-3.916l-10.349 31.226c-.199.623.44 1.434 1.437 1.856l.034-.015c1 .381 2.018.234 2.307-.366z" style="fill:#fff;fill-opacity:.6"></path>
<path id="path173" d="M410.057 111.476c-2.623-2.783-3.786-4.061-6.588-6.883l-21.289 25.079c-.418.504-.128 1.495.638 2.259h.037c.785.727 1.784.972 2.276.523z" style="fill:#fff"></path>
<path id="path175" d="M263.875 49.321c-3.824-.074-5.551-.138-9.528-.112l3.015 32.759c.067.65.978 1.137 2.06 1.125l.026-.027c1.068-.051 1.942-.594 1.967-1.259z" style="fill:#fff"></path>
<path id="path177" d="M181.769 62.279c-3.568 1.379-5.19 1.974-8.861 3.504l15.196 29.177c.308.577 1.335.683 2.332.261l.014-.034c.969-.452 1.573-1.285 1.343-1.91z" style="fill:#fff;fill-opacity:.6"></path>
<path id="path179" d="M113.698 104.197c-2.744 2.664-4.004 3.846-6.784 6.69l25.395 20.911c.509.41 1.496.106 2.249-.672l-.001-.037c.715-.795.945-1.798.489-2.283z" style="fill:#fff"></path>
<path id="path181" d="M65.737 175.593c-1.408 3.557-2.071 5.152-3.437 8.887l31.744 8.632c.633.165 1.407-.518 1.774-1.536l-.016-.033c.326-1.019.123-2.028-.492-2.284z" style="fill:#fff;fill-opacity:.6"></path>
<path id="path183" d="M51.525 251.302c-.061 3.825-.118 5.551-.077 9.528l32.747-3.136c.65-.069 1.134-.981 1.117-2.063l-.026-.026c-.056-1.068-.601-1.94-1.267-1.962z" style="fill:#fff"></path>
<path id="path185" d="M63.078 333.84c1.597 3.475 2.292 5.057 4.046 8.627l28.181-16.974c.556-.343.598-1.375.116-2.344l-.035-.011c-.512-.94-1.381-1.491-1.99-1.223z" style="fill:#fff;fill-opacity:.6"></path>
<path id="path187" d="M112.269 398.514c2.52 2.877 3.636 4.196 6.334 7.118l22.184-24.292c.436-.487.182-1.488-.556-2.28l-.037-.001c-.757-.755-1.747-1.036-2.255-.605z" style="fill:#fff"></path>
<path id="path189" d="M453.007 182.414c-1.069-3.673-1.523-5.339-2.735-9.128l-30.368 12.65c-.601.258-.794 1.272-.459 2.302l.033.016c.368 1.004 1.146 1.677 1.789 1.502z" style="fill:#fff;fill-opacity:.6"></path>
<path id="path191" d="M465.926 260.237c-.045-3.824-.036-5.552-.188-9.526l-32.647 4.046c-.648.087-1.106 1.013-1.059 2.094l.027.025c.085 1.066.655 1.923 1.321 1.926z" style="fill:#fff"></path>
<path id="path195" d="M404.103 406.407c2.83-2.573 4.128-3.713 7-6.465l-24.698-21.73c-.496-.427-1.492-.155-2.27.598v.037c-.741.771-1.004 1.766-.564 2.266z" style="fill:#fff"></path>
<g id="g987" style="stroke-width:1.10882854" transform="matrix(.90185 0 0 .90185 1096.195 -100.475)">
<path id="path978" d="m-952.953 452.988 57.2-82.5-21.587.412z" style="fill:#fff;fill-opacity:1;stroke:none;stroke-width:1.10882854px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"></path>
<path id="path980" d="m-934.39 385.2-12.65-7.425h-27.225l28.875-19.525h59.95l-4.4 6.875h-58.3l-7.975 5.775h26.887z"
style="fill:#fff;fill-opacity:1;stroke:none;stroke-width:1.10882854px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"></path>
</g>
<defs id="defs105">
<linearGradient id="c" x1="738.294" x2="738.29" y1="306.797" y2="755.597" gradientUnits="userSpaceOnUse">
<stop id="stop28" stop-color="#262626"></stop>
<stop id="stop30" offset=".831"></stop>
</linearGradient>
<linearGradient id="d" x1="738.294" x2="738.294" y1="306.797" y2="728.757" gradientUnits="userSpaceOnUse">
<stop id="stop33" stop-color="#DC3929"></stop>
<stop id="stop35" offset="1" stop-color="#DC3929" stop-opacity="0"></stop>
</linearGradient>
<linearGradient id="f" x1="738.294" x2="738.294" y1="454.638" y2="607.758" gradientUnits="userSpaceOnUse">
<stop id="stop38" stop-color="#0D0D0D"></stop>
<stop id="stop40" offset="1" stop-color="#232323"></stop>
</linearGradient>
<linearGradient id="paint11_linear_3901_3026" x1="729.57" x2="729.57" y1="389.879" y2="545.702" gradientUnits="userSpaceOnUse">
<stop id="stop355" stop-color="#0D0D0D"></stop>
<stop id="stop357" offset="1" stop-color="#232323"></stop>
</linearGradient>
<linearGradient id="paint10_linear_3901_3026" x1="730.02" x2="730.016" y1="238.002" y2="694.725" gradientUnits="userSpaceOnUse">
<stop id="stop350" stop-color="#262626"></stop>
<stop id="stop352" offset=".831"></stop>
</linearGradient>
<linearGradient id="paint9_linear_3901_3026" x1="730.02" x2="730.02" y1="238.002" y2="667.411" gradientTransform="translate(-471.03 -208.715)" gradientUnits="userSpaceOnUse">
<stop id="stop345" stop-color="#DC3929"></stop>
<stop id="stop347" offset="1" stop-color="#DC3929" stop-opacity="0"></stop>
</linearGradient>
<linearGradient id="paint8_linear_3901_3026" x1="730.02" x2="730.016" y1="238.002" y2="694.725" gradientTransform="translate(-471.03 -208.715)" gradientUnits="userSpaceOnUse">
<stop id="stop340" stop-color="#262626"></stop>
<stop id="stop342" offset=".831"></stop>
</linearGradient>
<filter id="b" width="519.2" height="519.2" x="478.694" y="264.557" filterUnits="userSpaceOnUse" style="color-interpolation-filters:sRGB">
<feFlood id="feFlood43" flood-opacity="0" result="BackgroundImageFix"></feFlood>
<feColorMatrix id="feColorMatrix45" in="SourceAlpha" result="hardAlpha" values="0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 127 0"></feColorMatrix>
<feOffset id="feOffset47" dy="-7.04"></feOffset>
<feGaussianBlur id="feGaussianBlur49" stdDeviation="17.6"></feGaussianBlur>
<feComposite id="feComposite51" in2="hardAlpha" operator="out"></feComposite>
<feColorMatrix id="feColorMatrix53" values="0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0.24 0"></feColorMatrix>
<feBlend id="feBlend55" in2="BackgroundImageFix" result="effect1_dropShadow_3901_3026"></feBlend>
<feColorMatrix id="feColorMatrix57" in="SourceAlpha" result="hardAlpha" values="0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 127 0"></feColorMatrix>
<feOffset id="feOffset59" dy="3.52"></feOffset>
<feGaussianBlur id="feGaussianBlur61" stdDeviation="3.96"></feGaussianBlur>
<feComposite id="feComposite63" in2="hardAlpha" operator="out"></feComposite>
<feColorMatrix id="feColorMatrix65" values="0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0"></feColorMatrix>
<feBlend id="feBlend67" in2="effect1_dropShadow_3901_3026" result="effect2_dropShadow_3901_3026"></feBlend>
<feBlend id="feBlend69" in="SourceGraphic" in2="effect2_dropShadow_3901_3026" result="shape"></feBlend>
</filter>
<filter id="e" width="184.8" height="186.56" x="645.894" y="441.438" filterUnits="userSpaceOnUse" style="color-interpolation-filters:sRGB">
<feFlood id="feFlood72" flood-opacity="0" result="BackgroundImageFix"></feFlood>
<feColorMatrix id="feColorMatrix74" in="SourceAlpha" result="hardAlpha" values="0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 127 0"></feColorMatrix>
<feOffset id="feOffset76" dy="2.64"></feOffset>
<feGaussianBlur id="feGaussianBlur78" stdDeviation="7.92"></feGaussianBlur>
<feComposite id="feComposite80" in2="hardAlpha" operator="out"></feComposite>
<feColorMatrix id="feColorMatrix82" values="0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0.24 0"></feColorMatrix>
<feBlend id="feBlend84" in2="BackgroundImageFix" result="effect1_dropShadow_3901_3026"></feBlend>
<feColorMatrix id="feColorMatrix86" in="SourceAlpha" result="hardAlpha" values="0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 127 0"></feColorMatrix>
<feOffset id="feOffset88" dy="7.92"></feOffset>
<feGaussianBlur id="feGaussianBlur90" stdDeviation="6.16"></feGaussianBlur>
<feComposite id="feComposite92" in2="hardAlpha" operator="out"></feComposite>
<feColorMatrix id="feColorMatrix94" values="0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0"></feColorMatrix>
<feBlend id="feBlend96" in2="effect1_dropShadow_3901_3026" result="effect2_dropShadow_3901_3026"></feBlend>
<feBlend id="feBlend98" in="SourceGraphic" in2="effect2_dropShadow_3901_3026" result="shape"></feBlend>
</filter>
<filter id="filter0_dd_3901_3026" width="188.063" height="189.853" x="635.539" y="376.446" filterUnits="userSpaceOnUse" style="color-interpolation-filters:sRGB">
<feFlood id="feFlood268" flood-opacity="0" result="BackgroundImageFix"></feFlood>
<feColorMatrix id="feColorMatrix270" in="SourceAlpha" result="hardAlpha" type="matrix" values="0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 127 0"></feColorMatrix>
<feOffset id="feOffset272" dy="2.687"></feOffset>
<feGaussianBlur id="feGaussianBlur274" stdDeviation="8.06"></feGaussianBlur>
<feComposite id="feComposite276" in2="hardAlpha" operator="out"></feComposite>
<feColorMatrix id="feColorMatrix278" type="matrix" values="0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0.24 0"></feColorMatrix>
<feBlend id="feBlend280" in2="BackgroundImageFix" mode="normal" result="effect1_dropShadow_3901_3026"></feBlend>
<feColorMatrix id="feColorMatrix282" in="SourceAlpha" result="hardAlpha" type="matrix" values="0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 127 0"></feColorMatrix>
<feOffset id="feOffset284" dy="8.06"></feOffset>
<feGaussianBlur id="feGaussianBlur286" stdDeviation="6.269"></feGaussianBlur>
<feComposite id="feComposite288" in2="hardAlpha" operator="out"></feComposite>
<feColorMatrix id="feColorMatrix290" type="matrix" values="0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0"></feColorMatrix>
<feBlend id="feBlend292" in2="effect1_dropShadow_3901_3026" mode="normal" result="effect2_dropShadow_3901_3026"></feBlend>
<feBlend id="feBlend294" in="SourceGraphic" in2="effect2_dropShadow_3901_3026" mode="normal" result="shape"></feBlend>
</filter>
<pattern id="g" width="1" height="1" patternContentUnits="objectBoundingBox">
<use xlink:href="#i" id="use101" transform="matrix(.001 0 0 .00094 0 -.005)"></use>
</pattern>
<pattern id="pattern0" width="1" height="1" patternContentUnits="objectBoundingBox">
<image
xlink:href=""
id="use297" width="1" height="1.011" x="0" y="-.005"></image>
</pattern>
<mask id="mask1_3901_3026" width="82" height="87" x="689" y="429" maskUnits="userSpaceOnUse">
<path id="rect207" d="M689.658 429.879h80.532v85.951h-80.532z" style="fill:url(#pattern0)"></path>
</mask>
<mask id="mask0_3901_3026" width="458" height="385" x="501" y="238" maskUnits="userSpaceOnUse">
<path id="path144" d="M896.31 622.879c38.487-40.876 62.071-95.941 62.071-156.515 0-126.121-102.241-228.362-228.361-228.362-126.121 0-228.362 102.241-228.362 228.362 0 60.574 23.585 115.639 62.072 156.515z"
style="fill:url(#paint10_linear_3901_3026)"></path>
</mask>
<image
xlink:href=""
id="i" width="1001" height="1080"></image>
</defs>
<g id="display--dial" class="c-calculator__dial-display" style="transform: rotate(142.3deg);">
<path id="path107" d="M124.6 123.64h270v270h-270z" style="opacity:0"></path>
<circle id="circle109" cx="10.901" cy="-366.289" r="93.72" style="stroke:#dc3929;stroke-width:2.64" transform="rotate(133.19)"></circle>
<path id="path111" d="M260.022 381.398a2.5 2.5 0 0 0 2.053-2.114l3.89-27.612h-12.73l3.89 27.613a2.5 2.5 0 0 0 2.897 2.113z" style="opacity:1;fill:#dc3929"></path>
<path id="path113"
d="M260.022 135.882a2.5 2.5 0 0 1 2.053 2.114l3.89 27.612h-12.73l3.89-27.613a2.5 2.5 0 0 1 2.897-2.113zm122.336 123.18a2.5 2.5 0 0 1-2.114 2.053l-27.612 3.89v-12.73l27.613 3.89a2.5 2.5 0 0 1 2.113 2.897zm-245.516 0a2.5 2.5 0 0 0 2.114 2.053l27.612 3.89v-12.73l-27.613 3.89a2.5 2.5 0 0 0-2.113 2.897z"
style="opacity:0"></path>
</g>
</svg>
<div class="c-calculator__output-wrapper c-calculator__output-wrapper--emr">
<svg viewBox="0 0 466 69" fill="none" xmlns="http://www.w3.org/2000/svg">
<path d="M462.68 67.1496H464V65.8296V47.3496C464 22.3201 443.71 2.02961 418.68 2.02961H47.3203C22.2908 2.02961 2.00031 22.3201 2.00031 47.3496V65.8296V67.1496H3.32031H462.68Z" fill="url(#paint0_linear_3901_3176)"
stroke="url(#paint1_linear_3901_3176)" stroke-width="2.64"></path>
<defs>
<linearGradient id="paint0_linear_3901_3176" x1="233" y1="-4.46039" x2="233" y2="65.8296" gradientUnits="userSpaceOnUse">
<stop stop-color="#242424"></stop>
<stop offset="1"></stop>
</linearGradient>
<linearGradient id="paint1_linear_3901_3176" x1="233" y1="-47.6904" x2="233" y2="50.8696" gradientUnits="userSpaceOnUse">
<stop stop-color="#DB3929"></stop>
<stop offset="1" stop-color="#DB3929" stop-opacity="0"></stop>
</linearGradient>
</defs>
</svg>
<div class="c-calculator__output-title">
<span id="display--emr">$43K</span> EXTRA Monthly Revenue
</div>
</div>
</div>
<div class="c-calculator__column c-calculator__column--desktop">
<div class="c-calculator__output">
<div class="c-calculator__output-title"> Revenue Per User </div>
<div class="c-calculator__output-inner">
<svg preserveAspectRatio="none" viewBox="0 0 279 41" xmlns="http://www.w3.org/2000/svg">
<rect x="0.279163" y="0.40955" width="262.133" height="41.3553" transform="matrix(1 0 -0.365539 0.930796 16.136 0.873069)" fill="#0F0F0F" stroke="url(#paint0_linear_3901_3150)" stroke-width="0.88"></rect>
<defs>
<linearGradient id="paint0_linear_3901_3150" x1="123.558" y1="-21.7448" x2="114.775" y2="36.0886" gradientUnits="userSpaceOnUse">
<stop stop-color="#939393"></stop>
<stop offset="1" stop-color="#101010"></stop>
</linearGradient>
</defs>
</svg>
<p class="c-calculator__output-value display--rpu">$3.60</p>
</div>
</div>
<div class="c-calculator__output">
<div class="c-calculator__output-title"> Annual Revenue </div>
<div class="c-calculator__output-inner">
<svg preserveAspectRatio="none" viewBox="0 0 279 41" xmlns="http://www.w3.org/2000/svg">
<rect x="0.279163" y="0.40955" width="262.133" height="41.3553" transform="matrix(1 0 -0.365539 0.930796 16.136 0.873069)" fill="#0F0F0F" stroke="url(#paint0_linear_3901_3150)" stroke-width="0.88"></rect>
<defs>
<linearGradient id="paint0_linear_3901_3150" x1="123.558" y1="-21.7448" x2="114.775" y2="36.0886" gradientUnits="userSpaceOnUse">
<stop stop-color="#939393"></stop>
<stop offset="1" stop-color="#101010"></stop>
</linearGradient>
</defs>
</svg>
<p class="c-calculator__output-value display--ar">$4,320,000</p>
</div>
</div>
<div class="c-calculator__output">
<div class="c-calculator__output-wrapper c-calculator__output-wrapper--ear">
<svg preserveAspectRatio="none" viewBox="0 0 264 51" xmlns="http://www.w3.org/2000/svg" style="fill:none">
<path fill="url(#abd)" d="M24.845 1.444c-13.26 0-24.01 10.75-24.01 24.01 0 13.26 10.75 24.009 24.01 24.009h213.858c13.26 0 24.01-10.75 24.01-24.01 0-13.26-10.75-24.01-24.01-24.01H24.845Z"></path>
<path stroke="url(#bad)" stroke-width="1.651" d="M24.845 1.444c-13.26 0-24.01 10.75-24.01 24.01 0 13.26 10.75 24.009 24.01 24.009h213.858c13.26 0 24.01-10.75 24.01-24.01 0-13.26-10.75-24.01-24.01-24.01H24.845Z"></path>
<defs>
<linearGradient id="abd" x1="131.774" x2="131.774" y1="-3.526" y2="48.637" gradientUnits="userSpaceOnUse">
<stop stop-color="#242424"></stop>
<stop offset="1"></stop>
</linearGradient>
<linearGradient id="bad" x1="131.774" x2="131.774" y1="-35.608" y2="37.535" gradientUnits="userSpaceOnUse">
<stop stop-color="#DB3929"></stop>
<stop offset="1" stop-color="#DB3929" stop-opacity="0"></stop>
</linearGradient>
</defs>
</svg>
<div class="c-calculator__output-title"> Extra Annual Revenue </div>
</div>
<div class="c-calculator__output-inner">
<svg preserveAspectRatio="none" viewBox="0 0 279 41" xmlns="http://www.w3.org/2000/svg">
<rect x="0.279163" y="0.40955" width="262.133" height="41.3553" transform="matrix(1 0 -0.365539 0.930796 16.136 0.873069)" fill="#0F0F0F" stroke="url(#paint0_linear_3901_3150)" stroke-width="0.88"></rect>
<defs>
<linearGradient id="paint0_linear_3901_3150" x1="123.558" y1="-21.7448" x2="114.775" y2="36.0886" gradientUnits="userSpaceOnUse">
<stop stop-color="#939393"></stop>
<stop offset="1" stop-color="#101010"></stop>
</linearGradient>
</defs>
</svg>
<p class="c-calculator__output-value display--ear">$518,400</p>
</div>
</div>
</div>
</div>
</form>
Text Content
Landing Pages & FunnelsA/B TestingCase Studies Book a call PartnersContact Us BOOK A CALL BOOST E-COMMERCE REVENUE WITHOUT INCREASING AD SPEND Guaranteed 10% Revenue Uplift within 90 Days. Guaranteed 10% Revenue Uplift within 90 Days. Start Now with a FREE Call "I can say without a doubt that working with TVRBO has been the best marketing investment to date." "I can say without a doubt that working with TVRBO has been the best marketing investment to date." More than 300 Satisfied Clients 21% Average Increase Per CRO Test 30% Average CPA Decrease 18% Average AOV Increase WHERE OTHER CRO AGENCIES STOP, WE PUSH FURTHER. By shifting our focus from conversion-obsessed to revenue-obsessed, we're able to scale your business at a much faster rate. Here's how we do it: Click for sound 1:01 1 Revenue-Per-User Approach We don't just count sales based on the number of website visitors (Conversion Rate). We take it a step further by making each visit more profitable (Revenue Per User). 2 Customer Insights AI Our cutting-edge AI tool extracts customer feedback from platforms like Amazon and Meta and classifies it by sentiment. This uncovers customer desires, purchase motives, pain points, and hidden marketing opportunities. 3 High-Volume Rapid A/B Testing Using data from the Customer Insights AI and other valuable sources, we swiftly conduct multiple A/B tests to achieve rapid results and revenue turnaround. OUR SERVICES MORE THAN 50,000 MONTHLY SESSIONS RAPID A/B TESTING Through extensive data collection and customer analysis, we identify what tests will have the biggest impact on your conversion rates, average order value, and profitability. From there, it's analyze, implement, and repeat. Convert more with expert A/B testing Includes a 50+ page audit report Performance-based pricing LEARN MORE LESS THAN 50,000 MONTHLY SESSIONS LANDING PAGES & FUNNELS Scaling comes easier when you have a strong foundation. Through data-informed optimizations and audience-specific landing pages, we're able to build a high-converting customer journey that drives growth and profit. Boost revenue with every customer interaction Unlimited calls with your personal success manager Performance-based pricing LEARN MORE SUCCESS STORIES FROM OUR CLIENTS From my perspective, TVRBO's help has had the most direct and meaningful impact on our business, and I would definitely recommend TVRBO to small business struggling to manage your website funnel." Paolo - Giant Loop "We sell niche products, really, they are a niche within a niche, making the customers very difficult to target. They've been great with feedback concerning the nuance of our product, and adapted quickly. They also have a great tracking and communication document that they have put together. 10/10." Erik - Robert Axle Project "The TVRBO team has proven themselves to be invaluable partners to EarthCruiser in expanding both our brand reach and product demand in a strategic, data-driven manner." Mary - EarthCruiser CASE STUDIES A/B testing GIANT LOOP Unclear product differentiation was a hurdle for Giant Loop. We tackled this with strategic A/B testing, leveraging customer data from our AI reports, heatmaps, and Google Analytics. This data-driven approach pinpointed high-impact improvements. Results +330% Overall Uplift +142% Greatest Single-Test Uplift CASE STUDIES A/B testing MOON To boost this brand, we created landing pages that cater to their audience and enhanced their website by adding high-converting elements. We also conducted competitor comparisons, addressed unclear messaging, and expanded product offerings. Results +353% Overall Uplift +72% Greatest Single-Test Uplift CASE STUDIES Landing Pages & Funnel Optimization DON’T TELL COMEDY First, we analyzed their drop-off rates, engagement rates, and events throughout the funnel. Based on that data, AI reports, and extensive A/B testing, we created a high-converting website by tailoring copy, UX/UI, and implementing urgency messaging. Results +108% Conversion Rate +4.16% Average Order Value +159.84% Revenue Per User CASE STUDIES Landing Pages & Funnel Optimization SPOUT WATER We improved Spout's market entry by creating a new website, implementing an educational pre-sale page, adding a tiered pricing structure, and implementing urgency messaging. Results +114% Conversion Rate +32% Lifetime Value +191% Revenue Per User CASE STUDIES A/B testing GIANT LOOP Unclear product differentiation was a hurdle for Giant Loop. We tackled this with strategic A/B testing, leveraging customer data from our AI reports, heatmaps, and Google Analytics. This data-driven approach pinpointed high-impact improvements. Results +330% Overall Uplift +142% Greatest Single-Test Uplift CASE STUDIES A/B testing MOON To boost this brand, we created landing pages that cater to their audience and enhanced their website by adding high-converting elements. We also conducted competitor comparisons, addressed unclear messaging, and expanded product offerings. Results +353% Overall Uplift +72% Greatest Single-Test Uplift We focus on Revenue Per User RPU tells a more profitable story, as conversion rates can sometimes increase without affecting your revenue. RPU shows you how much money you make on average from each person who interacts with your business. INPUT YOUR DATA TO SEE YOUR POTENTIAL REVENUE 🔥 TVRBO's average conversion rate increase is 21% Conversion rate % Average order value $ Monthly sessions k A/B Test Impact * +5% * +12% * +16% A/B Test Impact * +5% * +12% * +16% Extra Annual Revenue $518,400 Revenue Per User $3.60 Annual Revenue $4,320,000 $43K EXTRA Monthly Revenue Revenue Per User $3.60 Annual Revenue $4,320,000 Extra Annual Revenue $518,400 BOOK A CALL Performance-Based Pricing Model Our partnership is results-driven. We'll earn a commission off our winning tests. If no impact is made, you don't pay. REVIEWS From my perspective, TVRBO's help has had the most direct and meaningful impact on our business, and I would definitely recommend TVRBO to small business struggling to manage your website funnel. Paolo - Giant Loop We sell niche products, really, they are a niche within a niche making the customers very difficult to target. They've been great with feedback concerning the nuance of our product, and adapted quickly. They also have a great tracking and communication document that they have put together. 10/10. Erik - Robert Axle Project Before we launched Moon, we had no idea if anyone would buy our awning. In less than a year we’re a team of 6 people selling more shades than we can produce. We have a business we can count on and we wouldn’t be here without TVRBO. Henry - Moon Excellent experience all around with great communication, flexibility, and collaboration. TVRBO team really know what they’re doing and it has been a pleasure working with them. Annan - One Plus TVRBO has done an awesome job communicating and sharing the strategy and was very detailed with everything. Highly recommended. Will - Reason TVRBO is phenomenal. They are extremely knowledgeable and professional. I highly recommend them. Ryan - Talius The TVRBO team has proven themselves to be invaluable partners to EarthCruiser in expanding both our brand reach and product demand in a strategic, data-driven manner. Mary - EarthCruiser 353% Aggregated Test Uplift Moon Case Study 142% Aggregated Test Uplift Giant Loop Case Study 191% Increase in Revenue Per Visitor Spout Water Case Study 159% Aggregated Test Uplift Don’t Tell Comedy Case Study DON’T TELL COMEDY - FULL FUNNEL We designed and developed a home page for DTC and then utilized A/B testing across the entire website. Their main issues were UX/UI and user journey-related. We improved the user journey by analyzing drop-off rates, engagement rates, and events throughout the funnel. On the product page, we directed our attention mainly toward the text and messaging, as it had previously lacked branded content and urgency. On the home page, we worked on layouts, text adjustments, and element sizing to ensure it stayed optimized to the industry standards. 108% Conversion Rate 160% Revenue Before After MOONFAB - A/B TEST We developed vehicle-specific landing pages for this client to appeal to their audience's mass desires: finding innovative solutions to add to their "van life" vehicles, including vans, trucks, and SUVs. Additionally, we focused on the main website by adding high-converting elements that convey the brand's main USPs in a visually appealing and easy-to-digest way. Also, we had to understand the customers' pain points and motivations, as they were not communicated clearly on the product page. Then, we compared their product to competitors to educate on why Moon's product had a better quality/cost proposal than most brands. Finally, we increased the readability on several pages, including the product page, and increased the AOV by offering more products on the exit funnel. 353% Aggregated Test Uplift 72% Biggest Singular Test Uplift Before After Before we launched Moon, we had no idea if anyone would buy our awning. In less than a year, we’re a team of 6 people selling more shades than we can produce. We have a business we can count on and we wouldn’t be here without TVRBO. GIANT LOOP - A/B TEST For Giant Loop, we A/B tested product pages to tackle low-hanging fruit. One of the main issues was that the differentiation of product usage needed to be clearer. We ran a Customer Insight AI report, conducted a behavioral analysis with heatmap tools, and looked at other sources, such as Google Analytics, to create a solid base of customer data and feedback. We used the feedback and data to ensure our improvements would make the highest impact possible. * The subtitle helped users quickly gather important context regarding the product. * A/B testing the right text for headings and subtitles reaped long-term SEO benefits. * Testing text above the fold resulted in continuous improvement and optimization of the pages that matter most. * Strong keywords drove user engagement 142% Aggregated Test Uplift 30% Biggest Uplift singular test Before After From my perspective, TVRBO's help has had the most direct and meaningful impact on our business, and I would definitely recommend TVRBO to small business struggling to manage your website funnel. SPOUT WATER - FULL FUNNEL We designed Spout’s website and an educational pre-sale page for their product, which is new to the market. Through a full-funnel approach, we communicated the benefits of this product’s new technology to unaware audiences, speaking directly to their pain points. As we managed the pre-sale phase of this product launch, we also incorporated tiered pricing and urgency messaging to further drive sales. With feedback and customer data from Customer Insight AI Reports, behavioral analyses and heat map tools, we identified the proper way to communicate with audiences. And through our educational messaging angle on why Spout was an effective water purification solution, we were able to nearly triple the Revenue Per User. Finally, we also increased the brand’s profitability by achieving nearly 2x their initial ROAS without touching ad spend. * High-converting elements above the fold. * Social proof across the website (press mentions, testimonials, awards...). * Better value propositions and overall copy. * Increased readability. * Increased urgency with timers and messaging. * Answered FAQs based on Customer Insights AI Report throughout the pages and in the FAQ section. 114% Conversion rate 191% Revenue per user Before After DON’T TELL COMEDY - FULL FUNNEL We designed and developed a home page for DTC and then utilized A/B testing across the entire website. Their main issues were UX/UI and user journey-related. We improved the user journey by analyzing drop-off rates, engagement rates, and events throughout the funnel. On the product page, we directed our attention mainly toward the text and messaging, as it had previously lacked branded content and urgency. On the home page, we worked on layouts, text adjustments, and element sizing to ensure it stayed optimized to the industry standards. 108% Conversion Rate 160% Revenue Before After MOONFAB - A/B TEST We developed vehicle-specific landing pages for this client to appeal to their audience's mass desires: finding innovative solutions to add to their "van life" vehicles, including vans, trucks, and SUVs. Additionally, we focused on the main website by adding high-converting elements that convey the brand's main USPs in a visually appealing and easy-to-digest way. Also, we had to understand the customers' pain points and motivations, as they were not communicated clearly on the product page. Then, we compared their product to competitors to educate on why Moon's product had a better quality/cost proposal than most brands. Finally, we increased the readability on several pages, including the product page, and increased the AOV by offering more products on the exit funnel. 353% Aggregated Test Uplift 72% Biggest Singular Test Uplift Before After Before we launched Moon, we had no idea if anyone would buy our awning. In less than a year, we’re a team of 6 people selling more shades than we can produce. We have a business we can count on and we wouldn’t be here without TVRBO. GET STARTED BECOME UNSTOPPABLE BECOME UNSTOPPABLE Schedule a free, no-commitment strategy session with our team. Spots are limited. More than 300 Satisfied Clients FREQUENTLY ASKED QUESTIONS Learn more about TVRBO and the metrics we help you increase. What is TVRBO’s Performance-Based Pricing? We charge you a small retainer and base the rest on your results rather than a large set fee – meaning your success is our success. Our commission structure incentivizes us to continuously launch tests and improve your site for better results across multiple KPIs, especially your revenue growth. What is the difference between TVRBO’s Full Funnel and A/B Testing service? The A/B Testing service aims to test and refine certain customer touchpoints within the customer journey and includes analysis tools like TVRBO AI. Our Full-Funnel service is a complete digital optimization process that looks at every part of your customer journey rather than just parts of it. What is Revenue Per User (RPU)? RPU is the revenue generated by each individual user who interacts with your business rather than just those who purchase something. TVRBO focuses on this metric as it guides strategic decisions to optimize revenue generation across the entire customer journey. What is Average Order Value (AOV) and Lifetime Value (LTV)? TVRBO helps you increase the total revenue generated by a customer over their entire relationship with your business (LTV) and the average amount a customer spends on each individual purchase (AOV). Landing Pages & Full Funnel OptimizationA/B TestingTestimonials Case StudiesPartnersContact Us Follow Us © 2024 TVRBO. All rights reserved. Terms of ServiceCookies SettingsPrivacy Policy SUBSCRIBE NOW X Ready to see how you can achieve these results? Ready to see how you can achieve these results? Subscribe for exclusive insights to increase your revenue per user. Subscribe now X Thank you for subscribing! Get ready to scale your business. Thank you for subscribing! Get ready to scale your business. Made with ♥️ by OptiMonk